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Abstract: The post-acute phase of SARS-CoV-2 infection was investigated in rhesus (Macaca mulatta)
and cynomolgus macaques (Macaca fascicularis). During the acute phase of infection, SARS-CoV-2
was shed via the nose and throat, and viral RNA was occasionally detected in feces. This phase
coincided with a transient change in systemic immune activation. Even after the alleged resolution
of the infection, computed tomography (CT) and positron emission tomography (PET)-CT revealed
pulmonary lesions and activated tracheobronchial lymph nodes in all animals. Post-mortem histo-
logical examination of the lung tissue revealed mostly marginal or resolving minimal lesions that
were indicative of SARS-CoV-2 infection. Evidence for SARS-CoV-2-induced histopathology was also
found in extrapulmonary tissue samples, such as conjunctiva, cervical, and mesenteric lymph nodes.
However, 5–6 weeks after SARS-CoV-2 exposure, upon necropsy, viral RNA was still detectable
in a wide range of tissue samples in 50% of the macaques and included amongst others the heart,
the respiratory tract and surrounding lymph nodes, salivary gland, and conjunctiva. Subgenomic
messenger RNA was detected in the lungs and tracheobronchial lymph nodes, indicative of ongoing
virus replication during the post-acute phase. These results could be relevant for understanding the
long-term consequences of COVID-19 in humans.
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1. Introduction

Biomedical and clinical researchers have tried to define the different phases of a severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans from various
perspectives [1–4]. The general consensus is that the initial phase of infection is viremia or
the progressive state in which immune responses determine if the person remains healthy
or not. This phase, which takes about a week, is followed by the pneumonia phase that
generally lasts no longer than three weeks after the initial infection. Then, a convalescent
phase is initiated during which the infection resolves, and patients recover from the
disease. Nevertheless, evidence is accumulating for the existence of an enlengthened
recovery process, even for non-hospitalized patients [5–7]. Moreover, in this phase, chronic
symptoms and possible recurrence of disease can be detected, known as long-COVID or
post-acute COVID [7,8]. However, it is still unknown how long this recovery phase lasts.

To halt and control the coronavirus disease 2019 (COVID-19) pandemic, enormous
efforts have been initiated worldwide to develop vaccines and antiviral compounds. To
achieve these challenging goals, as well as to acquire fundamental knowledge of un-
derstanding the mode of infection and its associated pathologies, animal studies play a
crucial role.

Various animal species have already proven their value in SARS-CoV-2 research, such
as mice, hamsters, and ferrets [9–17]. Notwithstanding the great importance of rodent
and ferret models, non-human primates (NHPs) have shown to play an especially pivotal
role in COVID-19 research. NHPs are susceptible to infection with SARS-CoV-2 and
share many immunological and pathological characteristics with humans [9,18,19]. This
makes NHPs particularly suitable for preclinical evaluation of vaccines and antiviral or
immunomodulatory compounds against SARS-CoV-2. The two most widely used NHP
species in biomedical research in general, and also in COVID-19 research, are rhesus
macaques and cynomolgus macaques. Both species had already featured a prominent role
in research on the related coronaviruses that caused the SARS and MERS epidemics [20,21],
and are also considered relevant NHP models for preclinical COVID-19 studies [9].

Several research groups [22–24] have investigated the heterogeneity in SARS-CoV-
2 infection and disease progression in different NHPs species, but mostly, relatively
short follow-up studies were published, sacrificing animals at day 21 post-infection, or
earlier [22,25–27]. So far, little is known about the post-acute phase of SARS-CoV-2. In
patients who died of COVID-19, viral RNA was found widely disseminated throughout
tissues and organs, and a wide variety of pathologies was found in postmortem tissue. The
majority of human infections however are asymptomatic or cause mild disease. This is also
the case in NHP. Little is known about the long-term consequences of asymptomatic or
mild infection in humans. Here, we took a unique approach and focused our research on
the first weeks of the post-acute phase, after a mild to moderate SARS-CoV-2 disease course
in two macaque species. We followed SARS-CoV-2 replication in rhesus and cynomolgus
macaques and monitored the animals for signs of COVID-19-like disease symptoms. The
macaques were infected in parallel with the same virus stock and the same dose and
underwent a fully identical treatment. The course of infection was followed for up to
six weeks using the same analyses, including the monitoring of virus-induced metabolic
and anatomic findings with CT and PET-CT, and continuous telemetric recording of body
temperature and physical activity of the animals. The animals were sacrificed to investi-
gate histopathological tissue changes related to SARS-CoV-2, as well as to examine viral
dissemination in organs.

