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Abstract  

The advantages of the directly measured time-frequency maps are discussed as a useful 
representation of the coherent output in a 2 dimensional electronic spectroscopy (2DES). We 
demonstrate the theory by a detailed application to the fast femtosecond beatings of a wide 
variety of electronic coherences in dimers of size-dispersed (9%) 3nm quantum dots (QDs). 
The observed and computed results can be consistently characterized directly in the time-
frequency domain by probing the polarization in a 2DES set-up. Experimental and computed 
time-frequency maps are found in very good agreement and several electronic coherences are 
characterized at room temperature in solution before extensive dephasing due to the size-
dispersion kicks in. As compared to the frequency-frequency maps that are commonly used in 
2DES, the time-frequency maps allow for exploiting electronic coherences without additional 
post processing and with fewer 2DES measurements of polarization. Towards quantum 
technology applications, we also report on the modeling of the time-frequency photocurrent 
response of these electronic coherences, which opens the way to integrating QD devices with 
classical architectures thereby enhancing the quantum advantage of such technologies for 
parallel information processing at room temperature. 
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Introduction 

Semi-conducting nanoparticles, or quantum dots (QDs) are a promising hardware for a wide 
variety of quantum technologies1-7. Recently, we proposed to exploit the femtosecond fast 
beating electronic coherences in small few-nm QDs and QD dimers for implementing quantum 
parallel information processing at room temperature8-11, using electronic coherences as logic 
variables. Our scheme offers a significant quantum advantage as for a set of N coupled quantum 
states, N2 -1 coherences can be used to process information in parallel.8, 12 

In previous joint theoretical-experimental studies7, 13-15 we reported how electronic coherences 
could be observed and tuned in ensembles of small (mean diameter 𝐷" = 2.5 to 3 nm), size 
dispersed (𝜎 = 5% to 9%), CdSe QDs and QD quasi-homodimers (Figure 1 (a,b)) addressed in 
a 2-dimensional electronic spectroscopy (2DES) set-up. In this set-up, the polarization response 
is measured as a function of the first two delay times, T1 and T2 and directly in the frequency 
domain, 𝜔!, of the third delay time, T3, using a CCD camera, see Figure 1(c). A Fourier 
transform along the first delay time, T1, brings the maps into the frequency domain, 𝜔" and 
allow retrieving the conventional 2DES response as a function of (𝜔",	𝑇#, 𝜔!), as shown in 
Figure 1(f). 5, 16-18  A good agreement was found between the computed and experimental 
coherence responses of small ≈ 3 nm QDs and QD dimers along T2 traces of points on the 
frequency (𝜔",	𝜔!) maps13-15.  

The (𝜔" , 𝜔! ) frequency maps of (𝜔",	 𝑇#, 𝜔!) response provide ((𝜔"$ , 𝜔!
%) coordinates for 

coherences between pairs of excited electronic states (i,j) evolving along T2, where 𝜔"$  
corresponds to the excitation of state i, 𝜔"$ = 𝜔$ − 𝜔&' and 𝜔!

% is the emission from state j, 
𝜔!
% = 𝜔% − 𝜔&'. Bringing T1 to the frequency domain requires however a large sampling of 

this delay time as well as computationally expensive FFT post-processing.19 Here, we show by 
comparing experimental and computed data for the BOXCARS set-up that the electronic 
coherences can be equally accurately probed along T2 traces in time-frequency (T1, 𝜔!) 
polarization maps, which requires a smaller number of 2DES measurements and less post-
processing. In (𝑇",𝜔!) time-frequency maps, coherences along T2 are only partially resolved 
along 𝜔!. Then there can be several coherences between excited states that beat along T2 at a 
specific address (𝑇",	𝜔!) in the map. These are all the coherences (i,j) that involve an excited 
state j that emits at the frequency 𝜔!

% = 𝜔% − 𝜔&'. We show that by measuring a single point 
in the (𝑇",	𝜔!) time-frequency maps one can therefore characterize a family of coherences that 
beat along T2, or address simultaneously all these coherences for parallel quantum information 
processing.  

The ability to measure electronic coherences in the directly measured data, without the need to 
compute full frequency maps, greatly enhances the potential for use of electronic coherences 
of QDs in room temperature quantum technologies. Towards applications to quantum 
information processing, a photocurrent action set-up20-27 presents several advantages over the 
BOXCARS one for 2DES: it is a collinear set-up, easier to operate and the output is a 
photocurrent that can be easier processed and integrated with a classical computer. It is 
therefore of interest to investigate how electronic coherences are probed in the photocurrent 
response. We show computationally that the electronic coherences can also be robustly probed 
with the action-based photocurrent response.  

Synthesis of 3 nm CdSe QDs and assembly into quasi-homodimers in solution 

The colloidal CdSe QDs were prepared in solution by mixing Cadmium and Selenium 
precursors using a hot injection technique in presence of long alkyl chain coordinating agents.28 
Such molecules act as an organic capping layer on QD surface, helping the controlled and 
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quasi-epitaxial growth of the nanoparticles, allowing their dispersion in organic solvents, and 
preventing their aggregation. This approach allows, by controlling the growth parameters, the 
precursor ratio and the time and temperature of the synthesis, for preparing small, 2.5 to 3.5 
nm in diameter, QDs with narrow size distributions varying from 5 to 9% in mean diameter.  

Quasi-homodimers of CdSe QDs with mean diameter 𝐷" = 3 nm and size distribution 𝜎 = 9% 
are assembled in the solution by bonding pairs of size dispersed QDs with a short (≈ 0.5	𝑛𝑚) 
propanedithiol ligand, see ref 28 for details of this procedure and ref 7 for the details of the 
synthesis of the QD dimers used in this work. Because of the unavoidable size dispersion, the 
QD dimers are not identical nano-objects. A schematic representation of a QD quasi-
homodimer constructed in this fashion is shown in Figure 1 (a) and a Transmission Electronic 
Microscopy (TEM) image of one of the dimers prepared for this work is shown in Figure 1 (b). 

