
Optimal Sizing and Operations Of
Energy Systems Using GBOML

Introduction Course

February 2023

Bardhyl Miftari
Guillaume Derval
Damien Ernst

● Introduction to Sizing and Operations in Energy
○ Problem Definition
○ Practical Examples in Energy
○ Properties

● Mathematical Optimization
○ Introduction
○ Linear Optimization in Energy
○ Mathematical Formulation Of Energy Problems

● Graph-Based Optimization Modelling Language (GBOML)
○ Introduction
○ Inner Working
○ Tutorial

● Conclusion

Table of Content

1

Sizing and Operations Problems

● Sizing Decisions:
○ Dimensioning the system
○ e.g, What are the investments to make?
○ e.g, What are the capacity needed?

● Operating Decisions:
○ Timestep per timestep control of entities
○ e.g, When to (dis)charge a battery?

● Objective: Criteria to optimize

Sizing and Operation

2

Sizing and Operations Problems

● Sizing Decisions:
○ Dimensioning the system
○ e.g, What are the investments to make?
○ e.g, What are the capacities needed?
○ e.g, How many trams are needed?

● Operating Decisions:
○ Timestep per timestep control of entities
○ e.g, When to (dis)charge a battery?
○ e.g, Where and when to send the trams?

● Objective: Criteria to optimize
○ e.g, Minimize the traffic

● Example: Liege Tram

Sizing and Operation

2

Examples in Energy: Microgrid

3

● Question:
○ Should we invest in PVs and

batteries?
● Sizing:

○ Invest in PV panels and a
battery

● Operating:
○ Control the battery

● Objective:
○ Minimize the overall cost

Sizing and Operation

Examples in Energy: Remote Renewable Energy Hub[1]

4

● Question:
○ What are the financial

costs of producing energy
in remote areas and
bringing it back?

● Sizing:
○ Invest in various

technologies
● Operating:

○ Control the technologies
● Objective:

○ Minimize the overall cost

Sizing and Operation

Energy Planning and Control: Properties

● Recurring blocks of technologies
○ Same amongst several problems
○ Different topologies

● An optimization horizon

Sizing and Operation

5

Energy Planning and Control: Properties

● Recurring blocks of technologies
○ Same amongst several problems
○ Different topologies

● An optimization horizon

Usually solved with Mixed Integer Linear Programming

Sizing and Operation

5

Introduction to Mathematical Optimization[2]

● Generic Problem:
○ An optimization function
○ A feasible set

● How do we determine the feasible set?
● What resolution time to expect?

Optimization

6

Introduction to Mathematical Optimization
● A few types of optimization problems:

○ Non-Linear Optimization (≈ hundreds of variables)

○ Integer Linear Optimization (≈ thousands of variables)

○ Linear Optimization (≈ millions of variables)

Optimization

7

Introduction to Mathematical Optimization
● A few types of optimization problems:

○ Non-Linear Optimization

○ Integer Linear Optimization

○ Linear Optimization

Optimization

Mixed-Integer
Linear

Programming
(MILP)

7

Mixed-Integer Linear Optimization in Energy

● Formulation allows to deal with relatively big problem instances

● Many energy problems have an exact MILP formulation
○ Reformulate non-linearities with piece-wise affine functions

● Typical assumptions:
○ Perfect foresight and knowledge
○ Central planning and operation

Optimization

8

Examples in Energy: Microgrid

9

● Question:
○ Should we invest in PVs and

batteries?
● Sizing:

○ Invest in PV panels and a
battery

● Operating:
○ Control the battery

● Objective:
○ Minimize the overall cost

Sizing and Operation

10

Optimization

Optimization over a certain time period

Optimization

10

Optimization over a certain time period

For example, we may want to design and operate a system
that minimizes the overall bill of a factory

Optimization

11

This structure can be represented via a hypergraph
abstraction augmented with some concept of time-indexing

Optimization

12

Working with optimization models involves at least four
basic steps

 Formulate
 Model

 Implement
 Model

 Solve
 Model

 Post-Process
 Results

Step 1 Step 2 Step 3 Step 4

Optimization

13

We will focus on the second step: model encoding and
implementation

 Formulate
 Model

 Implement
 Model

 Solve
 Model

 Post-Process
 Results

Step 1 Step 2 Step 3 Step 4

Optimization

13

Two classes of tools are available to implement models

1. Algebraic Modeling Languages (AMLs):

● Formulation close to mathematical notation (e.g., index-based notation)
● Very expressive (e.g., can represent any mixed-integer nonlinear program)
● Often interface with multiple solvers
● Sometimes open source
● Examples :

GBOML

14

Two classes of tools are available to implement models

2. Object-Oriented Modeling Environments (OOMEs):

● Focus on one particular application (e.g., generation expansion planning)
● Usually make use of predefined components that can be “imported”
● Typically have advanced data processing capabilities tailored to the application
● Often open source
● Examples :

GBOML

15

Each approach has drawbacks

AMLs typically fail to expose or exploit block structure, although this may be
used to:
● simplify model encoding
● enable model re-use
● speed up model generation
● facilitate the use of structure-exploiting algorithms

