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Sea surface temperature (SST) observations are a critical data set for long-term

climate reconstruction. However, their assimilation with an ensemble-based

data assimilation method can degrade performance in the ocean interior due

to spurious covariances. Assimilation in isopycnal coordinates can delay the

degradation, but it remains problematic for long reanalysis. We introduce

vertical localization for SST assimilation in the isopycnal coordinate. The

tapering functions are formulated empirically from a large pre-industrial

ensemble. We propose three schemes: 1) a step function with a small

localization radius that updates layers from the surface down to the first

layer for which insignificant correlation with SST is found, 2) a step function

with a large localization radius that updates layers down to the last layer

for which significant correlation with SST is found, and 3) a flattop smooth

tapering function. These tapering functions vary spatially and with the calendar

month and are applied to isopycnal temperature and salinity. The impact

of vertical localization on reanalysis performance is tested in identical twin

experiments within the Norwegian Climate Prediction Model (NorCPM) with

SST assimilation over the period 1980–2010. The SST assimilation without

vertical localization greatly enhances performance in the whole water column

but introduces a weak degradation at intermediate depths (e.g., 2,000–4,000

m). Vertical localization greatly reduces the degradation and improves the

overall accuracy of the reanalysis, in particular in the North Pacific and the

North Atlantic. A weak degradation remains in some regions below 2,000 m

in the Southern Ocean. Among the three schemes, scheme 2) outperforms

schemes 1) and 3) for temperature and salinity.
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1. Introduction

Climate reanalyzes are dynamically consistent

reconstructions of the climate system. They are highly in

demand by the climate research community and serve for

understanding anthropologically driven global warming and its

impact, mechanisms of climate variability and teleconnections,

and are used for initializing climate predictions. Atmospheric

reanalyzes (e.g., ERA-Interim, Dee et al., 2011) and oceanic

reanalyzes (e.g., ORAS5, Zuo et al., 2019) have been produced

for a while and can achieve a high degree of accuracy. Coupled

reanalyzes (e.g., Brune et al., 2015; Counillon et al., 2016;

Laloyaux et al., 2018a; O’Kane et al., 2021) have emerged as

they better account for coupled dynamics of the climate, and

help to better understand coupled variability mechanisms.

Such initiative is also well suited to initialize the climate

prediction model with a coupled reanalysis from the same

model, as it limits physical inconsistencies in initial conditions

between different components (i.e., initial shocks Balmaseda

and Anderson, 2009; Mulholland et al., 2015).

Nowadays coupled reanalyzes are getting extended for

the full instrumental period (i.e., from 1850). Sea surface

temperature (SST) observation is the primary source of

instrumental oceanic measurements prior to 1950. The raw

SST measurements are very cumbersome to use because they

combine very various types of measurements (e.g., methods

of bucket retrieval, thermometer and satellite remote sensing)

and thus have different representativity, uncertainty and bias.

It is a common practice in climate research to use SST analysis

products that derive a coordinated estimate from pre-calibrated

measurements. The Hadley Centre Sea Ice and Sea Surface

Temperature (HadISST, Rayner et al., 2003) is one of such

products and covers the period 1850–present. It provides an

estimate of SST and its uncertainty and is a critical dataset

for climate reanalyzes (Counillon et al., 2016; Laloyaux et al.,

2018a). Its stochastic property (i.e., 10 realizations) is critical to

optimally account for SST uncertainty for long-term reanalysis.

Data assimilation (DA, Kalnay et al., 1996; Carrassi et al.,

2018) is a statistical method that can estimate the optimal

model state based on observations, the dynamical model and

their statistical information. Ensemble DA methods (e.g., the

ensemble Kalman filter (EnKF), Evensen, 2003) make use of an

ensemble of model simulations (e.g., multiple realizations of an

Earth system model) to estimate the forecast error covariances

and propagate information from the observed variables into

the non-observed variables (i.e., multivariate updates). Such a

method also allows the forecast error covariances to evolve with

the variability of the climate system (i.e., flow-dependent), which

is important to handle climate regime shifts (Zhang et al., 2007;

Karspeck et al., 2013; Brune et al., 2015; Counillon et al., 2016).

A practical limitation of using the ensemble DA method

in a high-dimensional system is that one can only afford a

limited number of realizations [O(10), a limited ensemble

size], much smaller than the degree of freedom of the system

(Miyoshi et al., 2014). The forecast error covariances estimated

by the relatively small ensemble suffer spurious covariances

that are caused by sampling error and cause a degradation

of the assimilation particular at long distances. To limit the

impact of these sample noises in the forecast error covariances,

one has to rely on an auxiliary regularization technique

known as localization (Hamill et al., 2001; Houtekamer and

Mitchell, 2001). Localization either filters the forecast error

covariances by multiplying element by element (Schur product)

with a distance-dependent function (e.g., Houtekamer and

Mitchell, 2001) that decreases from 1 (at the observation

location) to 0 at some radial distances, or tapers observation

error variance with the reciprocal of the distance-dependent

function in a local framework (e.g., Evensen, 2003). The two

schemes are comparable (Sakov and Bertino, 2010). Localization

is well suited to geophysical applications in which typical

covariances decay as a function of the distance. An excessive

localization (e.g., a too-short localization radius) will under-

use observations, while insufficient localization (e.g., a too-

large localization radius) will let spurious variability introduce

artificial signals. Tapering is used to ensure continuity in the

update, but it may as well distort the covariance (Miyoshi et al.,

2014). Localization function is often isotropic, but Ménétrier

et al. (2015a) explicitly formulated heterogeneous/anisotropic

localization function through the optimal linear filtering theory

and the centered moment estimation theory. Such a localization

function has been applied in numerical weather prediction

systems (Ménétrier et al., 2015b; Laloyaux et al., 2018b).