2. Materials and Methods
2.1. Ethics and Biosafety Statement

All housing and animal care procedures took place at the Biomedical Primate Research
Centre (BPRC) in Rijswijk. The BPRC is accredited by the American Association for
Accreditation of Laboratory Animal Care (AAALAC) International and is compliant with
the European directive 2010/63/EU as well as the “Standard for Humane Care and Use
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of Laboratory Animals by Foreign Institutions” provided by the Department of Health
and Human Services of the US National Institutes of Health (NIH, identification number
A5539-01). Upon positive advice by the independent ethics committee (DEC-BPRC), the
competent national authorities (CCD, Central Committee for Animal Experiments) issued
a project license (license AVD5020020209404). Approval to start was obtained after further
assessment of the detailed study protocol by the institutional animal welfare body (AWB)
(in Dutch: Instantie voor Dierenwelzijn, IvD). All animal handlings were performed
within the Department of Animal Science (ASD) according to Dutch law. ASD is regularly
inspected by the responsible national authority (Nederlandse Voedsel- en Warenautoriteit,
NVWA), and the AWB.

2.2. Animals

Four Indian-origin rhesus macaques and four South-Asian-origin cynomolgus macaques
were used in this study (Supplementary Table S1). All macaques were mature, outbred
animals, purpose-bred, and housed at the BPRC. All selected animals were healthy males
with bodyweight in the normal range. The rhesus macaques (R-codes) were 5 and 6 years
old. Three of the four cynomolgus macaques (J-codes) were 4 years of age. In addition, one
older cynomolgus macaque was added (Ji408005). The animals are described in detail in
Supplementary Table S1. The animals were in good physical health with normal baseline
biochemical and hematological values. All were pair-housed with a socially compatible
cage-mate in cages of at least 4 m3 with bedding to allow foraging and were kept on a
12-h light/dark cycle. The monkeys were offered a daily diet consisting of monkey food
pellets (Ssniff, Soest, Germany) supplemented with vegetables and fruit. Enrichment was
provided daily in the form of pieces of wood, mirrors, food puzzles, and a variety of other
homemade or commercially available enrichment products. Drinking water was available
ad libitum via an automatic watering system. Animal care staff provided daily visual
health checks before infection, and twice daily after infection. The animals were monitored
for appetite, general behavior, and stool consistency. All possible precautions were taken
to ensure their welfare and to avoid any discomfort to the animals. All experimental
interventions (intratracheal and intranasal infection, swab collections, blood samplings,
and (PET-)CTs) were performed under anesthesia.

2.3. Virus

The animals were infected with SARS-CoV-2 strain BetaCoV/BavPat1/BPRC_Berlin-
1_P5. This strain was isolated from a patient who traveled from China to Germany, and an
aliquot of a Vero E6 cell culture was made available through the European Virus Archive-
Global (EVAg). The viral stock for the study was propagated on Vero E6 cells. For the
infection, a 5th passage virus stock with a titer of 3.2 × 106 TCID50/mL was prepared.
TCID50 analysis was performed on Vero E6 cells in a 96-well format in triplicates. The virus
stock was diluted 1:10 in culture medium as a starting dilution and then serially diluted.
Plates were fixed on day 3 with 10% formalin and stained with crystal violet. The integrity
of the virus stock used for infection was confirmed by next-generation sequencing analysis
and the sequence was submitted to GenBank (MZ558051).

