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a b s t r a c t

The energy transition is expected to significantly increase the share of renewable energy sources
whose production is intermittent in the electricity mix. Apart from key benefits, this development has
the major drawback of generating a mismatch between power supply and demand. The innovative
dynamic pricing approach may significantly contribute to mitigating that critical problem by taking
advantage of the flexibility offered by the demand side. At its core, this idea consists in providing
the consumer with a price signal which is evolving over time, in order to influence its consumption.
This novel approach involves a challenging decision-making problem that can be summarised as
follows: how to determine a price signal maximising the synchronisation between power supply
and demand under the constraints of maintaining the producer/retailer’s profitability and benefiting
the final consumer at the same time? As a contribution, this research work presents a detailed
formalisation of this particular decision-making problem. Moreover, the paper discusses the diverse
algorithmic components necessary to efficiently design a dynamic pricing policy: different forecasting
models together with an accurate statistical modelling of the demand response to dynamic prices.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Climate change is undeniably a major challenge facing human-
ty in the 21st century (IPCC, 2021). An ambitious transformation
s required in all sectors to significantly lower their respective
arbon footprints. Electricity generation is no exception, with the
urning of fossil fuels, mainly coal and gas, being by far the
ominant power source in the world today (Ritchie and Roser,
020). This sector has to undergo an important transformation
f the global electricity mix by promoting power sources with a
ignificantly lower carbon footprint. Belonging to that category
re nuclear power, hydroelectricity, biomass or geothermal en-
rgy which are relatively controllable, but also the energy directly
xtracted from wind and sun which is conversely intermittent in
ature. Since wind turbines and photovoltaic panels are expected
o play a key role in the energy transition, solutions are required
o address their variable production. Interesting technical av-
nues are the interconnection of power grids (Chatzivasileiadis
t al., 2013) and the development of storage capacities such as
atteries, pumped hydroelectricity or hydrogen (Kittner et al.,
017). Another promising and innovative solution is to influence
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the behaviour of consumers through the use of dynamic pricing
(DP), so that power supply and demand are better synchronised.
In fact, the core idea is to take advantage of the flexibility offered
by the power demand side.

The dynamic pricing approach consists in continuously adapt-
ing the electricity price that the final consumer has to pay in
order to influence its consumption behaviour. Basically, when
demand exceeds supply, the power price would be increased in
order to take down consumption. Conversely, a reduced price
would be provided when there is excessive production compared
to consumption. From a graphical perspective, the objective is not
only to shift the daily consumption curve but also to change its
shape in order to better overlap with the intermittent production
curve of renewable energy sources. This concept is illustrated in
Fig. 1 for a representative situation.

The innovative dynamic pricing approach relies on two impor-
tant assumptions. Firstly, the final consumer has to be equipped
with a smart metering device to measure its production in real-
time and with communication means for the price signal. Sec-
ondly, the final consumer has to be able to provide a certain
amount of flexibility regarding its power consumption. Moreover,
it has to be sufficiently receptive to the incentives offered to
reduce its electricity bill in exchange for a behaviour change. If
these requirements are met, the major strength of the dynamic
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.egyr.2023.01.040
https://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2023.01.040&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:thibaut.theate@uliege.be
mailto:dernst@uliege.be
https://doi.org/10.1016/j.egyr.2023.01.040
http://creativecommons.org/licenses/by/4.0/


T. Théate, A. Sutera and D. Ernst Energy Reports 9 (2023) 2453–2462

c
w
r
p
a
r
t
t
c
t
f

s
r
p
b
o
c
i
a
t
e
f

2

i
a
t
W
i
t
a
e
s
i

m

Fig. 1. Illustration of the dynamic pricing approach’s potential to shift and
change the shape of a typical daily consumption curve (blue) so that there is
a better synchronisation with the daily intermittent production of renewable
energy sources (red). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

pricing approach is its potential benefits for both the consumer
and the producer/retailer. Moreover, these benefits would not
only be in terms of economy, but also potentially in terms of ecol-
ogy and autonomy. In fact, dynamic prices reward the flexibility
of the demand side.

The contributions of this research work are twofold. Firstly, the
omplex decision-making problem faced by a producer/retailer
illing to develop a dynamic pricing strategy is presented and
igorously formalised. Secondly, the diverse algorithmic com-
onents required to efficiently design a dynamic pricing policy
re thoroughly discussed. To the authors’ knowledge, demand
esponse via dynamic pricing has received considerable atten-
ion from the research community, but from the perspective of
he demand side alone. Therefore, the present research may be
onsidered as a pioneer work studying dynamic pricing from
he perspective of the supply side for taking advantage of the
lexibility of the power consumers.