Localization in the isopycnal coordinate ocean model has

been mostly applied horizontally, but less commonly applied

in the vertical. It is because assimilation in isopycnal limits

spurious covariance and propagates updates at the deep ocean

by formulating the covariance in a dynamical manner (e.g.,

Counillon and Bertino, 2009).

Isopycnal coordinate ocean models are a specific type of

ocean models that are vertically discretised with potential

densities (Bleck et al., 1992). They allow for excellent

conservation of water mass properties and have thus become

popular among the Earth system modeling community. Several

studies have investigated DA in isopycnal coordinate models

and found that covariance formulated in isopycnal coordinates

can better extract information from surface observation than

covariance constructed in z-coordinate (geopotential), and less

prone to spurious covariance (Gavart and Mey, 1997; Srinivasan

et al., 2011; Counillon et al., 2014, 2016). Still, assimilating

SST in isopycnal coordinates causes a slow degradation in the

ocean interior for long climate reanalysis. For instance, in a

climate reanalysis of the Norwegian Climate Prediction Model

(NorCPM) over 1950–2010, Counillon et al. (2016) found that

the ocean temperature variability of the North Atlantic Subpolar

Gyre (SPG) region below 1,000 m was in disagreement with

EN4 objective analysis. Bethke et al. (2018) showed that this

Frontiers inClimate 02 frontiersin.org

https://doi.org/10.3389/fclim.2022.918572
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Wang et al. 10.3389/fclim.2022.918572

mismatch leads to drift in the decadal prediction of the system

in the North Atlantic SPG region. This further motivates to

development of a vertical localizationmethodology for isopycnal

coordinate ocean models.

In this study, we primarily aim to demonstrate the benefit

of vertical localization for SST assimilation in an isopycnal

coordinate ocean model for the purpose of improving the

representation of the ocean interior in coupled reanalysis. We

work in an idealized twin experiment framework (Halem and

Dlouhy, 1984) where synthetic observations are generated from

the same model. We take advantage of the existence of a very

long model simulation (i.e., a stable pre-industrial simulation)

to quantify sampling errors in forecast error covariances

with bootstrapping techniques and to estimate the vertical

localization function.We test different approaches to implement

vertical localization in isopycnal coordinates and assess the

performance of reanalysis produced with sole SST assimilation.

We make use of NorCPM (Section 2 and Counillon et al.,

2014), because it typically provides long reanalyzes (Bethke

et al., 2021) and its ocean component is an isopycnal coordinate

model (Bentsen et al., 2013). It is worth noting that there are

several other isopycnal (or hybrid) ocean models for which the

supposed methodology could be applied (e.g., HYCOM Bleck,

2002 and MOM6 Adcroft et al., 2019).

The following section describes the model’s practical

implementation. Section 3 describes the different schemes to

define vertical localization function. Section 4 describes the

identical twin experiments and evaluation metrics. In Section

5, we evaluate globally the reanalysis performances of NorCPM

without or with vertical localization. Section 6 summarizes and

concludes the study.

2. The Norwegian climate prediction
model

NorCPM combines the Norwegian Earth System Model

(NorESM, Bentsen et al., 2013) and the EnKF (Evensen, 2003).

The NorESM is a state-of-the-art fully coupled Earth system

model participating in the Coupled Model Intercomparison

Project (CMIP, Taylor et al., 2012; Eyring et al., 2016). The

EnKF is an advanced flow-dependent DA method (Section 2.2).

NorCPM has been developed to produce climate reanalysis and

seasonal-to-decadal climate prediction (Counillon et al., 2014,

2016; Bethke et al., 2021).

2.1. The Norwegian Earth System Model

NorESM (Bentsen et al., 2013) is a global fully–coupled

model for climate simulations. It is based on the Community

Earth System Model version 1.0.3 (CESM1, Vertenstein et al.,

2012), a successor to the Community Climate System Model

version 4 (CCSM4, Gent et al., 2011). In NorESM, the ocean

component is the Bergen Layered Ocean Model (BLOM,

Bentsen et al., 2013) that originates from the Miami Isopycnic

Coordinate Ocean Model (Bleck et al., 1992); the sea ice

component is the Los Alamos sea ice model (CICE4, Gent et al.,

2011; Holland et al., 2012); the atmosphere component is a

version of the Community Atmosphere Model (CAM4-Oslo,

Kirkevåg et al., 2013); the land component is the Community

Land Model (CLM4, Oleson et al., 2010; Lawrence et al., 2011);

the version 7 coupler (CPL7, Craig et al., 2012) is used.

In this study, we employ the version of NorESM that is

included in the CMIP Phase 5 (CMIP5, Taylor et al., 2012).

