Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films

Simin Fan, Debao Wang, Xiangyuan Wen, Xin Li, Fei Fang, Aurore Richel, Naiyu Xiao, Marie-Laure Fauconnier, Chengli Hou, Dequan Zhang

PII: S0268-005X(22)00958-4

DOI: https://doi.org/10.1016/j.foodhyd.2022.108438

Reference: FOOHYD 108438

To appear in: Food Hydrocolloids

Received Date: 21 November 2022

Revised Date: 20 December 2022

Accepted Date: 24 December 2022

Please cite this article as: Fan, S., Wang, D., Wen, X., Li, X., Fang, F., Richel, A., Xiao, N., Fauconnier, M.-L., Hou, C., Zhang, D., Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films, *Food Hydrocolloids* (2023), doi: https://doi.org/10.1016/j.foodhyd.2022.108438.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

Credit author statement

Simin Fan: Investigation; Data curation; Formal analysis; Writing - original draft.

Debao Wang: Methodology; Validation; Writing - review & editing.

Xiangyuan Wen: Resources; Data curation.

Xin Li: Validation; Visualization.

Fei Fang: Resources; Project administration.

Aurore Richel: Writing - review & editing, Supervision.

Naiyu Xiao: Writing - review & editing, Supervision.

Chengli Hou: Conceptualization; Writing - review & editing; Supervision.

Dequan Zhang: Conceptualization; Writing - review & editing; Funding acquisition;

Supervision.

Jonu

Graphical abstract

unal

1	Incorporation of cinnamon essential oil-loaded Pickering
2	emulsion for improving antimicrobial properties and control
3	release of chitosan/gelatin films
4	Simin Fan ^{a,b} , Debao Wang ^a , Xiangyuan Wen ^a , Xin Li ^a , Fei Fang ^a , Aurore Richel ^b , Naiyu
5	Xiao ^c , Marie-Laure Fauconnier ^d , Chengli Hou ^{a,*} , Dequan Zhang ^{a,*}
6	^a Institute of Food Science and Technology, Chinese Academy of Agricultural
7	Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and
8	Rural Affairs, Beijing 100193, China
9	^b Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech,
10	University of Liege, Passage des déportés 2, B-5030 Gembloux, Belgium
11	^c College of Light Industry and Food Science, Zhongkai University of Agriculture and
12	Engineering, Guangzhou 510225 Guangdong, China
13	^d Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech,
14	University of Liége, Passage des déportés 2, B-5030 Gembloux, Belgium
15	*Corresponding author: Dequan Zhang
16	Institute of Food Science and Technology, Chinese Academy of Agricultural
17	Sciences, Beijing 100193, China
18	E-mail address: dequan_zhang0118@126.com
19	*Corresponding author: Chengli Hou
20	Institute of Food Science and Technology, Chinese Academy of Agricultural
21	Sciences, Beijing 100193, China

22 E-mail address: houchengli@caas.cn

Journal Pre-proof

23 Abstract:

24 In this research, cinnamon essential oil (CEO) loaded Pickering emulsion was 25 incorporated into chitosan (CS)/gelatin (GEL) complex films. These antimicrobial 26 functionalizations of biobased packaging films containing different contents (5, 7.5, 27 and 10 mL) of CEO-loaded Pickering emulsion were evaluated on the microstructure, physicochemical, mechanical, barrier and antimicrobial properties. CEO-loaded 28 29 Pickering emulsion was herein prepared with zein nanoparticles as a stabilizer showed an average size of 113.37 nm and exhibited excellent physical stability. Fourier 30 31 transform infrared spectroscopy (FTIR) and wide-angle X-ray scattering (WAXS) 32 analyses revealed that the CEO-loaded Pickering emulsion showed compatibility with 33 CS/GEL matrix. Not only mechanical properties but also barrier properties of the 34 prepared films were significantly improved (P < 0.05) by incorporating CEO-loaded 35 Pickering emulsion. Furthermore, incorporating CEO-loaded Pickering emulsion with 36 CS/GEL led to the formation of high antimicrobial films against Pseudomonad 37 paralactis MN10 and Lactobacillus sakei VMR17 with slow-release behavior of CEO. 38 These results suggested that Pickering emulsion is a promising antimicrobial agent 39 delivery system for biopolymer based active packaging, notably for the conception of 40 novel active packaging biobased polymers.

41

42 Keywords: Antimicrobial packaging; Pickering emulsion; Cinnamon essential oil;

43 Chitosan/gelatin composite films; Control release

44 **1. Introduction**

45 Conventional plastics have significantly contributed to the development of the 46 food packaging industry due to their functions in the containment, protection and 47 distribution of food. Conventional plastics are synthetic materials by petroleum-based 48 polymers, which bring serious problems in resource depletion, and environmental 49 pollution due to their low biodegradability and poor recyclability (Chamas, et al., 2020). 50 To overcome the threats associated with petroleum-based plastic packaging materials, 51 the development of sustainable resources to exploit biodegradable and renewable 52 packaging materials with eco-friendly features is being actively studied (Al-Maqtari et 53 al., 2022; Garavand et al., 2020). Several biobased polymers, such as polysaccharides 54 (cellulose, chitosan, etc.) or proteins (gelatins, zein, etc.) (Wang et al., 2021&2022), are 55 currently being investigated as plastic viable alternatives, which get noticed because of 56 their biodegradability and biocompatibility and good film-forming abilities (Jafarzadeh, 57 et al., 2020).

Gelatin (GEL) is one of the most intriguing protein-based biopolymers, owing to its good film-forming capabilities and highly processable properties. However, pure GEL film has weaknesses of poor tensile strength and high moisture-sensitive that need to be resolved before perfect utilization (Dai et al., 2022). The incorporation of different matrices with complementary characteristics is considered as an enhancement strategy for characteristics of pure GEL film (Qiao et al., 2017). Chitosan (CS), as a positively charged polysaccharide, has been widely used in the preparation of film due to its strong

65 film-forming capacity and biocompatibility (Do et al., 2022). CS is considered a 66 candidate for the enhancement of mechanical and physicochemical properties of pure 67 GEL films (Roy & Rhim, 2021a). The synergistic effect is performed associated with electrostatic interactions between the negatively charged carboxyl group of GEL and 68 69 the positively charged amino group of CS and strong hydrogen bond formation (Liu et 70 al., 2022). Based on the broad range of molecular interactions, the layer-by-layer 71 assembly method has gained interest (Zhao et al., 2020). Both blending and assembly provide alternative approaches for the preparation of CS and GEL films. Recent studies 72 73 focus on exploring the antimicrobial function of CS/GEL complex films for the 74 development and application of food active packaging films (Al-Maqtari et al., 2022; 75 Uranga et al., 2019).

76 Essential oils (EOs), as natural bioactive compounds derived from plants, take 77 over wide attention as antimicrobial agents in food active packaging films due to their 78 safety and effective antimicrobial performance (Calo et al., 2015). Cinnamon essential 79 oil (CEO), mainly contains cinnamaldehyde (> 70%) and (-)- α -pinene (> 10%), which 80 have been confirmed that possess antimicrobial activities for bacteria and fungi (Yang 81 et al., 2021; Zhang et al., 2019). However, the incorporation of EOs directly into 82 biobased packaging films has some major challenges due to thermally sensitive and 83 easy inactivation during the film-forming process (Hosseini, Ghaderi, & Gómez-84 Guillén, 2022). In addition, free EOs loaded bio-based films have a "dumping effect" 85 of active compounds, which could result in limited effectiveness of active films during

86	applications (Zhang et al., 2022c). Thus, the encapsulation strategy is required to
87	decrease bioactivity losses of EOs during food active packaging creation (Shao et al.,
88	2021). Pickering emulsion, as known as a bioactive compounds delivery system,
89	exhibits the protection of bioactive compounds and a controlled release. Recently,
90	Pickering emulsion has received increasing interest in the encapsulation of EOs (Zhang
91	et al., 2022c). Previous reports have proven the protection capability and controlled
92	release of EOs loaded Pickering emulsion (Liu et al., 2019; Shen et al., 2021). Pickering
93	emulsion is stabilized by amphiphilic colloidal particles that help to reduce the
94	interfacial tension between water and oil phases and promote the formation of emulsion
95	droplets (Wu et al., 2022). Particle wettability of the colloidal emulsion surface decides
96	the adsorption properties and physical stability of the Pickering emulsion (Shao et al.,
97	2019; Mwangi et al., 2020). For example, zein particles enhanced the physical stability
98	of Pickering emulsion due to their hydrophobic and hydrophilic nature, which could
99	enhance the attraction in stabilizer particles on droplets interface (Soltani &Madadlou,
100	2016). Moreover, the high stability Pickering emulsion may result in better performance
101	of food active packaging because of the better dispersion characteristics in the film
102	matrix. However, there is limited information reported on adding EOs loaded Pickering
103	emulsion to CS/GEL composite films.