This research paper is structured as follows. First of all, the
cientific literature about both dynamic pricing and demand
esponse is concisely reviewed in Section 2. Then, Section 3
resents a detailed formalisation of the decision-making problem
ehind the novel dynamic pricing approach from the perspective
f the supply side. Afterwards, Section 4 analyses the algorithmic
omponents necessary for the development of dynamic pric-
ng decision-making policies. Subsequently, a fair performance
ssessment methodology is introduced in Section 5 to quantita-
ively evaluate the performance of a dynamic pricing policy. To
nd this paper, Section 6 discusses interesting research avenues
or future work and draws conclusions.

. Literature review

Over the last decade, the management of the demand side
n the scope of the energy transition has received increasing
ttention from the research community. In fact, there exist mul-
iple generic approaches when it comes to demand response.
ithout getting into too many details, the scientific literature

ncludes some surveys summarising and discussing the different
echniques available together with their associated challenges
nd benefits (Palensky and Dietrich, 2011; Siano, 2014; Deng
t al., 2015; Vardakas et al., 2015; Haider et al., 2016). In this re-
earch work, the focus is exclusively set on the demand response
nduced by dynamic power prices.

As previously mentioned, the scientific literature about de-
and response via dynamic pricing is primarily focused on the
2454
perspective of the demand side. Multiple techniques have already
been proposed to help the consumer provide flexibility and take
advantage of behavioural changes to lower its electricity bill. For
instance, Zhao et al. (2013) presents a power scheduling method
based on a genetic algorithm to optimise residential demand re-
sponse via an energy management system, so that the electricity
cost is reduced. In Muratori and Rizzoni (2016), a technique based
on dynamic programming is introduced for determining the opti-
mal schedule of residential controllable appliances in the context
of time-varying power pricing. One can also mention (Liu et al.,
2017) that proposes an energy sharing model with price-based
demand response for microgrids of peer-to-peer prosumers. The
approach is based on a distributed iterative algorithm and has
been shown to lower the prosumers’ costs and improve the shar-
ing of photovoltaic energy. More recently, (deep) reinforcement
learning techniques have been proven to be particularly relevant
for controlling the residential demand response in the context of
dynamic power prices (Vázquez-Canteli and Nagy, 2019; Li et al.,
2020).

On the contrary, the question of inducing a residential demand
response based on a dynamic pricing approach from the perspec-
tive of the supply side has not received a lot of attention from the
research community yet. Still, there are a few works in the scien-
tific literature about the mathematical modelling of the demand
response caused by dynamic power prices, which is a key element
in achieving that objective. To begin with, Gottwalt et al. (2011)
presents a simulation model highlighting the evolution of elec-
tricity consumption profiles when shifting from a fixed tariff to
dynamic power prices. The same objective is pursued by Brégère
and Bessa (2020) which introduces a fully data-driven approach
relying on the data collected by smart meters and exogenous
variables. The resulting simulation model is based on consump-
tion profiles clustering and conditional variational autoencoders.
Alternatively, Ganesan et al. (2022) presents a functional model of
residential power consumption elasticity under dynamic pricing
to assess the impact of different electricity price levels, based on
a Bayesian probabilistic approach. In addition to these mathe-
matical models, one can also mention some real-life experiments
conducted to assess the responsiveness of residential electricity
demand to dynamic pricing (He et al., 2012; Klaassen et al., 2016).

3. Problem formalisation

This section presents a mathematical formalisation of the chal-
lenging sequential decision-making problem related to the dy-
namic pricing approach for inducing a residential demand re-
sponse. To begin with, the contextualisation considered for study-
ing this particular problem is briefly described, followed by an
overview of the decision-making process. Then, a discretisation of
the continuous timeline is introduced. Subsequently, the formal
definition of a dynamic pricing policy is presented. Lastly, the
input and output spaces of a dynamic pricing policy are described,
together with the objective criterion.

3.1. Contextualisation

As previously hinted, this research work focuses on the inter-
esting real-case scenario of a producer/retailer whose production
portfolio is composed of an important share of renewable energy
sources such as wind turbines and photovoltaic panels. Because of
the substantial intermittency of these generation assets, a strong
connection to the energy markets is required in order to fully
satisfy its customers regardless of the weather. Nevertheless, the
consumers are assumed to be well informed and willing to adapt
their behaviour in order to consume renewable energy rather
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han electricity purchased on the market whose origin may be un-
nown. Within this particular context, the benefits of the dynamic
ricing approach taking advantage of the consumers’ flexibility
re maximised. Indeed, the insignificant marginal cost associ-
ted with these intermittent renewable energy sources coupled
ith their low carbon footprint make this innovative approach

nteresting from an economical perspective for both supply and
emand sides, but also in terms of ecology. Moreover, the au-
onomy of the producer/retailer is expected to be reinforced by
owering its dependence on the energy markets. At the same time,
ependence on fossil fuels may be reduced as well.