CAM4 has a horizontal resolution of 1.9◦ at the latitude and

2.5◦ at the longitude and 26 vertical levels in a hybrid sigma-

pressure coordinate. CLM4 shares the same horizontal grid

as CAM4. BLOM and CICE4 have a horizontal resolution of

approximately 1◦. BLOM has 51 isopycnal layers respecting

the chosen reference potential densities in the range 1028.202–

1037.800 kgm−3 with reference pressure set to 2,000 dbar,

and 2 additional layers for representing the bulk mixed layer.

More specifically, the mixed layer is divided into two model

layers with equal thicknesses when the mixed layer is shallower

than 20m. When the mixed layer is deeper than 20m, the

uppermost layer is limited to 10m. The main reason for this

was to allow for a faster ocean surface response to surface

fluxes. BLOM allows empty vertical layers. While the bulk mixed

layer varies in density, these empty layers can be present at the

ocean floor or at the base of the mixed layer (Bentsen et al.,

2013).

2.2. The ensemble Kalman filter

The EnKF (Evensen, 2003) is a recursive ensemble-based DA

method. It consists of a Monte Carlo integration of the model—

that allows for a flow-dependent forecast error covariance

estimate—and a variance-minimizing update (a linear analysis

update). In this paper, we use a deterministic variant of the

EnKF (DEnKF, Sakov and Oke, 2008). The DEnKF updates

the ensemble perturbations using an expansion in the expected

correction to the forecast state. This yields an approximate

but deterministic form of the traditional stochastic EnKF. Note

that compared to the transitional EnKF, the DEnKF inflates

the analysis error covariance by construction (Sakov and Oke,

2008).

Let the ensemble of model states Xf = [x1
f
, x2

f
, ..., xm

f
] ∈

R
n×m, the ensemble mean be xf ∈ R

n and the ensemble

anomalies or perturbations Af = Xf − xf1m ∈ R
n×m, where

the subscript ‘f ’ denotes forecast, n is the size of model states, m

is the ensemble size, and 1m = [1, 1, ..., 1] ∈ R
1×m. The DEnKF
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update can be written as follows:

xa = xf + K
(

y− H
[

xf
])

, (1)

Aa = Af −
1

2
KHAf, (2)

Xa = xa1m + Aa, (3)

where the subscript “a” denotes analysis, y is the observation

vector, H is the observation operator that maps model states to

the observation space and H is the tangent linear operator of H.

The Kalman gain K is defined by

K = PfH
T

(

HPfH
T
+ R

)−1
, (4)

where Pf is the forecast error covariance matrix estimated by

the ensemble perturbations:

Pf =
1

m− 1
AfA

T
f (5)

and R is the observation error covariance matrix.

2.3. Assimilation implementation

We assimilate monthly SST observations (as typically

provided in the SST analysis data set) in the middle of the month

and update the instantaneous model state. The innovation (i.e.,

observations minus model state) compares the variability of an

instantaneous model snapshot with that of monthly averaged

observations. This approximation has been shown not to be

critical for our system (Billeau et al., 2016).

The EnKF updates all ocean physical state variables in the

isopycnal coordinate: temperature, salinity, layer thickness and

velocities. The layer thickness is by definition always positive

or zero. However, the linear analysis update of the EnKF

may return unphysical (negative) values due to the normality

assumption of the error distribution. To solve this issue, we

use the aggregation method proposed by Wang et al. (2016),

in which we iteratively aggregate vertical layers (i.e., reduce the

vertical resolution) until no unphysical value is returned by

the analysis.

We use 30 ensemble members (i.e., 30 model realizations),

which is common in NorCPM (Counillon et al., 2016; Kimmritz

et al., 2019; Wang et al., 2019; Bethke et al., 2021). The

ensemble size is relatively small compared to the dimension

of the system. In each horizontal grid point, we utilize a local

analysis framework (Evensen, 2003; Ott et al., 2004), which

solves the analysis for each horizontal grid (i.e., each water

column) based on neighboring observations. In order to avoid

discontinuity in the increment at the edge of the local domain,

we use the reciprocal of the Gaspari and Cohn function (Gaspari

and Cohn, 1999) to taper observation error variances (i.e., to

reduce the influence of observations at long distance). The

horizontal localization radius is a bimodal Gaussian function

that varies with latitude (Wang et al., 2017). It is smaller in the

high latitudes than in mid-latitudes to account for the effect

of the Coriolis force. It has a local maximum of approximately

2,300 km atmid-latitudes consistently with the cross-basin inter-

gyre barotropic flow and reduces to 1,500 km near the Equator

where covariances become anisotropic.

In our EnKF package, the analysis is performed for each

water column (i.e., local analysis Evensen, 2003; Ott et al.,

2004). Due to practical reasons, vertical localization is simply

applied for covariance localization (Sakov and Bertino, 2010), an

element-wise (i.e., Schur) product of a filtering matrix ρ and the

forecast error covariance matrix Pf, as follows:

Pf → ρ ◦ Pf, (6)

where ρ is a positive definite and distance-dependentmatrix,

e.g., derived from a vertical localization function of the layer

number (Section 3). In this way, the vertical localization reduces

the amplitude of the covariance as a function of the vertical layer

number in the Kalman gain K (Equation 4) used for the state

updates (Equations 1, 2).