Therefore, the objective of this research was to develop CS/GEL composite film
by incorporating CEO-loaded Pickering emulsion as an antimicrobial agent delivery
system for active packaging applications. The structure, physical, mechanical and

107	barrier	properties	of	CEO-loaded	Pickering	emulsion	CS/GEL	films	were	assessed	•
-----	---------	------------	----	------------	-----------	----------	--------	-------	------	----------	---

108 Furthermore, the release behavior and antimicrobial activity against spoilage bacteria

of the films were investigated. 109

110 2. Materials and methods

111 2.1. Materials and reagents

Zein was purchased from Sigma-Aldrich (St. Louis, MO, USA). CS (CAS#:9012-112 76-4. MW of 50000) was purchased from Shanghai Macklin Biological Co., Ltd. 113 (Shanghai, China). GEL (CAS#:9000-70-8, type A, bloom value of 300) and glycerol 114 were procured from Yuanye Bio-Technology Co., Ltd. (Shanghai, China). CEO was 115 116 purchased from Jiangxi Taicheng natural perfume Co., Ltd. (Ji'an, China). Absolute 117 ethyl alcohol, acetic acid and other reagents were purchased from Sinopharm Chemical 118 Reagent Co., Ltd (Beijing, China). Tryptic soy broth (TSB) medium and DeMan-Rogosa-Sharpe broth (MRS) medium were obtained from Beijing Land Bridge 119 120 Technology Co., Ltd. (Beijing, China). All reagents used in this work are analytically 121 pure. Pseudomonad paralactis MN10 (P. paralactis MN10) and Lactobacillus sakei 122 VMR17 (L. sakei VMR17) were obtained from Meat Science and Nutrition Innovation Laboratory of the Institute of Food Science and Technology, Chinese Academy of 123 124 Agricultural Sciences (Beijing, China).

125 2.2. Preparation of CEO-loaded Pickering emulsion

126 The preparation of CEO-loaded Pickering emulsion was referred to literature

127	(Mattice & Marangoni, 2020) with slight modifications. Firstly, zein dissolved in acetic
128	acid aqueous solution (90%, v/v) to form zein stock solutions. Stock solutions were
129	added to ultrapure water with homogenized by HR-500 high shear homogenizing
130	emulsifiers (Shanghai Huxi Industry Co., Ltd, Shanghai, China) at speed of 12000 rpm
131	for 5 min to form zein nanoparticles dispersion (1%, w/v). Next, CEO was added
132	dropwise into zein nanoparticles dispersion to form CEO-loaded Pickering emulsion
133	under homogenized at speed of 12000 rpm for 5 min. The final concentration of CEO
134	in the Pickering emulsion system was 1% (v/v).
135	2.3. Characterization of CEO-loaded Pickering emulsion
136	2.3.1. Measurement of particle size, polydispersity index and Zeta potential
137	Particle size, polydispersity index (PDI), and Zeta potential of CEO-loaded
138	Pickering emulsion were measured by Zetasizer Nano ZS (Malvern Instruments Inc.,
139	Malvern, UK). The CEO-loaded Pickering emulsion samples were diluted 100 times
140	with ultrapure water before measurements. Particle size, PDI, and Zeta potential were
141	measured three times for each sample, and average values were reported.

142 2.3.2. Turbiscan stability index

143 The physical stability of CEO-loaded Pickering emulsion was measured using a 144 Turbiscan Lab Expert analyzer (Formulaction Inc., Toulouse, France). The entire 145 height of the emulsion was scanned by pulsed near-infrared light ($\lambda = 880$ nm). 146 Meanwhile, two synchronous detectors receive the light passing through the sample at

147	angles of 180° (transmission) and 45° (backscattering). Only the backscattering light
148	was measured because the emulsions were opaque. The sample (20 mL) was placed in
149	the test tube and scanned every 1 h continuously for 24 h at 25 °C.

150 2.3.3. Confocal laser scanning microscopy

Confocal laser scanning microscopy (CLSM, Leica TCS SP8, Leica microsystems
Inc., Wetzlar, Germany) was employed to observe the microstructure of CEO-loaded
Pickering emulsion. The samples were labeled with mixture dyes of Nile Red (0.1%,
w/v) and Nile Blue (0.1%, w/v) at a ratio of 1:1. 10 μL sample and 10 μL mixture dyes
were successively dropped onto the slide for lightproof staining. Images of CEO-loaded
loaded Pickering emulsion were recorded by CLSM at excitation wavelengths of 488
nm and 633 nm.

158 2.4. Fabrication of CEO-loaded Pickering emulsion/chitosan/gelatin films

159 GEL was dissolved in ultrapure water in a water bath at 50 °C for 2 h to form a 160 GEL solution (2%, w/v), the 30% (w/w, based on the dry GEL weight) glycerol was 161 then added to the GEL solution to obtain the GEL film forming solutions. CS was dissolved in acetic acid aqueous solution (1.5%, v/v) in a water bath at 50°C for 2 h to 162 form CS solution (1.5%, w/v), the 30% (w/w, based on the dry CS weight) glycerol 163 164 was then added to the CS film forming solutions. Different amounts of the CEO-loaded 165 Pickering emulsion (5, 7.5, and 10 mL) were mixed with CS film-forming solutions to form active film-forming solutions (AFFS), of which volume was a total of 30 mL. 166

167	In this work, two forms of the film were prepared. To prepare the blend casting
168	film (CF), 30 mL AFFS mixed with GEL film-forming solutions (30 mL) were cast
169	into a 150 mm diameter plastic plate and dried at 50 °C for 18 h. The CF with different
170	contents (5, 7.5, and 10 mL) of CEO-loaded Pickering emulsion were named CF5,
171	CF7.5 and CF10, respectively. To prepare the bilayer film (BF), a layer-by-layer
172	assembly method was employed. Briefly, GEL film forming solutions (30 mL) were
173	poured into 150 mm diameter plastic plate and dried at 50°C for 6 h to form the GEL
174	layer firstly, then 30 mL AFFS were poured onto the GEL layer and dried for 12h to
175	form the second layer. The BF with different contents (5, 7.5, and 10 mL) of CEO-
176	loaded Pickering emulsion were represented as BF5, BF7.5 and BF10. All prepared
177	films were conditioned for 48 h at 25°C and 50% relative humidity (RH) before further
178	measurements.

179 2.5. Characterization of Pickering emulsion/chitosan/gelatin films

180 2.5.1. Scanning electron microscope

181 Surface and cross-section structure of prepared films were observed by scanning 182 electron microscope (SEM, SU 1510, Hitachi, Japan). Before scanning, the film 183 samples were frozen in liquid nitrogen to obtain cross section, and then plated by a 184 vacuum sputter coater (Bal-Tec AG, Blazers, Liechtenstein).

185 2.5.2. Fourier transform infrared spectroscopy

186 Infrared spectra of films were generated by Fourier transform infrared

187	spectroscopy (FTIR, Tensor 27, Bruker) in the range of 4000-400 cm ⁻¹ resolution after
188	32 scans. Prior to the measurement, a background spectrum was measured, and all
189	measures were performed in triplicate and the presentative one was provided.
190	2.5.3. Wide-angle X-ray scattering
191	Structural characterization of films was carried out through the wide-angle X-ray
192	scattering (WAXS) analyses on Anton Paar SAXS point 2.0 system (Anton Paar Ltd.,
193	Austria) using Cu Kα radiation as X-ray source (wavelength=1.5418 Å). The distance

between the film sample and the source was 78 mm. All data were deductedbackground and smeared, and normalized before further analysis.

