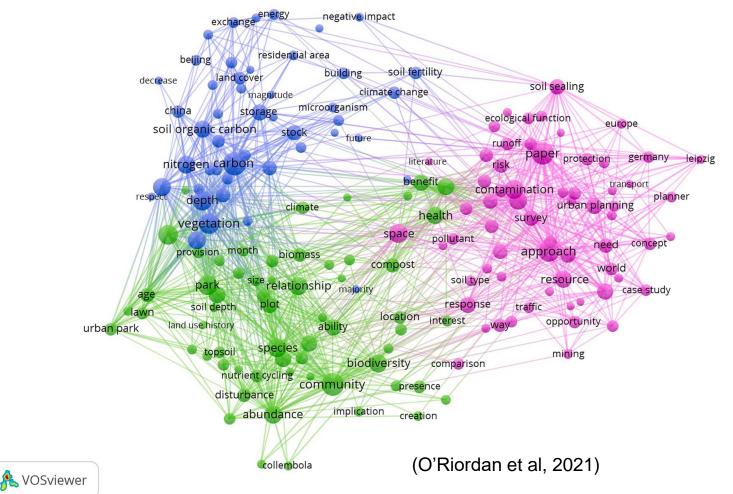


Assessing potential soil ecosystemic services in urban green areas from measurements of soil properties: insight from the URBSERSOI project

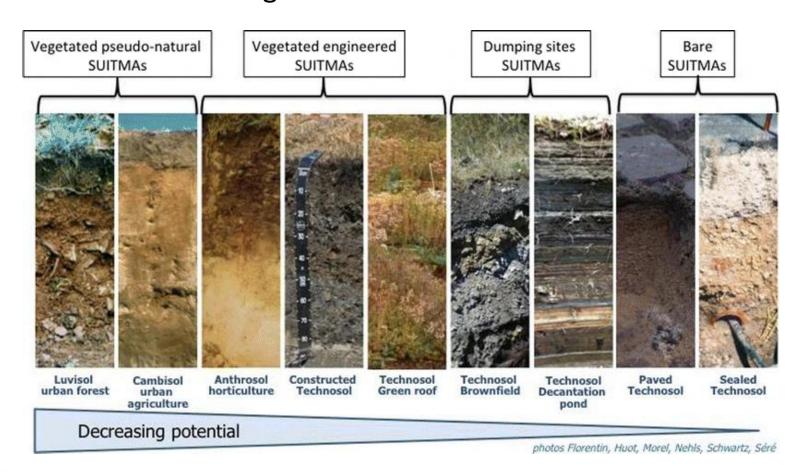
3/08/2022

Colinet G.*, Comeliau S.

- √ 66 % of population living in urban areas in 2050 at global scale
- ✓ Cities of the future must answer to multiple challenges :


"The close linkage between **space/service/people** is at the core of cities' capacities to respond to people's needs and to manage new challenges in a wider context, beyond administrative boundaries and sectorial domains. A truly **holistic** approach is needed to optimise the **provision of services** and create an intelligent interaction between the city and its inhabitants while maintaining or enhancing **quality of life**. "

https://urban.jrc.ec.europa.eu/thefutureofcities/



✓ Urban soils can fulfill a lot of ecosystemic services

✓ Lack of knowledge about urban soils

(Morel et al, 2014)

✓ Weak quantification of links from soil characteristics to ES

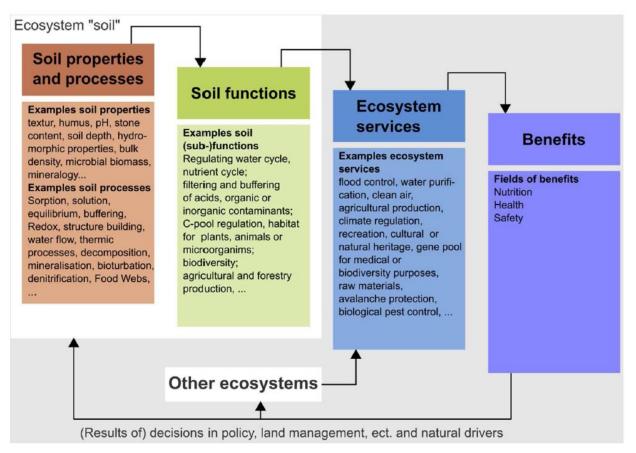


Fig. 1. Assessment of the contributions of soil functions to ecosystem services using the cascading framework developed by Haines-Young and Potschin (2008).

(Greiner et al, 2017)

The URBSERSOL project

- ✓ Goals: Develop tools for stakeholders in order to take into account actual, expected and potential ecosystemic services of urban areas
 - Better knowledge of urban soils types and characteristics;
 - Evaluate the expected services on 3 study cases through participatory approach
 - Identify key indicators and data assimilation procedure to quantify the actual and potential ecosystemic services

The 3 study cases

- ✓ Development of local food production near big cities :
 - Can safe vegetables be grown on soils?
 - ❖ What are the other ES given by market gardens?
- ✓ Numerous brownfields and urban wastelands:
 - What are the actual ES of wastelands?
 - How could we better valorize them?
- ✓ Regulation on use of pesticides modifies the practices of weed management in public parks :
 - ❖ What are the ES given by green areas in cities?
 - Can the changes of practices modify soil functions and ES?