A typical assumption in the EnKF is that observation errors

are uncorrelated. Such an assumption fails in the case where

the assimilated data (e.g., HadISST2 analysis) is the result of

an analysis. As a consequence, it is cautious to only assimilate

the nearest SST data in the local analysis framework (i.e.,

one observation per horizontal model grid), as in NorCPM

(Counillon et al., 2016). We follow this setting to have a

comparable configuration as the real framework, despite the fact

that observation errors are by construction uncorrelated in this

idealized framework.

While the DEnKF scheme already includes an inflation term

(Section 2.2), we complement it with the following inflation

techniques to avoid ensemble spread degeneracy. We use the

R-factor and K-factor inflation (Sakov et al., 2012). With the

R-factor, while we update the ensemble mean with the original

observation error variance, we update the ensemble anomaly

with observation error variance by a factor of 4. With the

K-factor, the observation error variance is inflated so that

the ensemble mean of analysis remains within two standard

deviations of the forecast error from the ensemble mean of the

forecasts (Sakov et al., 2012). In addition, to avoid an abrupt start

of the reanalysis, the observation error variance is inflated by a

factor of 8 during the first assimilation and this factor decreases

by 1 (until it reaches 1) at every two assimilation cycles (Sakov

et al., 2012).

3. Isopycnal vertical localization

To formulate a vertical localization function in isopycnal

coordinate, we use an existing long and stable NorESM

simulation performed with fixed pre-industrial forcings over 315
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FIGURE 1

“True” correlation (Pearson correlation coe�cient) profile (dark blue line) and 5th-to-95th percentile (light blue area) of 1,000 correlation profiles

at (A) (83.19◦E, –42.36◦N), (B) (–153.06◦E, 3.35◦N), (C) (–28.31◦E, 32.24◦N), and (D) (–131.67◦E, 40.38◦N). The correlations are computed

between SST and ocean temperature in the isopycnal coordinate from the same water column in January. The top (bottom) horizontal dashed

line determines the threshold layer L in Equation (7) for step function with minimal (maximal) support.

years (piControl). The snapshot model states of piControl were

saved in the middle of the month so that we have access to

3,780 (i.e., 12 months in 315 years) model states in total. Based

on that, we formulate three tapering functions in the isopycnal

coordinate that vary with horizontal location and calendar

month. The two first schemes use a step function, while the last

one uses a smooth function. In the following sections, the three

tapering functions are only presented for isopycnal temperature,

but we discuss the multivariate aspect of the tapering function in

Section 3.4. The three functions are evaluated withinNorCPM in

Sections 4, 5.

3.1. Step function with minimal support

In this approach, we aim to limit the influence of SST

observations to upper layers to avoid the impact of spurious

covariances at deeper layers. Starting from the surface, we

stop the analysis update in the first layer in which the

correlation between isopycnal temperature and SST is not

statistically significant. Such a step function can introduce

discontinuity in the update, but continuity is less required in

isopycnal coordinate models and would not cause a dynamical

adjustment (unlike in horizontal direction), since diapycnal

mixing between two isopycnal layers is very small (Bentsen et al.,

2013).

In order to estimate typical sampling errors with an

ensemble size of 30, we use a bootstrapping approach to

estimate the significance of the vertical correlation. For a

target calendar month (e.g., January) and each water column

(horizontal model grid), the correlation estimated from the

model states (e.g, in January) over 315 years of piControl (315

samples) is considered as “true”. We assume that the correlation

estimated from the ensemble size of 30 (i.e., the size of NorCPM

dynamical ensemble, Section 2.3) follows a normal distribution

around the “true” correlation. We select randomly (without

repetition) 1,000 ensembles, each of 30 members, from these 315

samples and construct correlations between SST and isopycnal

temperature from each ensemble of 30 members. In total, we get

1,000 correlation profiles around the “true” correlation profile.

In Figure 1, the dark blue line represents the “true” correlation

profile and the light blue envelope represents the 5 and 95th

percentile. If the shading crosses the zero line, the correlation

is considered to not be significant. We compared (results not

shown) the sample sizes of 10,000 and 1,000 in the bootstrapping

approach. There were no significant differences in the results.
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We use the first isopycnal layer L (e.g., L = 19 in Figure 1A

and L = 9 in Figure 1B, L = 17 in Figures 1C,D), below which

(i.e., in layer L + 1) correlations with SST are not significant, to

define a step function:

ρ(l) =







1 if l ≤ L,

0 if l > L,
(7)

where l is the isopycnal layer index (starting from the

surface). As such, the support of the step function (the domain

where the function is not zero) is the interval [1, L] and the

assimilation will not update the isopycnal temperature below the

layer L.

Such an estimate is carried out for each water column

(horizontal model grid) and for each calendar month. Figure 2

shows examples of the global maps of the threshold layer

number L for different calendar months. As examples shown in

Figure 1, L is located in the first few non-empty isopycnal layers

below the mixed layer. As the ocean water density increases

with latitudes and the constant potential densities are chosen

for vertical discretization, there are more empty isopycnal layers

below the mixed layer at higher latitudes (e.g., Figures 1A,C,D

vs. 1B). It is the reason why L is higher in polar regions (e.g.,

Greenland, Barents, Labrador,Weddell and Ross Seas) and lower

in the tropical regions (e.g., western tropical Pacific and Indian

Oceans). The time-dependence of L is more obvious in the Arctic

where sea ice influences ocean stratification, but less obvious at

lower latitudes.