In this research work, the predicted difference between power
roduction and consumption is assumed to be fully secured in the
ay-ahead electricity market. Also called spot market, the day-
head market has an hourly resolution and is operated once a
ay for all hours of the following day via a single-blind auction.
n other words, trading power for hour H of day D has to be
erformed ahead on day D−1 between 00:00 AM (market open-

ing) and 12:00 AM (market closure). Therefore, assuming that the
trading activity occurs just before market closure, the energy is
at best purchased 12 h (for delivery at 00:00 AM of day D) up
o 35 h (for delivery at 11:00 PM of day D) before the actual de-
ivery of power. Apart from the day-ahead electricity market, it is
ssumed that there are no trading activities on the future/forward
or intraday markets. Nevertheless, if there remains an eventual
ismatch between production and consumption at the time of
ower delivery, the producer/retailer would be exposed to the
mbalance market. In this case, the so-called imbalance price has
o be inevitably paid as compensation for pushing the power grid
ff balance.

.2. Decision-making process overview

The decision-making problem studied in this research work is
haracterised by a particularity: a variable time lag between the
oment a decision is made and the moment it becomes effective.
s previously explained, any remaining difference between pro-
uction and consumption after demand response has to ideally be
raded on the day-ahead market. The purpose of this assumption
s to limit the exposure of the producer/retailer to the imbalance
arket. For this reason, the price signal sent to the consumer on
ay D has to be generated before the closing of the day-ahead
arket on day D − 1. Additionally, it is assumed that the price

signal cannot be refreshed afterwards.

Basically, the decision-making problem at hand can be for-
malised as follows. The core objective is to determine a decision-
making policy, denoted Π , mapping at time τ input information
f diverse nature Iτ to the electricity price signal Sτ to be sent to
he consumers over a future time horizon well-defined:

τ = Π (Iτ ), (1)

here:

• Iτ represents the information vector gathering all the avail-
able information (of diverse nature) at time τ which may be
helpful to make a relevant dynamic pricing decision,

• Sτ represents a set of electricity prices generated at time τ
and shaping the dynamic price signal over a well-defined
future time horizon.

The dynamic pricing approach from the perspective of the
upply side belongs to a particular class of decision-making prob-
ems: automated planning and scheduling. Contrarily to conven-
ional decision-making outputting one action at a time, planning
ecision-making is concerned with the generation of a sequence
f actions. In other words, a planning decision-making problem
2455
requires to synthesise in advance a strategy or plan of actions
over a certain time horizon. Formally, the decision-making has
to be performed at a specific time τ about a control variable over
a future time horizon beginning at time τi > τ and ending at
time τf > τi. In this case, the decision-making is assumed to
be performed just before the closing of the day-ahead market
at 12:00 AM to determine the price signal to be sent to the
consumers throughout the entire following day (from 00:00 AM
to 11:59 PM).

In the next sections, a more accurate and thorough mathe-
matical formalisation of the dynamic pricing problem from the
perspective of the supply side is presented. Moreover, the plan-
ning problem previously introduced is cast into a sequential
decision-making problem. Indeed, this research paper intends to
focus on a decision-making policy outputting a single price from
the signal Sτ at a time based on a subset of the information
vector Iτ . Such an important choice naturally comes with both
its advantages and limitations.

3.3. Timeline discretisation

Theoretically, the dynamic electricity price signal sent to the
consumer could be continuously changing over time. More real-
istically, this research work adopts a discretisation of the con-
tinuous timeline so that this power price is adapted at regular
intervals. Formally, this timeline is discretised into a number of
time steps t spaced by a constant duration ∆t . If the duration ∆t
is too large, the synchronisation improvement between supply
and demand will probably be of poor quality. Conversely, low-
ering the value of the duration ∆t increases the complexity of
the decision-making process, and a too high update frequency
may even confuse the consumer. There is a trade-off to be found
concerning this important parameter. In this research work, the
dynamic price signal is assumed to change once per hour, mean-
ing that ∆t is equal to one hour. This choice is motivated by
the hourly resolution of the day-ahead market, which has proven
to be an appropriate compromise over the years for matching
power production and consumption. Another relevant discreti-
sation choice could be to have a price signal which is updated
every quarter of an hour. In the rest of this research paper, the
increment (decrement) operations t +1 (t −1) are used to model
the discrete transition from time step t to time step t+∆t (t−∆t),
for the sake of clarity.

3.4. Dynamic pricing policy

Within the context previously described, a dynamic pricing
planning policy Π consists of the set of rules used to make a
decision regarding the future price signal sent to the consumers
over the next day. This planning policy can be decomposed into a
set of 24 dynamic pricing decision-making policies π outputting
a single electricity price for one hour of the following day. Math-
ematically, such a dynamic pricing strategy can be defined as
a programmed policy π : X → Y , either deterministic or
stochastic, which outputs a decision yt ∈ Y for time step t
based on some input information xt ∈ X so as to maximise an
objective criterion. The input xt is derived from the information
vector Iτ associated with the decision-making for time step t ,
after potential preprocessing operations. The price signal Sτ is
composed of 24 dynamic pricing policy outputs yt .

