IMPORTANCE OF RHEOLOGICAL PROPERTIES WHEN DRYING SLUDGE IN A FIXED BED

A. Léonard, M. Crine

Laboratory of Chemical Engineering, University of Liège Belgium

G. Blandin

Lhoist Research and Development, Belgium

Experimental set-up

Batch convective dryer

Fixed bed: - Mass: 1 − 1.5 kg

(extrudates) - Volume: 0.002 m⁻³

- Diameter: 0.16 m

- Height: **0.10** m

Specific evaporation capacity:

up to 200 kg water/m²h

Operating conditions:

- Temperature: 105 °C

- Superficial velocity: 1.1 m/s

- Humidity (ambient): ~ 0.007 kg/kg

Different types of sludge

WWTP	Type of sludge	Sampling location	DS (%)	VS (%)
A	Stabilised by anaerobic digestion	After mechanical dewatering	~ 16 (W _{in} ~ 5 kg/kg)	~ 45
В	Stabilised by anaerobic digestion	After mechanical dewatering	~ 32 (W _{in} ~ 2 kg/kg)	~ 41
С	Not stabilised	After mechanical dewatering	22 (W _{in} ~ 5 kg/kg)	~ 61

Influence of backmixing: sludge A

Influence of the recycling ratio

Reference: raw sludge

◆: 1 kg fresh material

Mixed sludge

•: 1 kg fresh material + 0.1 kg DS

▲: 1 kg fresh material + 0.2 kg DS

♦: 1 kg fresh material + 0.3 kg DS

O: 1 kg fresh material + 0.4 kg DS

Influence of backmixing: sludge A

3D X-ray tomographic images

1000 g – 16% DS No addition of dried sludge

1400 g – 40% DS Addition of 400 g dried sludge

Influence of backmixing: sludge A

Influence of liming: sludge B

Pre- or post-liming ? Acceleration of drying in both cases Evaporation cap. (kg/m²/h) **30** Pre-liming > Post-liming Orying rate (g/min) 25 15 10 5 **Reference** ▲: Fresh sludge 24.3 **Limed samples** ■ : Pre-limed (21% CaO) Post-limed (21% CaO) 0,5 0,0 1,0 1,5 2,0 Water content (kg water/kg DS)

Influence of pumping: sludge C

Progressive cavity pump (Moineau type)

Rheology characterization

- Penetrometry test
 - Compressive and shear forces during penetration
 - ♦ Cohesion (kPa): calculated from the applied force
 - Traction forces during probe withdrawal
 - ♦ Adhesion (N): directly measured

Texturometer
Chatillon LCD-TCD200

Cone opening: β = 30 °

Rheology characterization: sludge C

 Pumping induces shear stress which destructurates sludge

♦ Increase of stickyness

♦ Decrease of cohesion

Liming strongly increases cohesion

Raw sludge

not pumped

• : pumped

Pre-limed sludge (25 % CaO)

: not pumped

: pumped

Texture visual observation: sludge C

Conclusion

- Backmixing and liming (pre- and post-) have a positive effect on drying.
- Post-liming is less efficient possibly due to shear stress induced by mixing.
- Shear stress induced by **pumping** affects the sludge structure (destructuration) and has a negative effect on drying.
- A good correlation between drying performance and penetrometry characterisation but... further works are needed to confirm these results.

