
P/GM/N/07

Page 749CLAYS IN NATURAL & ENGINEERED BARRIERS FOR RADIOACTIVE WASTE CONFINEMENT
4TH INTERNATIONAL MEETING – MARCH 2010 – NANTES, FRANCE

A SUBCRITICAL DAMAGE MODEL FOR CLAY
AS A TWO-SCALE MATERIAL

B. François, C. Dascalu

Laboratoire Sols Solides Structures – Risques, UJF, INPG, CNRS UMR 5521, Domaine
Universitaire, BP 53, 38041 Grenoble cedex 9, France (bertrand.francois@hmg.inpg.fr,
cristian.dascalu@hmg.inpg.fr)

A time-dependent damage law for Clay has been built starting from considerations at the micro-scale where
non-planar subcritical growth of micro-cracks is assumed (François and Dascalu, 2010). The passage from
the micro-scale to the macro-scale is done through an asymptotic homogenization approach including the
size of the microscopic cell as a material parameter. The stress-strain relationship is controlled by
homogenized coefficient and a subcritical damage law defines the evolution of damage. The developed
model enables to reproduce not only the classical short-term stress-strain response of materials (in tension
and compression) but also the long-term behavior encountering relaxation and creep effects.

We consider the medium as two-dimensional isotropic elastic containing a locally periodic distribution of
micro-cracks. Each crack is straight with a length 2a and an orientation of angle θ with respect to the
abscissa of the referential system considered at the macro-scale. The damage variable d is defined as the
ration between the crack length 2a and the size of the periodicity cell ε (Figure 1). On the crack faces,
traction free opening or frictionless contact conditions are assumed.

The asymptotic homogenization is used to deduce the macroscopic (homogenized) behaviour starting from
the response of the periodic structure (at the micro-scale) (Leguillon and Sanchez-Palencia, 1982; Dascalu
et al., 2008). The unit cell is rescaled by the parameter ε (Figure 1b).

The evolution of the crack length 2a (i.e. the propagation of the crack) is evaluated through a subcritical
criterion adapted from the Charles’ law (Charles, 1958):

where K0, v0 and n are material parameters. K*
I is the stress intensity factor for the tensile mode of rupture

(Mode I). The star indicates that the stress intensity factor is related to the kinked crack (Figure 2)
K*

I depends on the stress (or strain) conditions, the internal length ε and the geometry of the micro-cracks.
The determination of this stress intensity factor is made through the computation of path-independent J-,
L- and M- integrals (Kienzler and Herrmann, 2000) for straight trajectory of micro-cracks and from the

Figure 1: (a) Fissured medium with locally periodic microstructure. (b) The fissured cell. 2a: length of the
micro-crack, ε: distance between two micro-cracks (internal length), θ: orientation of the micro-crack with
respect to this (×1 ; ×2) system.
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polynoms of Leblond (1999) for the kinked cracks. The crack is assumed to propagate in the direction that
maximizes the energy release rate. This criterion produces a kinking angle between the existing crack and
the incremental propagated crack (Figure 2). At each step of
calculation, an equivalent crack is determined by means of
geometrical relationships, by joining the tips of the real branched
crack.

Figure 3 shows numerical simulations of a relaxation test in
tension. Under a constant strain level, the subcritical micro-crack
growth produces a progressive decrease of the rigidity as long as
the damage state increases. As a consequence, the axial stress is
gradually relaxing upon failure. At such an ultimate state, the
microcracks coalesce and the rigidity tends to zero. The non-planar
growth of micro-cracks produces a rotation of the equivalent cracks
to be oriented perpendicularly to the loading. This example focuses
on a tension test. However, material damage is also increasing
under macroscopically compression field, producing wing-shaped
crack growth.
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Figure 3: Exemple of a relaxation test in tension. Evolution of the axial stress with time.

Figure 2: Kinked crack (out-of-
plane crack growth). φmax is the
angle between the crack plane and
the crack extension. Dashed line is
the equivalent crack.