2DES Experimental Methods 

The 2DES experiment is implemented using a fully non-collinear setup, in which three fs laser 
pulses in the visible range are incident upon the ensemble of QD dimers in solution from 
different spatial directions, fulfilling the BOXCARS phase matching conditions.19 For results 
on the same  𝐷" = 3 nm and size distribution 𝜎 = 9% QD dimers assembled into a solid state 
multilayer device, see ref 7. The experiment probes the optical polarization of the ensemble as 
a function of the delay times between the pulses, or of their corresponding frequencies. By 
giving independent control over the delay times, the BOXCARS setup allows the signal in the 
different phase matching directions (PMDs) to be easily extracted. For a description of the 
experimental setup see ref 19 and for its details in this implementation see ref 7.  

The three exciting pulses and the final signal observation are separated in time by the delay 
times, as defined in Figure 1 (c ). The delay time, T0, is the time interval between the arbitrary 
origin of the time axis, set as the center time of the Local Oscillator (LO), and the first pulse, 
centered at t1. The LO is a fourth pulse used as time reference and employed for heterodyne 
detection.19 

The first delay time, the excitation or coherence time (T1), is the time separation between the 
first and second pulses. The second delay time, the population time (T2), is the time between 
the second and third pulses and the third delay time, the rephasing or emission time (T3), is the 
time between the third pulse and the observation. The time at which the measurement is 
performed is defined as  

 

𝑡 ≡ 𝑇( + 𝑇" + 𝑇# + 𝑇!      (1) 
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Figure 1: a) Schematic representation of a CdSe quasi-homodimer. The dimer is assembled by 
covalently bonding two QDs with a 0.55 nm 𝑆(𝐶𝐻!)#𝑆 ligand. The QDs are drawn from an 
ensemble with mean diameter, 𝐷", of 3 nm and size dispersion 𝜎. b) A High Resolution 
Transmission Electronic Microscopy (HR-TEM) image of one of the quasi-homodimers 
prepared for this work. c) Time ordering of the three fs laser pulses as used in the 2DES 
experiment and in the modelling. d-f) Different possible representations of the final three-
dimensional signal obtained after a 2DES measurements (or of modelled data). The final cube 
of polarisation response data can be cast as a function of: (d) the three time delays between 
pulses (T1, T2,T3); (e) the first two delay times between pulses and the third delay in the 
frequency domain (T1, T2, 𝜔!).  These are the data studied in this work; (f) the first and third 
delays in the frequency domain and the second delay in the time domain (𝜔", T2, 𝜔!). This is 
the representation typically used when 2DES measurements are published, as was the case in 
ref. 12.  

  

The polarization response from the ensemble can be measured in specific PMDs as a function 
of the delay times (𝑇", 𝑇#, 𝑇!). Repeated measurements with different delays produce a “cube” 
of data in which the polarization in a particular PMD is stored as a function of the delay 
parameters. Figure 1 (d) shows the polarization in the rephasing direction in the time domain, 
as a function of (𝑇", 𝑇#, 𝑇!). Each of the delay times (𝑇", 𝑇#, 𝑇!) can be brought to the frequency 
domain (𝜔", 𝜔#, 𝜔!) by Fourier transform, leading to what is sometimes referred to as 3D 
electron spectroscopy.29 Figure 1 (e) shows the same response as in Figure 1 (d) in the time-
frequency domain (𝑇", 𝑇#, 𝜔!). This is the typical form of the data obtained as raw output of a 
BOXCARS experimental setup, such as the one used for this work. Indeed, as explained above, 
in a typical BOXCARS experiment, the signal is measured while scanning the time intervals 
T1 and T2, whereas the dependence on the third time interval is measured directly in the 
frequency domain, 𝜔!, by the detector.16 For ease of interpretation, the signal is then typically 
Fourier Transformed along T15, 16-18. This leads to a representation of the same data as a function 
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of the excitation and emission frequencies and the population time (𝜔", 𝑇#, 𝜔!), as shown in 
Figure 1 (f). Regardless of the chosen representation the electronic coherences between the 
excited electronic states of the QD dimers can be probed by analyzing the data in these cubes 
as a function of the population time, 𝑇#, as is illustrated in Figures 1 (d) (e) and (f). Coherences 
in the frequency maps  (𝜔", 𝜔!) (Figure 1 (f)) were studied in our previous work7, while here 
we analyze the (𝑇", 𝜔!) time-frequency maps. 

 

Theoretical Methods 

We model the electronic structure of each QD from two hole-one electron single particle states. 
These one particle electronic states are calculated using an effective mass - k.p Hamiltonian30-

33 constructed for CdSe using the size distribution of the ensemble (see refs. 13-15). This 
approximation defines two hole-electron monoexcitons, 1S and 2S, per QD. When the laser 
intensity is weak enough, the formation of biexcitons, two-electron-two-hole states, can be 
neglected.15, 34 

The spin 1 2⁄ 	of the hole of each pair is coupled to the p-type orbitals (𝑙 = 1) localized on the 
Se atoms.35-36 These spin orbit interactions split each of the S bands into two sub-bands of states 
with angular momentum 𝐿 = 1 ±	1 2⁄  state, 𝐿 = 1 2⁄ , 3 2⁄ . The total orbital angular 
momentum, 𝐿 ± the spin 1 2⁄  of the s-type orbital localized on the Cd atoms, leads to an eight-
fold degeneracy of the 𝐿 = 3 2⁄  state and a four-fold degeneracy of the 𝐿 = 1 2⁄  state. These 
states further undergo a loss of degeneracy due to crystal field and Coulomb interactions.33, 35-

37 The 𝑆! #⁄  state then forms a band of 8 fine structure (FS) singly excited electronic states, of 
which five are dark and three are bright, and the 𝑆" #⁄  state forms a band of four FS states, of 
which all are bright. In this way, four bands of 24 FS states are formed per QD with energetic 
ordering 1𝑆! #⁄ , 1𝑆" #⁄ , 2𝑆! #⁄  and 2𝑆" #⁄ . 

