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11Resilient cooling of buildings to

protect against heatwaves and

power outages
Shady Attia

Department of Urban and Environmental Engineering, University of Liege, Liège, Belgium

11.1 Introduction

Resilience is a central feature of the United Nations (UN) Sustainability

Development Goals (SDGs) and is reflected in a range of SDG targets (Jacob et al.,

2018). According to the UN General Assembly Resolution 71/276 (United Nations,

2017), the term “resilience” describes “the ability of a system, community or soci-

ety exposed to hazards to resist, absorb, accommodate, adapt to, transform and

recover from the effects of a hazard in a timely and efficient manner, including

through the preservation and restoration of its essential basic structures and func-

tions through risk management.”

The need for resilient building design and construction is urgent to anticipate cli-

mate change and disruptions caused by weather extremes, increasing carbon emis-

sions, and resource depletion (Attia, 2020). Our well-being depends on reducing the

carbon emissions in our built environment and other sectors (Attia et al., 2021).

While solving the root-cause problem of climate change, we need to address its

effects. Avoiding excessive temperatures induced by overheating is one of the most

critical challenges that the building industry will face worldwide in the coming dec-

ades (Gupta et al., 2017; Kjellstrom et al., 2009).

Increasing electricity demand during heat stresses can lead to blackouts and grid

failures. This can leave buildings out of thermal comfort range and threaten the

lives of vulnerable people at risk, as happened during the 2003 Europe heatwave

(De Bono et al., 2004). As building disruptions may have severe and long-term eco-

nomic impacts, resilient building cooling solutions are an essential strategy to miti-

gate threats to occupants (Gupta & Kapsali, 2016). There is an urgent need for

resilient cooling solutions in buildings to keep comfort despite extreme weather

events due to climate change (Holzer & Cooper, 2019). Meanwhile, fuel-intensive

mechanical cooling should be reduced to slow climate change (IEA, 2018).

Greenhouse gas emissions from buildings’ air conditioning stand at around

210�460 gigatonnes of carbon dioxide equivalent (GtCO2e) over the next four dec-

ades, based on 2018 levels (Anderson et al., 2020).

It is important to define buildings’ resilient cooling to maintain indoor environ-

mental quality against unexpected events, for example, extreme weather conditions,

Adapting the Built Environment for Climate Change. DOI: https://doi.org/10.1016/B978-0-323-95336-8.00014-7

© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/B978-0-323-95336-8.00014-7


heat waves, and power outages. However, the definition of resilience and resilient

cooling is challenging and complex (Kelman et al., 2016). Research on resilience

associated with human�nature interactions is still in an explorative stage with few

practical methods for real-world applications (Carpenter & Folke, 2006; Liao, 2012).

This chapter presents the main concepts of resilience. It proposes a definition of

resilient cooling of buildings based on the discussion taking place in the

International Energy Agency (IEA)—Energy in Buildings and Communities

Programme research project “Annex 80: Resilient Cooling of Buildings” (Holzer &

Cooper, 2019). The essence of this chapter is to define resilience against overheat-

ing and power outages. It seeks to answer the following research questions:

1. What are the existing concepts of resilience in the built environment?

2. How to define resilient cooling of buildings?

This chapter presents a definition framework based on reviewing almost 90 stud-

ies of resilience, including RELi 2.0 Rating Guidelines for Resilient Design and

Construction (USGBC, 2018). One of the challenges of this study is to define resil-

ience on the building scale beyond what is present in literature, which mainly

addresses the definition of resilience on an urban scale. This reinforces the impor-

tance of resilient cooling as an integral approach for building design and operation

concerning comfort (including indoor environmental quality), carbon neutrality, and

environmental friendliness (Attia et al., 2021).

11.2 Methodology

The qualitative research methodology relies on literature review, focus group dis-

cussions, and follow-up discussions with individuals.

11.2.1 Data collection

A literature review aimed to define resilience against different climate change-

associated disruptions in the built environment worldwide. The publications

included scientific journal chapters, books, and building rating systems. Our initial

Scopus and Web of Science research resulted in almost 90 publications relevant to

resilience and resilience criteria in the built environment. To examine the defini-

tions of resilience and the associated resilience criteria, such as vulnerability, resis-

tance, robustness, and recoverability, we surveyed resilience in ecology, resilience

in engineering, and resilience in psychology.