3.2. Step function with maximal support

At several locations (e.g., Figure 1B) we notice that

correlation crosses zero at some intermediate layers but becomes

rapidly significant again. In these cases, the step function with

minimal support (Section 3.1) is not optimal as the deeper

layer could potentially be updated by the assimilation thanks to

their co-variability with the ocean surface. Such an oscillating

structure is characteristic of a stratification change, typically with

a higher (lower) SST linked to a shallower stratified (deeper)

mixed layer and less heat exchange with the layer underneath

causing a cold anomaly. Several other mechanisms can also

cause a reemergence of correlation at depth, e.g., SST being a

tracer of a front or deep water convection (e.g., Counillon et al.,

2016).

In this scheme, we allow update until the last isopycnal

layer for which the correlation is significant (i.e., L = 32 for

Equation (7) in Figure 1B). Such a step function maximizes

the impact of SST observations, and still removes insignificant

correlations in deeper layers. Figure 3 presents the spatial

distribution of the threshold layer L estimated with this

approach. In most regions, the threshold layer is similar to the

former step function (Figure 2). This corresponds to regions

with relatively stable ocean stratification (e.g., Figures 1A,C,D).

Nevertheless, the threshold layer L is much larger in the

eastern tropical Pacific, North Atlantic SPG region and the

Southern Ocean.

3.3. Smooth function

When applying localization in geoscience, typical

covariances decay as a function of the distance and it is

quite common to make use of a smooth tapering function

(e.g., Gaspari and Cohn, 1999; Ménétrier et al., 2015a) to avoid

discontinuity near the edge of the local domain (e.g., Sakov

and Bertino, 2010; Wang et al., 2017). At the same time, the

Gaussian-like tapering is distorting the covariance (Miyoshi

et al., 2014). In this section, we make use of the covariance

filtering theory developed by Ménétrier et al. (2015a) to define

a smooth flattop tapering function. The flattop function gives

more weights than the Gaussian-like function and leads to

better use of surrounding observations in the analysis (e.g.,

Ménétrier et al., 2015a). This formulation is derived from

the centered moment estimation theory and the optimal

Schur filtering theory. It removes most of the sampling noise

while keeping the signal of interest in the linear filtering of

sample covariances. Please refer to Ménétrier et al. (2015a) for

more details.

Assuming that the ensemble forecast error covariance is

Gaussian, we employ Equation (64) of Ménétrier et al. (2015a)

and simplify notations as follows:

f (l) =
m− 1

(m+ 1)(m− 2)

[

(m− 1)−
E[P11Pll]

E[P2
1l
]

]

, (8)

where l is the isopycnal layer number from the surface to the

bottom, andm is the dynamic ensemble size (e.g.,m = 30 in our

case). The covariance matrix P is estimated from an ensemble

of size m = 30. P11 is the variance of SST, Pll is the variance of

temperature in the l-th layer and P1l is the covariance between

SST and temperature in l-th layer. E is the expectation over

1,000 ensembles sampled from the large static ensemble (please

refer to the beginning of Section 3.1). Note that when l = 1,

f (l) is equal to m−1
m+1 that is less than 1. It is due to the fact

that the sampling noise in variance is considered (Ménétrier

et al., 2015a). As an example, blue circles in Figure 4 present

the estimation from Equation (8). These estimates are noisy due

to the fact that the number of ensemble-based estimates of the

covariances, 315, is still relatively small (Miyoshi et al., 2014).

The optimal localization function should have a flatter top than

the Gaussian function (e.g., Ménétrier et al., 2015a), which leads
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FIGURE 2

Global maps of the threshold layer number L (between 1 and 53) used to define step function with minimal support (Equation 7) for (A) March,

(B) June, (C) September, and (D) December.

FIGURE 3

As in Figure 2, but for step function with maximal support (Section 3.2).

to better use of surrounding observations in the analysis. We use

a smooth flattop function to fit (Equation 8) as follows:

ρ(l, L1, L2) =















1 if l ≤ L1,
[

1+ cos( l−L1
L2−L1

π)
]

/2 if L1 ≤ l ≤ L2,

0 if L2 ≤ l.

(9)

Yellow lines of Figure 4 present the estimated smooth

tapering functions. Compared to the step function with minimal

support (red lines in Figure 4), the smooth function starts from
m−1
m+1 rather than 1 to damp noise in variance. It smoothly

decreases to zeros to damp noise in covariance at long distances.

The two hyper-parameters of Equation (9): L1 and L2 are

tightly linked to the threshold layer numbers L in Sections 3.1,

3.2, respectively. As it is nicely exemplified in Figure 4, L1 is

typically smaller than L in the step function with minimal
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FIGURE 4

Tapering functions at (A) (83.19◦E, –42.36◦N) and (B) (–153.06◦E, 3.35◦N) in July. Blue circles are estimated from Equation (8). Yellow lines fit the

blue circles with Equation (9). Red lines are step function with minimal support (Section 3.1).

support and L2 is larger than L in the step function with

maximal support.

