BAPS2021

The role of spatial and temporal dimensions in working memory for serial order: An fMRI study

REMOUCHAMPS Robin a, MAJERUS Steve a,b,c and ATTOUT Lucie a,b,c

« Detect when the dot stops.»

Right

Max 3000 ms

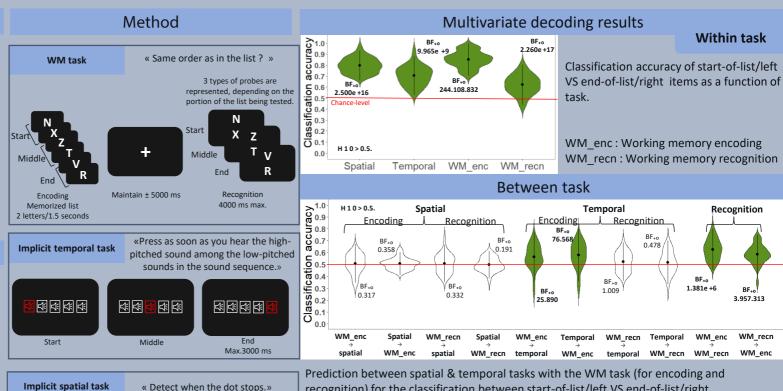
Middle

Left

^b Neuroscience of Cognition Research Unit (PsyNCog), Belgium ^c Psychology and c Fund for Scientific Research (FNRS), Belgium

Introduction

The representation and maintenance of serial order information is a fundamental aspect of working memory (WM). However, the way serial order information is represented remains unknown. Two hypotheses have been proposed: the spatial hypothesis, considering that serial order is represented using left-to-right spatial codes; the temporal hypothesis, considering time-based coding, each successive item in WM being associated


Aim

with a different temporal context signal.

This fMRI study determined the role of temporal and spatial neural codes in serial order WM via multivoxel pattern analyses, We examined whether implicit left/right discrimination in a spatial task or implicit early/late discrimination in a temporal event task predicts start-of-list/end-of-list serial position of items in a WM task.

Participants

28 healthy adults aged 18-30 years (22,35 $\pm 3,10$).

recognition) for the classification between start-of-list/left VS end-of-list/right.

Discussion

These results are in favor of the temporal hypothesis, showing that serial order information uses time-based coding where each successive item in working memory is associated with a different temporal context signal.