11.2.2 Data processing

The content of the full text of every identified article was analyzed, and an analysis

protocol and coding schema were developed to record its content attributes. The

entire text of the full chapter was read multiple times as the coders (authors)
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completed the search for coding words. Coding is a way of indexing or categorizing

the text to establish a framework for its themes (Gibbs, 2007). We used the frame-

work method commonly used to manage and analyze qualitative data in health

research (Gale et al., 2013; Lacey & Luff, 2001).

11.2.3 Development of a definition

For the definition development, we used the framework method, which is the most

commonly used technique for managing and analyzing qualitative data in health

research (Gale et al., 2013; Lacey & Luff, 2001). The framework method allows

systematic analysis of the text data to produce highly structured outputs and sum-

marized data. It can also compare and identify patterns, relevant themes, and con-

tradictory data (Gale et al., 2013). We categorized the codes (resilience concepts)

by theme. Our classification resulted in four concepts that define the resilient cool-

ing of buildings.

11.2.4 Focus group and follow-up-discussions

Qualitative research is primarily a subjective approach to understanding human per-

ceptions and judgments. However, it remains a solid exploratory scientific method

if bias is avoided. The suggested definition was validated through focus group dis-

cussions to provide reliable and consistent results. Several validation measures were

implemented, including member checking, memo logs, and peer examination fol-

lowing the work of Attia et al. (2021). The study validation allowed emphasizing

credibility and strengthening the study’s relevance and results. Focus groups were

convened during IEA Annex 80 first expert meeting in Vienna, Austria (October

21, 2019) and during its second expert meeting, held online (April 21, 2020). Each

focus group comprised 15 people. The invited experts for the focus-group discus-

sion represented the scientific and professional experts in the field of building per-

formance assessment and comfort. An IEA Annex 80 participants list can be found

on the Annex website (Holzer, 2019). The goal of the focus group discussions was

to validate the suggested definition and main associated criteria.

Follow-up discussions with RELi steering committee members and UN resil-

ience experts helped articulate and validated the framework and included the

detailed elaboration of some criteria. The follow-up discussions took place between

the first authors and some of the coauthors via teleconference and emails.

11.3 Results

11.3.1 Resilience against what?

One critical prerequisite for a comprehensive definition and assessment of resilience

is identifying threats (shocks) or disruptions to the stability of these systems. An

essential question to answer is “resilience against what?.”
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As shown in Table 11.1, several types of disruptions or emergencies can lead to the

systemic failure of buildings to be resilient—for example, air pollution, fires, and earth-

quakes. Disruptions are increasingly presented by unexpected phenomena outside or

inside the building (De Wilde & Coley, 2012). The rate and pace of disturbances that

the built environment faces have accelerated significantly over the past three decades

(Bull-Kamanga et al., 2003). Understanding and identifying the phenomena that disrupt

a building and threaten the well-being of its occupants is fundamental.

For our study, we decided to identify heat waves and power outages as the major

disruptions that can influence occupant indoor environmental quality conditions on

the building scale (Attia et al., 2021). This chapter is focused on the definition of

resilient cooling of buildings as part of the IEA Annex 80 activities that aim to define

resilience. Crawley (2008) identified heat waves as the significant climate change dis-

ruption in buildings. Baniassadi et al. (2018) identified the frequency and duration of

power outages as a significant cause of disruption for buildings in the near future.

Both studies confirmed that the increase of mean outdoor temperatures and the fre-

quent and intensive nature of heatwaves disrupt power and degrade comfort.

Disruptions are shocks or events that have an origin, nature, incidence, scale,

and duration. Therefore we define disruptions in buildings as shocks that degrade

the indoor environment and require resilient cooling strategies and technologies to

maintain it (De Wilde & Coley, 2012).

11.3.2 Resilience: at which scale? And for how long?

The resilience of a system cannot be studied without examining the scale of the sys-

tem and the relation between the shock cause and its effect(s). Resilient systems

function through the interaction of complex processes operating at different scales

and times frames (Bull-Kamanga et al., 2003). Therefore it is essential to character-

ize the scale of the system that is expected to be resilient in a time-bound way. The

definition of resilience should always reflect whether the disturbance affects the per-

formance or operation of a single building element, building service, or the entire

building (Crawley, 2008). As shown in Fig. 11.1, the definition of resilience should

always characterize the resilience to disturbance of a system concerning its scale

within a specific time frame for the disturbance.

For our study, we define heat waves and power outages as the primary disruptive

events addressed by resilient cooling for buildings. Our proposed definition consid-

ers the indoor environmental conditions on the building scale for long periods.

Climate scenarios represent historical and future outdoor conditions and consider

short-term and long-term heat waves. Resilience in the building engineering field is

strongly associated with long-term climate projections that encompass the increase

in the average temperature due to a global warming effect and a further temperature

rise due to the urban heat island effect (Palme et al., 2017).

