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Motivation

We study one-dimensional Bose-Hubbard systems,
or chains, which are describing many-body ultra-
cold bosonic atoms. Our goal is to study quantum
chaos in such systems, and see if it can be linked
to classical chaos by considering the (semi)classical
equivalent of the system. In addition to purely
quantum time-evolution simulations, the numerical
tools used for this purpose are a mean-field Gross-
Pitaevskii description of the system and a truncated
Wigner (tW) approach. We will see if signatures
of chaos can be found in out-of-time-ordered corre-
lators (OTOCs), and how it can be linked to the
deviation of classical trajectories.

Bose-Hubbard chains

• Quantum system:
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with:
◦ El the on-site interaction
◦ J the hopping parameter between adjacent

sites
◦ U the 2-body interaction parameter
◦ b̂l, b̂†l the bosonic annihilation and creation

operators on site l
◦ n̂l = b̂†l b̂l the population operator on site l

• Classical analogue:
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→ Discretised Gross-Pitaevskii equation:
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Lyapunov exponent

• Characterises the rate of separation of initially
close trajectories in phase space
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• Only finite differences are achievable
→ necessity of a numerical approach:

Wolf algorithm
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•• In good agreement with [A. C. Cassidy et al., Phys. Rev.

Lett. 102, 025302 (2009)]

Ehrenfest time

• Breakdown of one-to-one correspondence
between quantum wave packet and classical
trajectories

The Ehrenfest time in the hypothesis of a
perfectly ergodic system is given by
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)
As we don’t know whether a system is or not
ergodic in general, this can be seen as an upper
bound for the actual tE.

• To quantify the spreading of the wave packet
classically, we sampled a coherent state centred
around |5 5 4 3 3〉 with a tW approach, and
computed the spreading as the average distance
between the centre of the distribution and the
sampling points, for different initial extensions
σ of the packet.
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• The sampling-averaged distance saturates after
a certain time, translating the spreading of the
wave packet over the accessible region of phase
space. Saturation at t = tE is expected when
σ ∼ 1.

Out-of-time-ordered correlators (OTOCs)

• C(t) =

〈∣∣∣[Â(t), B̂(0)
]∣∣∣2〉

• Characterises the propagation of quantum
information in complex quantum systems, i.e.
scrambling

• Initially zero, then 3 regimes:

◦ power-law growth ∼ t2s with s the operators
separation

◦ exponential regime ∼ e2λt

◦ saturation at t ∼ tE

• Choice of operators: Â = n̂1, B̂ = n̂2, applied
on Fock state |5 5 4 3 3〉
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• Both curves saturate at t ∼ O(tE)

Conclusion and challenges

We managed to successfully estimate the Ehrenfest
time of a quantum Bose-Hubbard system using its
classical equivalent by comparing the time it takes
to classically explore the whole accessible region of
phase space, using a tW approach, with the expec-
tation value of a quantum operator: an OTOC. We
showed that the spreading of the wave packet sat-
urates at the same time as the OTOC, which is
known to saturate at the Ehrenfest time.

Several challenges remain:
• Can we compute tE classically using Fock

states?
•What are the effects of scars/dynamical

localisation?
• Can tE be computed directly with classical

OTOC calculation?
• Generalisation for Fermi-Hubbard systems?

[T. Engl et al, Phys. Rev. A 98, 013630 (2018)]
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