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Abstract

Generating reduced state-space models of base-excited structures is of great help in control engi-
neering but is not straightforward to implement in practice, and this problem is addressed in this
work. Methods to impose non-homogeneous boundary displacements or accelerations are reviewed,
and a novel relative acceleration method is proposed to treat the case of imposed displacements.
Various construction approaches for state-space models having prescribed displacements or ac-
celerations as input and including a static correction term are then developed. The theoretical
developments are eventually illustrated with structures of increasing complexity, namely, a bar, a
beam, and a multi-story building model.

Keywords: Imposed displacement, Imposed acceleration, Base excitation, Reduced-order model,
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Nomenclature

η Vector of modal coordinates
λ Vector of Lagrange multipliers
¨a Imposed acceleration
¨B Base (or boundary)
¨C Condensed
¨D Discarded
¨d Imposed displacement
¨f Imposed external forcing
¨I Internal
¨m Arbitrary method
¨P Prescribed
¨R Retained
¨r Relative
¨CB Craig-Bampton
¨CNM Component normal mode
¨I,d Internal dynamic
¨I,s Internal quasi-static
¨MCB Massless Craig-Bampton
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¨MN MacNeal
¨RAM Relative acceleration method
¨RA Residual attachment mode
¨RBM Rigid body mode
¨ref Reference
¨RMM Relative motion method
Ω Circular frequency matrix
Φ Mode shape matrix
B Influence matrix
C Output matrix
D State-space feedthrough matrix
f Vector of generalized loadings
I Identity matrix
K Stiffness matrix
M Mass matrix
q Vector of generalized degrees of freedom
T Transformation matrix
uf Vector of input generalized loadings
uI Vector of transformed internal degrees of freedom
Z Modal damping ratio matrix
ω Circular frequency
˜̈ Craig-Bampton matrix
s̈ Penalization matrix
q̈ Relative motion or acceleration method matrix
e Error
k Stiffness
m Mass
q Generalized degree of freedom
DAE Differential-algebraic equation
DoF Degree of freedom
FE Finite element
FRF Frequency response function
LMM Large mass method
LSM Large stiffness method
ODE Ordinary differential equation
RAM Relative acceleration method
RMM Relative motion method
ROM Reduced-order model
SDT Structural Dynamics Toolbox

1. Introduction

Vibrations of structural systems are often analyzed through their response to external solicita-
tions under the form of generalized loadings. In some cases, these loadings may come from support
motion, e.g., when predicting the response of a building to seismic excitation [1], when assessing
the performance of a precision mechatronics system in terms of transmissibility reduction [2], or
when performing modal analysis [3, 4]. Imposing a motion on a given part of the structure amounts
to solving partial differential equations with non-homogeneous boundary conditions [5]. Different
methods can be used to model the imposition of the support motion for systems discretized with,
e.g., the finite element (FE) method [6, 7].

Ideally, one has access to the full FE model of the structure, and imposing displacements and/or
accelerations on some degrees of freedom (DoFs) is a relatively straightforward task with state-
of-the-art methods [6]. In practice, reduced-order models (ROMs) are more often used to share
structural models for economical and/or confidentiality reasons. In particular, the Craig-Bampton
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reduction approach is very popular in research and industry [8, 7]. The purpose of this work
is to address the problem of imposing boundary displacements and/or accelerations with ROMs.
Furthermore, methods to build state-space models are reviewed and proposed. Such models are
commonly used in various fields, such as the active control or system identification communities.

Base displacement, velocity and acceleration can directly and simultaneously be imposed to
the structure [9]. A popular approach for imposing boundary conditions exactly (for undamped
structures) is the relative motion method (RMM) [1]. This method assumes that the structural
response can be expressed as the superposition of two contributions. The first one is a pseudo-static
displacement given by the static response of the structure to its base displacement. The second
one is the displacement relative to that pseudo-static displacement. This decomposition amounts
to performing a coordinate transformation which decouples the stiffness interactions between con-
strained and free DoFs. Consequently, the contribution of the imposed displacements vanishes
in the equations governing the free DoFs dynamics, thereby requiring only the knowledge of the
imposed accelerations. Interestingly, a counterpart of this method for imposed displacements does
not seem to exist in the literature. A probable reason for this is that the mass matrix is sometimes
(approximated to be) diagonal, thereby featuring no inertial coupling between the constrained and
free DoFs and allowing for a straightforward imposition of the boundary displacements.

Alternatively, penalization methods can be used to impose the boundary conditions [10]. The
so-called large mass method (LMM) [1] and large stiffness method (LSM) [6, 10] artificially increase
the mass and stiffness associated with DoFs on which accelerations and displacements are imposed,
respectively. By doing so, the inertial and elastic forces resulting from the imposed accelerations and
displacements, respectively, become dominant in the dynamical equilibrium. These imposed natural
boundary conditions then force the structure into the corresponding essential boundary conditions.
These methods are straightforward, versatile and easy to implement. The choice of the penalization
magnitude results from a trade-off between accuracy and numerical conditioning. Paraskevopoulos
et al [11] showed that these penalization methods are not suited for time integration schemes with
conditional stability, unless they are simultaneously used with appropriate relative scaling. Liu et
al [6] also evidenced structural frequency response functions (FRFs) that featured errors at low
and high frequencies using the LSM and LMM, respectively. Finally, Qin and Li [12] discussed
potential errors that may arise when damping is introduced into the model.

A last common type of method allowing for the imposition of displacements or acceleration
consists in using Lagrange multipliers [7, 13, 10]. With this method, a set of p constraints is
imposed through p additional algebraic equations to which are associated p unknown multipliers.
Adding these equations to the original equations of motion results in a larger system of differential-
algebraic equations (DAEs). In some cases, numerical conditioning can also be an issue with this
method [14].

The rather large number of DoFs required for an accurate description of the structure dynamics
and geometry leads to models of impractically large size. Classical model order reduction techniques
using fixed [8] or free [15, 16, 17] interface modes are known to offer a practical solution to this
issue. Among them, the Craig-Bampton method [8] is a standard in industry and is implemented
in virtually any FE code. There exist reviews on such approaches, giving historical [18] and
disciplinary [19] perspectives. Even after a first reduction, the number of interface DoFs may still be
relatively large, requiring specialized interface reduction methods [20]. Some approaches also focus
on specific frequency ranges. For instance, Kuhar and Stale proposed a dynamic reduction matrix
depending on the frequency around which the reduction is performed [21]. Recently, Aumann
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et al [22] presented an adaptive model order reduction approach to approximate the response of
structures with frequency-dependent material properties.

ROMs are classically used for component mode synthesis or the analysis of forced responses,
but very few works focused on the creation of reduced-order models specifically tailored for imposed
displacements or accelerations. As presented in [7], the Craig-Bampton method is a reduced-order
equivalent of the RMM, thereby naturally allowing for a straightforward imposition of boundary
accelerations. It shall however be shown in this work that imposing boundary displacements with
such ROMs is a less trivial problem.

The structural equations of motion are derived from Newton’s or Lagrange’s equations and
are thus most of the time expressed through a set of second-order ordinary differential equations
(ODEs). Alternatively, state-space models can be used as versatile and more general modeling
tools. For instance, it is a popular choice in the active control community [23]. State-space models
are also necessary to compute the complex modes of non-proportionally damped structures [24,
25]. Moreover, a series of state-of-the-art system identification techniques such as the subspace
identification approach [26] result in a state-space model aiming to replicate the dynamics of the
system under test. Converting the structural equations of motion to a state-space form with force
inputs is rather straightforward (see, e.g., [7, 24]), but the inverse transformation is less trivial.
This transformation is nonetheless important, because a formulation in second-order form is the
cornerstone of classical structural dynamics, e.g., through modal analysis or specialized numerical
integration schemes [7]. Such a transformation can also be used to perform model updating.
This motivated a number of works to develop approaches allowing to retrieve a classical second-
order representation [27], possibly under specific conditions on the inputs and outputs [28, 29]
and constraints to impose physical consistency [30, 31]. Alternatively, methods were developed
to directly work with these state-space models, allowing, e.g., to assemble models of different
components that are physically connected via primal [32, 33] or dual [25] assembly procedures.
Yet, very few works describe how to build state-space models taking imposed displacements or
accelerations as input.