OOMEs, usually:

● Lack expressiveness
● Often cumbersome to add new components
● Usually rely on AMLs and inherit some of their shortcomings

GBOML

16

GBOML combines the strengths of AMLs and OOMEs[3]

● open-source and stand-alone

● any Mixed-Integer Linear Program (MILP) can be represented

● hierarchical block structure can be exposed and exploited

● syntax is close to mathematical notation

● time-indexed models can be encoded easily

● re-using and combining model components is straightforward

● interfaces with various solvers are available

GBOML

17

GBOML Compiler[4]

● Software developed in Python:
○ Has very few dependencies (PLY, NumPy, SciPy)

○ Provides two methods to encode models (text file and Python API)

○ Interfaces with several solvers (Gurobi, CPLEX, Xpress, Cbc/Clp, HiGHS and DSP)

○ Produces plain .csv or structured .json outputs

● Model structure is exploited on multiple levels:
○ Model encoding via dedicated language constructs

○ Model generation via parallelism and multiprocessing

○ Solving via structure-exploiting solvers such as DSP

● Fully documented - Clear issue handling

GBOML

18

Simplified GBOML Workflow

19

GBOML

Full GBOML Workflow

20

GBOML

GBOML: The Language

21

GBOML

GBOML: The Language

22

GBOML

Example: PV Panels

GBOML

Re-use

- Let us consider file1.txt

- To import that node

23

GBOML

GBOML: Compiler Performance

24

GBOML

GBOML: Compiler Performance[5]
● Compare GBOML - JuMP - Plasmo - Pyomo

○ Remote Renewable Energy Hub

○ Time to build the model

○ Peak RAM usage

● Exploiting problem structure in resolution

○ MIPLIB Noswot

○ Gurobi - DSP

25

GBOML

Results: Time to generate the model[5]

26

GBOML

Results: Peak RAM usage[5]

27

GBOML

Structure exploiting methods[5]

● “MIPLIB noswot” problem

GBOML

28

Resolution Gurobi: ≃25s
(no structure is considered)

Resolution DSP: ≃2.2s
(structure taken into account)

Simplified GBOML Workflow

29

GBOML

MILP Solvers
● Open-source:

○ CBC

○ HiGHS

○ SCIP (GBOML is yet to interface with it)

● Commercial:

○ Fico Xpress

○ Gurobi

○ IBM Cplex

● Meta-Solver:

○ DSP

30

GBOML

Simplified GBOML Workflow

31

GBOML

GBOML Output
● Standardized output either CSV or JSON:

32

GBOML

GBOML Output
● Standardized output either CSV or JSON:

33

GBOML

GBOML Output for Microgrid

34

GBOML

Conclusion - GBOML

- A modelling tool for supply chain management and energy system planning
and sizing

- Allows easy model re-use and combination
- Exploits the structure

- Encoding via the language
- Internally in the model representation and parallelization
- Interfacing with structure exploiting methods

- Performance on a large problem (remote hub):
- Better peak RAM usage than JuMP & Plasmo
- Similar times to JuMP, faster than others
- With parallelization, faster than all

35

GBOML

Tutorial Session

https://colab.research.google.com/drive/15jmzQPLIfSlLNCcK6fEv2UnvVbT8s6yL?usp=sharing

https://colab.research.google.com/drive/15jmzQPLIfSlLNCcK6fEv2UnvVbT8s6yL?usp=sharing

Acknowledgements

- We would like to thank:
- SPF Economie for their financial support through the

INTEGRATION project

- Mathias Berger for his work on GBOML and a previous version of
this presentation

- Amina Benzerga for her feedback on this course
35

References:
[1] Mathias Berger et al., “Remote Renewable Hubs for Carbon-Neutral Synthetic Fuel Production”, in
Frontiers in Energy Research 9 (2021), p.200. DOI 10.3389/fenrg.2021.671279.
https://www.frontiersin.org/article/10.3389/fenrg.2021.671279

[2] D. Bertsimas, J. Tsistsiklis. Introduction to linear optimization, Dynamic Ideas, 1997.

[3] Mathias Berger et al., “Graph-Based Optimization Modelling Language: A Tutorial”,
https://orbi.uliege.be/handle/2268/256705, 2021

[4] Bardhyl Miftari et al., GBOML: Graph-Based Optimization Modeling Language,
https://joss.theoj.org/papers/10.21105/joss.04158, 2022

[5] Bardhyl Miftari et al., GBOML: a Structure-exploiting Optimization Modeling Language in Python,
https://orbi.uliege.be/handle/2268/296930, 2022

[6] Bardhyl Miftari et al., “GBOML repository”, https://gitlab.uliege.be/smart_grids/public/gboml, 2021-23

Learn more:
Group publication: http://blogs.ulg.ac.be/damien-ernst

36

https://www.frontiersin.org/article/10.3389/fenrg.2021.671279
https://orbi.uliege.be/handle/2268/256705
https://joss.theoj.org/papers/10.21105/joss.04158
https://orbi.uliege.be/handle/2268/296930
https://gitlab.uliege.be/smart_grids/public/gboml
http://blogs.ulg.ac.be/damien-ernst