When two QDs drawn from the size dispersed ensemble of monomers are covalently bonded 
to form quasi-homodimers, the 24 FS states of each QD are coupled by interdot electronic 
Coulomb interactions to create a manifold of 48 FS states per dimer. Since the two QDs in a 
given dimer differ slightly in size, quasi-homodimers are formed: the quasi-isoenergetic bands 
of each QD are split by Coulomb interdot interactions into a higher and a lower dimer band. 
This creates eight bands of FS singly excited states per dimer. These bands are energetically 
ordered as 1𝑆! #⁄

* , 1𝑆! #⁄
+ , 1𝑆" #⁄

* , 1𝑆" #⁄
+ , 2𝑆! #⁄

* , 2𝑆! #⁄
+ , 2𝑆" #⁄

*  and 2𝑆" #⁄
+ , although in dimers made 

from ensembles with larger 𝐷" and/or size dispersion the FS states of these bands interdigitate 
and the bands overlap.13, 15  

The size differences of the two QDs assembled in each quasi-homodimer mean that they do 
not obey the optical selection rules of exact homodimers and that all the states will share 
oscillator strength. Consequently, all singly excited FS states will be bright, although some FS 
states will be almost dark. Figure 2 (b) shows the stick spectrum calculated for the 3nm/9% 
ensemble averaged over an ensemble of 4000 dimers.8, 13  

Figure 2 (a) shows the measured absorption spectra of the dimer solution along with the 
calculated absorption spectrum for the 3nm/9% ensemble averaged dimer where the 
inhomogeneous broadening due to the finite size dispersion is taken into account. This figure 
also shows the spectral profile of the laser pulse used for the 2DES measurements. Only the 
1𝑆! #⁄

*  and the 1𝑆! #⁄
+  bands fall within the laser pulse energy bandwidth. Table S1 in the 

Supporting Information (SI) gives the calculated transition energies, inhomogeneous 
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broadening and corresponding dephasing times, and transition dipole moments from the ground 
to the 1𝑆! #⁄

*  and 1𝑆! #⁄
+  band FS states averaged over the 4000 dimer ensemble. 

Because the laser pulses are short, several electronic states of the 1𝑆! #⁄
*  and the 1𝑆! #⁄

+  are 
excited simultaneously, which leads to a superposition of several excited FS electronic states. 
The electronic coherences discussed in the results section are coherences between FS excited 
states either within (‘intra’-band) or between (‘inter’-band) the 1𝑆! #⁄

*  and 1𝑆! #⁄
+  bands. We 

specifically focus on five types of coherences, labeled by the periods of their oscillations, which 
are governed by the energy difference of the two FS states involved. The intra-band coherences 
between the degenerate 4th/5th FS states and the 6th FS state, all in the 1𝑆! #⁄

*  band, have an 
average frequency of ≈ 120	𝑐𝑚,". The coherences between the 3rd FS state and the degenerate 
4th/5th FS states, all in the 1𝑆! #⁄

*   band, have a frequency of ≈ 680	𝑐𝑚,". The coherences 
between the degenerate 1st/2nd FS states and the degenerate 4th/5th FS states, all within the 1𝑆! #⁄

*   
band, have a frequency of ≈ 850	𝑐𝑚,". The coherences between the degenerate 4th/5th FS 
states and the 6th FS state, all in the 1𝑆! #⁄

*   band, have a frequency of ≈ 960	𝑐𝑚,". Finally, the 
inter-band coherences between the degenerate 4th/5th FS states in the 1𝑆! #⁄

*   band and the 11th 
FS state in the 1𝑆! #⁄

+  band fall at ≈ 480	𝑐𝑚,". All these coherences, both intra- and inter-band 
are interdot in character, due to the delocalization of the wavefunctions of the 1𝑆 FS states over 
the whole dimer.7 The horizontal double headed arrows superimposed onto the stick spectrum, 
Figure 2 (b), identify these five coherences and their calculated frequencies, periods, 
inhomogeneous dephasing times and emission dipole strengths are given in Table S2 in the 
Supporting Information. Throughout this work the 120	𝑐𝑚," coherences are labeled in red, 
and the 680	𝑐𝑚,", 850	𝑐𝑚,", 960	𝑐𝑚," and 480	𝑐𝑚," coherences in orange, green, purple 
and cyan respectively. 

 
Figure 2: a) Measured (violet) and calculated (azure) absorption spectra of the QD dimers 
with the spectral profile of the laser pulse (orange) used for the 2DES measurement. b) 
Calculated stick spectrum for the averaged dimer computed from an ensemble of 4000 3nm/9% 
dimers. The five electronic coherences between specific electronic FS states discussed in this 
work are identified with horizontal double arrowed lines between these states. The colour 
labelling of the FS bands and coherences is used throughout. c) Inhomogeneous broadening 
of the 5 electronic coherences in the frequency 𝜔! in the (𝑇", 𝜔!) map. d) Emission dipole 
strengths of the five electronic coherences. 
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The size dispersion of the QD ensemble causes an inhomogeneous broadening of the energies 
of the transitions between electronic states, the values of which are given in Table S1 in the SI. 
In the time domain, the size dispersion leads to the dephasing of the coherences, which have a 
finite lifetime. In the (𝑇", 𝜔!) time-frequency domain, the size dispersion therefore leads to 
dephasing along 𝑇" and to an inhomogeneous broadening of emission bands along 𝜔!. The 
inhomogeneous broadening of the bands corresponding to the five coherences on which we 
focus is represented as shaded areas on time-frequency (𝑇", 𝜔!) map reported in Figure 2 (c). 
Traces along T2 for points localized in a given 𝜔! band on the (𝑇", 𝜔!) map will therefore 
exhibit beating periods that are characteristic of coherences (i,j) involving an excited state j 
that emits in the range of 𝜔! values specified by the inhomogeneously broadened transition 
frequency (𝜔% − 𝜔&').  