The purpose of this work is thus threefold. First, different methods to impose boundary acceler-
ations and displacements are discussed and developed. They are either direct or use a coordinates
transformation, penalization terms or Lagrange multipliers. In particular, a novel counterpart of
the RMM method, called the relative acceleration method, is presented for imposed displacements.
A second objective is to apply these methods to reduced-order models, with a specific emphasis
on Craig-Bampton reduced-order models. Third, the resulting models are converted to equivalent
state-space forms. The proposed methods are illustrated with numerical examples of increasing
complexity, namely, a bar element, a cantilever beam, and a multi-story building.

2. An introductory example

Figure 1 schematizes a single-degree-of-freedom oscillator excited through its base motion qB.
The equation of motion using the absolute displacement of the oscillator q reads

m:q ` kq “ kqB, (1)

where m and k are the mass and stiffness of the oscillator, respectively, and an upper dot denotes
time differentiation. An alternate form is also frequently used with the relative displacement
between the oscillator and its base given by

qr “ q ´ qB. (2)
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Figure 1: Base-excited single-degree-of-freedom oscillator.

Substituting qr for q in Equation (1) using Equation (2), one gets

m:qr ` kqr “ ´m:qb. (3)

Equations (1) and (3) show that using absolute and relative displacements is a natural way
to impose base displacement and acceleration, respectively. These results shall be generalized to
base-excited multiple-degree-of-freedom structures in the next section.

3. Imposing dynamic, non-homogeneous essential boundary conditions

The equations of motion of an undamped multiple-degree-of-freedom structure relate the gen-
eralized loadings f to the generalized DoFs q through the dynamical equations

M:q ` Kq “ f , (4)

where M and K are structural mass and stiffness matrices, respectively. The mass matrix is
generally symmetric positive definite, while the stiffness matrix is generally positive semi-definite.
It is assumed that the DoFs can be described by

q “ TBqB ` TIqI (5)

where subscript B (for ”boundary”) denotes the DoFs on which an acceleration or displacement
is prescribed, whereas the remaining DoFs are indexed by the subscript I (for ”internal”). As an
example, if a the vector of generalized DoFs is reordered such that

q “

„

qB

qI

ȷ

, (6)

then these matrices are simply given by

TB “

„

I
0

ȷ

, TI “

„

0
I

ȷ

, (7)

where matrices I and 0 are the identity and zero matrices, respectively, whose sizes are deduced
from Equation (5). If the vector of generalized DoFs is not reordered according to Equation (6),
these matrices are similar to those in Equation (7) with permuted rows. It should also be noted
that Equation (5) is quite general and could also represent more sophisticated situations where
kinematic constraints are enforced between the boundary DoFs.
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A partition of the structural matrices after a congruent transformation given by
„

TT
B

TT
I

ȷ

M
“

TB TI

‰

“

„

MBB MBI

MIB MII

ȷ

,

„

TT
B

TT
I

ȷ

K
“

TB TI

‰

“

„

KBB KBI

KIB KII

ȷ

, (8)

is considered. With this partition, Equation (4) can equivalently be written
„

MBB MBI

MIB MII

ȷ „

:qB

:qI

ȷ

`

„

KBB KBI

KIB KII

ȷ „

qB

qI

ȷ

“

„

fB
fI

ȷ

, (9)

with
„

TT
B

TT
I

ȷ

f “

„

fB
fI

ȷ

. (10)

The imposition of acceleration and displacement on the boundary DoFs can be performed with
a direct approach [9]. The acceleration and displacement of the boundary DoFs are prescribed by
:qB “ :qP and qB “ qP , respectively, where subscript P stands for prescribed. The second set of
equations in Equation (9) can then be rewritten

MII :qI ` KIIqI “ fI ´ MIB:qP ´ KIBqP , (11)

where ´MIB:qP and ´KIBqP are inertia and restoring forces resulting from the imposed accel-
erations :qP and displacements qP , respectively. An inconvenient feature of Equation (11) is that
it requires the simultaneous knowledge of (kinematically consistent) boundary displacement and
acceleration as inputs to the system. Generally, only one kind of signal is known and the other one
has to be obtained through numerical integration or differentiation. This also requires more data
and computations, and can lead to physically inconsistent results if the imposed acceleration and
displacement are not consistent themselves (e.g., due to an error of the user).

Various techniques aiming to evaluate the structural response knowing only one type of signal
were proposed in the literature. They are reviewed or developed in the sequel and are separated
into methods prescribing accelerations or displacements. The generalization to hybrid methods
imposing accelerations on some boundary DoFs and displacements on the rest of them can be
obtained without difficulty through a more refined partitioning of the boundary DoFs qB.

3.1. Imposed acceleration

Techniques that work with imposed accelerations, i.e., aiming to enforce :qB “ :qP without
requiring the explicit knowledge of qP , are reviewed first.

3.1.1. Direct method

The requirement for simultaneous knowledge of the imposed displacement and acceleration
raised by the direct method in Equation (11) can be relaxed at the expense of the symmetry of the
structural matrices. Indeed, using only the prescribed acceleration :qP , the equations of motion
can be rewritten as

„

I 0
MIB MII

ȷ „

:qB

:qI

ȷ

`

„

0 0
KIB KII

ȷ „

qB

qI

ȷ

“

„

:qP

fI

ȷ

. (12)

We note that the block-upper triangular structure of the mass matrix could potentially compen-
sate for its lack of symmetry if efficiently exploited. For instance, using block matrix inversion
formulas [34], inverting (or factoring) this matrix would only require knowing the inverse (or fac-
torization) of MII . Similar considerations would apply for the dynamic stiffness matrix K ´ ω2M
for frequency-domain analysis since it would have the same structure.
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3.1.2. Relative motion method

In the RMM [1], the internal DoFs are expressed as the superposition of a quasi-static motion
due to the displacement of the boundary DoFs given by

qI,s “ ´K´1
II KIBqB (13)

and a dynamic, relative motion given by

qI,d “ TI,duI . (14)

It is assumed here for generality that TI,d is a generic, full-rank matrix, and uI are the coordinates
corresponding to qI,d before transformation by TI,d. In most cases, TI,d is either the identity
matrix (if no reduction is performed), or is given by the mode shapes of the structure with fixed
boundary DoFs (see [1, 7] or Section 4.1).

The matrix ´K´1
II KIB describes the so-called constraint modes. Its columns correspond to

the static deflection undergone by the internal DoFs when a unit displacement is imposed on
the corresponding boundary DoF, with every other boundary DoF set to zero. Interestingly, these
constraint modes correspond to the dynamic transformation matrix with stiffness coupling proposed
in [21] and evaluated at zero frequency.