2.4. Experimental Infections and Post-Exposure Study Follow-Up

Three weeks before the experimental infection, a Physiotel Digital device (DSI Im-
plantable Telemetry, Data Sciences International, Harvard Bioscience, UK) was implanted
in the abdominal cavity of each animal. This device allowed the continuous real-time
measurement of the body temperature and the animals’ activity remotely using telemetry
throughout the study.

On day 0, all animals were exposed to a dose of 1 × 105 TCID50 of SARS-CoV-2,
diluted in 5 mL phosphate-buffered saline (PBS) (Supplementary Table S5). The virus
was inoculated via a combination of the intratracheal route, just below the vocal cords,
(4.5 mL) and intranasal route (0.25 mL in each nostril). Virus infection was monitored for
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35 to 42 days, and during that period the animals were checked twice daily by the animal
caretakers and scored for clinical symptoms according to a previously published though
adapted scoring system [28] (Supplementary Table S2). A numeric score of 35 or more
per observation time point was predetermined to serve as an endpoint and justification
for euthanasia. Every time an animal was sedated, the bodyweight was measured. Blood
was collected using standard aseptic methods from the femoral vein at regular time points
post-infection (pi). In parallel, tracheal, nasal, and anal swabs were collected using Copan
FLOQSwabs (MLS, Menen, Belgium). Swabs were placed in 1 mL MEM, supplemented
with 0.5% bovine serum albumin (BSA), fungizone (2.5 µg/mL), penicillin (100 U/mL),
and streptomycin (100 µg/mL) and directly transported to the BSL3 lab.

2.5. Biochemistry and Hematology

Clinical biochemistry was performed using a Vetscan VS2 Chemical analyzer (Zoetis
Benelux, Capelle aan de IJssel, The Netherlands) with the use of the Comprehensive Diag-
nostic profile. This profile allows testing for alanine aminotransferase, albumin, alkaline
phosphatase, amylase, calcium, creatinine, globulin, glucose, phosphorus, potassium,
sodium, total bilirubin, total protein, and blood urea nitrogen. Hematology was done
using a Vetscan HM5 Hematology analyzer (Zoetis Benelux, Capelle aan de IJssel, The
Netherlands). C-reactive protein and D-dimer levels were measured using Cobas Integra
400 plus analyzer (Roche Diagnostics Nederland B.V., Almere, The Netherlands).

2.6. Detection of Viral RNA in Swabs, Blood, and Tissue

To determine the presence of SARS-CoV-2 RNA in post-mortem tissues, tissue samples
were weighed and placed in gentleMACS M tubes (30 mg in 100 µL PBS) and dissociated
using a gentleMACS Tissue Dissociator (protein01 program) (Miltenyi Biotec B.V., Leiden,
The Netherlands). Next, the homogenized tissue was centrifuged for 10 min at 820× g, and
100 µL supernatant was used for RNA isolation. Viral RNA was isolated from plasma, swab
sample supernatants, and cleared tissue homogenates using a QIAamp Viral RNA Mini kit
(Qiagen Benelux BV, Venlo, The Netherlands) following the manufacturer’s instructions.
Viral RNA was reverse-transcribed to cDNA using a Transcriptor First Strand cDNA
Synthesis kit (Roche Diagnostics BV, Almere, The Netherlands). Viral genomic RNA was
quantified by real-time quantitative RT-PCR specific for the RdRp gene of SARS-CoV-2, as
described by Corman et al. [29]. Viral subgenomic messenger RNA (sgmRNA) was detected
and quantified as previously described by Wölfel et al. [30]. Detection of sgmRNA was
used as a as a proxy for the detection of replicating virus. For both assays, RNA standard
curves were generated by in vitro transcription of the target regions. The number of RNA
copies was calculated using the formula: # RNA copies = amount ∗ 6.022 × 1023/RNA
length in nucleotides * 340. Both genomic and sgmPCR have a lower limit of quantification
of 20 viral RNA copies per reaction. All PCR samples were analyzed in duplicate.