In the rest of this research work, the time at which the
decision-making does occur should not be confused with the time
at which the dynamic price signal is active (charging for energy
consumption). The proposed formalisation assumes that the time
step t refers to the time at which the dynamic price is active, not
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t

Fig. 2. Illustration of the formalised decision-making problem related to dynamic pricing from the perspective of the supply side. The notations xt and yt represent
he inputs and outputs of a dynamic pricing policy π , which are not shown concurrent on the timeline since the decision-making occurs multiple hours before the
application of the dynamic pricing signal. The time axis of the four plots represents the complete following day for which the dynamic prices are generated. The
mathematical notations pFt , c

F
t and λF

t respectively represent the forecast production, consumption and day-ahead market price for the time step t . The quantity c ′
t

is the predicted consumption at time step t after taking into consideration the dynamic pricing signal.
decided. Therefore, the decision-making of the dynamic pricing
policy for time step t (yt = π (xt )) is in fact performed hours
in advance of time step t . This complexity is illustrated in Fig. 2
describing the formalised decision-making problem related to
dynamic pricing.

3.5. Input of a dynamic pricing policy

The input space X of a dynamic pricing policy π comprises
all the available information which may help to make a relevant
decision about future electricity prices so that an appropriate
demand response is induced. Since the decision-making occurs 12
up to 35 h in advance of the price signal delivery, this information
mainly consists of forecasts and estimations that are subject to
uncertainty. As depicted in Fig. 2, the dynamic pricing policy
input xt ∈ X refers to the decision-making occurring at time
τ = t − h with h ∈ [12, 35] about the dynamic pricing signal
delivered to the consumer at time step t . In fact, the quantity Iτ
may be seen as the information contained in the 24 inputs xt for
t ∈ {τ + 12, . . . , τ + 35}. Formally, the input xt ∈ X is decided to
be defined as follows:

xt = {PF
t , C F

t , ΛF
t , Yt , M}, (2)

where:

• PF
t = {pFt+ϵ ∈ R+

| ϵ = −k, . . . , k} represents a set of
forecasts for the power production within a time window
centred around time step t and of size k,

• C F
t = {cFt+ϵ ∈ R+

| ϵ = −k, . . . , k} represents a set of
forecasts for the power consumption within a time window
centred around time step t and of size k,

• ΛF
t = {λF

t+ϵ ∈ R | ϵ = −k, . . . , k} represents a set of
forecasts for the day-ahead market prices within a window
centred around time step t and of size k,

• Yt = {yt−ϵ ∈ R | ϵ = 1, . . . , k} represents the series of
k previous values for the dynamic price signal sent to the
final consumer,

• M is a mathematical model of the demand response to be
expected from the consumption portfolio, with the required

input information.

2456
The different forecasting models and the challenging mod-
elling of the consumption portfolio demand response are dis-
cussed in more details in Section 4.

3.6. Output of a dynamic pricing policy

The output space Y of a dynamic pricing policy π only includes
the future price signal to be sent to the consumer. Formally,
the dynamic pricing policy output yt ∈ Y , which represents
the electricity price to be paid by the consumer for its power
consumption at time step t , is mathematically defined as follows:

yt = et , (3)

where et ∈ R represents the dynamic electricity price to be paid
by the demand side for its power consumption at time step t . Out
of the scope of this research work is the presentation of this price
signal so that the impact on the final consumer is maximised.
Indeed, the way of communicating the output of the dynamic
pricing policy has to be adapted to the audience, be it humans
with different levels of electricity market expertise or algorithms
(energy management systems).

3.7. Objective criterion

The dynamic pricing approach can provide multiple benefits,
in terms of economy, ecology but also autonomy. Consequently,
the objective criterion to be maximised by a dynamic pricing
policy π is not trivially determined. In fact, several core objectives
can be clearly identified:

• maximising the match between supply and demand,
• minimising the carbon footprint of power generation,
• minimising the electricity costs for the consumer,
• maximising the revenue of the producer/retailer.

Although some objectives overlap, these four criteria are not
completely compatible. For instance, maximising the synchro-

nisation between power supply and demand is equivalent to
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inimising the carbon footprint associated with the genera-
ion of electricity. Indeed, the production portfolio of the pro-
ucer/retailer being mainly composed of intermittent renewable
nergy sources, its energy has a reduced carbon footprint com-
ared to the electricity that can be purchased on the day-ahead
arket whose origin is unknown. On the contrary, maximis-

ng the revenue of the producer/retailer will obviously not lead
o a minimised electricity bill for the consumer. This research
ork makes the choice to prioritise the maximisation of the
ynchronisation between supply and demand, and equivalently
he minimisation of the carbon footprint, while translating the
ther two core objectives into relevant constraints. Firstly, the
osts for the consumer have to be reduced with respect to the
ituation without dynamic pricing. Secondly, the profitability of
he producer/retailer has to be guaranteed.