The superposition qI “ qI,s ` qI,d can be expressed through the coordinate change

„

qB

qI

ȷ

“ TRMM

„

qB

uI

ȷ

“

„

I 0

´K´1
II KIB TI,d

ȷ „

qB

uI

ȷ

. (15)

Applying a congruent transformation with the matrix TRMM to the structural matrices in Equa-
tion (9) yields
«

|MBB
|MBI

|MIB TT
I,dMIITI,d

ff

„

:qB

:uI

ȷ

`

„

KBB ´ KBIK
´1
II KIB 0

0 TT
I,dKIITI,d

ȷ „

qB

uI

ȷ

“

„

fB ´ KBIK
´1
II fI

TT
I,dfI

ȷ

(16)
where

|MBB “ MBB ´ MBIK
´1
II KIB ´ KBIK

´1
II MIB ` KBIK

´1
II MIIK

´1
II KIB (17)

and
|MBI “ MBITI,d ´ KBIK

´1
II MIITI,d “ |MT

IB. (18)

The block diagonal structure of the stiffness matrix featured in Equation (16) indicates that
the transformation allows for a static decoupling between the boundary and internal DoFs. The
equations of motion with imposed boundary acceleration thus reduce to

TT
I,dMIITI,d:uI ` TT

I,dKIITI,duI “ TT
I,dfI ´ |MIB:qP . (19)

An important subcase of the RMM happens when a rigid interface motion is imposed. In such
a case, the prescribed acceleration can be written

:qP “ ΦRBM,B :ηRBM,P , (20)

where ΦRBM is a matrix of rigid body modes (ΦRBM,B being its restriction to the boundary DoFs),
and :ηRBM,P is a vector describing the prescribed global motion of the base in terms of these rigid
body modes (combined translation and rotation).
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Now, since by definition of the rigid body modes

KΦRBM “

„

KBB KBI

KIB KII

ȷ „

ΦRBM,B

ΦRBM,I

ȷ

“ 0. (21)

Equations (13), (20) and (21) then indicate that

:qI,s “ ´K´1
II KIBΦRBM,B :ηRBM,P “ ΦRBM,I :ηRBM,P , (22)

i.e., the constraint modes are the rigid body modes in this case. Choosing now TI,d “ I, the
superposition qI “ qI,s ` qI,d indicates that qI,d (or uI) can be interpreted as the motion of the
internal DoFs relative to the base. Equation (19) then becomes

MII :qI,d ` KIIqI,d “ fI ´ pMIBΦRBM,B ` MIIΦRBM,Iq :ηRBM,P . (23)

Such a model can easily be built from the full finite element model. Consequently, writing the
equations of motion in terms of displacements relative to the base motion is a popular approach.
Equation (23) can be seen as a generalization of Equation (3), and can only be used for rigid
support motion.

3.1.3. Large mass method

The LMM [1] is a penalization approach. Introducing an invertible penalization matrix MBB

that acts as fictitious mass added to the boundary DoFs, Equation (9) is changed to

„

MBB ` MBB MBI

MIB MII

ȷ „

:qB

:qI

ȷ

`

„

KBB KBI

KIB KII

ȷ „

qB

qI

ȷ

“

„

MBB:qP

fI

ȷ

. (24)

As MBB becomes large compared to the other involved terms, the dynamic equations for the
boundary DoFs tend to

MBB:qB « MBB:qP , (25)

i.e., :qB « :qP .

3.1.4. Lagrange multipliers method

Lagrange multipliers are commonly used as indirect means to impose boundary conditions.
Introducing the vector of Lagrange multipliers1 :λ, Equation (9) is augmented as

»

–

MBB MBI I
MIB MII 0
I 0 0

fi

fl

»

–

:qB

:qI
:λ

fi

fl `

»

–

KBB KBI 0
KIB KII 0
0 0 0

fi

fl

»

–

qB

qI

λ

fi

fl “

»

–

fB
fI
:qP

fi

fl . (26)

The last set of equations enforces :qB “ :qP , whereas in the first set of equations the Lagrange
multipliers :λ can be interpreted as constraint forces necessary to impose this motion.

3.2. Imposed displacement

Methods aiming to enforce prescribed displacements on the boundary DoFs as qB “ qP without
knowing :qP explicitly are now reviewed.

1The double time derivation is not strictly necessary but is used here for notational consistency.
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3.2.1. Direct method

The counterpart of Equation (12) for a prescribed displacement qP ,
„

0 0
MIB MII

ȷ „

:qB

:qI

ȷ

`

„

I 0
KIB KII

ȷ „

qB

qI

ȷ

“

„

qP

fI

ȷ

, (27)

is a set of DAEs. This is an issue for time simulations, and state-space models construction, as shall
be discussed in Section 5. However, frequency-domain calculations are not hampered by the fact
that the governing equations are DAEs and not ODEs, because they cast the differential equations
to algebraic ones, thereby resulting in a set of only algebraic equations.

It should nonetheless be noted that the mass matrix of a full finite element model given in
Equation (4) is frequently close to be diagonal. In this case, the inertia coupling term MIB can be
neglected in Equation (11), so that

MII :qI ` KIIqI “ fI ´ KIBqP , (28)

which then only requires the prescribed displacements. When the mass matrix is not close to be
diagonal however, such as can be the case for reduced-order models (see Section 4.3), doing so may
result in substantial error.

3.2.2. Relative acceleration method

Similarly to the RMM, a relative acceleration method (RAM) is proposed herein, expressing the
internal DoFs motion as the sum of an acceleration due to the boundary DoFs and an acceleration
relative to this motion. The former is given by

:qI,a “ ´M´1
II MIB:qB. (29)

The columns of the matrix ´M´1
II MIB can (rather abstractly) be interpreted as the acceleration

that would be undergone by the internal DoFs if a unit-amplitude acceleration was imposed at
infinite frequency on the boundary DoF corresponding to the considered column, with every other
boundary DoF set to zero. This can be deduced from Equation (11), where fI “ 0 and the
contribution of stiffness forces becomes negligible compared to the inertia forces due to the infinitely
high frequency. These deformations are called inertial modes in the sequel. It should be emphasized
that these modes pertain to the model of the structure rather than the structure itself, because
the former is not expected to be a good representative of the latter at high frequencies. These
modes thus do not bear a physical sense unless the discretization is infinite. Yet, this method
does not introduce additional approximations with respect to the initial model. Interestingly, the
inertial modes correspond to the limit of the dynamic transformation matrix with inertial coupling
proposed in [21] when the frequency tends to infinity.

Using a generic, full-rank transformation matrix TI,d for the internal DoFs, the superposition
can thus be expressed by

„

qB

qI

ȷ

“ TRAM

„

qB

uI

ȷ

“

„

I 0

´M´1
II MIB TI,d

ȷ „

qB

uI

ȷ

. (30)

Applying this transformation to Equation (9) yields

„

MBB ´ MBIM
´1
II MIB 0

0 TT
I,dMIITI,d

ȷ „

:qB

:uI

ȷ

`

«

qKBB
qKBI

qKIB TT
I,dKIITI,d

ff

„

qB

uI

ȷ

“

„

fB ´ MBIM
´1
II fI

TT
I,dfI

ȷ

,

(31)
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where
qKBB “ KBB ´ KBIM

´1
II MIB ´ MBIM

´1
II KIB ` MBIM

´1
II KIIM

´1
II MIB (32)

and
qKBI “ KBITI,d ´ MBIM

´1
II KIITI,d “ qKT

IB. (33)

Just like the RMM allows for static decoupling between the internal and boundary DoFs, the
RAM allows for inertial decoupling. From Equation (31), the equations of motion with imposed
boundary displacement thus reduce to

TT
I,dMIITI,d:uI ` TT

I,dKIITI,duI “ TT
I,dfI ´ qKIBqP . (34)

When the inertia coupling term MIB is zero or negligible and when one chooses TI,d “ I,
Equation (30) shows that a natural choice for imposed displacements is to keep absolute displace-
ments as generalized DoFs, as discussed in Section 3.2.1. This can also be seen as a generalization
of the approach used in Equation (1).

3.2.3. Large stiffness method

Similarly to the LMM, the LSM uses a penalization term under the form of a large, invertible
stiffness matrix KBB [6, 10] and changes Equation (9) to

„

MBB MBI

MIB MII

ȷ „

:qB

:qI

ȷ

`

„

KBB ` KBB KBI

KIB KII

ȷ „

qB

qI

ȷ

“

„

KBBqP

fI

ȷ

. (35)

As this penalization term grows larger, the dynamic equilibrium of the boundary DoFs tends to

KBBqB « KBBqP , (36)

i.e.,
qB « qP , (37)

without directly affecting the dynamics of the internal DoFs.