Figure 2 (d) shows the emission dipole strengths of the same five electronic coherences. As 
shown in ref. 7, the rather monotonic distribution of these values results from the 9% size 
dispersion of the ensemble which breaks the exact homodimer limit of fully dark and bright 
states. The rather even distribution of dipole strengths of the five coherences means that they 
will appear in the 𝑇# traces of points on the time-frequency (𝑇", 𝜔!) maps with commensurate 
strength. This is a useful feature of disordered QD quasi-homodimers for applications in 
quantum technologies because it means that more coherences are available for implementing 
information processing.  

In this work the partial polarizations in specific phase matching directions are modeled using 
a phase modulated approach38 which is numerically more straightforward to implement than a 
full simulation of the BOXCARS set-up. In the experimental BOXCARS set-up, phase 
modulation is not needed since the different phase matching directions are spatially separated 
by using a non collinear set-up. 5, 16-18 On the other hand, a phase modulation of the trains pulses 
is experimentally implemented in 2DES collinear set-ups that measure action observables such 
as fluorescence or photocurrent. 20-22, 25-26, 39-40 To simulate the polarization response as 
measured in the BOXCARS set-up, we compute the polarization of the ensemble of QD dimers 
subject to sequences of three collinear fs phase modulated laser pulses. The electric field time 
profile of the pulse sequence is given 

 

ℇ(𝑡) = ∑ ℇ-(𝑡)!
-."        (2) 

 

Where ℇ-(𝑡) is the electric field of each pulse defined as 

 

ℇ-(𝑡) = ℇ(𝑒
/,("#"$)

&

&'$&
0
cos	(𝜔-𝑡 + 𝜙-)    (3) 

 

In Eq. (3) ℇ( is the electric field strength, 𝜎- is the width of the Gaussian envelope, 𝜔- is the 
carrier frequency and 𝑡- is the time at which the nth pulse is centered, as shown in Figure 1 (c). 
In all the calculations we use ℇ( = 8.775 × 101	W/cm2,  𝜔- = 2.36 eV and 𝜎- = 3.9	𝑓𝑠 for 
𝑛 = 1, 2, 3, in agreement with the experimental values. 

We modulate the carrier envelope phase of the pulse, 𝜙-, for each set of delay times (T1, T2, 
T3). The modulation of 𝜙- is expressed as 𝜙- ≡ 2𝜋𝑘-𝑢 where 𝑘- ≡ 𝑚- 𝐿⁄ . By choosing the 
constants 𝑚- of each pulse as integer divisors of 𝐿, with 𝑚" ≠ 𝑚# ≠ 𝑚!, after 𝐿 repetitions 
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for 𝑢 varying from 1 to 𝐿, each of the carrier envelope phases, 𝜙-, will have gone through a 
different number of complete cycles.  

The computations are repeated for ranges of delay times (𝑇", 𝑇#, 𝑇!), modulating the carrier 
envelope phases of the pulses for each set of values  (𝑇", 𝑇#, 𝑇!). In this way the polarization of 
the dimer ensemble is computed as a function of the delay times and phase modulation, 𝑢. The 
wave vector of each phase matching direction (PMD) is given as a linear combination of the 
𝑚-: 𝒌2 = 𝑙"𝑚" + 𝑙#𝑚# + 𝑙!𝑚!, where the additional factors of 𝑢 𝐿⁄  modulate the carrier 
envelope phase of the pulses. For the rephasing direction (𝑙", 𝑙#, 𝑙!) = ±(−1,+1,+1). 

The polarization of the ensemble in a particular PMD is extracted by Fourier transforming 
along the phase modulations, u, and identifying the signal by the value of 𝒌2. 

 

𝒫𝒌((𝑇", 𝑇#, 𝑇!) = ∑ 𝑃4(𝑇", 𝑇#, 𝑇!) ∙ 𝑒
,)&*+ 5(4*

4."    (4) 

 

The polarization of the ensemble as a function of the delay times and phase modulation, 
𝑃4(𝑇", 𝑇#, 𝑇!) is calculated from the time dependent ensemble density matrix, 𝝆𝒆𝒏𝒔, as 
described in refs.8, 13 

 

𝑃4(𝑡) = 𝑇𝑟[𝝁	𝝆𝒆𝒏𝒔(𝑡)]      (5) 

 

Where 𝝁 is the ensemble dipole matrix. The density matrix, 𝜌9-:(𝑡), is propagated along time, 
for each set of delay time and phase modulation parameters, using the ensemble Liouville 
approach8, 13. 

The Liouville equation for the ensemble is given by8 

 

𝑖ℏ ;	
;=
𝜌9-:->(𝑡) = ∑ 𝐿->,$%9-:

$% ∙ 𝜌9-:
$% (𝑡)      (6) 

 

Where 𝐿9-:, the ensemble Liouville matrix, is constructed from averaging the Hamiltonian 
matrices of the individual size-dispersed dimers over the ensemble and takes into account the 
size dispersion of the QDs. The ensemble Hamiltonian explicitly includes the interaction of the 
sequence of three laser pulses in the dipole approximation. Eq. (6) is solved numerically using 
the Cash-Karp Runge-Kutta method.  

