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Graphical Abstract

Summary
Many research developments have been done with milk Fourier-transform mid-infrared (FT-MIR) spectrometry 
during the last 20 years, but only few applications have been implemented in the field. ExtraMIR will try to solve 
the intrinsic and extrinsic constraints leading to this situation.

Highlights
• Intrinsic and extrinsic constraints explain the gap between research and the field.
• The calibration set used often has a lack of representativeness.
• There is a lack of a common validation set.
• Communication between stakeholders is too poor to favor the use of FT-MIR technology. 
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Abstract: Milk mid-infrared spectrometry has been used for many years to quantify major milk compounds. Recently, much research 
has been conducted to extend the use of this technology to predict new, relevant phenotypes to assess the animals’ welfare and the 
nutritional quality of milk, as well as its technological quality and environmental footprint. The transition from the research stage to field 
implementation is not easy, due to intrinsic and extrinsic constraints, but some developments can be considered to address these issues.

The consumption of dairy products is well anchored in the food 
traditions of developed countries. More than 6 billion people 

consume milk and dairy products worldwide (OECD and FAO, 
2019). However, a relatively stable trend in dairy consumption is 
expected toward 2028 in Europe (37,944 t in 2022 for fresh dairy 
products vs. 39,942 t in 2028) and a slight decrease in the United 
States (22,036 t in 2022 for fresh dairy products vs. 21,471 t in 
2028) (OECD and FAO, 2019). There are 2 main reasons for this. 
First, some consumers have a negative perception of the health 
aspects of consuming milk and dairy products (Zhang et al., 2021). 
However, milk provides 9% of dietary energy in Europe and Ocea-
nia; 19% of dietary protein supply in Europe; and 12 to 14% of 
dietary fat supply in Europe, Oceania, and the Americas (OECD 
and FAO, 2019). The second reason is that some consumers have 
negative perceptions about animal welfare and the environmental 
effect of milk production and processing in terms of carbon emis-
sions (Adams et al., 2021). Investing in data acquisition related 
to these topics and their use will also have effects on farms (e.g., 
feed management, animal health, sustainability, profit, and so on), 
milk collection (e.g., detection of abnormal milk, designating milk 
for certain processing, and so on), and the processing itself (e.g., 
improvement of the nutritional and technological properties of 
milk, and so forth).

Fourier-transform mid-infrared (FT-MIR) spectroscopy is a 
rapid, nonpolluting, and cost-effective technology due to its high 
throughput (100 to 600 samples per hour). It is used worldwide 
by milk laboratories to quantify the fat and protein content in herd 
bulk milk samples for milk payment purposes or to predict those 
traits and others to assess the performance of dairy animals from 
representative individual milk samples. During this analysis, a 
mid-infrared (MIR) beam is passed through the milk sample to 
measure the quantity of infrared light absorbed by the sample at 
different frequencies, ranging from 4,000 cm−1 to 400 cm−1, which 
are related to the vibrations of specific chemical bonds in milk 
(Figure 1). The obtained spectral data contain many features that 
are not directly informative for a user. Therefore, there is a need to 
extract the most relevant information—based on what we want to 
predict or classify—by using a calibration equation using reference 
values of the desired trait. Those references can be measured in 
milk, sometimes in blood, or these can be related to a veterinarian’s 

diagnosis or estimated from respiration chambers. The value of this 
equation is that it can be easily applied to new samples that do not 
have reference measurements. This means that predictors provided 
by the FT-MIR analysis are mainly derived from a unique source of 
information, the milk FT-MIR spectrum, even if some also include 
other information related to animal characteristics. Therefore, if 
we invest in the storage of this spectral information and its cor-
responding quality control, it is technically very easy to predict a 
large number of phenotypes without increasing the analytical cost 
(i.e., no new sampling or spectrometric analysis). Moreover, by 
recording this information, it would be possible to quantify new 
traits from the current and past spectral records. This is of interest, 
especially to provide breeding values faster for animal selection, 
but also for herd management purposes, as it offers the possibility 
to study the sources of variation of this new trait on a large amount 
of data. This is also relevant for the dairy industry to assess the 
stability of the milk composition in herds to detect potential abnor-
mal milk samples. Moreover, knowing this variability can also be 
an opportunity for the dairy industry to develop specific products 
or apply marketing strategies to improve, for instance, consumers’ 
perceptions about the consumption of milk and its derivatives.