3.2.4. Lagrange multipliers method

Finally, the method of Lagrange multipliers can be used to impose boundary displacements.
The vector of Lagrange multipliers λ (which can once again be interpreted as the force necessary to
impose the desired boundary displacement) is incorporated into the equations of motion to enforce
qB “ qP by

»

–

MBB MBI 0
MIB MII 0
0 0 0

fi

fl

»

–

:qB

:qI
:λ

fi

fl `

»

–

KBB KBI I
KIB KII 0
I 0 0

fi

fl

»

–

qB

qI

λ

fi

fl “

»

–

fB
fI
qP

fi

fl . (38)

We note that, similarly to the direct method and unlike Equation (26), Equation (38) represents
a set of DAEs. Again, these DAEs may require special numerical treatment for time simulations,
and prevent the construction of a state-space model, but do not cause any difficulty for frequency-
domain calculations.
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3.3. Qualitative comparison of the different approaches

This section presented various approaches to impose boundary displacements and/or accelera-
tions. To conclude it, these methods are briefly compared qualitatively.

The direct approach is the most straightforward one but requires the simultaneous imposition
of displacement and acceleration in general. An alternative where only the prescribed acceleration
is required was proposed, but this destroys the symmetry of the structural matrices. It does not
seem possible to find a counterpart prescribing boundary displacement only and yielding ODEs,
except in the case where the mass matrix is (approximated to be) diagonal.

The RMM and RAM require more computations beforehand, but result in a model with a
minimum number of unknowns, similarly to the direct approach. When a rigid base acceleration
is prescribed, the RMM simplifies to a formulation that uses displacements relative to the base as
DoFs. The RAM simplifies to an approach where absolute displacements are used when the mass
matrix is diagonal (and approaches it when the matrix is close to diagonal). These two approaches
thus naturally generalize the single-degree-of-freedom case presented in Section 2.

Penalization methods are fairly simple, but are inexact. This issue can be mitigated by choosing
a sufficiently large penalization term, as long as the latter does not result in numerical ill condi-
tioning. Choosing an adequate penalization term is thus a trial and error procedure in general.

Using Lagrange multipliers allows for an exact imposition of the boundary conditions and for
the evaluation of the external forces needed to impose these conditions. However, this results in
a system with a larger number of unknowns. Furthermore, the mass (stiffness) matrix loses its
definiteness and the stiffness (mass) matrix is necessarily singular when imposing accelerations
(displacements).

4. Model order reduction

Reduced-order models are commonly used as they allow for an accurate description of the
structural dynamics with a reduced number of unknowns. Moreover, a structural system as a whole
generally results from the assembly of multiple substructures designed by different teams, possibly
from different companies. For economy and/or confidentiality reasons, reduced-order models of
these substructures are shared among the teams. These substructures can then be reassembled
to evaluate the dynamical behavior of the whole system. Such an approach is called dynamic
substructuring [7, 35].

Among the various proposed approaches, the Craig-Bampton reduction is the most popular
one [8], which is why the emphasis is put on this technique in this work. A brief account on other
approaches is also given at the end of this section.

To perform model order reduction, Equation (4) is partitioned as

„

MRR MRC

MCR MCC

ȷ „

:qR

:qC

ȷ

`

„

KRR KRC

KCR KCC

ȷ „

qR

qC

ȷ

“

„

fR
fC

ȷ

, (39)

where subscripts R and C stand for retained and condensed, respectively. The retained DoFs
should include the boundary DoFs defined in Section 3, but can also include other DoFs.

4.1. Craig-Bampton reduction

The Craig-Bampton method [8] is based on the superposition of constraint modes and fixed-
interface modes, also called component normal modes. The latter are the solution of the generalized
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eigenvalue problem
KCCΦCNM “ MCCΦCNMΩ2

CNM , (40)

where ΩCNM is a diagonal matrix containing the mode frequencies, ΦCNM is a mode shape matrix,
and subscript CNM stands for component normal modes. The mode shapes are usually mass-
normalized, i.e.,

ΦT
CNMMCCΦCNM “ I, ΦT

CNMKCCΦCNM “ Ω2
CNM . (41)

The Craig-Bampton reduction is performed by keeping a reduced subset of fixed-interface modes
(i.e., ΦCNM has less columns than rows). This defines a reduction matrix by

q «

„

I 0

´K´1
CCKCR ΦCNM

ȷ „

qR

ηC

ȷ

“ TCB

„

qR

ηC

ȷ

, (42)

where ηC is the vector of modal coordinates associated with the retained fixed-interface modes,
and subscript CB stands for Craig-Bampton.

The Craig-Bampton reduced stiffness and mass matrices are respectively obtained as

TT
CBKTCB “

„

KRR ´ KRCK
´1
CCKCR 0

0 Ω2
CNM

ȷ

(43)

and

TT
CBMTCB “

«

ĂMRR
ĂMRC

ĂMCR I

ff

, (44)

where

ĂMRR “ MRR ´ MRCK
´1
CCKCR ´ KRCK

´1
CCMCR ` KRCK

´1
CCMCCK

´1
CCKCR (45)

and
ĂMCR “ ĂMT

RC “ ΦT
CNM

`

MCR ´ MCCK
´1
CCKCR

˘

. (46)

4.2. Craig-Bampton model with imposed acceleration

When the retained DoFs consist only of boundary DoFs, Equation (43) shows that there is no
stiffness coupling term between the boundary and internal DoFs. Imposing accelerations to the
retained DoFs of a Craig-Bampton reduced-order model is thus a straightforward procedure.

When there are more DoFs than the boundary ones in the retained DoFs however, a non-
zero static coupling term exists because the matrix KRR ´ KRCK

´1
CCKCR is full in general. Any

procedure outlined in Section 3.1 can then be used.

4.3. Craig-Bampton model with imposed displacement

In contrast with the case of imposed acceleration, a Craig-Bampton ROM does not lend itself
to the case of imposed displacement, and the methods presented in Section 3.2 are then to be used,
even when the retained DoFs only consist of boundary ones. Indeed, the mass matrix is far from
being close to block-diagonal; neglecting the off-diagonal terms can lead to a substantial error, as
shall be illustrated in Section 7.
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It should also be noted that the reduced matrices resulting from the RAM applied to Craig-
Bampton ROMs with identical retained and boundary DoFs were recently presented in the lit-
erature, although in a completely different context. In [36], a so-called massless Craig-Bampton
method was proposed using the reduction matrix

TMCB “

„

I 0

´K´1
CCKCR ´ ΦCNMΦT

CNM

`

MCR ´ MCCK
´1
CCKCR

˘

ΦCNM

ȷ

(47)

with the aim to simplify the computation of vibro-impact processes. Using Equations (30) (choosing
TI,d “ I), (42), (44) and (46), this reduction matrix can equivalently be expressed by

TMCB “

„

I 0

´K´1
CCKCR ΦCNM

ȷ „

I 0

´ΦT
CNM

`

MCR ´ MCCK
´1
CCKCR

˘

I

ȷ

“ TCB

„

I 0

´ĂMCR I

ȷ

“ TCBTRAM (48)

This decomposition indicates that the reduction proposed in [36] is identical to the RAM applied
to the Craig-Bampton reduced model when retained DoFs are only boundary ones. We also note
that the transformation proposed in [36] under the formulation proposed herein can be performed
from a classical Craig-Bampton reduced model and thus does not require the knowledge of the full
FE matrices, which are seldom available in commercial FE software.

4.4. Other types of reduced-order model

Reduced-order models based on free-interface modes are less common than the Craig-Bampton
ones, and are thus only briefly discussed here for completeness.

In MacNeal’s method [15], the mass matrix exhibits the simple structure [7, 36]

MMN “

„

0 0
0 I

ȷ

, (49)

(where subscript MN is used for MacNeal) which allows for a straightforward imposition of pre-
scribed displacements. This simplicity comes at the expense of an inconsistent mass matrix. Its
consistent counterpart, Rubin’s method [16], features mass and stiffness matrices which are both
full. In this case, any of the methods presented in Section 3 can nonetheless be used to prescribe
boundary motion. The same remark also applies to ROMs which express the reduced dynamics in
the same fashion as Equation (4).