3.4. Multivariate consideration of tapering

We have above introduced the vertical localization functions

for isopycnal temperature. We investigated also the vertical

localization for salinity, velocity and layer thickness. For salinity,

the tapering function is almost identical to that for temperature

(not shown) because temperature and salinity are tightly linked

by the target density of the isopycnal layer to which they belong.

The BLOM ocean model uses a barotropic/baroclinic mode

splitting (Bentsen et al., 2013). As such the layer thickness and

velocities combine both a signal that is correlated over the whole

water column (barotropic) and another signal that is vertically

local (baroclinic). Empirical correlation in layer thickness and

velocities shows quite often a significant reemergence near

the bottom layer (not shown in the paper). Furthermore,

vertical localization leads to different linear weights for the

different layers, implying that the linear properties are no longer

preserved by the assimilation, e.g., geostrophy. For instance, this

will make the sum of all layer thicknesses not consistent with

the bottom pressure. The latter is challenging because its post-

processing introduces a slow drift of global mass, heat and salt

content (Mignac et al., 2015;Wang et al., 2016).We thus decided

to employ vertical localization only for isopycnal temperature

and salinity, but not for velocity and layer thickness.

4. Experimental design and metrics

We perform perfect twin experiments with NorCPM

(Section 2) to demonstrate the benefit of vertical localization

for the isopycnal coordinate model and to assess the different

tapering functions (Section 3). In our idealized framework, the

“truth” is known and produced from the same model but started

from different initial conditions than used in the assimilation

experiment. We assimilate synthetic SST observations generated

from the “truth” and produce several reanalyzes over the period

1980–2010. The reanalysis performance is validated against

the “truth”.

4.1. Twin experiment design

All experiments are forced by CMIP5 historical forcings

(Taylor et al., 2012) before 2005 and the representative

Concentration Pathway 8.5 (RCP8.5, van Vuuren et al., 2011)

forcings after 2005. The CMIP5 historical forcings for 1850–

2005 are based on observational variations in solar radiation

(Lean et al., 2005; Wang et al., 2005), volcanic sulfate aerosol

concentration (Ammann et al., 2003), GHG concentration

(Lamarque et al., 2010), aerosol emission (Lamarque et al.,

2010), and land-use (Hurtt et al., 2011).

The 30-member NorESM historical simulation without DA

is referred to as FREE. Each member is started from a randomly

selected initial condition from a stable pre-industrial simulation

and integrates the ensemble from 1850 to 2014. The “truth” is

spawned from member 1 of FREE by perturbing the SST of the

initial conditions in January 1960 with spatially uncorrelated

white noise with a standard deviation of 10−6 ◦C and then

integrating it up to 2010 (henceforth referred to as TRUTH).

We have verified that TRUTH and FREE’s member 1 have fully

diverged from each other before the start of the assimilation

experiment in January 1980 (not shown in the paper). The global

RMSE of FREE in reference to TRUTH is comparable to the

model error in the real framework (Counillon et al., 2016, their

Figure 1).

Synthetic SST observations are generated from monthly

outputs of TRUTH by adding white noises. The amplitude of

the noise is constructed to mimic that of realistic observations
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and set equal to the time-varying estimate of HadISST2 (i.e., the

standard deviation of its 10 realizations). We also discard SST

observations in sea ice cover regions, as in the real framework

(Counillon et al., 2016).

We perform four NorCPM simulations with assimilation

of synthetic monthly SST observations (i.e., reanalyzes) over

1980–2010 as follows:

• NOVL: Reanalysis without vertical localization,

• STEPmin: Reanalysis with the step function with minimal

support (Section 3.1),

• STEPmax: Reanalysis with the step function with maximal

support (Section 3.2),

• SMOOTH: Reanalysis with the smooth tapering function

(Section 3.3).

All four reanalyzes start from January 1980 with the same

initial conditions as FREE and have 30 ensemble members. The

only difference in the configuration of these reanalyzes is the

vertical localization setting.

4.2. Evaluation metrics

We measure simulation accuracy with the Mean Squared

Skill Score (MSSS) and/or Root Mean Square Error (RMSE)

difference (1RMSE). The MSSS is estimated from Mean

Squared Error (MSE) against TRUTH. Following the

formulations of Murphy (1988) and Goddard et al. (2013),

the MSE is given as follows

MSE =

N
∑

j=1

wj(xj − xtj)
2, (10)

where xj is the state of the reanalysis (or FREE), x
t
j is that of

the TRUTH, and N is the number of states or observations. wj

is a weight for the index j and is set to 1
N , but when computing

the global MSE (e.g., Figure 5), wj is a normalization term that

considers the grid cell area.We take the FREEMSE as a reference

to define the MSSS as follows:

MSSS = 1−
MSEr

MSEF
, (11)

where MSEF is FREE’s MSE and MSEr is the MSE of

reanalysis. In the case where MSEr is equal to zero, the MSSS

becomes one. The RMSE is the square root of the MSE. We

take FREE as the reference and define 1RMSE as the FREE

RMSE minus the reanalysis RMSE. A positive MSSS (1RMSE)

indicates that the reanalysis is more accurate than FREE and

a negative MSSS (1RMSE) indicates that the reanalysis is less

accurate than FREE. While 1RMSE indicates error difference,

the MSSS shows the proportion of error difference and FREE’s

error. Significant MSSS does not mean large 1RMSE and vice

versa. One advantage of the MSSS is that it is unitless. Thus, the

MSSS is suitable for validation in depth (e.g., Figure 5), since the

magnitude of error in the upper ocean is larger than that in the

deeper ocean.