2.7. Imaging

Positron Emission Tomography (PET)-computed tomography (CT) and CT data were
acquired on multiple time points post-infection using a MultiScan Large Field of View
Extreme Resolution Research Imager (LFER) 150 PET-CT (Mediso Medical Imaging Sys-
tems Ltd., Budapest, Hungary) as described before [31]. Animals fasted overnight and
were sedated with ketamine (10 mg/kg ketamine hydrochloride (Alfasan Nederland BV,
Woerden, The Netherlands)) combined with medetomidine hydrochloride (0.05 mg/kg
(Sedastart; AST Farma B.V., Oudewater, The Netherlands)) to induce sedation and muscle
relaxation, both applied intramuscularly (IM). The animals were positioned head-first
supine (HFS) with the arms up. After the scan, upon return to their home cage, atipame-
zole hydrochloride (Sedastop, AST Farma B.V., Oudewater, The Netherlands, 5 mg/mL,
0.25 mg/kg) was administrated IM to antagonize medetomidine.
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2.7.1. PET-CT

The PET-CT images were acquired under mechanical ventilation in combination with a
forced breathing pattern. For anesthetic maintenance, a minimum alveolar concentration of
isoflurane (iso-MAC) of around 0.80–1.00% was used. The body temperature of the animal
was maintained by using the Bair Hugger (3M™, St Paul, MN, USA) supplied with 43 ◦C
airflow. Typically, around 100 MBq of 18F-FDG was applied intravenously (GE Healthcare,
Leiderdorp, The Netherlands). A 15-min static PET was acquired of the lungs 45 min after
injection. Afterward, the emission data was iteratively reconstructed (OSEM3D, 8 iterations,
and 9 subsets) into a single frame PET image normalized and corrected for attenuation,
scatter, and random coincidences using the reference CT and corrected for radioactive
decay. The analysis was performed in VivoQuant 4.5 (Invicro, Boston, MA, USA). Lung
lesions were discriminated based on lung density as defined by Hounsfield Units (HU) on
CT. Lymph node uptake was quantified with the use of a lower threshold standard uptake
value (SUV) of 2.0 to discriminate activated lymph nodes from the surrounding tissue. Two
anatomical and two molecular output parameters were generated; volume, anatomical
density in HU, average standardized uptake value (SUVmean), and a maximum SUV
corrected for scatter and random coincidences (SUVpeak). In this way, a full overview of
the results could be obtained with minimal inter and intra-observer variation [31].

2.7.2. Gated-CT

In order to mitigate motion artifacts and to allow a non-invasive CT, retrospective
gating was applied during CT. The respiratory amplitude was detected with a gating pad
placed next to the umbilicus. For the final reconstruction, the inspiration phases were
exclusively used and manually selected. A semi-quantitative scoring system for chest CT
evaluation was used to estimate SARS-CoV-2-induced lung disease [32–34]. Quantification
of the CTs was performed independently, by two experienced imaging scientists based on
the lobes; the middle and accessory lobe of the right lung were combined. The degree of
involvement in each zone was scored as: 0 for no involvement, 1 for <5%, 2 for 5–24%, 3
for 25–49%, 4 for 50–74%, and 5 for >74% involvement. An additional increase or decrease
of 0.5 was used to indicate alterations in CT density of the lesions. By using this scoring
system, a maximum score of 30 could be reached for the combined lobes per time point.

2.8. Cytokine and Chemokine Analysis

Cytokine and chemokine concentrations in sera of infected macaques, including IL-1β,
IL-6, CCL11 (Eotaxin), CXCL10 (IP-10), CXCL11 (I-TAC), CCL2 (MCP-1), CXCL9 (MIG),
CCL3 (MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES), CXCL8 (IL-8), TNF-α, and IFN-γ, were
determined using the LEGENDplex™ NHP Chemokine/Cytokine Panel (13-plex) (Biole-
gend, San Diego, CA, USA) essentially according to manufacturer’s instruction. Samples
were measured on an LSRII FACS machine (BD Biosciences, Vianen, The Netherlands) and
analyzed by using company software.