5. State-space models

As discussed in the introduction, state-space models are largely used in various system identi-
fication approaches and in the active control community. Furthermore, damping can be handled
more naturally with such a formulation. The models developed herein are thus adapted to a
state-space formulation in this section.
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5.1. State-space models of structures with external forcing

It is now considered that the external forcing can be described by

f “ Bfuf , (50)

where Bf is a matrix whose columns indicate the spatial distribution of the different independent
forcings under consideration, and uf is a vector containing their time-dependent amplitudes. From
Equation (4) (or any similar model after reduction), an equivalent set of first-order ODEs can be
obtained as

„

9q
:q

ȷ

“

„

0 I
´M´1K 0

ȷ „

q
9q

ȷ

`

„

0
M´1Bf

ȷ

uf . (51)

This is then equivalent to a state evolution equation with the state and input vectors
“

qT 9qT
‰T

and uf , respectively. Other transformations that yield symmetric state-space matrices can be used
(see, e.g., [7, 24]).

A more computationally efficient method consists in using the modes of the structure. Assuming
that the mode shapes are mass-normalized, the modes are defined by the equations

q “ Φη, MΦΩ2 “ KΦ, ΦTMΦ “ I, (52)

where Φ is a mode shape matrix, η are modal coordinates and Ω is a diagonal matrix containing
the circular resonance frequencies. With Equation (52), the premultiplication of Equation (4) by
ΦT reads

:η ` Ω2η “ ΦTBfuf . (53)

Damping can readily be added to the model at this stage using a diagonal matrix of modal damping
ratios Z. The modal equations of motion are then given by

:η ` 2ZΩ 9η ` Ω2η “ ΦTBfuf . (54)

This yields the state evolution equation

„

9η
:η

ȷ

“

„

0 I
´Ω2 ´2ZΩ

ȷ „

η
9η

ȷ

`

„

0
ΦTBf

ȷ

uf , (55)

in which the states are coupled only by pairs, since the modes are decoupled in Equation (54).
The output equation depends on the outputs desired by the user. For instance, if one specifies the
output as a combination of the generalized DoFs by

y “ Cq, (56)

then, with Equation (52), the state-space output equation is given by

y “
“

CΦ 0
‰

„

η
9η

ȷ

, (57)

thereby fully specifying the state-space model of the structure (Equations (55) and (57)).
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5.2. Model reduction during the state-space construction

Model order reduction can also be performed during the state-space model construction. Such
a reduction can be based on the modes of the structure defined in Equation (52). A partition of
the modes can be performed as

Φη “
“

ΦR ΦD

‰

„

ηR

ηD

ȷ

, (58)

where subscripts R andD stand for retained and discarded, respectively. Since the modal equations
are uncoupled, their state evolution equation is simply obtained by truncating Equation (55) as

„

9ηR

:ηR

ȷ

“

„

0 I
´Ω2

R ´2ZRΩR

ȷ „

ηR

9ηR

ȷ

`

„

0
ΦT

RBf

ȷ

uf . (59)

There exists different approaches to select these retained modal coordinates. For instance, one
may retain modes whose frequencies are up to 1.5 times the highest frequency of interest [16].
This factor be made closer to one if a static correction is added as well, a procedure which will be
detailed hereafter. Another basis than the modes of the structure can also be selected for reduction,
but this aspect is not treated herein (except for residual attachment modes, see below).

In order to add a static correction, the discarded modal coordinates ηD are assumed to respond
quasi-statically. Equation (54) then becomes for these modal coordinates

Ω2
DηD “ ΦT

DBfuf . (60)

From Equation (52), the generalized DoFs can be reconstructed as

q “ ΦRηR ` ΦDηD “ ΦRηR ` ΦDΩ
´2
D ΦT

DBfuf . (61)

In practice, the discarded modes need not be computed. Indeed, from Equation (52), it can be
derived that the inverse of the stiffness matrix admits the modal expansion [7]

K´1 “ ΦΩ´2ΦT “ ΦRΩ
´2
R ΦT

R ` ΦDΩ
´2
D ΦT

D, (62)

and therefore Equation (61) becomes

q “ ΦRηR `
`

K´1 ´ ΦRΩ
´2
R ΦT

R

˘

Bfuf , (63)

showing that the externally-excited structure can be described through its retained and residual
attachment modes. The latter are defined by the columns of the matrix premultiplying uf [37].
They correspond to the static structural response, from which the contribution of the retained
modes has been removed, when an external force is applied to the structure with a spatial distri-
bution given by a column of Bf . For structures with rigid body modes, K is singular, and one
must resort to the computation of inertia-relief attachment modes [37].

With these residual attachment modes, two approaches can be followed to add a static correction
to the model: one can either include these modes into the reduction basis, or take their effect into
account with a feedthrough term in the state-space model, as detailed below.
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5.2.1. Model with residual attachment modes

The reduction basis with ΦR can be complemented by the residual attachment modes, defining
a reduction matrix

TRA “
“

ΦR

`

K´1 ´ ΦRΩ
´2
R ΦT

R

˘

Bf

‰

, (64)

and adding other DoFs to the models. In practice, this reduction matrix is orthogonalized to
improve numerical conditioning. The resulting ROM is statically exact and the static correction
makes it very accurate in the frequency range of the retained modes. As a final step, one can
compute the normal modes of this reduced model to obtain a state-space model with decoupled
states, in the form of Equation (55).

5.2.2. Model with feedthrough term

An alternative to using residual attachment modes is to consider their effect through a feedthrough
term in the state-space model. In this approach, only the retained modal coordinates ηR are used
as state variables. Using Equation (63) the state-space output equation (Equation (56)) becomes

y “
“

CΦR 0
‰

„

ηR

9ηR

ȷ

` C
`

K´1 ´ ΦRΩ
´2
R ΦT

R

˘

Bfuf , (65)

featuring a feedthrough matrix

D “ C
`

K´1 ´ ΦRΩ
´2
R ΦT

R

˘

Bf (66)

that is due to the residual flexibility of the discarded modes. The advantage of this approach
is that it does not introduce more states than those associated with the retained modal coordi-
nates. However, the presence of a feedthrough matrix can lead to non-physical results, such as an
instantaneous response to an input in wave propagation problems.

5.3. State-space models with the direct approach

The remainder of this section now considers imposed boundary accelerations or displacements.
For simplicity, other external forcings are disregarded (in particular, it is considered that fI “ 0).
The models can nonetheless easily be adapted if these forcings are to be accounted for.

A state-space model can be built from Equation (11) (or any reduced version of it) by consider-
ing the inertia and stiffness forces imparted by the boundary DoFs motion as independent inputs
to the state-space model. Using the modes of the structure with fixed boundary DoFs defined by

qI “ ΦIηI , MIIΦIΩ
2
I “ KIIΦI , ΦT

I MIIΦI “ I, (67)

where ΦI is a mode shape matrix, ηI are modal coordinates and ΩI is a diagonal matrix containing
the circular resonance frequencies, and introducing a diagonal matrix of modal damping ratios ZI ,
the state evolution equation reads

„

9ηI

:ηI

ȷ

“

„

0 I
´Ω2

I ´2ZIΩI

ȷ „

ηI

9ηI

ȷ

`

„

0 0
´ΦT

I KIB ´ΦT
I MIB

ȷ „

qP

:qP

ȷ

. (68)

We note that in this case the fixed-interface modes are considered (in contrast to the free-interface
modes in Equation (52)) because the structural matrices in Equation (11) are associated with the
structure with fixed interfaces. More generally, modes can be selected based on the mass and
stiffness matrices associated with the equations governing the dynamics of the unknown DoFs.

16



Static corrections can be added to the model as well. Since the right-hand side of Equation (11)
(still considering fI “ 0) can be written as

´ MIB:qP ´ KIBqP “
“

´KIB ´MIB

‰

„

qP

:qP

ȷ

, (69)

the first and second matrices in the right-hand side of this equation can be treated as Bf and uf ,
respectively, in the procedures outlined in Sections 5.2.1 and 5.2.2.

