

EXPERIMENTAL ANALYSIS OF A LARGE-SCALE

TANDEM FLAPPING WING SYSTEM

Thomas Lambert - Greg Dimitriadis

SciTech Forum January 27th 2023

CONTENTS

Introduction Experimental setup

Flapping wing model

Kinematics

Test results

Inertia measurement

Front Flapping

Tandem Flapping

Conclusion

INTRODUCTION

CONTEXT

In nature

- Tandem flapping very common in insects
- No living example of larger scale animals
 - Evidence of 4-winged dinosaurs (*Microraptor*)
 - ho \sim 1 m wingspan

In engineering

- Low Re
- Moderate reduced frequency ($k \sim 0.1 0.3$)
- Gap for $\mathcal{R}e > 5 \times 10^4$ and 0.3 < k < 1

Animal Dynamics Skeeter

INTRODUCTION

OBJECTIVES

- Design and build a macro-scale tandem flapping wing system
 - Modular
 - > 10 Hz flapping
 - Different phases and frequencies
- Single wing flapping
- Full tandem flapping
- Influence of
 - Reduced frequency (V_{∞}, f)
 - Phase offset
 - Horizontal distance

FLAPPING WING MODEL

- Independent modules
- Variable horizontal spacing
- Separate load cells
- Half-wing
 - Rect. flat plate
 - Chord = 0.05 m
 - Span = 0.2 m
 - Pitch = 0°

FLAPPING WING MODEL

- Dual crank mechanism
- 1.5 kW motor w/ 1:10 gearbox
- Mainly 3D printed (VeroWhite[™])
 - Arms will be replaced by steel ones
- Asymmetric amplitude

KINEMATICS

- Pure flapping only, no active pitching
- Reduced frequency: $k = \frac{\pi fc}{V_{\infty}}$
- Module synchronization issues
 - Frequencies not perfectly equal or stable
 ⇒ Variable phase offset
 - Long acquisition time (>200 periods)
 - Average of periods with similar phase difference

INERTIA MEASUREMENT

- Same trends
- Different magnitude

• Aero forces =
$$F_i|_{V_{\infty}=0} - F_i|_{V_{\infty}=V}$$

FRONT FLAPPING

- Aft wing static with dihedral
- Only front wing flapping

D _x	f	V_{∞}
0.05 m	1.98 Hz	7.7 m/s

► For both sets: Aft dihedral \uparrow → $C_{L} \downarrow$ → $C_{D} =$

```
 Aft wing generates thrust
```

TANDEM FLAPPING

Front

- **C**_L: small variations
- C_D : follows C_L variations

Aft

- $\mathbf{C}_{\mathbf{L}}$: large variation with phase
- C_D : large deviation from the mean

TANDEM FLAPPING

Front

Change in magnitude

Aft

 Peaks due to phase offset change position

TANDEM FLAPPING

$$\begin{array}{|c|c|c|c|c|c|c|c|} D_{x} & f & V_{\infty} \\ \hline 0.10 \text{ m} & 2.67 \text{ Hz} & 4.6 \text{ m/s} \end{array}$$

Front

- **C**_L: significant decrease
- C_D: small decrease

Aft

 Peaks due to phase offset change position

CONCLUSION

Front flapping

- C_L decreases with increasing aft dihedral, even for front wing
- Aft wing produces thrust in all conditions

Tandem flapping

- Aft wing heavily influenced by phase offset
- Lift of aft wing significantly lower than front wing
- Lower lift for front wing when distance increases

CONCLUSION

FUTURE WORK

- Small redesign of some critical parts
 - Steel and aluminum for the arms and clamps
- Increase frequency up to \sim 10 Hz (\rightarrow increase *k*)
- Increase airspeed up to 15 m/s (\rightarrow increase *Re*)
- Vary pitch angles
- Use proper wing profiles
- Measure fuselage influence on the flow