For a given set of delay times, (T1, T2, T3), the polarization is calculated for given sets, u, of 
carrier envelope phases (𝜙", 𝜙#, 𝜙!) using Eq. (5) and parametrized in terms of these delay 
times using Eq. (1). 

 

𝑃4(𝑇", 𝑇#, 𝑇!) = 𝑃4(𝑡)       (7) 
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The polarization in each PMD is obtained by Fourier transform over u using Eq. (4). We focus 
here on the rephasing PMD. The computed data, 𝑃@9AB(𝑇", 𝑇#, 𝑇!), are the time domain “cube” 
(Figure 1 (d)) and are converted into the time-frequency domain by Fourier transforming it 
along 𝑇! ↔ 𝜔!. 

 

𝒫@9AB(𝑇", 𝑇#, 𝜔!) ↔ ∫𝑒,$C,D, 𝑃@9AB(𝑇", 𝑇#, 𝑇!)𝑑𝑇!  (8) 

 

This produces a cube of data for the polarization of the ensemble in the rephasing direction in 
the time-frequency domain, as shown in Figure 1 (e). These computed data can be directly 
compared to the data measured in the BOXCARS setup in the time-frequency domain. 

A rotating frame (RF)41 is applied to the measured and calculated 𝒫@9AB(𝑇", 𝑇#, 𝜔!). 19 A 
reference frequency, 𝜔@9E, is subtracted along 𝑇", thereby detuning the optical frequency. 

 

𝒫@9ABFG = 𝒫@9AB𝑒$C-./D0     (9) 

 

In the computations, we take 𝜔@9E ≡ 𝜔-. As shown in Figure 3, working in the RF makes the 
electronic coherence between excited FS states clearer by removing the fast-beating coherences 
between the excited FS states and the GS which have a much shorter dephasing time. This also 
allows for a less dense sampling in time along T1 and T3. 

 

 
Figure 3: The rotating frame transformation is applied to measured and calculated time-
frequency maps. Left) unrotated time-frequency map and right) rotated time frequency map. 

 

Results and Discussion 

 

Comparison of computed and experimental time-frequency polarization maps 
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In our previous work,7 we showed that the electronic coherence response could be consistently 
characterized in BOXCARS polarization measurements of both solid-state and solution 
samples. Several electronic coherences between FS states in traces along T2 and their Fourier 
transforms (FTs) were characterized at specifically addressed points on measured and 
calculated rephasing frequency maps, 𝒫@9AB(𝜔", 𝑇#, 𝜔!). Coherences were gathered in three 
groups, 𝜌H, 𝜌HH and 𝜌HHH, defined by their beating frequencies and electronic character. The group 
𝜌H included the intra-band coherences with low transition frequency 120 cm-1. The group 𝜌HH 
was constituted of inter-band coherences with transition frequency 480 cm-1. Finally, group 
𝜌HHH included the intra-band coherences with transition frequency 680 cm-1, 850 cm-1 and 960 
cm-1. The low frequency group 𝜌H coherences were not observed in the measured dimer solution 
sample, only in the dimer-solid state ensemble.  

Figure 4 compares the real parts of the measured (left) and calculated (right) rephasing (𝑇", 𝜔!) 
time-frequency maps at T2 = 20 fs. In this range of T1 values, the main signal in both maps 
appears at an emission frequency around 𝜔! = 18400 cm-1. This frequency corresponds to the 
transition energy between the ground state and the strongest dipole FS states in the first 1𝑆! #⁄

*  
band. The experimental and calculated time-frequency maps are in very good agreement. The 
differences between the measured and calculated maps at emission frequencies below the main 
signal are attributable to Rayleigh scattering in the measurement. 

 

 
Figure 4: Left) measured and Right) calculated (𝑇",𝜔!) maps at 𝑇# = 20 fs after the rotating 
frame has been applied. The pink and green circles indicate the points (𝑇" = 7.8	𝑓𝑠, 𝜔! =
	17186	𝑐𝑚,") where the traces along T2 on Figure 5 were taken. 

Traces along T2 at the points (𝑇" = 7.8	𝑓𝑠, 𝜔! = 	17186	𝑐𝑚,"), indicated with pink and green 
dots on Figure 4, are compared on the left panel of Figure 5, and the FTs of these traces are 
shown on the right panel: 

 

∫ 𝑒,$C&D& 𝑃@9AB(𝑇", 𝑇#, 𝜔!)𝑑𝑇# ↔ 𝒫@9AB(𝑇", 𝜔#, 𝜔!)  (10) 
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Figure 5: Left) Real part of the traces along T2 at the points (𝑇" = 7.8	𝑓𝑠,𝜔! = 17186	𝑐𝑚,") 
on the measured (violet) and calculated (green) time-frequency maps. Right) FTs of the time 
traces. 

The FTs of the traces show the characteristic beating frequencies of all the types of electronic 
frequencies discussed above in the measured and in the calculated FT traces. The exception to 
this is the 120 cm-1 coherence which, while it can be seen in the calculated FT, cannot be seen 
in the measured FT. This finding is consistent with our observations in the frequency domain.7 
While the 120 cm-1 coherence was observed in the measured dimer solid-state traces of the 
frequency maps, it was not observed in the measured dimer solution traces. The coherences 
with frequencies 480 cm-1, 680 cm-1, 850 cm-1 and 960 cm-1 appear distinctly in both the 
measured and calculated FTs. These coherences appear more distinctly in the measured FT on 
Figure 5, than in the FTs of the T2 traces in the  (𝜔", 𝜔!)	frequency domain measured in 
solution.7 A long beating can be seen in the measured T2 trace, which is likely the acoustic 
phonon beating.42 It is not present in the calculated time trace or its FT, because our model 
does not include the coupling to the two phonon modes. Similarly, the vibrational phonon 
beating can be seen in the measured time trace but not the calculated time trace.  