Formally, the objective criterion to be optimised by a dynamic
ricing policy π can be mathematically defined as the following.

First of all, the main target to evaluate is the synchronisation
between supply and demand, which can be quantitatively as-
sessed through the deviation ∆T . This quantity has to ideally be
minimised, and can be mathematically expressed as follows:

∆T =

T−1∑
t=0

|pt − ct |, (4)

where:

• t = 0 corresponds to the first electricity delivery hour of a
new day (00:00 AM),

• T is the time horizon considered, which should be a multiple
of 24 to have full days,

• pt is the actual power production (not predicted) from the
supply side at time step t ,

• ct is the actual power consumption (not predicted) from the
demand side at time step t .

Afterwards, the first constraint concerning the reduced costs
for the consumer has to be modelled mathematically. This is
achieved via the electricity bill BT paid by the consumer over the
time horizon T , which can be expressed as the following:

BT =

T−1∑
t=0

ct yt . (5)

As previously explained, the consumer power bill BT should
not exceed that obtained without dynamic pricing. In that case,
the consumer is assumed to pay a price et , which can for instance
be a fixed tariff or a price indexed on the day-ahead market
price. The situation without dynamic pricing is discussed in more
details in Section 5. Consequently, the first constraint can be
mathematically expressed as follows:
T−1∑
t=0

ct yt ≤

T−1∑
t=0

ct et , (6)

where ct is the power consumption from the demand side at time
step t without dynamic pricing.

Then, the second constraint is about the profitability of the
producer/retailer, which is achieved if its revenue exceeds its
costs. The revenue RT of the producer/retailer over the time
horizon T can be mathematically expressed as the following:

RT =

T−1∑
t=0

[
ct yt − (c ′

t − pFt ) λt − (ct − pt ) it
]
, (7)

where:

• λt is the actual power price (not predicted) on the day-ahead
market at time step t ,
 f

2457
• it is the actual imbalance price (not predicted) on the im-
balance market at time step t ,

• c ′
t is the predicted power consumption at time step t af-
ter demand response to the dynamic prices, based on the
demand response mathematical model M.

The first term corresponds to the payment of the customers
for their electricity consumption. The second term is the revenue
or cost induced by the predicted mismatch between supply and
demand, which is traded on the day-ahead market. The last
term is the cost or revenue caused by the remaining imbalance
between supply and demand, which has to be compensated in
the imbalance market.

The total costs incurred by the producer/retailer at each time
step t can be decomposed into both fixed costs FC and marginal
costs MC . In this particular case, the marginal costs of produc-
tion are assumed to be negligible since the production portfolio
is composed of intermittent renewable energy sources such as
wind turbines and photovoltaic panels. Therefore, the second
constraint can be mathematically expressed as follows:
T−1∑
t=0

[
ct yt − (c ′

t − pFt ) λt − (ct − pt ) it
]

≥ FC T . (8)

Finally, the complete objective criterion to be optimised by
dynamic pricing policy can be mathematically expressed as

ollows:

inimise
π

T−1∑
t=0

|pt − ct |,

ubject to RT ≥ FC T ,

BT ≤

T−1∑
t=0

ct et .

(9)

4. Algorithmic components discussion

This section presents a thorough discussion about the different
algorithmic modules required to efficiently design a dynamic
pricing policy from the perspective of the supply side. Firstly, the
different forecasting blocks are rigorously analysed. Secondly, the
modelling of the demand response induced by dynamic prices
is discussed. Lastly, the proper management of uncertainty is
considered.

In parallel, for the sake of clarity, Fig. 3 highlights the inter-
connections between the different algorithmic components in the
scope of a dynamic pricing policy from the perspective of the sup-
ply side. Moreover, Algorithm 1 provides a thorough description
of the complete decision-making process for the dynamic pricing
problem at hand. The complexity of the variable time lag between
decision-making and application is highlighted. Assuming that
the decision-making occurs once a day at 12:00 AM just before
the closing of the day-ahead market for all hours of the following
day, the dynamic price at time step t is decided hours in advance
at time step t− [12 + (t%24)] with the symbol % representing the
odulo operation.

.1. Production forecasting

The first forecasting block to be discussed concerns the pro-
uction of intermittent renewable energy sources such as wind
urbines and photovoltaic panels. Indeed, having access to ac-
urate predictions about the future output of the production
ortfolio is key to the performance of a dynamic pricing policy
rom the perspective of the supply side. As previously explained
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Fig. 3. Illustration of the complete decision-making process related to dynamic pricing from the perspective of the supply side, with the connections between the
different algorithmic components highlighted.
Algorithm 1 Dynamic pricing complete decision-making process
The decision-making occurs once per day before the closing of the day-ahead market at 12:00 AM for all hours of the following day.
The decision-making for the dynamic price of time step t occurs at time step t − [12 + (t%24)].
for τ = −12 to T − 12 do

Check whether the time is 12:00 AM to proceed to the decision-making.
if (τ + 12)%24 = 0 then

for t = τ + 12 to τ + 36 do
Gather the available information for production forecasting xPt = {W F

t , AF
t , IPt }.