Defining and identifying disruptions and specifying their associated events that

impact healthy and comfortable buildings is the first step to determining a build-

ing’s resilience. As shown in Fig. 11.1, heat waves and power outages are events

that may impact the thermal conditions in buildings. The identification of heatwave
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Table 11.1 Different types of disruptions affecting the built environment.

Description

Air Pollution - Outdoor air pollution refers to the air pollution experienced by

populations living in and around urban and rural areas. Air

pollution derives from poor combustion of fossil or biomass fuels

(e.g., exhaust fumes from cars, furnaces, or wood stoves) or

wildfires. Buildings require efficient air filters and ventilation

systems that mitigate the impact of air pollution.

Fire - Wildfires are sweeping and destructive conflagrations, especially in

a wilderness or a rural area, that cause significant damage. Most

building codes address common fire hazards with mandatory fire-

resistant stairwells, fire-resistant building materials, and proper

escape methods.

Earthquakes - Earthquakes are the most common disruptions covered in all

building codes. Trembling of the ground is caused by the passage

of seismic waves through the earth’s rocks. This natural disaster

can damage a building by knocking it off its foundations and

harming the occupants. Seismic testing should be used on

components of buildings to determine their resilience to

earthquakes.

Wind storms

hurricanes

- Hurricanes have the potential to harm lives and property via storm

surge, heavy rain, or snow, causing flooding or road impassibility,

lightning, wildfires, and vertical wind shear.

Flooding - Flooding is the inundation of land or property in a built

environment, particularly in more densely populated areas, caused

by rainfall overwhelming the capacity of drainage systems, such

as storm sewers.

Heatwaves - Heatwaves are a period of excessively hot weather, which may be

accompanied by high humidity. They cause overheating in the

building and intensify the urban heat island effect. This event can

potentially risk the health and lives of occupants if no measures

are taken.

Power outages - Power outages and blackouts are common occurrences that can be

caused by natural disasters cited earlier, like floods or hurricanes.

It can lead to overheating in buildings when air conditioners do

not operate.

Water shortages - Water shortage is the lack of freshwater resources to meet water

demand. Lack of water significantly impacts irrigation and urban

use, degrading food security, public health, and overall stability.

Pandemic - Pandemics can impact the built environment of societies is how

spatial and social aspects are intertwined to constitute everyday

lives mutually. Minimizing the risk of disease spread in buildings

during active outbreaks starts with keeping people out of them.

For those who occupy a building, increasing the ventilation and

filtration of the inside air is essential.
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events is based on their intensity, duration, and frequency coupled with power

outages (Laouadi et al., 2020). A building with a resistant cooling design (strategy)

is expected to withstand short and extensive heat waves. A building with a robust

cooling design can withstand short, intense, and prolonged lengthy heatwaves. The

performance of a building with a resilient cooling design could surpass that of a

robust building by reacting to power outages and longer intensive heat waves. The

literature review confirms that resilience must be associated with a response to sys-

tem failure (Gale et al., 2013). A system is robust when it can continue functioning

in the presence of internal and external challenges without a system failure.

However, a system is resilient when it can adapt to internal and external challenges

by changing its method of operations while continuing to function. The ability of

the building to recover after disruptive events is a fundamental feature of resilience.

Therefore the ability to model the occurrence and consequences of discrete heat-

wave events is crucial to preparing the building for the response.

The interviewed experts agreed that climate change should be defined as a long-

term disruptive event and that heatwaves and power outages should be designated

short-term disruptive events. Based on our literature review and following

Fig. 11.2, we distinguish four major events categories that can challenge resilient

cooling (Laouadi et al., 2020):

Event 1: Observed and future extreme weather conditions (extended, spanning years).

Event 2: Seasonal extreme weather conditions (long, spanning months).

Event 3: Short extreme weather conditions (short, spanning days).

Event 4: Power outages (spanning hours).

Figure 11.1 Time, Scale and Disruption as boundary conditions for systems’ resilience.
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Across the literature, several studies identified extended and long climate

change-associated temperature increase events (events 1 and 2) (Hamdy et al.,

2017; Moazami et al., 2019). Other studies investigated the impact of short-term

heat waves and power outages on thermal conditions and cooling systems’ resil-

ience (MacKenzie & Barker, 2012; Sailor, 2014). For example, the RELi rating sys-

tem requires thermal safety during emergencies (events 3 and 4) by maintaining

indoor air temperature at or below outdoor air temperature for up to 7 days (Gale

et al., 2013). Schünemann et al. (2022) investigated the heat resilience (overheating

intensity) and energy efficiency (cooling demand) of two representative apartment

buildings in Germany and Korea. Through thermal zoning and modeling, designers

need to demonstrate that the building will maintain safe temperatures during a

blackout that lasts four days. During a power outage, buildings must provide

backup power to satisfy critical loads for 36 hours.