196 2.5.4. Thickness and mechanical properties

197 The thickness of the films was measured by using an MDC-25SX micrometer 198 caliper (Mitutoyo Corporation, Takatsu-ku, Kawasaki, Japan). The average thickness 199 was calculated through five random place measurement values. According to the 200 previous report (Hua et al., 2021), tensile strength (TS) and elongation at break (EAB) 201 of films were investigated by the texture analyzer (TA-XTPlus, Stable Micro System 202 Co., Ltd., UK). Firstly, the films were cut into 80 mm × 15 mm rectangles. The initial 203 grip separation of the fixture was 50 mm and the stretching speed was 50 mm/min.

204 2.5.5. UV visible light transmittances

The light transmittances of films were measured with a UV spectrophotometer (UV-6000PC, Shanghai Metash Instruments Co., Ltd., Shanghai, China) at the range

- of 200 to 800 nm. The film sample was cut into strips with 40 mm \times 10 mm and then
- 208 placed in the sample tank for analysis.
- 209 2.5.6. Thermogravimetric analysis
- 210 Thermogravimetric analysis (TGA) of films was measured using a
- 211 thermogravimetric analyzer (Pyris Diamond TG/DTA, PerkinElmer Inc., New Castle,
- 212 DE, USA). 4.0 g of the film sample was sealed in aluminum pans and was heated from
- 213 30 to 550 °C at a temperature programming of 10 °C/min.
- 214 2.5.7. Water content and water solubility

215 The water content (WC) and water solubility (WS) of films were determined by

- the method of Ahammed et al. (2021) with simple modifications. The film sample
- 217 was cut to a 30 mm \times 30 mm square and weighed to determine the initial weight
- 218 (M₀). Then the film sample was dried at 105 $^{\circ}$ C for 24 h, then weighed and recorded

as (M₁). The MC of films was calculated according to the formula (1):

220
$$MC(\%) = \frac{(M0 - M1)}{M0} \times 100$$
(1)

The dried sample was immersed into a beaker with 20 mL of ultrapure water and stirred for 24 h at 25 °C. The undissolved part of the film was taken out and dried at 105°C for 24 h and weighed as (M₂). The MS of films was calculated according to the formula (2):

225
$$MS(\%) = \frac{(M1 - M2)}{M1} \times 100$$
(2)

226 2.5.8. Water vapor permeability and oxygen permeability

The water vapor permeability (WVP) of the film was measured according to the previous method of Liu et al. (2020), with slight modifications. The beaker (diameter of 55 mm) with 10 g of anhydrous calcium chloride was sealed by film sample. Then the beaker was kept in the environmental condition at 25 °C and 75% RH. The beaker was checked every 12 h for 2 d to determine the weight loss. The WVP was calculated

according to equation (3).

233
$$WVP(g/(m s Pa)) = \frac{\Delta S \times d}{t \times A \times \Delta P}$$
(3)

where ΔS was the weight loss of the beaker (g), d was the thickness of the film (mm). t was the measuring time (s), A was the area of the mouth of the beaker (mm²), ΔP was the pressure difference inside and outside the beaker.

Oxygen permeability (OP) was determined based on the report of Wang et al. (2018). Briefly, the beaker (diameter of 55 mm) with 10 g of deoxidizer was sealed by film sample. Then the beaker was kept in the environmental condition at 25 °C and 75% RH. The beaker was checked every 12 h for 2 d to determine the weight loss. The OP was calculated as equation (4).

242
$$OP(g/(m s Pa)) = \frac{\Delta M \times d}{t \times A \times \Delta P}$$
(4)

where ΔM was the weight loss of the beaker (g), d was the thickness of the film (mm). t was the measuring time (s), A was the area of the mouth of the beaker (mm²), ΔP was the pressure difference inside and outside the beaker.

246 2.6. Release behavior

247 The release of the CEO from the films was assessed in food simulant according

248	to the method of Zhang et al. (2022b) with slight modifications. 50% ethanol solution
249	and 95% ethanol solution were selected as a simulant of semi-fatty foodstuffs and fatty
250	foodstuffs, respectively. Briefly, the film sample was cut into a 30 mm \times 30 mm square
251	and placed in a beaker with 50 mL of food simulant solution, then the beaker was kept
252	at 25°C for 96 h. Simulant samples were taken at predetermined time intervals (0, 1, 2,
253	4, 6, 12, 24, 48, 64, and 96 h). The amount of CEO release from the film was measured
254	at 287 nm by UV–Vis spectrophotometer. The release percentage of the CEO from the
255	film was calculated according to equation (5):
256	Releases percentage (%) = $\frac{Mt}{M} \times 100$ (%) (5)
257	where Mt was the amount of CEO released from the film at n th t (h), and M was the

257 where Mt was the amount of CEO released from the film at n^m t (h), and M was th258 initial concentration of CEO in the films.

259 2.7. Antimicrobial activity

260 2.7.1. Growth profiles of bacteria

The antimicrobial ability of films to P. paralactis MN10 and L. sakei VMR17 261 were evaluated according to the method of Xu et al. (2020). Briefly, a film sample 262 263 $(150.0 \pm 0.5 \text{ mg})$ was added into sterilized centrifuge tube with 20 mL liquid medium 264 (TSB for P. paralactis MN10 and MRS for L. sakei VMR17), and 100 µL of bacterial suspensions (10⁷ CFU/mL) was inoculated to the liquid medium. The centrifuge tubes 265 266 were incubated at 28 °C for 24 h with sustained shaking. Samples were removed at predetermined time intervals for optical density measurement at 600 nm by Spark 267 multimode microplate reader (Tecan Inc., Switzerland). 268

269 2.7.2. Morphology of bacteria observed by SEM

270	The microstructure of P. paralactis MN10 and L. sakei VMR17 were observed
271	with a scanning electron microscope (SU 1510, Hitachi, Japan). Under the same
272	conditions as in section 2.7.1, the bacteria were cultured with film in a liquid medium
273	for 4 h. The bacteria sediment was collected by centrifugated at 4 °C with the speed of
274	8000 g, and was fixed with 2.5 wt% glutaraldehyde overnight. Then, the fixed bacteria
275	were gradient dehydrated with different concentrations of ethanol solution (in turn 30%,
276	50%, 70%, 90%, and 100%, v/v). Finally, the 100% ethanol was replaced with 100 %
277	tert-butanol. The dehydrated bacteria were dried with critical point drying (Leica model
278	EM CPD300, Austria). Prior to scanning, the bacteria samples were plated by a vacuum
279	sputter coater.

280 *2.8. Statistical analysis*

The data were analyzed by SPSS 26.0 software (SPSS Inc., Chicago, IL, USA), and expressed by mean \pm standard deviation. Analysis of variance (ANOVA) and Duncan's multiple tests at P < 0.05 were used to evaluate the significance of differences in means.

285 **3. Results and discussion**

286 3.1. Characterization of CEO-loaded Pickering emulsion

287 CEO-loaded Pickering emulsion was prepared with zein nanoparticles as288 stabilizer. The results of size distribution, physical stability, and morphology of CEO-

loaded Pickering emulsion were shown in Fig. 1. The average droplet size of CEO-

290	loaded Pickering emulsion was 113.37 nm, and the main size distribution showed a
291	single peak pattern (Fig. 1 (A)). The size distribution of the emulsion was an important
292	parameter for its stability (Almasi, Azizi, & Amjadi, 2020). The average particle size
293	of zein nanoparticles stabilized CEO-loaded Pickering emulsion was lower than that
294	reported by Xu et al. (2020). They prepared zein colloidal particles stabilized clove
295	essential oil Pickering emulsion (CP), the particle size of CP was in the range of
296	1.40~1.73 μm.
297	The Zeta potential and PDI value of CEO-loaded Pickering emulsion were +
298	67.27 mV and 0.29, respectively. Zeta potential measure the repulsive force or
299	attraction between particles and oil phase, and PDI refer to the dispersibility of
300	emulsion. The emulsion was considered as stability system when the absolute value of
301	Zeta potential was above 30 mV (Niroula, Gamot, Ooi, & Dhital, 2021). An increase
302	in Zeta potential promoted the dispersion and stabilization of emulsion. In the present
303	manuscript, the zein was fully dissolved in glacial acetic acid to prepare colloid
304	particles as a Pickering emulsion stabilizer. This operation makes zein colloid particles
305	become protonated and highly unfolded, thus adsorption property is improved on the
306	surface of Pickering emulsion (Mattice & Marangoni, 2020), which can prevent the
307	formation of aggregation of emulsion. The smaller size and higher Zeta potential value
308	of CEO-loaded Pickering emulsion were attributed to the highly plasticized and
309	continuous network of zein nanoparticles (Mattice et al., 2020), possessing high