Gather the available information for consumption forecasting xCt = {W F
t , Tt , ICt }.

Gather the available information for day-ahead market price forecasting xMt = {xPt , xCt , GF
t , Mt , IMt }.

Forecast production at time step t: pFt = FP
(
xPt

)
.

Forecast consumption at time step t: cFt = FC
(
xCt

)
.

Forecast the day-ahead market price at time step t: λF
t = FM

(
xMt

)
.

end for
for t = τ + 12 to τ + 36 do

Gather the input information for the dynamic pricing policy xt = {PF
t , C F

t , ΛF
t , Yt , M}.

Make a dynamic pricing decision for time step t: yt = π (xt ).
end for
Announce the dynamic prices for all hours of the following day {yt | t = τ + 12, ..., τ + 35}.

end if
end for
b

in Section 3.4, the forecasts have to be available one day ahead
before the closing of the day-ahead electricity market for all hours
of the following day. Naturally, the generation of such predictions
introduces uncertainty, a complexity that has to be taken into
account to design sound dynamic pricing policies.

Formally, the forecasting model associated with the output
f the production portfolio is denoted FP . Its input space XP
omprises every piece of information that may potentially have
 x

2458
an impact on the generation of electricity from intermittent re-
newable energy sources such as wind turbines and photovoltaic
panels for a certain time period. Its output space YP is composed
of a forecast regarding the power generation from the production
portfolio for that same time period. Mathematically, the forecast-
ing model input xPt ∈ XP and output yPt ∈ YP at time step t can
e expressed as follows:
P F F P

t = {Wt , At , It }, (10)
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here:

• W F
t represents various weather forecasts related to the

power production of intermittent renewable energy sources
such as wind turbines and photovoltaic panels (wind speed/
direction, solar irradiance, etc.) at the time step t ,

• AF
t represents predictions about the available capacity of

the production portfolio at time step t , which may be
impacted by scheduled maintenance, repairs, or other simi-
lar constraints,

• IPt represents any additional information that may help to
accurately forecast the future power generation of the pro-
ducer/retailer’s production portfolio at time step t .

In the scientific literature, the current state of the art for
forecasting the power production of intermittent renewable en-
ergy sources is mainly based on deep learning techniques to-
gether with some data cleansing processes and data augmen-
tation approaches. The best architectures are recurrent neural
networks (RNN), convolutional neural networks (CNN) and trans-
formers (Sweeney et al., 2019; Ahmed et al., 2020; Aslam et al.,
2021; Jahangir et al., 2021; Heinemann et al., 2021).

4.2. Consumption forecasting

The objective of the next important forecasting model de-
serving a discussion is to accurately predict the future power
demand of the consumption portfolio before any demand re-
sponse phenomenon is induced. Since the main goal of a dynamic
pricing policy is to maximise the synchronisation between supply
and demand, electricity load forecasts are of equal importance
to electricity generation predictions. Similarly to the latter, the
portfolio consumption forecasts are assumed to be generated one
day ahead just before the closing of the day-ahead market for all
24 h of the following day. Additionally, the uncertainty associated
with these predictions has to be seriously taken into account for
the success of the dynamic pricing policy.

From a more formal perspective, the forecasting model re-
sponsible for predicting the future electricity load of the con-
sumption portfolio is denoted FC . Its input space XC includes all
the information that may have an influence on the residential
electricity consumption for a certain time period. Its output space
YC comprises a forecast of the power used by the consumption
portfolio for that same time period. Mathematically, the con-
sumption forecasting model input xCt ∈ XC and output yCt ∈ YC at
time step t can be expressed as the following:

xCt = {W F
t , Tt , ICt }, (12)

C
t = cFt , (13)

here:

• W F
t represents various weather forecasts related to the res-

idential electricity consumption (temperature, hygrometry,
etc.) at the time step t ,

• Tt represents diverse characteristics related to the time step
t (hour, weekend, holiday, season, etc.),

• ICt represents supplementary information that could poten-
tially have an influence on the residential power consump-
tion at time step t .