We define four major event categories that need to be tested and addressed in

any resilience assessment for comfort in buildings. The following section provides

a further detailed explanation for Fig. 11.1 associated with Fig. 11.2.

11.3.3 Definition of “resilient cooling for buildings”

Resilient cooling is used to denote low-energy and low-carbon cooling solutions

that strengthen the ability of individuals and our community as a whole to withstand

and also prevent the thermal and other impacts of changes in global and local cli-

mates—particularly concerning rising outdoor temperatures and the increasing fre-

quency and severity of heatwaves (Burman et al., 2014).

Resilient cooling for buildings is a concept that was not approached thoroughly

in previous studies. Therefore we developed the following definition based on the

Figure 11.2 The difference between resistance, robustness and resilience in relation to

disruption events intensity and frequency.
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literature review and validated it through the focus group discussion with members

of IEA Annex 80:

The cooling of a building is resilient when the capacity of the cooling system

integrated into the building allows it to withstand or recover from disturbances due

to disruptions, including heat waves and power outages, and to adopt the appropri-

ate strategies after failure (robustness) to mitigate degradation of building perfor-

mance (deterioration of indoor environmental quality and /or increased need for

space cooling energy (recoverability).

Resilience is a process that involves several criteria, including vulnerability,

resistance, robustness, and recoverability (Martin & Sunley, 2015). Therefore we

include those four criteria in the definition formulation shown in Fig. 11.1. The vul-

nerability involves the sensitivity or propensity of the building’s comfort conditions

to different disruptions. It is vital to define disruptions at this stage, as discussed in

Section 3.1 (see Figs. 11.1 and 11.2).

A resilient building must be conceived based on a vulnerability assessment that

considers future climate scenarios and prepares the building system, including occu-

pants, to adapt against failures. The vulnerability assessment should test the build-

ing’s performance against long-term disruptions using average weather conditions,

extreme weather conditions, future weather conditions, and worst future weather

conditions. It should also test the building against short-term disruptions, including

brief heat waves and power outages. A vulnerability assessment stage should be

part of the design process. A building cooling system is prepared for different dis-

ruption scenarios engaging different thermal conditions.

The building cooling system should withstand short-term and long-term disrup-

tive events. As shown in Fig. 11.3, resistance involves the ability and the depth of

reaction to the shock. Under disruptive events, the building may use performance

dropbacks to achieve the predefined minimal thermal conditions. After the failure

of the building cooling system, the building’s resilience process moves to the most

Figure 11.3 The buildings resilience timeline and performance (for higher resolution, see

Attia, 2020).
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crucial stage—robustness, meaning reaction to failure. Robustness requires the

building to be prepared to survive an otherwise-fatal shock by adapting its perfor-

mance. The survivability of the system relies on its ability to ensure the critical

thermal conditions to maintain the functional activities of occupants during a crisis.

As shown in Fig. 11.3, a robust building will first fail and then adapt its perfor-

mance conditions to meet critical or minimum thermal requirements to achieve a

degree of survivability for occupants depending on the vulnerability assessment

decisions made during design. The significant distinction between a resistant build-

ing system and a robust building system is that the latter is prepared to adapt based

on a backup plan and ecosystem. Robustness involves how the building, including

its services and occupants, adjusts and adapts to shocks.

The final stage of resilience involves the recoverability of the system.

Recoverability consists of the extent and nature of occupants and the building’s ser-

vices to recover and returns to its equilibrium state and its speed to come back. As

shown in Fig. 11.3, recovering has a duration, performance, and learnability. The

necessary speed for recovery and the recovery performance curve should be

planned during the vulnerability assessment stage. The ability of the users, build-

ings, and systems to learn from the event is an integral part of this stage.

While the diagram in Fig. 11.3 is linear, the resilience process is cyclic and itera-

tive. Resilient cooling of buildings is a continuous process involving the commis-

sioning and retro-commissioning of building elements and systems over the

building’s life cycle. It also includes the continuous education of occupants and the

preparation for adaptive measures during unforeseeable disruptions.