Many prediction equations have been developed by the scientific 
community. With increased consumer demand for healthier food, 
it could be beneficial to highlight the contents of other bioactive 
molecules in milk by using the FT-MIR predictions of milk fatty 
acids, protein fractions (Franzoi et al., 2019), minerals (Christophe 
et al., 2021), or lactoferrin (Soyeurt et al., 2020). Fourier transform 
mid-infrared spectra are also useful for assessing the technologi-
cal properties of milk (Bonfatti et al., 2016). Moreover, whereas 
milk is an important source of nutritive elements for humans, its 
fine composition—or, more specifically, composition changes—is 
important to know, as it mirrors the metabolic and health status of 
the animal. This explains why some indicators related to metabo-
lism and animal health, such as energy balance or intake (Ho et 
al., 2020), BW (Tedde et al., 2021a), DMI (Tedde et al., 2021b), 
acetonemia (Grelet et al., 2016), pregnancy status (Delhez et al., 
2020), SARA (Mensching et al., 2021), fertility (Ho et al., 2019), 
lameness (Bonfatti et al., 2020), and so on, can be derived from the 
milk FT-MIR spectrum. Another important topic is the environ-
mental footprint of milk production. For example, equations exist 
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to allow for the quantification of methane eructed by dairy cows 
(Vanlierde et al., 2016) or to assess their nitrogen-use efficiency 
(Grelet et al., 2020). FT-MIR spectroscopy can also be used to 
detect abnormal milk, as proposed by Hansen and Holroyd (2019), 
or to predict milk color (McDermott et al., 2016). Although this 
review is not complete, one can easily observe that many equations 
exist to provide information to the farmer, the dairy industry, and 
the consumer about production efficiency, its environmental foot-
print, animal well-being, and the nutritional quality of milk and its 
suitability for processing. Unfortunately, many of those equations 
have not yet been applied in the field due to intrinsic and extrinsic 
constraints.

The intrinsic constraints are directly related to the development 
of the predictive equation. The article published by Grelet et al. 
(2021) details this topic well. Here, we will highlight some points 
for which rapid improvement could be achieved. First, as much 
coverage as possible of the variability in the predicted trait existing 
in the studied dairy cow population and its related spectral data 
is required to improve the robustness of the developed models. 
Therefore, it is important to collect milk samples from different 
dairy cow populations at different moments, and receiving differ-
ent diets, to achieve this objective. The design information related 
to the calibration set is often not given by the equation provid-
ers, who prefer to mention usual descriptive statistics, such as the 
mean and standard deviation. This is very problematic if we want 
to ensure that we are not out of the reference range when predicting 
the desired trait. This issue could be easily solved by fixing the 
parameters that need to be known (number of farms, country, diet, 
and so on). Moreover, detailed knowledge of the reference method 
used to obtain the measurements included in the calibration set is 
also necessary. The use of 2 different methods could result in a 
prediction difference. Second, we cannot confidently extrapolate 
the spectral data if variability is not considered in the set. Un-
fortunately, nothing is currently proposed to avoid this problem. 
However, a simple solution exists without the need to share the 
data sets, which may be confidential. This consists of estimating 
each new sample’s distance from the centroid of the calibration set 

used to build the equation before the prediction. If the distance is 
too high, the prediction must be considered with caution, because 
the given estimation can be the result of spectral extrapolation. 
Besides knowing this information to ensure the quality of the 
sample, the number of samples with a high global H distance could 
be informative for the provider, as this will highlight the need to 
enlarge the variability of the calibration set. Third, a sample with 
a high or low distance can be the result of poor-quality spectral 
data. So, the standardization of the spectral data based on refer-
ence samples analyzed by different spectrometers, including the 
master spectrometer, is of interest. It consists of comparing the 
spectral absorption obtained for a reference milk sample with those 
obtained by the master spectrometer. Then, correction coefficients 
can be estimated and applied to the new spectra generated by the 
spectrometer. This leads to better spectral quality and, therefore, 
to a better quality of prediction. This standardization was initially 
developed for near-infrared spectrometry (Bouveresse and Mas-
sart, 1996) but has been extended to milk MIR spectra (Grelet et 
al., 2017). This procedure can also be used to standardize spectral 
data from different brands of spectrometers, making the use of 
equations developed on another brand of spectrometer possible 
(Grelet et al., 2017). However, different methods exist (Bonfatti 
et al., 2017; Tiplady et al., 2019), and it is important to compare 
them to harmonize the treatment of spectra before use and to limit 
potential bias related to the spectral quality. Improving the spectral 
quality is better than directly correcting the prediction because, for 
some equations, such as those for methane emissions or ruminal 
acidosis, there is no possibility to share reference materials be-
tween laboratories through proficiency testing for fat and protein. 
Another challenging issue consists in comparing the prediction 
performances obtained from different equations built using dif-
ferent calibration sets or different methodologies. Theoretically, 
there is no problem with using different equations if we are sure 
that they provide similar information when they are applied to the 
same spectral data. This action could be easily realized using a 
common set of spectral data. If the predicted value is different, it 
is important to be sure that this is related to the prediction model 
and not due to another issue linked to the spectral quality, as ex-
plained before. Then, even if we have the same results, this does 
not automatically mean that the prediction is accurate. Currently, 
validation performances are communicated by the provider of the 
equations, but those performances are directly related to the valida-
tion set used. Therefore, it is impossible to compare the prediction 
accuracy of several equations predicting the same traits using this 
information. So, for a trait that has international interest, there is a 
need to organize a platform that allows equations to be validated 
based on a common, independent data set.