Similarly to renewable energy production forecasting, the
tate-of-the-art approaches for predicting the residential electric-
ty load in the short term are mostly related to deep learning
echniques with preprocessed augmented data: RNN, CNN, and
ransformers (Kong et al., 2019; Somu et al., 2020; Jin et al., 2021;
asparin et al., 2021; Aslam et al., 2021).
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4.3. Market price forecasting

The last forecasting block to be discussed concerns the future
day-ahead electricity market prices. Contrarily to the forecasting
of power production and consumption, these price predictions
are not critical to the success of a dynamic pricing policy from
the perspective of the supply side. Still, having access to quality
forecasts for the future day-ahead market prices remains impor-
tant in order to satisfy the constraints related to the profitability
of the producer/retailer as well as the reduced electricity costs
for the consumer. Once again, the predictions are assumed to be
made just before the closing of the day-ahead market. Moreover,
the uncertainty associated with these forecasts has to be taken
into consideration.

Formally, the forecasting model related to the future day-
ahead electricity market prices is denoted FM . Its input space XM
includes every single piece of information which may potentially
explain the future electricity price on the day-ahead market for
a certain hour. Its output space YM comprises a forecast of the
day-ahead market price for that same hour. Mathematically, both
forecasting model input xMt ∈ XM and output yMt ∈ YM at time
step t can be expressed as follows:

xMt = {xPt , xCt , GF
t , Mt , IMt }, (14)

yMt = λF
t , (15)

where:

• GF
t represents forecasts about the state of the power grid as

a whole (available production capacity, transmission lines,
etc.) at the time step t ,

• Mt represents diverse information in various markets re-
lated to energy (power, carbon, oil, gas, coal, etc.) in neigh-
bouring geographical areas at time step t ,

• IMt represents any extra piece of information that may help
to predict the future electricity price on the day-ahead mar-
ket at time step t .

Once again, the scientific literature reveals that the state-
of-the-art approaches for day-ahead power market price fore-
casting are mostly based on innovative machine learning tech-
niques (Weron, 2014; Nowotarski and Weron, 2016; Gollou and
Ghadimi, 2017; Ugurlu et al., 2018; Jahangir et al., 2020).

4.4. Demand response modelling

Another essential algorithmic component is the mathematical
modelling of the residential demand response to dynamic prices.
In order to make relevant dynamic pricing decisions, an esti-
mation of the impact of the electricity price on the consumer’s
behaviour is necessary. In fact, two important characteristics have
to be studied:

The residential power consumption elasticity. This quantity
measures the average percentage change of the residential power
consumption in response to a percentage change in the electricity
price. In other words, the elasticity captures the willingness of
the consumer to adapt its behaviour when the price of electricity
either increases or decreases. This elasticity is critical to the dy-
namic pricing approach, since it assesses the receptiveness of the
consumers to dynamic prices. In fact, the residential power con-
sumption elasticity can be considered as a quantitative indicator
of the potential of the dynamic pricing approach.

The electricity load temporal dependence. Time plays an
important role in power consumption. Firstly, the consumer’s be-
haviour is highly dependent on the time of the day. The tendency
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o adapt this behaviour is also expected to be time-dependent.
herefore, the residential power consumption elasticity has to be
function of the time within a day, among other things. Secondly,
higher electricity price does not simply reduce the demand as
ith other commodities, but rather shifts part of the consumption
arlier and/or later in time. This phenomenon reflects a complex
emporal dependence for power consumption, which has to be
ccurately modelled in order to design a performing dynamic
ricing policy.

Formally, the mathematical model of the residential demand
esponse is denoted M. Its input space XD is composed of the
redicted power consumption before any demand response and
he dynamic prices to be sent to the consumers for several hours
efore and after the time period analysed, together with infor-
ation about that time period. Its output space YD comprises the
redicted power consumption after demand response to dynamic
rices for that same time period. Mathematically, both demand
esponse model input xDt ∈ XD and output yDt ∈ YD at time step t
can be expressed as the following:

xDt = {C F
t , Y ′

t , Tt}, (16)

yDt = c ′

t , (17)

where Y ′
t = {yt+ϵ ∈ R | ϵ = −k, . . . , k} is the dynamic price

signal within a time window centred around time step t and of
size k from which the demand response is induced.

As far as the scientific literature about the modelling of de-
mand response to dynamic prices is concerned, this interest-
ing topic has not yet received a lot of attention from the re-
search community. Still, there exists a few sound works present-
ing demand response models and assessing the receptiveness of
the consumers to dynamic power prices (Gottwalt et al., 2011;
Brégère and Bessa, 2020; Ganesan et al., 2022; He et al., 2012;
Klaassen et al., 2016), as explained in Section 2.

4.5. Uncertainty discussion

As previously hinted, a dynamic pricing policy has to make
its decisions based on imperfect information. Indeed, multiple
forecasts for the electricity price, production and consumption
have to be generated 12 up to 35 h in advance. Naturally, these
predictions comes with a level of uncertainty that should not
be neglected. Moreover, accurately modelling the residential de-
mand response to dynamic prices is a particularly challenging
task. Because of both the random human nature and the difficulty
to fully capture the consumers’ behaviour within a mathematical
model, a notable level of uncertainty should also be considered
at this stage. Therefore, multiple sources of uncertainty can be
identified in the scope of the dynamic pricing decision-making
problem at hand, and a proper management of this uncertainty
is necessary.