Fig. 11.4 provides a complementary definition framework that includes the main

resilience criteria. It presents an example of the factors that influence building

Figure 11.4 Influencing factors of resilient cooling of buildings (for higher resolution, see

Attia, 2020).
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cooling performance under the four resilience criteria. Depending on the overheat-

ing definition and exposure risk, a resilient cooling design for buildings assures that

the designed indoor environmental conditions are secured before the disruption.

The risk factors should be identified during the design stage to assess vulnerability.

Examples of risk factors include climate change scenarios, heat waves combined

with power outages, or urban heat island effects. As shown in Fig. 11.4, the resis-

tance stage depends mainly on the building’s design features and technologies and

their ability to keep the building performing under severe overheating exposure

until reaching failure. The failure is the essential disruption to start the third stage

of resilience, namely robustness. The robustness of the cooling system the building

must adapt to cover the critical thermal conditions temporarily until reaching the

recovery stage. The ability to respond, in an adaptive way, that implements funda-

mental changes to the original thermal conditions involved occupants and systems

adaptability. The energy system backup and an emergency control possibility are

part of the building’s robustness. This is finally followed by a recovery stage and a

shift in the building performance to achieve before designed thermal conditions that

adapt to the normal.

11.4 Discussion

The review of the main concepts of resilient cooling for buildings and the proposal

for a definition and assessment framework indicates the complexity of the idea. We

found varying and inconsistent definitions of resilience in the context of building

comfort and in the context of the overall built environment. The following sections

discuss possible questions that we answered in this study.

1. What are the existing concepts of resilience?

2. How to define resilient cooling for buildings?

Few studies and case studies succeeded in defining resilience and applying its

principles on a building scale. Across our review, we found some studies that focus

mainly on robustness as a proxy for resilience (Homaei & Hamdy, 2020, 2021;

Kotireddy et al., 2018; Miller et al., 2021). However, none of those reviewed stud-

ies embraced a multicriteria approach for resilience that involves vulnerability,

resistance, robustness, and recoverability. Therefore based on our literature review

and focus group discussions, this study’s suggested definition and framework are a

step forward. The following recommendations can be helpful for designers and

building operators that seek to achieve resilient cooling of buildings in a holistic

way:

1. Any definition of resilience must be based on identifying a specific shock or disruption.

In the case of resilient cooling of buildings, heat waves and power outages are considered

the main shocks (extreme events). Designers should prepare buildings against those

shocks.

224 Adapting the Built Environment for Climate Change



2. Any definition of resilience should specify and distinguish, at the same time, the resis-

tance and robustness conditions against heat waves and power outage events. The resis-

tance period involves the building’s ability to resist shock(s) with the same preshock

operation conditions. However, robustness requires failure and adaptation after failure.

The robustness mechanism involves building users and building systems adaptation and

their ability to adjust after a shock.

3. Thus the definition of resilient cooling for buildings involves four critical criteria, mainly

vulnerability (preparation), resistance (absorption), robustness (adaptation after failure),

and recovery (remedy). The building design, construction, and operation processes should

address these criteria.

4. Resilient and passive cooling design is an urgent requirement for future-proof buildings

(Silva et al., 2022). Weather extremes must be anticipated to assume well-being. The

choice of comfort models is elementary in preparing buildings. Resilient cooling design

involves the combination of passive and active cooling design measures (Zeng et al.,

2022), on-site renewable production, and coupling to storage capacities. Our suggested

definition for resilient cooling of buildings can help to develop future resilience perfor-

mance indicators that account for the impacts of global warming for long and short assess-

ment periods. This can allow comparing the carbon emissions and primary energy use at

different stages of the building life stages. As part of the activities of IEA—Annex 80,

there is a need to assess the performance of conventional and advanced cooling technolo-

gies. Without a multistage definition, it will be challenging to develop universal indicators

that assess the active and passive cooling technologies listed above.

5. Building operation systems and building management systems will play a significant role

in applying the adaptation strategies and risk mitigation plans in collaboration with build-

ings users. HVAC systems and envelope features are a prime target for real-time optimi-

zation for resilient cooling. Different dynamic control strategies with predictive

algorithms should be embedded in building operation systems using a deeply coupled net-

work of sensors. The smart readiness of buildings is part of resilience because it considers

that buildings must play an active role within the context of an intelligent energy system

(Märzinger & Österreicher, 2019).

6. Resilience is a process, and its criteria should be addressed following a circular, iterative

approach. Extracting learned lessons and integrating user experience during shocks is

essential to increase the emergency learnability and feed the preparedness loop.