5. Results and discussions

Figure 5 shows Hovmöller plots of MSSS of the reanalyzes in

temperature and salinity. The reanalysis NOVL is more accurate

than FREE in the top 2,000 m and below 4,000 m for both

temperature and salinity, in particular temperature in the top

300m. It is less accurate than FREE between 2,000 and 4,000

m in particular from 1995 onward (Figures 5a,b). The reanalysis

STEPmin has similar MSSSs to NOVL in the top 1,000 m,

higher MSSSs from 1,000 to 4,000 m in depth and lower MSSSs

below 4,000 m in depth (Figures 5c,d). The reanalysis STEPmax

notably alleviates the degradation between 2,000 and 4,000 m

shown in NOVL (Figures 5a,b,e,f). The reanalysis STEPmax

has higher MSSSs than STEPmin in both temperature and

salinity (Figures 5c–f), which indicates the benefit of maximizing

observation influence and updating the deeper layers (Figures 1,

3). The reanalysis SMOOTH is nearly as good as STEPmax, but

its MSSSs are slightly lower.

Figure 6 shows the global maps of 1RMSE in temperature

and salinity over 0–1,000 m below the surface. The assimilation

without vertical localization overall improves the model

performance (Counillon et al., 2014, 2016), but leads to slight

degradations in some regions (blue areas in Figures 6A,B), e.g.,

the Southern Ocean and tropical North Atlantic. There is a

larger improvement in temperature than in salinity, because

we assimilate SST and the two quantities are not tightly linked

by the reference densities in the mixed layer (Section 2.1).

The step function with minimal support significantly alleviates

the degradation in these regions for temperature, but is less

efficient for salinity (Figures 6C,D). The step function with

maximal support leads to further improvements for salinity, e.g.,

the Southern Ocean (Figure 6F). Overall, the smooth tapering

function yields relatively similar results to the step function with

maximal support, but with significantly poorer performance for

salinity near the Ross Sea.

Figure 7 shows the global maps of 1RMSE in temperature

and salinity over 1,000-2,000m below the surface. The

significant improvement and degradation of the assimilation

are mostly found in the middle latitudes (Figures 7A,B),

which is related to ocean stratification and/or reemergence of

covariance (Figures 2, 3). Vertical localization overall improves

the reanalysis performance (Figures 7C–H). In particular, it

reduces or alleviates the degradation found in NOVL, e.g., North

Atlantic, North Pacific and Southern Ocean. Among different

tapering functions, the step function withmaximal support leads

to the highest scores and the most stable performance (positive

and negative anomalies). Regionally, STEPmax has the highest
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FIGURE 5

Hovmöller plots of MSSS of NOVL (row 1), STEPmin (row 2), STEPmax (row 3) and SMOOTH (row 4) in temperature (left column) and salinity

(right column). Warm colors (positive MSSSs) indicate that the reanalysis overperforms FREE; cold colors (negative MSSSs) indicate that FREE

overperforms the reanalysis.

scores in temperature in the central North Pacific and North

Atlantic, and in salinity in the North Atlantic.

The assimilation without vertical localization leads to a

large degradation in temperature and salinity below 2,000

m (Figures 8A,B), e.g., in the North Pacific, North Atlantic

and Southern Ocean. Note that the geographic patterns in

temperature and salinity mostly coincide with each other due

to the feature of density vertical coordinate. Vertical localization

overall improves the reanalysis performance (Figures 8C–H). It

notably removes degradation in temperature and salinity in the

North Pacific and mitigates degradation in the North Atlantic.

However, STEPmin has a degradation in the Southern Ocean.

Since we discard sea ice-covered SST observations (Section 4.1),

there is almost no DA update in the sea ice cover area (not

shown in the paper). The changes are thus remote and mostly

caused by the changes in the Circumpolar Deep Water (Carter

et al., 2008), due to a significant relation between SST and

the deep water masses. A piece of evidence is that the step

functions with minimal and maximal support were substantially

different (Figures 2, 3). The latter leads to better performance

(STEPmax, Figures 8E,F) in the Southern Ocean. STEPmax has

higher scores (Figures 8E,F) than STEPmin. It is worth noting

that using a deeper threshold layer alleviates degradation in

the eastern subtropical North Atlantic where STEPmin has

degradation. It may be related to improved performance in

the Mediterranean Sea. The relatively saline water flows out of

the Mediterranean Sea through the Strait of Gibraltar (called

the Mediterranean outflow, Price et al., 1993) and quickly

sinks and spreads westward around a depth of 1,000 m. The

Mediterranean Water can be detected several 1,000 km west of

the Strait of Gibraltar. It may also be related to the circulation

changes in the North Atlantic (Bozec et al., 2011), e.g., the

SPG region (Figures 2, 3). There, SST can skillfully update

deep water masses in SPG region (i.e., deep water convection,

Counillon et al., 2016), which influences the subtropical North

Atlantic (e.g., Koul et al., 2020). The reanalysis SMOOTH

has similar geographic patterns to STEPmax (Figures 8E–H)

but with slightly poorer performance for temperature near the

Ross Sea.