310	physical stability (Fig. 1 (B)). The TSI reflects the stability of the emulsion by
311	recording the optical properties of the emulsion in real-time. The TSI value was
312	negatively correlated with the Pickering emulsion stability (Zhao et al., 2023). A lower
313	TSI implies a smaller variation in droplet concentration and a greater stable emulsion.
314	The TSI value of the CEO-loaded Pickering emulsion was below 1.5 showing the
315	emerging destabilization and high physical stability of the prepared emulsion (Jia et al.,
316	2023). The morphology of CEO-loaded Pickering emulsion was visualized using
317	CLSM and shown in Fig. 1 (C). As shown in Fig. 2 (C) (i), the droplets of CEO-loaded
318	Pickering emulsion were approximately spherical shape. Fig.2 (C) (ii), (iii) and (iv)
319	showed that the dispersed CEO droplet was surrounded by zein nanoparticles and had
320	good dispersibility. These results indicated the potential of CEO-loaded Pickering
321	emulsion for being an antimicrobial agent delivery system. Hence, the CEO-loaded
322	Pickering emulsion was incorporated into CS/GEL for preparing antimicrobial
323	packaging.

324 3.2. Characterization of blend casting and bilayer assembly Pickering emulsion
325 chitosan/gelatin /films

326 *3.2.1. SEM*

The microstructural properties of CEO-loaded Pickering emulsion CS/GEL films with blend casting and bilayer assembly film systems were shown in Fig. 2. According to Fig. 2 (CF0 and BF0), the surface of CS/GEL films displayed compact and glossy,

330	indicating high compatibility between CS and GEL due to non-covalent interactions
331	(Haghighi et al., 2019). However, the surface of films tended to a slight roughness by
332	the incorporation of CEO-loaded Pickering emulsion. A similar SEM morphology was
333	observed by Liu, et al. (2022) in CS films containing the cellulose nanocrystal-
334	stabilized Pickering emulsions. Blend casting CEO-loaded Pickering emulsion
335	CS/GEL film showed a tight structure in cross-section observation (Fig. 2 (CF10)).
336	However, Fig. 2 (BF10) showed that the bilayer assembly CEO-loaded Pickering
337	emulsion CS/GEL film presented a phenomenon of stacking, which could be as layer-
338	by-layer assembly behavior during film forming (Zhang et al., 2019). In further
339	observation of bilayer film, the CS side showed a roughness apparent obviously
340	compared to the GEL side.
341	The microstructural properties affected the final physical, mechanical, barrier and
342	optical properties of the films (Hosseini, Ghaderi, & Gómez-Guillén, 2021). GEL is an
343	amphoteric electrolyte, the charged polar groups (-COOH, -NH2, and -OH) in the
344	structure chain could form an interaction with oppositely charged groups NH3 ⁺ of CS.
345	Thus, both blend casting and bilayer assembly CEO-loaded Pickering emulsion
346	CS/GEL films showed compatibility in film performance. And the structure of CS/GEL
347	films was more tightly due to the filling action of CEO-loaded Pickering emulsion
348	droplets. This phenomenon could be reflected in the mechanical and barrier properties

of prepared films.

350 *3.2.2. FTIR*

351	FTIR was used to characterize the interactions between the chemical groups of
352	films at the molecular level (Fig. 3 (A)). The characteristic functional groups of the CS,
353	GEL, zein, and CEO mainly include hydroxyl, alkane, and amine. The vibrations and
354	spectral positions could be altered when the main functional groups interacted with
355	each other or with other groups (Zhang et al., 2019). The broad bands detected at 3222
356	and 3276 cm ⁻¹ were ascribed to the O-H and N-H stretching vibration of pure
357	biopolymers (CS and GEL). However, the band of CS/GEL complex film distinctly
358	moved to 3273 cm ⁻¹ , which was due to the hydrogen bond interactions between CS and
359	GEL. With the addition of CEO-loaded Pickering emulsion, the intensity of absorption
360	band at 3273 cm ⁻¹ gradually reduced. This was mainly due to the decrease of hydrogen
361	bonding interactions between the -OH of GEL and the -NH2 of CS, that caused by the
362	decrease of CS content in prepared films. Such change in interactions verified the
363	decline of the tensile strength of the prepared films in mechanical properties. In
364	addition, the peaks at 2927 cm ⁻¹ were ascribed to the -CH ₂ stretching vibrations of
365	alkane groups. The peak at 1633 cm ⁻¹ and 1546 cm ⁻¹ were referred to the C-O stretching
366	of amide-I and N-H bonds of amide-II, respectively. Bands at 1031 cm ⁻¹ were
367	interpreted as the antisymmetric stretching of -C-O- in the glycosidic linkage, and
368	vibration of the hexatomic ring ether (Li, et al., 2022). Overall, the peaks of the CEO-
369	loaded Pickering emulsion CS/GEL films were like those of the CS/GEL films, except
370	for minor changes in peak intensity. The above indicated incorporated CEO-loaded
371	Pickering emulsion into CS/GEL films did not significantly change the chemical

372 structure of CS/GEL films.

373 *3.2.3. WAXS*

374	The crystalline structures of the CEO-loaded Pickering emulsion CS/GEL films
375	were analyzed by wide-angle X-ray scattering and the results were shown in Fig. 3 (B).
376	The WAXS patterns of CEO-loaded Pickering emulsion CS/GEL films displayed two
377	diffraction peaks, and they were at around 9° and 20°, respectively, which can be
378	assigned to its hydrated crystal and regular lattice, respectively (Chen et al., 2021).
379	Notably, the peak intensity at around 9° of CEO-loaded Pickering emulsion CS/GEL
380	films was increased, which could be explained as the reconstruction of intermolecular
381	and intramolecular hydrogen bonds of films. In addition, the narrow peaks around 6°
382	shown in patterns are ascribed to CS matrix in prepared films, which may be caused
383	by the solution of chitosan solids in an acetic acid solution. Furthermore, Fig. 3 (B)
384	showed that no other new sharp peaks appeared after adding the CEO-loaded Pickering
385	emulsion with CS/GEL. These findings demonstrated that the presence of CEO-loaded
386	Pickering emulsion did not change the crystal structure of the CS/GEL base matrix and
387	could be evidence of the coexistence of the two phases of polymer matrix and CEO-
388	loaded Pickering emulsion (Zhao et al., 2022).