A stochastic reasoning is recommended to make sound dy-
namic pricing decisions despite this substantial level of uncer-
tainty. Instead of considering each uncertain variable (production,
consumption, price, demand response) with a probability of 1,
the full probability distribution behind these quantities has to
be estimated and exploited. Based on this information, the risk
associated with uncertainty may be mitigated. Moreover, safety
margins may also contribute to reduce this risk, but potentially
at the expense of a lowered performance. In fact, there generally
exists a trade-off between performance and risk, in line with the
adage: With great risk comes great reward.
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5. Performance assessment methodology

This section presents a methodology for quantitatively as-
sessing the performance of a dynamic pricing policy in a com-
prehensive manner. As explained in Section 3.7, several disjoint
objectives can be clearly identified. For the sake of completeness,
this research work presents three quantitative indicators, one for
each objective. The relative importance of these indicators is left
to the discretion of the reader according to its main intention
among the different objectives previously defined.

The performance indicators proposed are based on the com-
parison with the original situation without dynamic pricing. In
this case, the consumer is assumed to be fully ignorant about
the mismatch problem between supply and demand. No informa-
tion is provided to the customers of the producer/retailer, which
consequently have an uninfluenced consumption behaviour. The
price of electricity et is freely determined by the power pro-
ducer/retailer. It may for instance be a fixed tariff, or a price
indexed on the day-ahead market price:

et = α λt + β , (18)

where α and β are parameters to be set by the retailer.

Firstly, the impact of a dynamic pricing policy on the syn-
chronisation between power supply and demand can be assessed
through the performance indicator S quantifying the relative
evolution of the deviation ∆T . This quantity is mathematically
expressed as follows:

S = 100
∆T − ∆T

∆T
, (19)

∆T =

T−1∑
t=0

|pt − ct | , (20)

where ∆T represents the lack of synchronisation between supply
nd demand without dynamic pricing. Therefore, the quantity
has ideally to be maximised, with a perfect synchronisation
etween supply and demand leading to a value of 100% reduction
n deviation.

Secondly, the consequence for the consumer regarding its
lectricity bill can be evaluated with the quantity B which in-

forms about the relative evolution of this power bill. It can be
mathematically computed as the following:

B = 100
BT − BT

BT
, (21)

where BT =
∑T−1

t=0 ct et represents the electricity bill paid by
the consumer without dynamic pricing. Since the performance
indicator B represents the percentage reduction in costs, it has
to ideally be maximised.

Lastly, the enhancement in terms of revenue for the pro-
ducer/retailer can be efficiently quantified thanks to the perfor-
mance indicator R. This quantity represents the relative evolu-
tion of the producer/retailer revenue and can be mathematically
expressed as follows:

R = 100
RT − RT

RT
, (22)

RT =

T−1∑
t=0

[
ct et − (cFt − pFt ) λt − (ct − pt ) it

]
, (23)

where RT represents the producer/retailer revenue without dy-
amic pricing. Obviously, the performance indicator R has to

ideally be maximised.
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. Conclusion

This research paper presents a detailed formalisation of the
ecision-making problem faced by a producer/retailer willing
o adopt a dynamic pricing approach, in order to induce an
ppropriate residential demand response. Three core challenges
re highlighted by this formalisation work. Firstly, the objective
riterion maximised by a dynamic pricing policy is not trivially
efined, since different goals that are not compatible can be
learly identified. Secondly, several complex algorithmic compo-
ents are necessary for the development of a performing dynamic
ricing policy. One can for instance mention different forecasting
locks, but also a mathematical model of the residential demand
esponse to dynamic prices. Thirdly, the dynamic pricing deci-
ions have to be made based on imperfect information, because
his particular decision-making problem is highly conditioned by
he actual uncertainty for the future.

Several avenues are proposed for future work. In fact, the
atural extension of the present research is to design innovative
ynamic pricing policies from the perspective of the supply side
ased on the formalisation performed. While the present research
aper exclusively focuses on the philosophy and conceptual anal-
sis of the approach, there remain practical concerns that need to
e properly addressed in order to achieve performing decision-
aking policies. To achieve that, a deeper analysis of the sci-
ntific literature about each algorithmic component discussed in
ection 4 is firstly welcomed, in order to identify and reproduce
he state-of-the-art techniques within the context of interest.
hen, different approaches have to be investigated for the de-
ign of the dynamic pricing policy itself. One can for instance
ention, among others, the stochastic optimisation and deep

einforcement learning techniques. Finally, the dynamic pricing
olicies developed have to be rigorously evaluated, analysed, and
ompared by taking advantage of real-life experiments.
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