As found in the paragraphs above, the step function

with maximal support (i.e., a large localization radius) overall

outperforms the smooth tapering function for both temperature

and salinity. That is because of the key feature of isopycnal

coordinate ocean models. There is microscopic exchange across

isopycnal coordinates. The covariance formulated in isopycnal

coordinates has a significant discontinuity in the vertical layers
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FIGURE 6

Global maps of 1RMSE of NOVL (row 1), STEPmin (row 2), STEPmax (row 3) and SMOOTH (row 4) in temperature (left column) and salinity (right

column) over 0–1,000m in depth. Warm colors (positive 1RMSEs) indicate that the reanalysis overperforms FREE; cold colors (negative

1RMSEs) indicate that FREE overperforms the reanalysis.

(e.g., near the bottom of the mixed layer Counillon et al., 2016,

the left panels of their Figure 9). We foresee that a smooth

tapering function would be most suitable for the models in

geopotential coordinates. Furthermore, since our findings are

based on an isopycnal coordinate model (i.e., NorCPM), we

expect that our findings can be applied to other isopycnal or

hybrid ocean models, e.g., HYCOM (Bleck, 2002) and MOM6

(Adcroft et al., 2019). We use the EnKF in this study, but the

proposed approach can be applied to the ensemble Optimal

Interpolation (Evensen, 2003).

6. Conclusions and perspectives

We introduced vertical localization in the isopycnal

coordinate to limit the degradation in the interior ocean that

emerges when assimilating SST with an ensemble-based DA

method and a finite ensemble size. We proposed three schemes

which vary spatially and for each calendarmonth: a step function

with a small localization radius, a step function with a large

localization radius and a smooth flattop tapering function. The

three schemes rely on a very long pre-industrial simulation

to perform statistical significance tests. They were tested in

identical twin experiments with NorCPM and applied for both

isopycnal temperature and salinity. It is found that vertical

localization greatly reduces the degradation and improves

the overall accuracy of the climate reanalysis, in particular

between 2,000 and 4,000 m and in the North Pacific and the

North Atlantic. Among the three schemes, the step function

with large localization radius (i.e., that maximizes the impact

of observations) outperforms the other schemes for both

temperature and salinity. These results also confirm that a

vertically continuous analysis update is not a requirement for

isopycnal coordinate models.
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FIGURE 7

As in Figure 6, but for temperature (left column) and salinity (right column) over 1,000–2,000 m in depth.

The evidence of the benefit of vertical localization has been

demonstrated in idealized twin experiments. There is a need

to further verify these findings in the real framework (i.e.,

assimilation of real SST observations). One big challenge in the

real framework is the model bias, in particular for fully-coupled

Earth system model (Richter, 2015). Models are attracted to

their biased climatological states after assimilation (i.e., model

drift). Furthermore, the model drift in the observed variables is

propagated to the non-observed variables, which leads to slow

degradation of the system through the consecutive assimilation

cycle. Due to that, NorCPM (like many other Earth system

models) performs anomaly assimilation (Weber et al., 2015)

where the observed anomaly (calculated relative to a reference

climatology of observation) is assimilated (Counillon et al.,

2016; Wang et al., 2017; Bethke et al., 2021). The anomaly

assimilation does not show any detrimental effects on model

climatology (Bethke et al., 2021). Therefore, we foresee that the

findings of this study will be very beneficial for NorCPM to

reconstruct the climate, e.g., over the period of 1850-present

when SST observations are a critical data set. Our findings

can also be applied to other isopycnal or hybrid ocean models

(e.g., HYCOM Bleck, 2002 and MOM6 Adcroft et al., 2019)

to improve their reanalysis products (e.g., Sakov et al., 2012).

In Bethke et al. (2018), the degradation in the tropical North

Atlantic was found to lead to drift in the decadal prediction in

the North Atlantic SPG region. It would be interesting to assess

the impact of vertical localization on decadal prediction skill.

The formulations of vertical localization proposed were

relatively simple and could be refined. We have seen that

continuity of the analysis update in the vertical was not a

requirement as isopycnal temperature and salinity are updated

along the density line, which ensures dynamical stability.

One could test a version of the tapering function that only

updates layers where correlations are statically significant (e.g.,
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FIGURE 8

As in Figure 6, but for temperature (left column) and salinity (right column) below 2,000 m in depth.

multi-step function). Also, the current formulation has been

specifically tailored for SST assimilation but also needs to be

adapted for hydrographic profile assimilation. We foresee that

a similar methodology could be applied but in both directions

(upward and downward).

The current vertical localization is applied to isopycnal

temperature and salinity. Applying vertical localization to layer

thickness and velocity is more challenging (Section 3.4). The

mode of variability (barotropic and baroclinic) in the water

column could be decomposed as in the model code (mode

splitting), and could apply vertical localization only on the

baroclinic part of the velocity and layer thickness. However,

we foresee that sampling errors may interfere with the mode

decomposition and cause large instabilities.

Finally, there are different manners to address sampling

errors. The use of hybrid covariance (Hamill and Snyder, 2000)

is another technique and it is currently being tested in NorCPM.

It is expected that when using hybrid covariance, sampling

errors will be reduced and the vertical localization scheme needs

to be adapted (Ménétrier and Auligné, 2015; Carrió et al., 2021).
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