389 *3.2.4. Thickness and mechanical properties*

The thickness of CEO-loaded Pickering emulsion CS/GEL films were shown in
Table 1. The thickness of blend casting and bilayer assembly CS/GEL films were 66.61

392 (CF0) and 69.85 (BF0) µm, respectively. As the concentration of CEO-loaded Pickering emulsion increased, the thickness of CF10 and BF10 films were 74.81 and 393 394 78.03 µm, respectively. These results showed that the addition of CEO-loaded 395 Pickering emulsion had a significant effect on the thickness of CS/CEL films. 396 Mechanical properties were critical parameters for packaging films, which can affect 397 their range of use and durability. The mechanical properties including TS and EAB of 398 the CEO-loaded Pickering emulsion CS/GEL films were evaluated. As Table 1, the TS value of films gradually decreased with the increase of CEO-loaded Pickering 399 400 emulsion, while the EAB of the CEO-loaded Pickering emulsion CS/GEL films significantly increased (P < 0.05). According to the result in FTIR and WASX above, 401 402 the addition of CEO-loaded Pickering emulsion does not affect the chemical structure 403 and crystal structure of the CS/GEL matrix. Thus, these changes in mechanical properties are mainly due to the filling effect that emulsion droplets cause on films, 404 405 which leads to continuities in the biopolymer network. Liu et al. (2020) also found that 406 the incorporation of Pickering emulsion did obviously change the mechanical 407 properties of both TS and EAB of konjac glucomannan films, which were attributed to 408 the deformability of filling lipid droplets in the films. However, Xu et al. (2020) 409 attributed this result to the introduction of essential oils loaded with Pickering emulsion 410 disrupting the ordered arrangement of the biopolymers matrix by interfering with the formation of inter- and/or intra-hydrogen bonds. In addition, TS and EAB values 411 showed significant differences (P < 0.05) between CF and BF. TS value of CF showed 412

413	higher than BF, resulting in stronger and tougher films. This could be due to the
414	intermolecular hydrogen bonds between the amino of CS and charged carboxyl of GEL.
415	And the more condensed structure of CF than that of BF (Haghighi et al., 2019).
416	3.2.5. Light transmission
417	The appearance and light transmittance of CEO-loaded Pickering emulsion films
418	were particularly important for food packaging films. As displayed in Fig. 4 (A) (CF0
419	and BF0), the appearance of CS/GEL films was flat and uniform, and the color of
420	CS/GEL films appears a little yellow. With the addition of CEO-loaded Pickering
421	emulsion, the color of CEO-loaded Pickering emulsion CS/GEL films presented
422	whiteness and the lightness of films decreased. This observation can be explained by
423	the milky white CEO-loaded Pickering emulsion equably integrated into CS/GEL films
424	matrix.

Fig. 4 (B) showed the UV transmittance of the prepared films. It can be observed 425 that with the addition of CEO-loaded Pickering emulsions, the UV transmittance of 426 films present was reduced, suggesting an improved UV blocking ability. It was 427 428 attributed to the phenolic compounds in CEO, which had UV absorption capacity and 429 the differences in the refractive index of the continuous phase and the dispersed phase. 430 A similar result was reported by Fasihi, et al. (2019) in carboxymethyl cellulose and 431 polyvinyl alcohol films incorporated with rosemary essential oil-loaded Pickering 432 emulsion. UV light is one of the main factors that accelerate the oxidation of unsaturated fatty acids (Jakubowska et al., 2023). Research had verified that the 433

434	addition of Pickering emulsion into a film can reduce the transmittance of light because
435	of the dispersed droplets from the emulsion (Liu, et al., 2020). Thus, the food packaging
436	films with great UV barrier properties were worth considering when applied.

437 *3.2.6.* Thermal properties

438 The TG and DTG curves of CEO-loaded Pickering emulsion CS/GEL films were 439 shown in Fig. 4 (C) and Fig. 4 (D), respectively. The CEO-loaded Pickering emulsion 440 CS/GEL films showed multiple steps of weight loss in TG and DTG curves. The initial 441 weight change stage of films appeared at 120 °C, which could be mainly due to the 442 evaporation of free water. The second stage of weight loss was observed from 180 to 443 220 °C. Weight loss of films at this stage was more likely attributed to the loss of 444 structurally bound water, glycerol, and other low molecular weight compounds. The third range was observed from 260 to 330 °C, which corresponded to a complex process 445 involving the degradation of the polymer, especially of GEL (Roy & Rhim, 2020). A 446 447 similar thermal degradation pattern was reported in the konjac glucomannan-based films incorporated with the Pickering emulsion of sunflower seed oil (Liu et al., 2020). 448 449 As shown in Fig. 4 (D), the introduction of CEO-loaded Pickering emulsion improves 450 the thermal stability of CS/GEL films. which agreed with the reported results in the literature (Zhao et al., 2022). 451

452 *3.2.7. Water content and water solubility*

453 The values of water related properties including WC and WS can be used to

454	evaluate the water sensitivity properties of the films, which could be greatly related to
455	physical properties. As shown in Table 1, the CS/GEL films displayed higher water
456	content, the values of CF0 and BF0 were 28.04 % and 32.97 %, respectively. However,
457	the WC values of films were decreased significantly with the CS/GEL films
458	incorporated with CEO-loaded Pickering emulsion ($P < 0.05$). These results were
459	mainly due to the hydrophobic CEO droplets wrapped in the emulsions, and the
460	interactions between CS/GEL and emulsions would replace partial CS/GEL and water
461	interactions. A similar result was reported by Shen et al. (2021), which found that the
462	pullulan-gelatin based films incorporated with clove essential oil-loaded Pickering
463	emulsion resulted in a decrease in WC. The WS of CS/GEL films displayed a higher
464	value (Table 1), 41.38 % and 35.86 % for CF0 and BF0, respectively. However, the
465	WS values of CEO-loaded Pickering emulsion incorporated with CS/GEL films
466	gradually decreased with the increase of CEO-loaded Pickering emulsion content.
467	These results were consistent with MC value described above due to the addition of
468	hydrophobic substances, which suggested that CEO-loaded Pickering emulsion could
469	contribute to improving the water hydrophobic of the CS/GEL films. Therefore, the
470	hydrophilic drawback of pure GEL could be overcome to some extent by the addition
471	of essential oil loaded Pickering emulsion.

472 *3.2.8. Barrier properties*

473 The barrier properties of films were evaluated using WVP and OP parameters.474 WVP and OP of packaging films played critical roles in preventing moisture regain,

475	oxidation of food ingredients, and deterioration of food quality (Zhang, et al., 2019).
476	As shown in Fig. 5. the WVP value of CS/GEL films were 1.36 and 1.76 $\times 10^{-10}{\rm g/(m}$
477	s Pa) of CF0 and BF0, respectively. A significant difference in WVP value was found
478	among films incorporated with different content of CEO-loaded Pickering emulsion (P
479	< 0.05). The WVP value of CF10 and BF10 were 1.05 and 1.29 $\times 10^{-10}$ g/(m s Pa)
480	respectively, which were lower than of gelatin/agar-based films integrated with clove
481	essential oil loaded Pickering emulsion (0.62~0.71 $\times 10^{-9}$ g/(m s Pa)) (Roy & Rhim,
482	2021b). Water molecules can be absorbed into the films and interact with the free
483	hydroxyl groups of CS. However, the hydrogen bonds between CS and GEL reduced
484	the availability of hydrophilic groups. In addition, the droplets of hydrophobic CEO-
485	loaded Pickering emulsion in CS/GEL films increased the tortuosity of the path of
486	water vapor through films (Wang et al., 2018), and be shown in Fig. 5 (C).
487	The OP showed a similar trend of WVP in prepared films. The OP of CF0 and
488	BF0 were 1.50 and 1.28 $\times 10^{-10}$ g/(m s Pa), respectively, and decreased as the addition
489	of CEO-loaded Pickering emulsion. These results could be the addition of CEO-loaded
490	Pickering emulsion reduced the mobility of polymer chain by forming uniform network
491	structure between CS/GEL complex film forming matrix (Wang et al., 2021).
492	Furthermore, as shown in Fig. 5 (C), the migration path of oxygen molecules was
493	increased as same as water vapor. The results of WVP and OP, suggested that the
494	incorporation with CEO-loaded Pickering emulsion into CS/GEL films could enhance
495	the barrier properties of films.

3.3. Release behavior

497	50% ethanol solution (representing semi-fatty foodstuffs) and 95% ethanol
498	solution (representing high-fatty foodstuffs) were selected as a simulant, respectively,
499	to evaluate the CEO release behavior in films, and the results were shown in Fig. 6 (A1)
500	and (A2). The release curve of CEO release in all films showed increasing trends until
501	reached an equilibrium state during the test period, both in 50% ethanol solution and
502	95% ethanol solution. It could be due to the migration of the CEO from the CS/GEL
503	film matrix to the simulant solution (Ahammed et al., 2021). In addition, the release
504	behavior showed that the release rates were affected by the concentration of CEO in
505	the film matrix, which suggested that the controlled release can be achieved by altering
506	the amounts of CEO (Zhang et al., 2022a). However, a significant release rate was
507	observed between CF and BF in 50% ethanol solution. This result was mainly due to
508	the collapse of the bilayer assembly film structure in 50% ethanol solution. The 50%
509	ethanol solution system had more water, causing the film to swell and even dissolve to
510	some extent. In high hydrophilic system, the spatial network structure of the BF with
511	weak intermolecular interaction was more likely to be destroyed, resulting in the
512	increase of the release rate of CEO. This result implied that control release can be
513	achieved by regulating the content of the CEO-loaded Pickering emulsion and the
514	biopolymer film system.