Again, alternatives where only the prescribed displacements or accelerations are required are
analyzed in the sequel.

5.4. State-space models of structures with imposed acceleration

The methods reviewed in Section 3.1 all result in a model of the form

Ma:xa ` Kaxa “ Ba:qP , (70)

where Ma, Ka, Ba and xa depend on the chosen method. One observes that the term Ba:qP plays
the same role as an external forcing, and Equation (70) has the same structure as Equation (4). The
procedure outlined in Section 5.1 can thus be followed (substituting the quantities in Equation (4)
by their counterparts in Equation (70)) to yield the state-space model

„

9ηa

:ηa

ȷ

“

„

0 I
´Ω2

a ´2ZaΩa

ȷ „

ηa

9ηa

ȷ

`

„

0
ΦT

aBa

ȷ

:qP , (71)

where Ωa and Φa are computed from Equation (52) by replacing M and K by Ma and Ka,
respectively, ηa is the associated vector of modal coordinates, and Za is a diagonal matrix of
modal damping ratios. The interpretation of these modes depend on the selected method. If a
static correction is to be added to the model, the procedures outlined in Sections 5.2.1 and 5.2.2
can be followed by replacing Bf by Ba.

Regarding the direct method outlined in Section 3.1.1, the procedure requires a slight adaptation
because the structural matrices are nonsymmetric. The modes associated to Equation (12) are
found to be

„

qB

qI

ȷ

“

„

I 0

´K´1
II KIB ΦI

ȷ „

qB

ηI

ȷ

. (72)

Inserting this transformation into Equation (12) and premultiplying it by

„

I 0
0 ΦI

ȷ

(73)

yields the equivalent state-space evolution equation (with introduction of modal damping)

»

—

—

–

9qB

9ηI

:qB

:ηI

fi

ffi

ffi

fl

“

»

—

—

–

0 0 I 0
0 0 0 I
0 0 0 0

´ΦT
I KIB ´Ω2

I 0 ´2ZIΩI

fi

ffi

ffi

fl

»

—

—

–

qB

ηI

9qB

9ηI

fi

ffi

ffi

fl

`

»

—

—

–

0
0
I

´ΦT
I MIB

fi

ffi

ffi

fl

:qP , (74)

showing that the system input :qP is integrated twice to yield the state qB, which is then used in
the modal dynamic equilibrium equation. The matrices in Equations (72) and (73) can be seen
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as defining the right and left eigenvectors, respectively, of a nonsymmetric generalized eigenvalue
problem associated with the nonsymmetric matrices in Equation (12).

The difference between Equations (71) and (74) lies in the states of the system, which depend
on the chosen method for imposed acceleration. When one works with the RAM (or with a rigid
support motion), Equation (71) results in a system with less states because only the relative motion
information is retained. However, storing all states with Equation (74) can be advantageous in
some cases, e.g., when one wants to compute absolute displacements.

Finally, it should be noted that the proposed method seamlessly introduces modal damping on
selected modes. In particular, damping introduction into the LMM model causes no issues. By
contrast, introducing it via Rayleigh damping in a structural model may cause potential issues if
not handled carefully [12].

5.5. State-space models of structures with imposed displacement

The methods reviewed in Section 3.2 all result in a model of the form

Md:xd ` Kdxd “ BdqP , (75)

where again Md, Kd, Bd and xd are method-dependent. Following the approach outlined in
Section 5.1 (substituting the quantities in Equation (4) by their counterparts in Equation (75)), a
state evolution equation is obtained as

„

9ηd

:ηd

ȷ

“

„

0 I
´Ω2

d ´2ZdΩd

ȷ „

ηd

9ηd

ȷ

`

„

0
ΦT

dBd

ȷ

qP , (76)

where Ωd and Φd are computed from Equation (52) by replacing M and K by Md and Kd,
respectively, ηd is the associated vector of modal coordinates, and Zd is a diagonal matrix of
modal damping ratios. Once again, the interpretation of these modes is method-dependent. We
also note that adding a static correction to the model is simply performed by replacing Bf by Bd

in the procedures outlined in Sections 5.2.1 and 5.2.2.
The formulation with a direct method when the mass matrix is (considered) diagonal can be

obtained from Equation (68) by simply removing the input :qP .
When using the direct method with a non-block-diagonal mass matrix or the Lagrange mul-

tipliers method, the mass matrices are singular (Equations (27) and (38)). This prevents the
construction of a state-space model using the formulation in Equation (51). As for the associated
modal model in Equation (76), the singularity of the mass matrix translates into infinite frequencies
in the matrix Ωd. These approaches are therefore not suited for use with state-space models.

5.6. Discussion

To conclude this section, extensions of this work that could benefit from the developments of
this section are discussed.

In this work, modal damping was introduced in the model for simplicity. General viscous
damping models could be considered without great difficulty. State decoupling would be achievable
using complex modes [7, 24], thereby providing an efficient approach to compute the structural
frequency response.

With the state-space models developed herein, structural assembly can easily be performed as
the state-space models of the assembled substructures just need to be connected in cascade. Thus,
the method proposed in [32] can be applied directly, without need for any state transformation.
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There exist several competitive system identification techniques working with state-space mod-
els (e.g. [26]), and an application to systems excited by seismic motions was discussed in [38]. With
the identified models, modes can easily be computed, but their relation to the structural properties
may not be obvious. The models developed herein give an interpretation of these modes. This
could be used in a finite element model updating context. For instance, the system equivalent re-
duction expansion process [39] could use the assumed mode shapes. This could offer an interesting
alternative to the method proposed in [38].

6. Summary

The procedure to build a state-space model of a structure with imposed acceleration or dis-
placement is summarized as follows:

1. Build a FE model of a structure.

2. Optionally, use a classical reduction approach, such as the Craig-Bampton method (see Sec-
tion 4).

3. Transform or augment the model following methods for imposed acceleration (see Section 3.1)
or displacements (see Section 3.2).

4. Build a state-space model of the structure (see Section 5.1), with an optional reduction step
and an optional static correction (see Section 5.2).

7. Examples

The proposed methods are illustrated with three examples of increasing complexity. The first
example is a bar in extension used to gain insight about the newly proposed RAM. A cantilever
beam is then studied to compare the different methods. Finally, the case of a multi-story building
model with a large number of DoFs is analyzed. In the two first examples, the accuracy of the
various methods is evaluated through their relative error given by

epωq “

ˇ

ˇ

ˇ

ˇ

qref pωq ´ qmpωq

qref pωq

ˇ

ˇ

ˇ

ˇ

, (77)

where qref pωq is the reference solution obtained from the direct method applied to the full model,
qmpωq is the solution given by the considered method, and | ¨ | denotes the absolute value. Unless
otherwise stated, the state-space ROMs include a static correction via a feedthrough term.

7.1. Bar in extension

ρ,E,A

qB qI

l

Figure 2: Base-excited bar.
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One of the simplest examples to illustrate the proposed approaches is a finite element model
of a bar in extension with one element, as illustrated in Figure 2. Using a Galerkin approach with
linear shape functions to discretize the displacement field, the mass and stiffness matrices of this
bar element are given by

M “
ρAl

6

„

2 1
1 2

ȷ

, K “
EA

l

„

1 ´1
´1 1

ȷ

, (78)

where l and A are the length and cross-section area of the bar, respectively, and ρ and E are the
material’s density and Young’s modulus [7]. This free-free bar model has two resonance frequen-
cies: 0, which corresponds to a rigid body mode, and

a

3E{pρl2q, which is used to normalize all
frequencies in this example.