11.5 Conclusion

A definition of resilient cooling for buildings is developed and discussed in this

chapter as part of the IEA Annex 80 research activities. The definition’s main con-

cepts and criteria are based on qualitative research methods. This chapter presents a

set of recommendations to adopt the definition in practice and research. Future

research should build on our findings and create more consistent frameworks (Rahif

et al., 2022) with useful quantifiable indicators (Zhang et al., 2021), quantitative

metrics, and performance threshold limits. Additional definitions of overheating

and modeling of overheating events are required for different building types and cli-

mates. The research should be extended to identify benchmarks and case studies

(Sun et al., 2021) with reference values and threshold ranges and seek tools and
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reporting mechanisms for the resilient cooling of buildings. The suggested frame-

work should evolve as research and experience build a greater understanding of

resilient and sustainable buildings.
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New York Metropolitan Transit Authority

(MTA) Metro North’s Hudson Line,

85

New Zealand, 174

Nissan Leafs, 43

Noise reduction, 281

Nonretrofitted bridge, 147f

North America, 173

North-south Gotthard road corridor, 140

NVivo 12, 378

O

Opaque urban surfaces, 261

Optimal models, 231

Ordinary Standard Bridges, 145

P

Pacific Earthquake Engineering Research

center, 143�144

Pandemics, 219t

Paradigms shifts, 73�74

Paris Agreement, 53�54, 60�61

Paste drain down, 301

Peak ground acceleration (PGA), 143�144

Pedestrian-level ventilation and thermal

comfort, 260�261

Permeable concrete, 299
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Permeable concrete (Continued)

clogging, 307�317

field investigations, 313�315

laboratory studies, 307�313

unclogging maintenance methods,

315�317

factors controlling performance of,

304�307

additives, 306

aggregates, 305

cement content, 304�305

chemical admixtures, 306

compaction and placement, 306�307

water/cement (w/c) ratio, 304�305

properties of, 300�304

composition and mix design, 300

durability, 304

permeability, 301�303

pore structure, 300�301

strength, 303�304

state-of-the-art in, 317�319

Permeable pavement system, 298�299

Pervious concrete, 297�298

PGA. See Peak ground acceleration (PGA)

Phase shift, 238

Photovoltaic (PV) systems, 39

Physiologically equivalent temperature

(PET), 265

Plant growth-promoting bacteria (PGPB),

286

Polystyrene, 368

Port infrastructure, 168

Portland cement, 192

Postdisruption system, 78�79

Postevent assessments of natural hazards,

133

Potential climate change risks

analysis of, 122

identification of, 120�121

Potential loss of life, 23

Potsdam Institute for Climate Impact

Research, 1�3

Power lines or energy production plants,

29�30

Power outages, 219t

Pozzolanic reaction, 306

PPPs. See Public�private partnerships

(PPPs)

PR. See Production rates (PR)

Precinct ventilation zones, 260�261

Precipitation anomalies, 343

Predicted pessimistic scenario strategy, 122

Predicted relative humidity, 203

Primary exponential smoothing, 204

PRISMA flowchart, 375�376

Probability, 20�21

Production rates (PR), 145

Programme for Infrastructure Development

in Africa, 171

Projections, 110�113

Prolongation of travel (PT), 141

Prolonged extreme hot events, 253�254

Proposed framework, 144f

Protection layer, 279

Prunus mahaleb, 285

Public finance, 169

Public�private partnerships (PPPs), 177

Q

Qualitative methods, 350

Qualitative research methodology

methodology, 216�217

data collection, 216

data processing, 216�217

development of definition, 217

focus group and follow-up-discussions,

217

resilience, 217�218

Quality of life, 54

Quantitative analysis, 376�377

Quick scan, 337

R

Railway transport infrastructure, 167

Raising of Chicago, 89

Rapid industrialization, 327

Rapidity, 88�89

RCP. See Representative Concentration

Pathways (RCP)

RCP 4.5 scenario, 40

Real options analysis (ROA), 83�84

Real-state valorization, 283

Recoverability, 223

Recovery curve-based resilience metrics,

78�79

Recovery model, 142, 143f

Redundancy, 89�90

RegCM3 model, 202
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Regional measures, 85