The coherences discussed above are clearly defined in both the measured and calculated FTs 
in the time-frequency domain by analyzing a single trace along T2. Producing results in this 
way, as opposed to using (𝜔", 𝜔!) frequency-frequency maps, leads to a drastic reduction in 
the number of the 2DES measurements needed. The 𝜔! coordinate of the trace is consistent 
with its address in the frequency domain and depends upon the transition energies of the excited 
FS states involved in the coherences to the ground state. The coherences observed in Figure 5 
can be found at a range of 𝑇" values from 2	𝑓𝑠 < 𝑇" < 10	𝑓𝑠. A clear signal is not discernable 
at lower values of 𝑇" because of the overlap between the first and the second pulses, which 
creates complex beating patterns. Hence intra and inter-band coherences can be found in the 
time-frequency maps in a small range of short 𝑇" values and in a range of 𝜔! values which is 
defined by the transition energies from the FS states involved in the coherences to the GS. 

The fact that the same electronic coherences can be characterized in the time-frequency domain 
as in the frequency-frequency domain of the 2DES experiments, and hence can be exploited in 
the directly measured data, is advantageous in two respects. The first is that the need for a post 
processing step, Fourier transforming along 𝑇" ↔ 𝜔", is removed. This yields a computational 
reduction of 𝒪(𝑁D"𝑙𝑜𝑔𝑁D") where 𝑁D" is the number of measurements along 𝑇" . Following 
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the removal of the FT step, the second advantage gained is the requirement for far fewer 
measurements along 𝑇" than are required to sufficiently resolve the FT needed to obtain 
frequency-frequency maps. As has been discussed, measurements up to 𝑇" = 10	𝑓𝑠 provide an 
adequate range in which the coherences can be exploited. This range is at least an order of 
magnitude smaller than the 𝑇" range required to resolve the FT of 𝑇" for frequency domain 
maps, according to the Nyquist limit. As discussed above, in the frequency maps, the (𝜔", 𝜔!) 
address at which a coherence ‘i-j’ will beat along 𝑇# is given by the values of the (𝜔$ − 𝜔&') 
and (𝜔% − 𝜔&') transition frequencies. In the time-frequency measurements discussed here, 
since only the third time interval T3 is Fourier transformed, only the addresses of the coherences 
along 𝜔! are resolved. All the intra-band and inter-band i-j coherences can be found in traces 
along 𝑇# in different ranges of 𝜔!	but at the same value of 𝑇". This partial resolution of the 
addresses of the coherences significantly reduces the number of time delays that need to be 
sampled to characterize or exploit them for quantum technologies applications.  

Modeling of action-based photocurrent response 

2DES action-based fluorescence and photocurrent measurements20-27, 39 are a practical 
alternative to the polarization BOXCARS ones because they can be implemented with a much 
simpler collinear set-up.5 In addition, photocurrent is a more appropriate choice of observable 
for quantum technology applications as photocurrent measurements can be directly interfaced 
with classical electronics. Using the phase modulation approach described above, we report 
here on the computed photocurrent response of electronic coherences of an ensemble of 
monomeric QDs. We set the pulse parameters so as to access the mono and biexciton states of 
the QD’s and show how electronic coherences involving biexciton states can be characterized 
in the (𝑇", 𝑇#, 𝜔!) photocurrent action signal in the Double Quantum Coherence (DQC) PMD. 
Note, while the DQC PMD spectra can be easily measured with a phase modulation set-up20, 
such measurements are harder with the BOXCARS set-up because of the lack of fully reliable 
procedures to correctly phase the signal43 and the possible contribution of strong spurious 
nonresonant solvent response44. 

Figure 6 shows the level structure of the mono and bi-excitonic states of a single CdSe QD of 
3nm. It comprises the ground state |0⟩, two monoexciton states |1⟩ and |2⟩, the S1 and the S2 
states and the three biexciton states |3⟩, |4⟩ and |5⟩, which correspond to a double excitation 
to S1, to an excitation to S1 and to S2, and to a double excitation to S2, respectively. These 5 
excited states are represented by blue horizontal lines on the figure. The horizontal red dashed 
lines in Figure 6 show the carrier frequency (and twice the carrier frequency) of the laser pulse 
used to excite the QDs and the allowed dipole transitions are indicated with green vertical 
arrows. The calculated transition energies between these states averaged over an ensemble of 
4000 monomeric QDs with 9% size dispersion, as well as the energies of the coherences 
between them, are given in Table S3 of the SI along with the corresponding periods and dipole 
transition moments. Also given are dephasing lifetimes due to the size dispersion.  
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Figure 6: Energy level diagram for excitonic system. The blue lines show the mono- and 
biexciton electronic states of the QD. The red dashed line shows the carrier frequency (and 
twice the carrier frequency) of the pulses used in the 2DES. 

For the energy bandwidth of the laser pulses used here, the only transitions energetically 
allowed are those between the GS and the monoexciton band and between the mono and 
biexciton bands, as shown. Intra-band transitions between the states of the mono or the 
biexciton bands are not resonant with the laser pulse. 

Measurements of incoherent actions signals such as fluorescence or, as we show here, 
photocurrent, require a setup with 4 pulses.21-22, 25, 45 The nonlinear signals in specific PMDs 
are obtained using the phase modulation approach described above.  