From Equations (15) and (78), the RMM transformation matrix is given by

TRMM “

„

1 0
1 1

ȷ

, (79)

changing the degrees of freedom to the base motion qB and a relative motion qI ´ qB. This yields
the transformed mass and stiffness matrices as

MRMM “
ρAl

6

„

6 3
3 2

ȷ

, KRMM “
EA

l

„

0 0
0 1

ȷ

, (80)

respectively. As for the RAM transformation matrix, Equations (30) and (78) result in

TRAM “

„

1 0
´1{2 1

ȷ

, (81)

which allows for the computation of the transformed mass and stiffness matrices as

MRAM “
ρAl

6

„

3{2 0
0 2

ȷ

, KRAM “
EA

l

„

9{4 ´3{2
´3{2 1

ȷ

. (82)

A mass lumping procedure can also be adopted. Half the total mass of the bar is attributed to
each node, resulting in the diagonal mass matrix

Ml “
ρAl

2

„

1 0
0 1

ȷ

. (83)

This mass lumping procedure makes the bar model qualitatively equivalent to a spring-mass model.
A longitudinal unit-amplitude harmonic displacement is prescribed on qB, hence

qP ptq “ cospωtq, :qP ptq “ ´ω2 cospωtq. (84)

Figure 3a depicts the transmissibilities obtained with various methods. Among them, the RMM and
RAM agree perfectly with the direct method (Equation (11)). On the contrary, the mass lumping
approximation features a large error at and above the bar resonance frequency, and underestimates
the transmissibility at high frequencies. Assuming a static coupling, i.e., neglecting the inertial
coupling term in Equation (11) appears to be a better approximation around resonance. However,
discrepancies are still visible, and the approximation performs poorly at high frequencies. The
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Figure 3: Base-excited bar with one element: transmissibility with the direct method ( ), RMM ( ), RAM ( ),
mass lumping ( ) and static coupling approximation ( ) (a), and relative error of the mass lumping ( ) and
static coupling ( ) approximations (b).
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Figure 4: Base-excited bar with five elements: transmissibility with the direct method ( ), RMM ( ), RAM ( ),
mass lumping ( ) and static coupling approximation ( ) methods (a), and relative error of the mass lumping ( )
and static coupling ( ) approximations (b).

relative errors of the two approximation methods are reported in Figure 3b. The mass lumping
approximation performs better than the static coupling approximation at low frequencies.

Extending the results to a discretization with five elements, Figure 4a displays the transmissi-
bilities obtained with the same methods. Once again, there is a perfect agreement with the direct,
RMM and RAM methods. This time, the mass lumping and static coupling approximations pro-
vide a satisfactory evaluation of the transmissibility around the first resonance. Because the mass
lumping method underestimates the resonance frequencies of the model, it performs poorly around
these misevaluated resonance frequencies, as can be seen in Figure 4b. Yet, it outperforms the
static coupling approach at low frequencies.

In an attempt to understand the coordinate transformations in the RMM and RAM methods,
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Figure 5: First column of the RMM (a) and RAM (b) transformation matrices for a bar with 1 (˝), 5 (˝), 10 (˛),
20 (`) and 30 (ˆ) elements.

2 4 6 8 10

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

(a)

2 4 6 8 10

2

4

6

8

10

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 6: RMM (a) and RAM (b) transformation matrices for a bar with ten elements.

Figure 5 plots the first column of the transformation matrices for various number of elements.
With the RMM method, a rigid-body mode is recognized in Figure 5a. According to the discussion
in Section 3.1.2, this is to be expected, because in this case a rigid motion is imposed to the base.
The constraint mode is thus a rigid-body mode, and the remaining coordinates describe a motion
relative to the base motion, which is confirmed by looking at the RMM transformation matrix
(Equation (15) with TI,d “ I) for a case with ten elements in Figure 6a.

By contrast, the first column of the RAM transformation matrix does not converge uniformly
to a specific deformation as shown in Figure 5b. This is particularly observable for the DoFs closest
to the boundary. However, a convergence toward a zero motion is observable for the DoFs close
to the free end. Hence, the transformed DoFs tend to represent absolute coordinates. This is also
confirmed by looking at the transformation matrix (Equation (30) with TI,d “ I) for the case with
ten elements in Figure 6b, for which the lower block tends to resemble the concatenation of a zero
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matrix and an identity matrix. In conclusion, it appears that the coordinate transformation tends
to a formulation where absolute displacements are used, without being ever fully equivalent to it
if the mass matrix is not diagonal, because it needs to perform a mass decoupling action between
the boundary and internal DoFs. The extent to which it differs from a formulation with absolute
displacement depends on the discretization.

7.2. Cantilever beam

qB

qt

L

(a)

l

t

(b)

Figure 7: Base-excited cantilever beam: front view (a) and cross-sectional view (b).

A concrete cantilever beam with a square hollow section depicted in Figure 7 is now studied.
The material behavior is assumed to be linear, isotropic and elastic. Table 1 reports the geometric
and material characteristics of the beam. Its model was built with 20 Euler-Bernoulli elements
using the Structural Dynamics Toolbox (SDT) in MATLAB [40]. The response of the beam is
assessed through its transversal tip displacement qt.

L l t E ν ρ

140m 20m 30cm 30GPa 0.2 2200kg/m3

Table 1: Geometric and material characteristics of the cantilever beam (L, l and t are the beam length, width and
cross-section wall thickness, respectively, and E, ν and ρ are the concrete Young’s modulus, Poisson’s ratio and
density, respectively).

7.2.1. Comparison of the approaches

The various methods outlined in Section 3 are first compared using the full model of the beam.
Figure 8 compares the methods imposing boundary accelerations presented in Section 3.1. Since
all methods are relatively accurate, every transmissibility is not plotted in Figure 8a but the
relative errors are compared in Figure 8b. In this case, the formulation using relative coordinates
is theoretically equivalent to the RMM; Figure 8b shows that the differences between the two
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Figure 8: Full model of a cantilever beam under base acceleration with the direct method ( ), relative motion
formulation ( ), LMM ( ), Lagrange multiplier method ( ) and RMM ( ): transmissibility (a) and relative
error (b).

methods are only purely numerical and a few orders above the epsilon machine. The Lagrange
multipliers method is also very accurate. The error made by this method is larger than that made
by the RMM around the resonance frequencies of the structure but remains overall very small. The
LMM with a penalization term MBB “ 1010kg results in the largest errors among the considered
methods.

10
-1

10
0

10
1

Frequency (Hz)

0

20

40

60

80

|q
t/q

B
| 
(d

B
)

(a)

10
-1

10
0

10
1

Frequency (Hz)

10
-15

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r 

(-
)

(b)

Figure 9: Full model of a cantilever beam under base displacement with the direct method ( ), static coupling
approximation ( ), LSM ( ), Lagrange multiplier method ( ) and RAM ( ): transmissibility (a) and relative
error (b).

Focusing now on methods imposing boundary displacements, Figure 9 compares the different
methods discussed in Section 3.2. Since the mass matrix is not purely block diagonal, neglecting the
inertial coupling term (Equation (28)) is not identical to the RAM. The former approach features
the largest relative error among the methods, which is acceptably small in the low frequency
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range but grows with frequency. The RAM and Lagrange multipliers method feature excellent
accuracy, the latter being again slightly worse around the resonance frequencies. The LSM with a
penalization term KBB “ 1016N/m results in intermediate error in this case.

7.2.2. Reduced-order models

Reduced-order models of the beam are now considered with a special emphasis on Craig-
Bampton models. In all cases, the transversal base and tip DoFs of the beam are retained, and
five component modes are added to the model.
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Figure 10: Cantilever beam under base displacement with the direct method applied to the full model ( ), direct
method applied to the Craig-Bampton ROM ( ), static coupling approximations with the Craig-Bampton ROM
( ) and inertial coupling approximation with the Craig-Bampton ROM ( ): transmissibility (a) and relative
error (b).