Reinforced concrete (RC), 115, 201

Reinforced concrete structures, 134

Reinforcement corrosion, 134�135

Reinforcing steel corrosion, 134

Relative humidity (RH), 111t, 115, 137,

203�205

Renewable energy, 38, 48, 253�254

Renewable energy production systems,

62�63

Repair time (RT), 146�148

Representative Concentration Pathways

(RCP), 5�6, 40, 48t, 329�330

Research methodology, 168�170, 350

Residential buildings, 42, 229�230

Resilience, 96, 138�142, 217�218

connectivity loss, 141�142

loss model, 139�141

prolongation of travel, 141

recovery model, 142

resilient cooling for buildings, 221�224

scale, 218�221

Resilience from natural disasters, 134

Resilience of concrete infrastructures

calculation, 148�153

concrete resilience, 134�137

resilience, 138�142

Resilience of green roofs to climate change

buildup green roof resilience through

value, 279�283

economic value, 282�283

environmental value, 280�281

social value, 282

built environment, 273�274

green roof, 275�279

classification, 276�278

layers, 278�279

resilience to water scarcity, 283�288

nature-based solutions toward circular

cities, 274�275

semiintensive green roofs, 282

urban transition, 273�274

Resilience quantification metrics, 78�79

Resilient and passive cooling design, 225

Resilient city, 53

Resilient cooling for buildings, 221�224

Resourcefulness, 76�77, 90�92

Restoring degraded ecosystems, 384

Retarders, 306

Risk acceptability, 123�124

Risk-adjusted discounting approaches, 94

Risk assessment, 18�26, 133

for complex risk, 21�23

hazards and perspectives, 26�30

direct hazards, 26�29

dynamic hazards, 29�30

IPCC risk assessment framework, 24�26

Risk management, 215

Risk transfer, 91�92

River Basin Management Plans, 385

Riviere Des Prairies Basin, 118

ROA. See Real options analysis (ROA)

Road transport infrastructure, 167

Robust decision-making, 83�84

Robustness, 76�77, 86�88, 222�223

Rome RCP 4.5, 44

Rome RCP 8.5, 47

Room for the River program, 355

Root-cause problem of climate change, 215

4Rs of engineering resilience, 76�77

R-squared values, 194�197

S

Safety net, 176

Sankey diagram, 382f

SAR. See South Asia Region (SAR)

Scaling dollar, 96

Scatter matrix, 266f

Scopus and Web of Science research, 216

Screening, 376

SDGs. See Sustainability Development

Goals (SDGs)

Sea-level rise (SLR), 73�74

Secondary exponential smoothing, 204

Sedum acre, 285�286

Seismic resilience (SR), 134, 149f

Self-contained asset-level adaptation

projects, 84�85

Sendai Framework for Disaster Risk

Reduction (SFDRR), 19

Service life assessment, 137

Service-life model, 135

principles, 136f

for reinforcing steel corrosion, 135f

Service life prediction, 190�192, 191t

SFDRR. See Sendai Framework for Disaster

Risk Reduction (SFDRR)

Shading, 265
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Shading and ventilation design strategies for

buildings, 259�261

Shorter term hardening measures, 87�88

Short-term disruptive events, 222�223

Short-wave solar radiation, 265�266

Silene secundiflora, 287

Silene vulgaris, 287

Silver Bridge, collapse of, 109�110,

113�115

Sixth, and latest, Assessment Report (AR6),

17, 109�110

Sky view factor (SVF), 265

SLR. See Sea-level rise (SLR)

Smart city, 176

Social-economic equitability, 385

Social value, 282

esthetic integration, 282

rooftop gardens, 282

well-being and life quality, 282

Socio-ecological approach, 55�56

Socio-economic factors, 133

Soft measures, 176

Software TRNSYS, 43�44

Soil-and water-bioengineering interventions,

384

Soils, 56�57, 331�332

Solar energy radiation, 262

Solar heat gain coefficient (SHGC),

258�259

Solar radiation, 111t, 255�256

South Asia Region (SAR), 170�171

Southeastern Anatolia region, 331

Spatial risk analyzing, 344

Sponge city approach, 61, 281, 375�376

Sponge City construction guidance, 386

Sponge City Program (SCP), 373

Sponge city publications

bibliometric analysis of, 387�388

thematic analysis of, 388�390

Sponge city topic, interviews for, 377�378

Sponge effect for migration, 376

SR. See Seismic resilience (SR)