Extrinsic constraints can also explain the gap between research 
and field applications of milk FT-MIR equations. The first hurdle 
is the access to the built predictive model. The model can be devel-
oped for specific research projects that are not in line with the cur-
rent desires in the field. This could happen when those in the field 
are not aware of the equation development and its potential. This 
can be explained by the fact that equation performances and their 
related methodological descriptions are often only published in 
scientific journals, which can limit access for the target audience. 
Moreover, there is often not enough emphasis in those articles on 
the aspects of application in practice. So, this lack of communica-
tion between all stakeholders can be solved by developing an in-
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Figure 1. Milk mid-infrared spectrum (Grelet et al., 2015). T = transmittance.
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terface that allows private and public researchers to communicate 
more effectively. This interface could also propose guidance on 
the interpretation of those results and their potential applications 
for different farming conditions. Often, equations are pre-installed 
by the instrument provider without the option for a user to add 
their own equations. In the past, the spectral data were often not 
easily retrievable from the instrument. However, nowadays, easier 
access to the spectral data allows for the prediction of new pheno-
types externally from the spectrometer. This explains why more 
and more DHI organizations have started recording spectral data 
to predict additional traits based on their own equations. A second 
extrinsic hurdle is whether there is an incentive to develop predic-
tions for a trait. The most prominent predictions are those related 
to fat and protein contents because they directly determine the milk 
price. However, if we want to promote milk with differentiated 
nutritional or technological quality, it is of interest to adapt the 
milk price calculation to that. Some milks are better suited for milk 
transformation and others for milk consumption. This could also 
improve consumers’ perceptions, as they are often unaware of the 
natural variation in milk composition. For instance, in the United 
States, cheesemakers use a specific payment equation based on fat, 
protein, casein, and somatic cell count to pay more for milks that 
will give high cheese yield. For some other traits, such as methane 
emissions, the incentive could be the economical sustainability of 
dairy farming. So, better communication is needed between all 
stakeholders and should focus on what is possible, scientifically 
justified, and practically feasible. A third extrinsic hurdle is the 
frequency of data acquisition, which can limit the interest of some 
developed equations. Milk samples are collected from the herd 
bulk tank when the milk is collected. This means that we have a 
spectral fingerprint for the herd every 2 to 3 d. This is a high fre-
quency, which is appropriate to screen the overall composition of 
the milk produced on the farm. This opens up options for the pre-
sentation of trends and benchmarking in time for the specific farm 
and against other farms. However, herd bulk milk is a weighted 
average of the milk produced by each productive animal on that 
farm. Therefore, this sample cannot highlight problems appearing 
in only a few animals in the herd. For that, we need to collect milk 
samples individually. This is done through milk recording every 
4 to 6 wk. This frequency of data acquisition is often too low to 
screen animal well-being as the most interesting period to detect 
metabolic disorders is the beginning of lactation. Two spectra can 
be recorded during this period if the milk sampling is done a few 
days after calving, but if the milk recording is scheduled for 30 
DIM, there would only be 1 spectrum (Figure 2). This means that, 
even if the equation is relevant at the scientific level to observe 
metabolic disorders, the practical environment limits its use. To 
further optimize herd management, we can plan to organize sepa-
rate collections of milk samples, especially for animals in an early 
stage of lactation, or to change the sampling repartition throughout 
the lactation (more samples at the beginning of lactation).

This article deals with many aspects related to the analysis of 
individual animal milk, which falls within the domain of the Inter-
national Committee for Animal Recording (ICAR). As mentioned, 
the development and application of new milk FT-MIR models is 
also of value for dairy processing. Using the milk FT-MIR informa-
tion, one can establish the suitability of the milk to be transformed 
or assess the differentiated milk quality to enlarge the brand of 
naturally made dairy products. By combining individual animal 

FT-MIR information, one can evaluate the environmental footprint 
and animal health and welfare of the farm. This area is within the 
scope of the International Dairy Federation (IDF). Without doubt, 
there is a common interest to better exploit milk FT-MIR spectros-
copy to develop specific strategies for breeding, herd management, 
processing, and marketing. All these aspects will also allow for 
the improvement of consumers’ perceptions about the consump-
tion of milk and related dairy products. By solving the different 
constraints mentioned previously, the gap between research and 
the field could narrow. Therefore, IDF and ICAR have decided to 
join their efforts by creating a joint ExtraMIR Action Team.
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