Figure 10 investigates the case of a Craig-Bampton ROM of the beam subjected to a base
displacement. The response of the full model is also given as a reference. Upon using the direct
method with the ROM, an accurate reconstruction of the response of the beam is possible. How-
ever, neglecting the inertial coupling term as in Equation (28) for the ROM leads to a substantial
error. The response is only exact at zero frequency, but the error rapidly increases and reaches
unacceptable levels close to the first resonance, making the difference between the two transmis-
sibilities clearly visible in Figure 10a. This was to be expected, as the interactions between the
component normal modes and the retained DoFs are exclusively inertial (Equations (43) and (44)).
This fact is also visually confirmed in Figure 10 by using a pure inertial coupling (i.e., neglect-
ing the term KIBqP in Equation (11)). In this case, a much more faithful reproduction of the
transmissibility is obtained, except at low frequencies.

The foregoing discussion shows that inertial coupling terms are non-negligible when dealing with
Craig-Bampton ROMs with imposed displacements. The proposed RAM is therefore expected to
be particularly relevant for this case. This is confirmed in Figure 11, where the RAM applied after
a Craig-Bampton reduction features a transmissibility which is as accurate as the direct method
applied to the ROM. For comparison, the LSM applied to the ROM is also investigated, leading to
an overall larger error than the RAM, especially around the resonance frequencies of the structure.

Finally, a MacNeal ROM is built to compare it against the Craig-Bampton one. Since one of
the retained DoFs is in free conditions and the other one is fixed, neither of the ROMs is expected
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Figure 11: Cantilever beam under base displacement with the direct method applied to the full model ( ), direct
method applied to the Craig-Bampton ROM ( ), RAM applied to the Craig-Bampton ROM ( ) and LSM applied
to the Craig-Bampton ROM ( ): transmissibility (a) and relative error (b).
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Figure 12: Cantilever beam under base displacement with the direct method applied to the full model ( ), RAM
applied to a Craig-Bampton ROM ( ) and direct method applied to a MacNeal ROM ( ): transmissibility (a)
and relative error (b).

to have the upper hand over the other. Figure 12 confirms this expectation. The MacNeal ROM
is more accurate at low frequencies, but beyond the resonance frequency of the first mode the two
ROMs feature similar errors. An advantage of the MacNeal ROM with the direct method is that
it requires only the imposed displacement without need for the RAM, as discussed in Section 4.4.

7.2.3. State-space models

A final case with the cantilever beam is presented where state-space reduced models of the
structure are built following the method outlined in Section 5. An acceleration is imposed to
the base and Craig-Bampton ROMs are built. Two methods are used to compute the response.
The first one uses relative displacements (Equation (23)) and builds a state-space model with
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Figure 13: Transmissibility of a cantilever beam under base acceleration with the direct method applied to the full
model with relative displacements ( ) and Craig-Bampton ROM with relative ( ) and absolute ( ) displacements.

Equation (71). The absolute tip displacement is then simply deduced by adding the base motion
to it. The other method uses absolute displacements and computes the state-space matrix from the
reduced Craig-Bampton matrices with Equation (74). Modal damping of 1% is added to both state-
space models, and both include a static correction with a feedthrough matrix. Figure 13 shows
that the two methods are in perfect agreement and closely follow the reference transmissibility,
except at the resonances because of the addition of modal damping.

7.3. Multi-story building

As a final example, the ten-story building model depicted in Figure 14 is considered. Each
floor is a square of 10 m side discretized with 144 0.2 m-thick slab elements. The four sides and
two median lines of the square are endowed with beams of square cross-section of 0.4 m side. The
floors are interconnected by columns of square section of 0.6 m side, discretized with six elements
between each floor. Every structural element is assumed to be made of concrete (with material
characteristics given in Table 1). The full model built using the SDT [40] possesses 12 894 DoFs,
thereby motivating model order reduction approaches to simulate the response in reasonable time.

A rigid support motion is imposed in the x direction, and the displacement relative to the base
at one of the top corners of the structure qt ´ qP is monitored to assess the structural response.
In the full model, a hysteretic damping with a loss factor equal to 0.02 is used. Correspondingly,
a modal damping of 1% is considered for all retained modes in the ROMs.

An imposed acceleration is considered first. Figure 15 displays the response of the structure
obtained through different means. The first method uses the full model with the RMM and serves
as a reference. A second method implements the RMM with the model order reduction process
at the state-space model construction with 20 retained modes, as discussed in Section 5.2. A
third model is built by applying the LMM to the full model with a penalization mass equal to
one billion times the mass of the structure added to each support. Its Craig-Bampton ROM with
20 component normal modes is then built to evaluate the structural response. Finally, the direct
method for state-space models (Equation (74)) is applied to the Craig-Bampton ROM. As shown
in Figure 15, all four methods agree closely in the frequency range of the retained modes. Slight
discrepancies are observable at the antiresonances due to the differences in damping models.
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Figure 14: Ten-story building model.
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Figure 15: Transmissibility of the building model under base acceleration: RMM applied to the full model ( ),
state-space reduced model of the RMM ( ), Craig-Bampton ROM of the LMM ( ) and direct method applied to
a Craig-Bampton ROM ( ).

The case of an imposed base displacement is now investigated. To make the analysis comparable
with methods imposing base acceleration, the transmissibility is divided by ´ω2. The response
of the building obtained with the RMM applied to the full building in Figure 15 is kept as a
reference for comparison. Two other methods are investigated. The first one uses the LSM and
reduces the state-space model using the method described in Section 5.2. The second method
is the proposed RAM applied to a Craig-Bampton ROM retaining 20 component normal modes.
Figure 16 compares the three results and features once again close agreement in the frequency
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Figure 16: Transmissibility of the building model under base displacement: RMM applied to the full model with
base acceleration ( ), reduced state-space model of the LSM ( ) and RAM applied to a Craig-Bampton ROM
( ).

range of the retained modes. At low frequency, the two reduced models appear to diverge from
the reference. This is due to small inaccuracies arising during the model reduction procedure,
leading to a non zero static value of the relative displacement under base motion. When this static
response is divided by ´ω2, this error is magnified at low frequencies.
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Figure 17: Transmissibility of the building model under base acceleration or displacement: RMM applied to the
full model ( ), Craig-Bampton ROM of the LMM ( ) and reduced state-space model of the LSM with residual
attachment modes ( ).

Spurious modes can be introduced by some methods. As an illustration, Figure 17 depicts
two such cases. In the first one, low-frequencies modes arise due to the penalization mass used in
the LMM (around 1 nHz in this case). The second case is the LSM combined with a reduction
including residual attachment modes (in contrast to every other reduced state-space model featuring
a feedthrough term in this work). The reduction step based on a frequency criterion allows for
discarding the high-frequency modes arising due to the large added penalization stiffness. However,
the addition of residual attachment modes leads to spurious high-frequency modes (around 2 kHz
in this case).

This example shows the ability of the presented methods to impose boundary acceleration and
displacement to ROMs of large finite element models of realistic structures.
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8. Conclusion

Since numerous engineering applications have to treat base-excited structural systems, this work
proposed different tools to model this problem. Techniques to impose boundary acceleration and
displacement were first reviewed or developed. In particular, a counterpart of the RMM for imposed
displacement called RAM was introduced. Model order reduction approaches were then revisited
with a specific emphasis on imposed boundary conditions. Finally, a systematic reformulation to
state-space models with boundary acceleration or displacement as input was presented, including
the possibility to add a static correction for improved accuracy.

These models were analyzed through three examples, and all techniques were shown to be
viable with various degrees of accuracy, provided that their associated hypotheses were verified.
In particular, it was shown that Craig-Bampton ROMs require caution when imposing boundary
displacement. In this context, the RAM was shown to be particularly relevant.

The approaches presented herein can provide the practitioner with a toolbox to solve structural
problems with time-varying imposed boundary conditions. This work could also have several
potential interesting extensions. For instance, the state-space formulation readily allows for the
treatment of more complex viscous damping models. The proposed approaches may also find
application in active control or experimental substructuring methods. Finally, the method could
be exploited to construct ROMs of piezoelectric structures [41].
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