3.4. Antimicrobial properties

516	Antibacterial properties of CEO-loaded Pickering emulsion CS/GEL were
517	evaluated by determining the growth curve of the gram-negative pathogen (P.
518	paralactis MN10) and gram-positive pathogen (L. Sakei VMR17), and observed
519	morphology of bacteria by SEM. The details were shown in Fig.6 (B1) and (B2). The
520	CEO-loaded Pickering emulsion CS/GEL films had a significant antimicrobial effect
521	on P. paralactis MN10 and L. Sakei VMR17 Moreover, the CEO-loaded Pickering
522	emulsion CS/GEL films seemed to inhibit effectively the growth of L. Sakei VMR17
523	than P. paralactis MN10, due partially to the differences in the cell wall structure of
524	Gram-positive bacteria and Gram-negative bacteria (da Silva et al., 2022). These
525	results can be ascribed to the interaction between the active compounds in CEO
526	(cinnamaldehyde, phellandrene, and other phenolic substances) and the cell membrane
527	of bacteria, leading to disruption of cell structure (Zhang et al., 2022b). To explore the
528	mechanism of action of CEO-loaded Pickering emulsion CS/GEL against the P.
529	paralactis MN10 and L. Sakei VMR17, the morphology of bacteria was observed by
530	SEM (Fig. 6 (C)). In the control group, the <i>P. paralactis</i> MN10 exhibited a short rod
531	shape and the L. Sakei VMR17 showed a two- long section shape, and the surfaces
532	were smooth of P. paralactis MN10 and L. Sakei VMR17. However, under the
533	treatments of CEO-loaded Pickering emulsion CS/GEL films, the cell adhesion
534	aggregation and surface depression of P. paralactis MN10 and L. Sakei VMR17 were
535	observed. Some reports had attributed the mechanism of EOs to inhibit microbial
536	proliferation to their ability of penetration, which refer to penetrate through bacterial

cell membranes into the interior of the cell (Rao, Chen, & McClements, 2019). These
results stated that the CEO-loaded Pickering emulsion CS/GEL films had the potential
as an antimicrobial biobased food packaging material.

540 **4.** Conclusions

541 In this work, biobased antimicrobial packaging was successfully fabricated by 542 incorporating CEO-loaded Pickering emulsion within CS/GEL film. The CEO-loaded 543 Pickering emulsion has an average particle size of 113.37 nm and exhibited excellent physical stability. The microstructures of prepared films presented that the CEO-loaded 544 545 Pickering emulsion was uniformly disputed in the films. FTIR and WAXS analyses revealed that the CEO-loaded Pickering emulsion showed compatibility with CS/GEL 546 composite matrix, and thus improved the thermal stability of films. In addition, the 547 548 mechanical properties of CS/GEL composite films were improved by the addition of CEO-loaded Pickering emulsion. Moreover, barrier properties for water vapor and 549 550 oxygen were improved with the incorporation of CEO-loaded Pickering emulsion. 551 Additionally, the CEO-loaded Pickering emulsion CS/GEL films had effective 552 antimicrobial against spoilage bacteria *P. paralactis* MN10 and *L. Sakei* VMR17 under the controlled release of CEO of prepared films. In conclusion, the incorporation of 553 CEO-loaded Pickering emulsion was a promising approach to enhance the 554 antimicrobial properties of CS/GEL films. The beneficial properties in this work 555 556 supported that CEO-loaded Pickering emulsion CS/GEL films had the potential 557 capacity for food active packaging.

558 Credit author statement

- 559 Simin Fan: Investigation; Data curation; Formal analysis; Writing original draft.
- 560 Debao Wang: Methodology; Validation; Writing review & editing.
- 561 Xiangyuan Wen: Resources; Data curation.
- 562 Xin Li: Validation; Visualization.
- 563 Fei Fang: Resources; Project administration.
- 564 Aurore Richel: Writing review & editing, Supervision.
- 565 Naiyu Xiao: Writing review & editing.
- 566 Marie-Laure Fauconnier: Writing review & editing.
- 567 Chengli Hou: Conceptualization; Writing review & editing; Supervision.
- 568 Dequan Zhang: Conceptualization; Writing review & editing; Funding acquisition;
- 569 Supervision.

570 Acknowledgements

- 571 This work was financially supported by the National Key R&D Program of China
- 572 (No. 2021YFD2100802). The authors thank Shanshan Liu, Tongjing Yan, Zhe Cheng,
- 573 Yuqian Xu, Minghui Gu, Juan Chen, Jingyi Wei for their contributions on this work.
- 574 The authors also appreciate the assistance by Mrs. Yanli Sun and Mrs. Ying Wang of
- 575 Electron Microscope Center and Mrs. Chunhong Li of National Key Laboratory of
- 576 Argo-products Processing, Institute of Food Science and Technology, Chinese

ounalPre

577 Academy of Agricultural Science for their technical support.

578 **References**

- Ahammed, S., Liu, F., Wu, J., Khin, M. N., Yokoyama, W. H., & Zhong, F. (2021).
 Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. *Food Hydrocolloids*, 116, 106649.
- Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin
 films activated by nanoemulsion and Pickering emulsion stabilized marjoram
 (*Origanum majorana* L.) essential oil. *Food Hydrocolloids*, 99, 105338.
- Al-Maqtari, Q. A., Al-Gheethi, A. A. S., Ghaleb, A. D. S., Mahdi, A. A., Al-Ansi, W.,
 Noman, A. E., et al. (2022). Fabrication and characterization of chitosan/gelatin
 films loaded with microcapsules of Pulicaria jaubertii extract. *Food Hydrocolloids*,
 129, 107624.
- 589 Calo, J. R., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C. (2015). Essential oils as
 590 antimicrobials in food systems A review. *Food Control*, 54, 111-119.
- 591 Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M.,
 592 Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment.
 593 ACS Sustainable Chemistry & Engineering, 8(9), 3494-3511.
- 594 Chen, Y., Duan, Q., Yu, L., & Xie, F. (2021). Thermomechanically processed chitosan:
 595 gelatin films being transparent, mechanically robust and less hygroscopic.
 596 Carbohydrate Polymers, 272, 118522.
- da Silva, B. D., do Rosário, D. K. A., Weitz, D. A., & Conte-Junior, C. A. (2022).
 Essential oil nanoemulsions: Properties, development, and application in meat and
 meat products. *Trends in Food Science & Technology*, 121, 1-13.
- Dai, H., Peng, L., Wang, H., Feng, X., Ma, L., Chen, H., Yu, Y., Zhu, H., & Zhang, Y.
 (2022). Improved properties of gelatin films involving transglutaminase crosslinking and ethanol dehydration: The self-assembly role of chitosan and
 montmorillonite. *Food Hydrocolloids*, 132, 107870.
- Do, N. H. N., Truong, Q. T., Le, P. K., & Ha, A. C. (2022). Recent developments in
 chitosan hydrogels carrying natural bioactive compounds. *Carbohydrate Polymers*, 294, 119726.
- Fasihi, H., Noshirvani, N., Hashemi, M., Fazilati, M., Salavati, H., & Coma, V. (2019).
 Antioxidant and antimicrobial properties of carbohydrate-based films enriched
 with cinnamon essential oil by Pickering emulsion method. *Food Packaging and Shelf Life*, 19, 147-154.
- Garavand, F., Cacciotti, I., Vahedikia, N., Rehman, A., Tarhan, O., "Akbari-Alavijeh,
 S., et al. (2020). A comprehensive review on the nanocomposites loaded with
 chitosan nanoparticles for food packaging. *Critical Reviews in Food Science and Nutrition*, 62, 1383-1416.
- Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., & Pulvirenti, A. (2019).
 Comparative analysis of blend and bilayer films based on chitosan and gelatin
 enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food
 packaging applications. *Food Packaging and Shelf Life*, 19, 31-39.

- Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2022). Tailoring physicomechanical and antimicrobial/antioxidant properties of biopolymeric films by
 cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging
 of fresh rainbow trout fillets. *Food Hydrocolloids*, 124, 107249.
- Hua, L., Deng, J., Wang, Z., Wang, Y., Chen, B., Ma, Y., Li, X., & Xu, B. (2021).
 Improving the functionality of chitosan-based packaging films by crosslinking
 with nanoencapsulated clove essential oil. *International Journal of Biological Macromolecules*, 192, 627-634.
- Jafarzadeh, S., Jafari, S. M., Salehabadi, A., Nafchi, A. M., Uthaya Kumar, U. S., &
 Khalil, H. P. S. A. (2020). Biodegradable green packaging with antimicrobial
 functions based on the bioactive compounds from tropical plants and their byproducts. *Trends in Food Science & Technology*, 100, 262-277.
- Jakubowska, E., Gierszewska, M., Szydłowska-Czerniak, A., Nowaczyk, J., &
 Olewnik-Kruszkowska, E. (2023). Development and characterization of active
 packaging films based on chitosan, plasticizer, and quercetin for repassed oil
 storage. *Food Chemistry*, 399, 133934.
- Jia, Y., Dang, M., Khalifa, I., Zhang, Y., Huang, Y., Li, K., & Li, C. (2023). Persimmon
 tannin can enhance the emulsifying properties of persimmon pectin via promoting
 the network and forming a honeycomb-structure. *Food Hydrocolloids*, 135,
 108157.
- Li, H., Wu, C., Yin, Z., Wu, J., Zhu, L., Gao, M., & Zhan, X. (2022a). Emulsifying
 properties and bioavailability of clove essential oil Pickering emulsions stabilized
 by octadecylaminated carboxymethyl curdlan. *International Journal of Biological Macromolecules*, 216, 629-642.
- Liu, J., Song, F., Chen, R., Deng, G., Chao, Y., Yang, Z., Wu, H., Bai, M., Zhang, P., &
 Hu, Y. (2022). Effect of cellulose nanocrystal-stabilized cinnamon essential oil
 Pickering emulsions on structure and properties of chitosan composite films. *Carbohydrate Polymers*, 275, 118704.
- Liu, Q., Wang, W., Qi, J., Huang, Q., & Xiao, J. (2019). Oregano essential oil loaded
 soybean polysaccharide films: Effect of Pickering type immobilization on physical
 and antimicrobial properties. *Food Hydrocolloids*, 87, 165-172.
- Liu, Y., Wang, R., Wang, D., Sun, Z., Liu, F., Zhang, D., & Wang, D. (2022).
 Development of a food packaging antibacterial hydrogel based on gelatin, chitosan,
 and 3-phenyllactic acid for the shelf-life extension of chilled chicken. *Food Hydrocolloids*, 127, 107546.
- Liu, Z., Lin, D., Shen, R., & Yang, X. (2020). Characterizations of novel konjac
 glucomannan emulsion films incorporated with high internal phase Pickering
 emulsions. *Food Hydrocolloids*, 109, 106088.
- Mwangi, W. W., Lim, H. P., Low, L. E., Tey, B. T., & Chan, E. S. (2020). Food-grade
 Pickering emulsions for encapsulation and delivery of bioactives. *Trends in Food Science & Technology*, 100, 320-332.
- 660 Mattice, K. D., & Marangoni, A. G. (2020). Functionalizing zein through antisolvent

precipitation from ethanol or aetic acid. *Food Chemistry*, 313, 126127.

- Niroula, A., Gamot, T. D., Ooi, C. W., & Dhital, S. (2021). Biomolecule-based
 pickering food emulsions: Intrinsic components of food matrix, recent trends and
 prospects. *Food Hydrocolloids*, 112, 106303.
- Qiao, C., Ma, X., Zhang, J., & Yao, J. (2017). Molecular interactions in gelatin/chitosan
 composite films. *Food Chemistry*, 235, 45-50.
- Rao, J., Chen, B., & McClements, D. J. (2019). Improving the efficacy of essential oils
 as antimicrobials in foods: mechanisms of action. *Annual Review of Food Science and Technology*, 10(1), 365-387.
- Roy, S., & Rhim, J.-W. (2020). Preparation of antimicrobial and antioxidant
 gelatin/curcumin composite films for active food packaging application. *Colloids and Surfaces B: Biointerfaces*, 188, 110761.
- Roy, S., & Rhim, J.-W. (2021a). Fabrication of bioactive binary composite film based
 on gelatin/chitosan incorporated with cinnamon essential oil and rutin. *Colloids and Surfaces B: Biointerfaces*, 204, 111830.
- Roy, S., & Rhim, J.-W. (2021b). Gelatin/agar-based functional film integrated with
 Pickering emulsion of clove essential oil stabilized with nanocellulose for active
 packaging applications. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 627, 127220.
- Shao, P., Feng, J., Sun, P., & Ritzoulis, C. (2019). Improved emulsion stability and
 resveratrol encapsulation by whey protein/gum arabic interaction at oil-water
 interface. *International Journal of Biological Macromolecules*, 133, 466-472.
- Shao, P., Yu, J., Chen, H., & Gao, H. (2021). Development of microcapsule bioactive
 paper loaded with cinnamon essential oil to improve the quality of edible fungi. *Food Packaging and Shelf Life*, 27, 100617.
- Shen, Y., Ni, Z. J., Thakur, K., Zhang, J.G., Hu, F., & Wei, Z. J. (2021). Preparation and
 characterization of clove essential oil loaded nanoemulsion and pickering
 emulsion activated pullulan-gelatin based edible film. *International Journal of Biological Macromolecules*, 181, 528-539.
- Soltani, S., & Madadlou, A. (2016). Two-step sequential cross-linking of sugar beet
 pectin for transforming zein nanoparticle-based Pickering emulsions to emulgels.
 Carbohydrate Polymers, 136, 738-743.
- 693 Uranga, J., Puertas, A. I., Etxabide, A., Dueñas, M. T., Guerrero, P., & de la Caba, K.
 694 (2019). Citric acid-incorporated fish gelatin/chitosan composite films. *Food*695 *Hydrocolloids*, 86, 95-103.
- Wang, D., Sun, J., Li, J., Sun, Z., Liu, F., Du, L., & Wang, D. (2022). Preparation and
 characterization of gelatin/zein nanofiber films loaded with perillaldehyde, thymol,
 or ε-polylysine and evaluation of their effects on the preservation of chilled
 chicken breast. *Food Chemistry*, 373, 131439.
- Wang, D., Sun, Z., Sun, J., Liu, F., Du, L., & Wang, D. (2021). Preparation and
 characterization of polylactic acid nanofiber films loading Perilla essential oil for
 antibacterial packaging of chilled chicken. *International Journal of Biological*