Stabilization emission scenario, 40

Stationary thermal transmittance, 238

Storms, 111t

“Storm to Shade” initiative, 61

Stormwater management, 281, 377

Storm Water Management Model (SWMM),

387�388

Stormwater Research and Demonstration

Park, 314

Street trees, 266�267

Structural design optimization, 185

Sub-Saharan Africa, 171

Substrates, 286�288

Subtropical climate, 256�259

Subtropical high-density cities, 259�261

Surface transportation infrastructure systems,

75

Sustainability, 62

Sustainability Development Goals (SDGs),

3�5, 38, 53�54, 58�59, 215

Systemic risk, 24t

T

Technical substrate, 279

Temperatures, 203�205

Tensile stresses, 117�118

Termoloig Epix 12, 233�235, 238�240

Terrestrial ecosystems, 62

Thailand

amphibious houses of, 357�359

flash floods in, 357

Thematic analysis, 377, 380�385

Theoretical and empirical investigations, 38

Thermal comfort, 27�28, 27f

Thermal deformations, 118

Thermal sensation, 27�28

Threats to electricity security, 39

Topic search (TS), 378

Transit station closure information, 90�91

Transportation infrastructure assets, 88

Transportation infrastructures, 162

Africa, 171�172

airport infrastructure, 167

Asia, 170�171

Australia, 174

conceptual framework, 162

Europe, 170

Latin America, 172

literature review, 162�166

New Zealand, 174

North America, 173

port infrastructure, 168

railway transport infrastructure, 167

research methodology, 168�170

issues in seeking to achieve climate

resilience, 169�170
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road transport infrastructure, 167

Transportation systems, 74, 90

Tree canopy, 57�58

Tree patterns, 266�267

TRNSYS software, 39

Tropical cyclones, 73�74

Tuutti’s model, 135

Type 94a models, 43�44

Typical Meteorological Year (TMY),

256�257

U

UGI. See Urban green infrastructure (UGI)

Uncertainty, 110�113, 123

Unclogging maintenance methods,

315�317

UNDRO. See United Nations Disaster Relief

Coordinator (UNDRO)

UN Framework Convention on Climate

Change, 133

UNISDR. See United Nations Office for

Disaster Risk Reduction (UNDRR)

United Kingdom, 373

United Nations (UN), 215

United Nations Disaster Relief Coordinator

(UNDRO), 20�21

United Nations Environment Programme,

329�330

United Nations Framework Convention on

Climate Change, 23

United Nations Office for Disaster Risk

Reduction (UNDRR), 5�6, 20�21,

336�337

United Nations World Water Development

Report, 372�373

United States, 373

Urban adaptive design strategies, 261�268

Urban agriculture and agro-forestry, 62�63

Urban climate resilience, 57�58

Urban design strategies, 254�255

Urban Drainage and Flooding Control

District (UDFCD), 314�315

Urban drought, 29

Urban ecological resilience, 56�57

Urban flooding, 28�29

Urban Forest & Urban Planning, 379�380

Urban geometry

and shading, 265

and ventilation, 262�264

Urban geometry design for ventilation and

shading, 262�265

Urban greenery design for cooling city,

265�268

Urban green infrastructure (UGI), 54

access, design, and implementation of,

58�60

key components for, 55�58

urban climate resilience, 57�58

urban ecological resilience, 56�57

urban social resilience, 58

urban water resilience, 57

strategies and policies for building city

resilience, 60�63

Urban Heat Island (UHI), 6�7, 26�28, 261

Urban landscape planning/management

approach, 59�60

Urban microclimate interventions, 254�255

Urban morphology, 267�268

Urban planning and management, 61

Urban resilience, 37, 53, 56f

methodology, 39�44

preventive assessment of, 38

Urban social resilience, 58

Urban vegetation, 7�8

Urban ventilation corridors, 260�261

Urban water management, 371�373

relationships between sponge city and

nature-based solutions on, 390�393

Urban water resilience, 57

US Federal Emergency Management

Agency, 80

V

Vacuum sweeping, 315

Vegetation, 278�279, 284�286

Venice of the East, 357�358

Ventilation, 229�230, 262�264

VOSviewer, 376

Vulnerability, 24�25, 122

assessment, 133, 222

W

Warm-summer humid continental climate,

39, 48

Water budge, 377

Water/cement (w/c) ratio, 304�305

Water infrastructure, 377

Water management, 53
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Water pollution, 371�372, 377

Water Sensitive Urban Design (WSUD), 373

Water shortage, 219t

Web of Science (WOS) database, 375

WeChat, 377�378

WEO. See World Energy Outlook (WEO)

Western Mediterranean Region, 331�332

Wildfires, 219t

WMO. See World Meteorological

Organization (WMO)

World Climate Change Weather File

Generator (CCWorldWeatherGen),

233

World Energy Outlook (WEO), 5�6

World Meteorological Organization (WMO),

26�27, 329�330

Y

Yakutsk, 246

Z

ZEBs. See Zero-energy buildings (ZEBs)

Zero-energy buildings (ZEBs), 230
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