The experimental setup modelled is shown in Figures 7 (a) and (b).25 A sequence of L trains of 
pulses is incident upon the ensemble, each train being constituted of 4 pulses separated in time 
by the delay times 𝑇", 𝑇# and 𝑇!. Each train in the sequence has the same set of delay times, 
and the trains are spaced apart from one another by the repetition time 𝑡@9A. The total electric 
field of each train is the same as in Eq. (3), only the sum runs over n=1, 2, 3 and 4. The action 
signal, from which the photocurrent is calculated, is recorded along 𝑡@9A. For a given set of 
delay times (𝑇", 𝑇#, 𝑇!),	the carrier envelope phases of the 4 pulses are modulated from 𝑢	 = 	1 
to 𝐿. The sequence is repeated using different values of the delay times and so the total 
photocurrent response is calculated as a function of the delay times and the phase modulation 
𝑃4(𝑇", 𝑇#, 𝑇!). The total photocurrent is separated into the different PMDs using Eq.(4) and 
these data are Fourier transformed along 𝑇!, 𝒫IJK(𝑇", 𝑇#, 𝑇!) ↔ 𝒫IJK(𝑇", 𝑇#, 𝜔!). This post 
processing produces a cube of data in which the photocurrent response in a specific PMD is 
stored as a function of 𝑇", 𝑇#, 𝜔!, as shown in Figure 7 (c). The analysis of this cube allows to 
identify and exploit the coherences contributing to this PMD. 
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Figure 7: a) Sequence of L phase modulated 4 pulse trains used in the simulation. Each train 
has a different value of u from 0 to L which modulates the carrier-envelope phase and the 
trains are spaced by the laser repetition time, trep. b) The 4 pulses in each train are separated 
by the delay times, T1, T2 and T3, which are fixed in each sequence of L trains. The measurement 
is repeated using sequences with different sets of delay times. c) The observable response in a 
specific PMD stored in a cube of data as a function of 𝑇", 𝑇#	𝑎𝑛𝑑	𝜔!. d) The calculated system 
stick spectrum with ground state - monoexciton transitions in blue and monoexciton-biexciton 
transitions in pink. The pulse envelope in the energy domain is superimposed onto the stick 
spectrum in green. 

We take here for the pulse parameters: ℇ( = 5 × 10,L	a.u. (8.775 105 W/cm2),  𝜔- = 2.53 eV 
and 𝜎- = 3.32	𝑓𝑠 for 𝑛 = 1, 2, 3, 4. The pulse envelope for these parameters in the energy 
domain is shown in Figure 7 d), superimposed onto the stick spectrum of the ground-
monoexciton and mono-biexciton transitions. In the simulations, 𝐿 = 170, 𝑚" = 0, 𝑚# =
2,𝑚! = 5	and 𝑚M = 34. 

The observable response being computed is the photocurrent. We take the relaxation time of 
the biexciton states to the monoexciton states in the sub-picosecond range, and the 
monoexciton states are assumed to relax to the ground state with a lifetime of a dozen of 
picoseconds. Consequently, the relaxation time from the |3⟩ and |5⟩ biexciton states to the |1⟩ 
and |2⟩ monoexciton is fixed to be 318 fs, with corresponding rates Γ!→" = ΓO→# = 
1.3 × 10,#	𝑒𝑉. The relaxation time from the |4⟩ biexciton state to the |1⟩ and 2⟩ monoexciton 
states is taken to be a little longer, 636 fs, with corresponding width in energy ΓM→" = ΓM→# = 
6.5 × 10,!	𝑒𝑉. The relaxation time from the |1⟩ and |2⟩ monoexciton states to the |0⟩ ground 
state is taken to be 15.9 ps, with corresponding width  Γ"→( = Γ#→( = 2.6 × 10,M	𝑒𝑉. 

The total photocurrent response is calculated from the density matrix of the ensemble using the 
approximated Liouvillian given in Eq. (6) to which we added the relaxation rates defined 
above. Additionally, a decay term was added to the Liouvillian to account for the dephasing of 
the coherences caused by phonon coupling with strength 𝛾 = 0.005	𝑒𝑉. Both the relaxation of 
the biexciton to the monoexciton states and of the monoexciton states to the ground state 
contribute to the photocurrent signal.22, 45 The action signal response from the relaxation of 
state |𝑚⟩ to state |𝑛⟩ is computed as 33: 
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𝑅𝑒𝑠𝑝>- =	∫ 	𝑑𝑡=123)4)")5$
=6

Γ>-𝑇𝑟[|𝑛⟩⟨𝑚|𝜌(𝑡)|𝑚⟩⟨𝑛|]    (11) 

 

The integral of Eq. (11) is evaluated along the acquisition time of the experiment which runs 
from the time of the fourth pulse in the sequence over the repetition time to the next sequence, 
𝑡@9A, as shown in Figure 7 (a). In the simulations, 𝑡@9A is approximated as ∞ since it is much 
longer than all the relaxation processes of the mono- and biexciton states to the ground state. 

The total action signal response  

 

𝑅𝑒𝑠𝑝 = 	∫ 	𝑑𝑡=123)4)")5$
=6

∑ Γ>->,- 𝑇𝑟[|𝑛⟩⟨𝑚|𝜌(𝑡)|𝑚⟩⟨𝑛|]    (12) 

 

The total photocurrent calculated from Eq. (12) is separated into its non-linear phase matching 
components by Fourier transforming along the phase modulations, Eq. (4). We report here on 
the double quantum component, DQC, PMD: 𝐷𝑄𝐶 = 𝑚M +𝑚! −𝑚# −𝑚". As explained 
before, this is a phase matching direction challenging to be reliably measured in the BOXCARS 
set-up, yet very appealing to quantify shifts of the energy correlation between two 
monoexcitons, in particular to study many-body effects and excited-state landscapes in a wide 
range of systems including biomolecules and inorganic materials.19-20, 46-48  

The calculated cube of data is then converted into the time-frequency domain by Fourier 
transforming along 𝒫KPQ(𝑇", 𝑇#, 𝑇!) ↔ 𝒫KPQ(𝑇", 𝑇#, 𝜔!). 