703 Macromolecules, 192, 379-388. 704 Wang, W., Xiao, j., Chen, X., Luo, M., Liu, H., & Shao, P. (2018). Fabrication and 705 characterization of multilayered kafirin/gelatin film with one-way water barrier 706 property. Food Hydrocolloids, 81, 159-168. 707 Wu, W., Wu, Y., Lin, Y., & Shao, P. (2022). Facile fabrication of multifunctional citrus 708 pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible 709 fungi. Food Chemistry, 374, 131763. 710 Xu, Y., Chu, Y., Feng, X., Gao, C., Wu, D., Cheng, W., Meng, L., Zhang, Y., & Tang, 711 X. (2020). Effects of zein stabilized clove essential oil Pickering emulsion on the 712 structure and properties of chitosan-based edible films. International Journal of 713 Biological Macromolecules, 156, 111-119. 714 Yang, K., Liu, A., Hu, A., Li, J., Zen, Z., Liu, Y., Tang, S., & Li, C. (2021). Preparation 715 and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and 716 717 after encapsulation. Food Control, 123, 107783. Zhang, L., Chen, D., Yu, D., Regenstein, J. M., Jiang, Q., Dong, J., Chen, W., & Xia, 718 719 W. (2022a). Modulating physicochemical, antimicrobial and release properties of chitosan/zein bilaver films with curcumin/nisin-loaded pectin nanoparticles. Food 720 721 Hydrocolloids, 133, 107955. 722 Zhang, S., He, Z., Xu, F., Cheng, Y., Waterhouse, G. I. N., Sun-Waterhouse, D., & Wu, P. (2022b). Enhancing the performance of konjac glucomannan films through 723 724 incorporating zein-pectin nanoparticle-stabilized oregano essential oil Pickering emulsions. Food Hydrocolloids, 124, 107222. 725 Zhang, W., Jiang, H., Rhim, J. W., Cao, J., & Jiang, W. (2022c). Effective strategies of 726 sustained release and retention enhancement of essential oils in active food 727 728 packaging films/coatings. Food Chemistry, 367, 130671. 729 Zhang, W., Shu, C., Chen, Q., Cao, J., & Jiang, W. (2019). The multi-layer film system improved the release and retention properties of and its application as coating in 730 731 inhibition to penicillium expansion of apple fruit. Food Chemistry, 299, 125109. 732 Zhao, G., Wang, S., Li, Y., Yang, L., & Song, H. (2023). Properties and microstructure 733 of pickering emulsion synergistically stabilized by silica particles and soy hull 734 polysaccharides. Food Hydrocolloids, 134, 108084. 735 Zhao, K., Wang, W., Teng, A., Zhang, K., Ma, Y., Duan, S., Li, S., & Guo, Y. (2020). Using cellulose nanofibers to reinforce polysaccharide films: Blending vs layer-736 737 by-layer casting. Carbohydrate Polymers, 227, 115264. 738 Zhao, R., Guan, W., Zhou, X., Lao, M., & Cai, L. (2022). The physiochemical and 739 preservation properties of anthocyanidin/chitosan nanocomposite-based edible 740 films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT-741 Food Science and Technology, 153, 112506. 742

743 Figure Caption

744 Fig. 1 Size distribution (A), Turbiscan stability index (B) and confocal laser scanning microscopic (CLSM) images (C) of cinnamon essential oil (CEO) loaded (1%, v/v) 745 Pickering emulsion. The CLMS images (C) with 200 times magnification displayed 746 different observation status of CEO-loaded Pickering emulsion, including bright field 747 (i), the channel at 488 nm excitation wavelength (ii), the channel at 633 nm excitation 748 749 wavelength (iii) and stacked state of both 488nm and 633 nm channels (iv). CEO phase (dyed by Nile Red) is denoted in red and the zein nanoparticle phase (dyed by Nile Blue) 750 751 is in green, respectively. Fig. 2 Scanning electron microscope (SEM) of different contents (0, 5, 7.5, and 10 mL) 752 cinnamon essential oil (CEO) loaded Pickering emulsion chitosan/gelatin composite 753 754 films with 300 times magnification. While CF represents blend casting chitosan/gelatin

- films, BF represents bilayer assembly chitosan/gelatin films and the number represents
 the CEO-loaded Pickering emulsion contents (0, 5, 7.5, and 10 mL) that be added to
 films.
- **Fig. 3** Appearance (A) and light transmittance (B1, B2) of different contents (0, 5, 7.5,
- and 10 mL) cinnamon essential oil (CEO) loaded Pickering emulsion chitosan/gelatin
- 760 films. CF and BF represent blend casting and bilayer assembly chitosan/gelatin films,
- and the number represents the CEO-loaded Pickering emulsion contents (0, 5, 7.5, and
- 762 10 mL) that be added to films.
- 763 Fig. 4 FTIR (A), Wide-angle X-ray scattering (B), weight loss curves (C) and first order

764	derivative of weight loss curve (D) of different contents cinnamon essential oil (CEO)
765	loaded Pickering emulsion (5, 7.5 and 10 mL) in chitosan/gelatin films. CF and BF
766	represent blend casting and bilayer assembly chitosan/gelatin films, and the number
767	represents the CEO-loaded Pickering emulsion content (mL) that be added to films.
768	Fig. 5 Water vapor permeability (WVP) and of different contents (0, 5, 7.5, and 10 mL)
769	cinnamon essential oil (CEO) loaded Pickering emulsion in blend casting
770	chitosan/gelatin films (A1) and bilayer assembly chitosan/gelatin films (A2). Oxygen
771	permeability (OP) of different contents (0, 5, 7.5, and 10 mL) cinnamon essential oil
772	(CEO) loaded Pickering emulsion in blend casting chitosan/gelatin films (B1) and
773	bilayer assembly chitosan/gelatin films (B2). Schematic diagram of water vapor and
774	oxygen through the blend casting and bilayer assembly of chitosan/gelatin films (C).
775	CF and BF represent blend casting and bilayer assembly chitosan/gelatin films, and the
776	number represents the CEO-loaded Pickering emulsion contents (0, 5, 7.5, and 10 mL)
777	that be added to films. Different superscripts within a column indicate significant
778	differences ($P < 0.05$).

779 Fig. 6 The release behavior of cinnamon essential oil (CEO) in CEO-loaded Pickering emulsion chitosan/gelatin films to different food simulants. 50% ethanol solution 780 781 simulated as semi-fatty foodstuffs (A1) and 95% ethanol solution simulated as fatty foodstuffs (A2), respectively. Growth profiles of P. paralactis MN10 (B1) and L.sakei 782 VMR17 (B2) under treatment of different CEO-loaded Pickering emulsion 783 chitosan/gelatin films. And the morphology of P. paralactis MN10 and L.sakei VMR17 784

under different treatments by scanning electron microscope with 20000 timesmagnification.

ournal propos

Fig. 4

795 Fig. 5

799	Table 1	Thickness,	tensile	strength	(TS),	elongation	at break	(EAB),	water	content
-----	---------	------------	---------	----------	-------	------------	----------	--------	-------	---------

Samples	Thickness (µm)	TS (MPa)	EAB (%)	WC (%)	WS (%)
CF0	66.61±4.27 ^e	12.96±0.98ª	$3.95{\pm}0.50^{\circ}$	$28.04{\pm}0.26^{b}$	$41.38{\pm}0.48^{a}$
CF5	67.52 ± 3.61^{de}	$9.91{\pm}1.06^{b}$	$5.17 \pm 0.06^{\circ}$	24.07 ± 0.26^{cd}	$36.14{\pm}1.36^{b}$
CF7.5	$68.24{\pm}2.93^{de}$	$9.50{\pm}0.48^{b}$	$5.27 \pm 0.49^{\circ}$	$22.96{\pm}0.38^d$	$34.34{\pm}0.34^{bc}$
CF10	$74.81{\pm}3.34^{ab}$	$9.58{\pm}0.48^{b}$	$5.69 \pm 0.32^{\circ}$	$19.44{\pm}0.93^{e}$	32.16 ± 0.76^{bc}
BF0	69.85±2.86 ^{cde}	8.16±0.25°	$30.03{\pm}0.66^{b}$	$32.97{\pm}1.72^{ab}$	$35.86{\pm}0.14^{b}$
BF5	$70.24{\pm}1.83^{cd}$	$6.60{\pm}0.31^{de}$	$30.47{\pm}2.83^{ab}$	29.23 ± 2.18^{b}	$33.06{\pm}1.48^{bc}$
BF7.5	72.14 ± 3.83^{bc}	6.35±0.56 ^e	$32.31{\pm}1.86^{a}$	27.30±0.62°	$30.50{\pm}2.84^{\circ}$
BF10	$78.03{\pm}4.07^{a}$	$6.58{\pm}0.25^{de}$	$33.63{\pm}1.16^{a}$	$20.94{\pm}0.94^{de}$	29.26±1.99°

800 (WC), and water solubility (WS) of films.

801 Different superscripts in the same column indicate significant differences among films (P < 0.05).

802 CF and BF represent blend casting and bilayer assembly chitosan/gelatin films, and the number

803 represents the cinnamon-loaded Pickering emulsion contents (0, 5, 7.5, and 10mL) that be added

Jonulual

to films.

Highlights

- Pickering emulsion as antimicrobial agent delivery system. •
- CEO-loaded Pickering emulsion was incorporated into CS/GEL complex films.
- Mechanical and barrier properties of prepared films were enhanced.
- The antimicrobial activities and control release behavior of films were shown. ۲

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Presson