Why transcranial direct current stimulation (tDCS) models cannot be trusted yet? A simulation study.

M. Grignard^{1,2}, C. Geuzaine², M. Hansenne³, S. Majerus^{1,3}, <u>C. Phillips^{1,2}</u>

¹GIGA-CRC In Vivo Imaging ; ²Department of Electrical Engineering & Computer Science; ³Psychology & Cognitive Neuroscience Research Unit. All from Liège University, Belgium.

LIÈGE université GIGA CRC In vivo Imaging

Introduction

Abstract

Transcranial direct current stimulation (tDCS) has gained increased interest over the past decades due to its affordability, ease of use and wide range of applications. Yet, its **lack of consistency and reproducibility** is concerning. A potential solution to improve the method is to tailor the stimulation for each subject based on individual measurements and models. Each **model requires accurate information** about the geometry of the tissues composing the head of the subjects, their electric properties and the electrode montage.

Aim of the study: Exploring the sensitivity of such models with respect to two factors (anode placement & conductivity values) with simulated data

Results

> Overall very weak current flow/electric field throughout the head volume

> AMe distribution all target regions & montage, with conductivity random sampling, ranges from 47.2 to 644.2 mV/m and from 139.2 to 398.5 mV/m, for Ω_{uni} and Ω_{inf}

#1411

LIÈGE université
 PsyNCog

- > effect of a 1cm placement error, according to conductivity profile, on AMe in the ROIs
 - ✓ with Ω_{uni} , HDI and ROPE do overlap to some extent → no decision can be made
 - \checkmark with Ω_{inf} , little overlap \rightarrow significant effect of electrode placement
- effect of conductivity profiles on AMe in the ROIs
 - \checkmark with Ω_{uni} , majority of the 95 % HDI completely outside the ROPE \rightarrow significant influence of uncertainty on the conductivity of the tissues

Model building

- > 20 BrainWeb virtual subjects [1]
- reduced to 5 tissue classes (WM, GM, CSF, skull, and soft tissues), to build individual finite element models (FEM)
- Reference conductivity profile for the 5 tissues as "weighted mean" from [2]
- ➤ 4 regions of interest (ROIs) as targets: MC, dlPFC, vmPFC, IPS;
- 5x5 cm² patch electrodes placed according to the 10-20 EEG system and 4 target regions
- > 2 mA current injected at the anode and cathode as a reference (i.e. 0V).

Sources of variability

- \succ bipolar or unipolar (only MC and dlPFC) montages \rightarrow 6 montages
- ➤ anode was either correctly centred, or displaced by 1 cm in 4 directions (anterior, posterior, central or lateral) \rightarrow 5 electrodes setup
- ➢ pick 20 random conductivity profiles, sampled [3] from uniform conductivity distribution, Ω_{uni} + reference → 21 profiles

Model estimations

- solve the 12600 (20x5x6x21) FEM simulations with Shamo [4]
- calculate the electric field e (V/m) over the head volume
- each simulation summarized by the "average magnitude of e" (AMe) in the ROIs targeted in each model

 \checkmark with Ω_{inf} , mainly overlap \rightarrow no or undecided effect.

 \succ interpolate (GPR) results for another 20 "informed" conductivity profiles Ω_{inf} , using a truncated normal distribution [2]

Statistics

- Bayesian generalized linear mixed effects models [5] to assess the effect of the 2 factors of interest: anode placement and conductivity profile
- Check 95% overlap of "highest density interval" (HDI) and the "region of practical evidence" (ROPE) [6], with boundaries set to +/-.1*std(AMe).

Distribution of the AMe, estimated with 20 Ω_{uni} (left column) and Ω_{inf} (right column) conductivity profiles: for the 6 ROIs & montages (1st row); then for the "MC (C3-C4)" set up only across 21 conductivity profiles (2nd row), 5 anode positions (3rd row), and 20 subjects (4th row).

tDCS is expected to generate an induced transmembrane potential of around 0.5 mV in the neurons of the ROI [7] but

- the values we obtain, considering r=1mm, are at most of the same order of magnitude but can be up to 20 times smaller.
- the uncertainty on the electrical conductivity makes it practically impossible to assess the stimulation effect in the ROI + using any standard values could potentially yield biased results.

More results and code are available in [8].

[1] BrainWeb: 20 Anatomical Models of 20 Normal Brains https://brainweb.bic.mni.mcgill.ca/anatomic_normal_20.html
 [2] McCann, H., Pisano, G. & Beltrachini, L. (2019) 'Variation in Reported Human Head Tissue Electrical Conductivity Values'. Brain Topogr.,

32, 825–858. <u>https://doi.org/10.1007/s10548-019-00710-2</u>

[3] Halton, J.H. (1960) 'On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals.' Numer.Math., 2, 84–90. <u>https://doi.org/10.1007/BF01386213</u>

[4] Grignard, M., Geuzaine, C. & Phillips, C. (2022) 'Shamo: A Tool for Electromagnetic Modeling, Simulation and Sensitivity Analysis of the Head.' Neuroinform., 20, 811–824. <u>https://doi.org/10.1007/s12021-022-09574-7</u> and <u>https://github.com/CyclotronResearchCentre/shamo</u>
[5] Yarkoni, T., & Westfall, J. (2016). 'Bambi: A simple interface for fitting Bayesian mixed effects models.' OSF preprint. <u>https://doi.org/10.31219/osf.io/rv7sn</u>

[6] Kruschke, J.K., Liddell, T.M. (2018). 'The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective'. Psychon. Bull. Rev., 25, 178–206. <u>https://doi.org/10.3758/s13423-016-1221-4</u>
[7] Opitz, A., Falchier, A., Yan, CG. et al. (2016). 'Spatiotemporal structure of intracranial electric fields induced by transcranial electricstimulation in humans and nonhuman primates.' Sci. Rep., 6, 31236. <u>https://doi.org/10.1038/srep31236</u>
[8] Grignard, M., Geuzaine, C., Hansenne, M., Majerus, S., & Phillips, C. (2022). 'Why tDCS models cannot be trusted yet? — A simulation study.' Eprint/Working paper <u>https://orbi.uliege.be/2268/294662</u> and <u>https://github.com/CyclotronResearchCentre/BrainWeb-tDCS</u>

GIGA-CRC-ivi | http://www.gigacrc.uliege.be | 🏏 @Giga_CRCivi | C. PHILLIPS | c.phillips@uliege.be | 🈏 @Ch_Phillips