2.9. Serology

Antibodies to SARS-CoV-2 in sera were analyzed using different enzyme-linked
immunosorbent assays. A double recognition enzyme-linked immunosorbent assay (DR-
ELISA) that detects total immunoglobulins targeted to the SARS-CoV-2 nucleoprotein
(N) protein was used, as described by Hoste et al. [35] (INgezim COVID19 DR; Eurofins-
INGENASA, Madrid, Spain). In addition, an ELISA that detects immunoglobulins elicited
to the full-length spike (S) protein, and an assay that specifically detects antibodies directed
to the receptor-binding domain (RBD) of the S protein were applied in this study.

For the analysis of anti-S protein antibody responses, Greiner half-area ELISA plates
were coated overnight with 1 µg/mL of the monomeric full-length Spike or Spike RBD
proteins (both antigens expressed in insect cells; AdapVac, Copenhagen, Denmark) in PBS.
Plates were washed and blocked for one hour with PBS Tween-20 (0.05%) + BSA (3% m/v).
Serial dilutions of sera were made in PBS Tween-20 (0.05%) + BSA (1% m/v) (PBS-TB) and
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added to the plate in duplicate. As a standard reference, a monoclonal antibody specific
for the SARS-CoV-2 RBD was used, diluted in PBS-TB to an initial IgG concentration of
500 ng/mL, and diluted in the ELISA plate in a two-fold series over seven wells (Range
500 to 0.007813 ng/mL). Standards were run in duplicate. The reference standard and
sera were incubated for one hour at 37 ◦C, and subsequently washed with PBS Tween-20
(0.05%). Goat-anti-human (H+L) IgG-HRP (Thermo Fisher Scientific, Waltham, MA, USA)
was added to the plate and incubated for one hour at 37 ◦C after which the plates are
washed and TMB substrate was added. The reaction was stopped after 15 min by the
addition of 0.2 M H2SO4. Plates were then read at 450 nm on a SpectraMax M5 plate reader
(Molecular Devices, LLC., San Jose, CA, USA), and OD values were saved as Excel files. A
four-parameter curve was fit to the standard, and IgG concentrations in the samples were
calculated from the OD values using the parameters as estimated from the four-parameter
fit. Only OD values in the linear part (i.e., parallel to the standard curve) of the dilution
curve were used for the samples. Within sample coefficient of variation (CV) for the
included OD values usually was below 25%.

To detect IgM, the same protocol was followed, but the secondary antibody used
was an anti-human IgM Peroxidase-labelled antibody produced in goats (SouthernBiotech,
Birmingham, AL, USA).

2.10. Necropsy and Histological Analysis

After euthanasia, necropsies were performed according to a standard protocol. The
samples were fixed by immersion in 10% neutral-buffered formalin, routinely processed
into paraffin blocks, cut into 4 µm tissue sections, stained with Hematoxylin and Eosin
(HE), and examined microscopically. Subsequent tissue sections on all seven pulmonary
lobes of each animal were used for special stains such as Mason’s Trichrome staining
for the presence of collagen and Gram staining for the detection of bacteria. In parallel,
samples from the same organs were collected for virus detection by real-time PCR and for
immune-histochemical (IHC) analyses.

2.11. Immunohistochemistry

The SARS-CoV-2 antigen was detected with an anti-SARS-CoV-2-nucleoprotein mon-
oclonal antibody (clone E16C; ThermoFisher, MA, USA), and type II pneumocytes were
identified with the anti-Thyroid Transcription Factor-1 (TTF-1) antibody (clone 8G7G3/1,
Dako, Denmark). Both were used in combination with a Roche Optiview DAB IHC kit
in a Ventana Benchmark Ultra immunostainer (Roche, Basel, Switzerland). Hematoxylin
and Eosin (HE) staining was used for general morphology. Slides were assessed in a
blind manner.