 
Figure 8: a) (𝑇", 𝑇#) Time map of the real part of the photocurrent response in the DQC PMD 
for a value of 𝜔! = 20000	𝑐𝑚,". b) Traces along 𝜔! at the points indicated on a) with a green 
dot, (𝑇", 𝑇#)= (6.0	𝑓𝑠, 6.0	𝑓𝑠) and a burgundy dot, (𝑇", 𝑇#)= (8.0	𝑓𝑠, 8.0	𝑓𝑠). The signal 
corresponding to ground-monoexciton state coherences is identified with blue arrows, the 
signal corresponding to mono-biexciton state coherences is identified with pink arrows. 



 16 

Figure 8 (a) shows a (𝑇", 𝑇#) time map of the real part of the photocurrent response in the DQC 
PMD for a value of 𝜔! = 20000	𝑐𝑚,". The pathways contributing to the DQC PMD using a 
third order perturbative approach are enumerated as double-sided Feynman diagrams by 
Damtie et al.45. We do not use a perturbative approach here, instead computing the photocurrent 
response from the dynamics of the density matrix (Eq. (6)). However, the pulse strength used 
in the simulation is sufficiently weak that the third order perturbative treatment is a good 
approximation of the exact time-dependent response and provides good insights into the 
excitation pathways contributing to the signal. The double-sided Feynman diagrams which 
contribute to the DQC PMD all have in common that the first pulse excites the ket from the 
ground state to a monoexciton state, and the second pulse excites this ket from the monoexciton 
state to a biexciton state. This means that for the duration of 𝑇" the system will be in a coherence 
between the ground state and a monoexciton state, and that for the duration of 𝑇# the system 
will be in a coherence between the ground state and a biexciton state. These features clearly 
appear in the time map of Figure 8 (a). If one compares the number of oscillations along the  
𝑇" axis to those along the  𝑇# axis, it is clear that there are more beatings in the same time along  
𝑇# than 𝑇", this reflects the fact that the ground-biexciton coherences have much shorter 
periods, about twice shorter, than the ground-monoexciton coherences (see Table S3).  

Figure 8 (b) shows the absolute values of the traces along 𝜔! of two points on the (𝑇", 𝑇#) time 
map. The Feynman diagrams45 show that the third pulse in the train can either relax the ket 
from the biexciton state to a mono-exciton state or excite the bra from the ground state to a 
mono-exciton state. This means that for the duration of 𝑇!	the system can either be in a 
coherence between the ground and a monoexciton state or between a monoexciton and a 
biexciton state. This is shown in Figure 8 (b), on which the fast beating responses 
corresponding to ground-mono as well as ground-bi coherences are identified.  

Note that the signal of the two traces plotted on Figure 8 (b), while being dominated by the 
same primary frequencies, differs in the specific coherences which can be identified. This small 
but important variability of the coherences in the 𝜔! traces of different (𝑇", 𝑇#) points means 
that a comprehensive collection of coherence data still requires repetitions for a small number 
of 𝑇" and 𝑇#	values, albeit far fewer than would be needed if Fourier transforms along these 
delay times were required. In addition to the inhomogeneous broadening resulting from the 
size dispersion of the ensemble, the peaks in Figure 8 (b) are broaden by the coupling to the 
phonon modes.  

The analysis of the computed photocurrent response in an additional PMD, the DQC PMD,  
shows that coherences involving biexciton states can be observed in the action signal 
photocurrent response of QD ensembles to 2DES. As in the case of the polarization response, 
directly measured data in the (𝑇", 𝑇#, 𝜔!) domain are usable without the need for additional 
post-processing Fourier transforms along 𝑇" and 𝑇#. A sampling of the delay time, T3, for fixed 
values of T1 and T2 enables one to characterize all the coherences found in the pathways 
contributing to the DQC PMD. This, in turn, means that fewer measurements along these delay 
times are needed. Furthermore, these results show that the (𝑇", 𝑇#, 𝜔!) is the appropriate 
domain for looking at coherences in observables in the DQC PMD. 

 

Conclusions 

We have shown that the electronic coherences resulting from the excitation of ensembles of 
size-dispersed QD’s and QD dimers by sequences of fs broad bandwidth laser pulses, as in 
2DES, can be observed and characterized in the directly measured time-frequency domain. We 
have shown that this is the case for both polarization and action-based, here photocurrent, 
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measurements. For the case of a cube of data that depends on three delay times, we show that 
the electronic coherences are characterized by robust and distinct beating patterns in the traces 
of the signal as a function of one delay time at a single point in the time-frequency domain of 
the other two delay times. In the case of polarization measurements, we get very good 
agreement between the modeled and experimental (𝑇"	, 𝜔!) time-frequency maps in the 
rephasing PMD, and in 𝑇#/𝜔#	traces along these maps. 

Compared to the conventional (𝜔"	, 𝜔!) frequency maps, the advantage of directly exploiting 
time-frequency data leads to a considerable reduction of the number of time intervals that need 
to be sampled. The reason is that in a time-frequency map, the addresses of the coherences are 
only partially resolved. All the coherences between excited states i and j, which have a common 
state j, beat in the traces of points with the same T1 value. By fixing 𝜔! to be within the 
inhomogeneous broadening of the transition j to the GS, and recording a trace at a point (T1, 
𝜔!) along T2, one can characterize in one go all the beating frequencies of a family of 
coherences that involve the same emitting state j in the chosen PMD because the absorbing 
states i are not resolved along T1. 

That several coherences are accessible simultaneously in the directly measured time-frequency 
domain is a huge advantage for the exploitation of QD electronic coherences in quantum 
technologies for parallel information processing. The savings in fewer measurements and less 
computation time will greatly enhance the advantage of logical operations encoded onto 
coherences over classical logic operations. Action-based photocurrent measurements of 
electronic coherences are a step further in coherence exploitation since they open the way for 
QD devices to be integrated into classical architectures. 

 

Supporting Information  is available at ….  
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