Soil survey

1.3 Description détaillée

Ah: 0–40cm. Limon brun foncé à noir (10YR 2/1). Structure grumeleuse dans les vingt premiers cms, grenue et polyédrique sub-angulaire peu nette. Très peu compact et très friable. Très poreux. Forte activité biologique. Quelques racines, fines à très fines.

A/C: 40 – 60 cm. Limon brun foncé (10YR 3-2). Structure polyédrique à grenue. Peu compact et très friable, poreux. Peu de racines, galeries de vers et charbon de bois visibles. Revêtements dans les galeries

C: 60 – 85 cm. Limon brun (10YR 4/2-6) remanié. Horizon de transition. Peut-être mélange entre 2C et Remblais? Compact à très compact. Peu friable. Poreux. Galeries de vers de terre avec revêtements organo-argileux.

 $2C\colon >85$ cm. Limon brun (10YR 5/6) enfoui. Structure massive. Très compact et peu friable. Poreux. Peu de racines. Activité biologique importante (galeries de vers de terre). Revêtements dans les galeries.

1	ID_HOR	ID_Profil	Symbole	Prof_up	Prof_down	Tranche	Hum	Texture	COL_H	COL_V	COL_C	Spot_nr	Spot_size Spot_source	Spot_H	Spot_V	Spot_C	STR_1	STR_1_size S	STR_
2						- cm						0							
3	L22_01	L22	Ар	0	10	0 - 10 cm	Frais à sec		10YR	2	1	0					Grumeleuse	ļ.	Polyé
4	L22_02	L22	Ар	10	20	10 - 20 cm	Frais à sec		10YR	2	1	0					Grumeleuse	F	Polyé
5	L22_03	L22	Ар	20	30	20 - 30 cm	Frais à sec		10YR	2	1	0					Grenue	ļ.	Polyé
6	L22_04	L22	Ар	30	40	30 - 40 cm	Frais à sec		10YR	2	1	0					Grenue	F	Polyé
7	L22_05	L22	A/C	40	50	40 - 50 cm	Frais à sec		10YR	3	2	0					Grenue	F	Polyé
8	L22_06	L22	A/C	50	60	50 - 60 cm	Frais à sec		10YR	3	2	0					Grenue	F	Polyé
9	L22_07	L22	C	60	70	60 - 70 cm	Frais à sec		10YR	4	2	0					Massive		
10	L22_08	L22	C	70	80	70 - 80 cm	Frais à sec		10YR	4	2	0					Massive		
11	L22_09	L22	C/2C	80	90	80 - 90 cm	Frais à sec		10YR	4	6	0					Massive		
12	L22_10	L22	2C	90	100	90 - 100 cm	Frais à sec		10YR	5	6	0					Massive		
13	L27_01	L27	Ap	0	10	0 - 10 cm	Frais à sec		10YR	3	1	0					Grumeleuse		Poly
14	L27_02	L27	Ар	10	20	10 - 20 cm	Frais à sec		10YR	3	1	0					Grumeleuse	ļ.	Polyé
15	L27_03	L27	Ap	20	30	20 - 30 cm	Frais à sec		10YR	3	1	0					Grenue	F	Polyé
16	L27_04	L27	Ар	30	40	30 - 40 cm	Frais à sec		10YR	3	1	0					Grenue	F	Polyé
17	L27_05	L27	Ah	40	50	40 - 50 cm	Frais à sec		10YR	3	1	0					Grenue	ļ.	Polyé
18	L27_06	L27	Ah	50	60	50 - 60 cm	Frais à sec		10YR	3	1	0					Grenue	F	Polyé
19	L27_07	L27	A/C	60	70	60 - 70 cm	Frais à sec		10YR	4	2	0					Polyédrique sub-angulaire	ļ.	Polyé

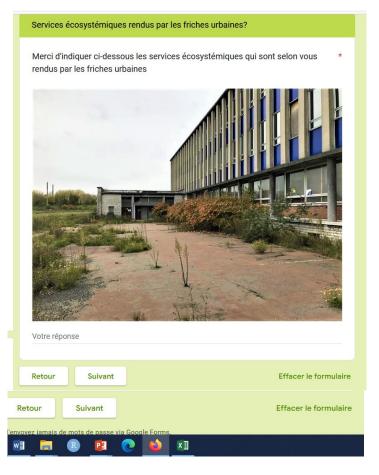
Soil survey

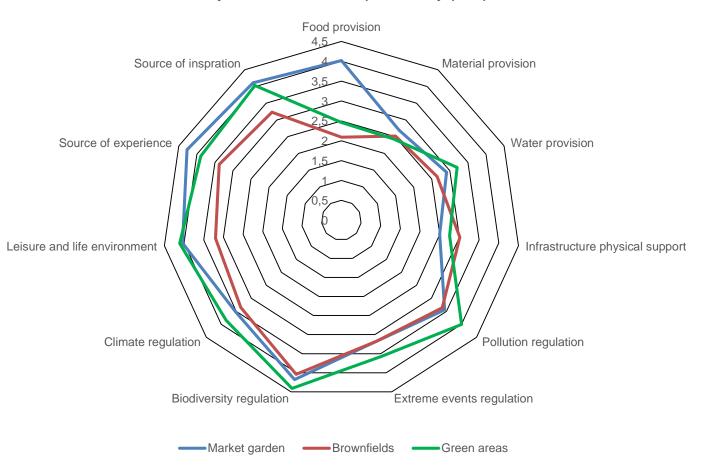
« Natural soil » Landfill and waste material over existing soil

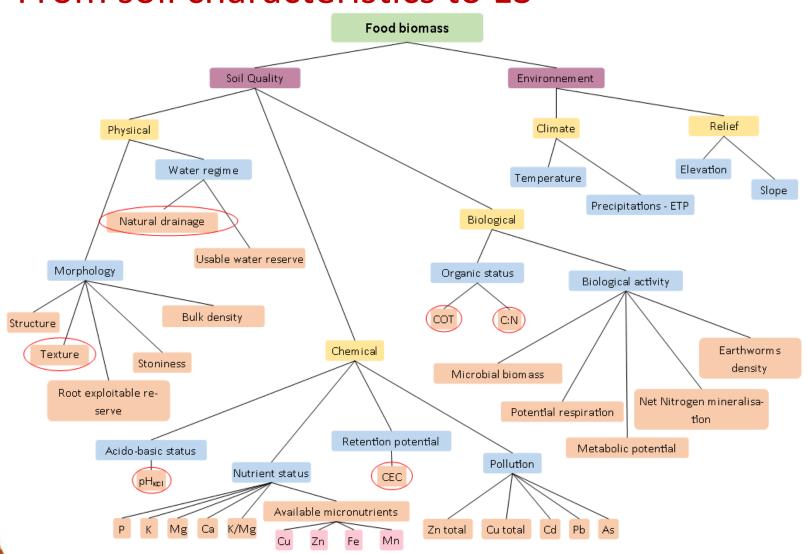
Allochtonous materials

~ 100 profiles sampled and described, another 50 to finish...

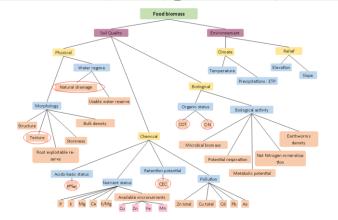
Participatory approach




Focus group (qualitative) + Google form (quantitative ~ 350)


Participatory approach

Ecosystem services expected by people


From soil characteristics to ES

From soil characteristics to ES

Indicatous	Unités			Dáfánangas	MDC	Ι,				
Indicateurs			1	2	3	4	5	Références	MDS	
Structure	/		VS 0	1	VS 1	1	VS 2	FAO, 2008	Non	
Pierrosité	%		≥ 80	≥ 40 < 80	≥ 15 < 40	≥ 5 < 15	< 5	FAO, 2006	Non	
Texture	Classe texturale		7	1	U	Z S G	L A E P	Aksov et al., 2017	Oui	
	g,,cm⁻³	Z	> 1,80	≤1,80 >1,69	≤1,69 >1,65	≤1,65 >1,60	≤1,60		Non	
		S P	> 1,80	≤1,80 >1,63	≤1,63 >1,51	≤1,51 >1,40	≤1,40	USDA- NRCS, 2021		
Masse volumique apparente (fonction de la classe texturale)		A L E	> 1,70	≤1,70 >1,60	≤1,60 >1,50	≤1,50 >1,40	≤1,40			
,		U	> 1,53	≤1,53 >1,44	≤1,44 >1,27	≤1,27 >1,10	≤1,10	, , , , , , , , ,		
		G	/	1	>0	/	1			
Profondeur du sol exploitable par les racines	cm		< 20	≥ 20 < 40	≥ 40 < 80	≥80 <125	≥ 125	Légende de la CNSW	Non	

What assimilation procedure? Mean, Minimum...
Different weights
Limitations: capability maps

Conclusion

- ✓ There is a need for a better knowledge of urban soils and their functions in order to evaluate their ES.
- ✓ Numerous studies have reported about the strong variability of urban soil properties due to anthropisation.
- ✓ Our soil survey indicates that landfilling is the most common perturbation but it does not imply de facto a soil degradation.
- ✓ The participatory exercise on three study cases gave insights about land users perception and expectation about the ES that the areas (soil+usage) can supply.
- ✓ In order to take into account the soil potential to fulfill other ES than actual (land use change), a methodology to aggregate multiple indicators into a single one is needed.