3. Results
3.1. Infection of Macaques with SARS-CoV-2

Following the administration of the virus in the upper trachea and nose, viral RNA
was detectable in the tracheal and nasal swabs of all monkeys at day 1 post-infection
(pi). The time frame in which viral RNA was detected varied considerably from one day
(tracheal swab macaque R15096) to up to ten days in macaque R14002. (Figure 1A,B,D,E,
Supplementary Table S3A). The individual variation of SARS-CoV-2 RNA levels detected
in the macaques was, regardless of species, substantial. Peak viral RNA levels in the
throat varied between 1.7 × 104 genome equivalent (GE)/mL (R15096; day 1 pi) and
1.8 × 108 GE/mL (J16017; day 2 pi). Peak viral loads detected in nasal swabs were generally
lower than in the throat samples and did not exceed 9.5 × 104 GE/mL (R15090; day 1 pi).
The high RNA loads measured in the first two days post-infection are suggestive of
residual RNA from the original inoculum still being present. However, nasal swabs from
five out of eight animals tested positive again after one or more days of undetectable levels.
Cynomolgus macaque J16017 was positive in the nose at day 1 pi, then had no detectable
viral RNA for a period of three days, but later the animal became again positive in the



Viruses 2021, 13, 1673 7 of 22

nose swabs for three consecutive days. Furthermore, R15096, J16004, J16012, and Ji408005
became PCR-positive again after one or more days without detectable viral RNA. The total
viral RNA production detected in nose and throat samples was comparable over time for
both species (Figure 1G).

Figure 1. Virus loads in swab samples of macaques following SARS-CoV-2 infection. Viral RNA and subgenomic messenger
RNA quantification in tracheal and nasal swabs of rhesus and cynomolgus macaques by qRT-PCR. The limit of quantification
is indicated by the dotted horizontal line. Swabs after 14 dpi were all negative in PCR analysis and are therefore not shown
for improved clarity. Viral RNA levels in tracheal (A) and nasal swabs (B), and sgmRNA levels in tracheal swabs (C)
of rhesus macaques. Viral RNA levels in tracheal (D) and nasal swabs (E), and sgmRNA levels in trachea swabs (F) of
cynomolgus macaques. The limit of quantification is indicated by the dotted horizontal line. Total virus loads (G) and
sgmRNA loads (H) in throat and nose samples of macaques throughout the study. Horizontal bars represent geometric
means. The sum of the viral copies was calculated rather than the area under the curve (AUC), as AUC interpolates for time
points when virus loads were not determined. The color coding used for each individual animal as shown in the figure is
used throughout the manuscript to denote the same individual. Rhesus macaques are indicated by yellow to red colors;
cynomolgus macaques by green to blue colors.
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The analysis of viral subgenomic messenger RNA (sgmRNA), which is considered
to better reflect actual virus replication [36], confirmed infection in 7 out of 8 macaques.
Only rhesus macaque R15096, which already displayed relatively low levels of viral RNA
(Figure 1A,B) was negative for sgmRNA in both throat and nose swabs at all time points.
In the remaining animals, sgmRNA levels were exclusively detected in the tracheal swabs,
while no evidence of replication was found in the nasal swab samples (Figure 1C,F,H,
Supplementary Table S3B).

In the anal swabs, viral RNA was rarely detected. Few macaques irregularly tested
positive in the PCR test, with a low maximum viral RNA load of 3 × 103 GE/mL at day
1 pi (J16017). No sgmRNA was detected in anal swabs or blood samples, indicating the
absence of active virus replication in the blood and intestinal tract in the animals.

3.2. Body Temperature, Activity, Clinical Symptoms, and Blood Parameters after
SARS-CoV-2 Infection

Body temperature and activity of each animal were continuously monitored using
telemetry during the entire study. Modestly elevated body temperatures were measured in
both macaque species during the first two weeks after infection as compared to later time
points. Whereas three out of four cynomolgus macaques peaked as early as day 2 pi, the
elevation in body temperature in two out of four rhesus macaques occurred later on day 8 pi.
The temperature curves for the individual animals, depicted in Supplementary Figure S1
show a return to baseline temperatures for all individuals after the initial phase of infection.

The cumulative activity scores per week were calculated as the area under the curve
(Figure 2). A significantly lower activity during the first week compared to the third week
after infection was observed in the rhesus macaques (paired t-test; p = 0.0061) suggesting
an impact of SARS-CoV-2 infection on the general well-being of the animals. Notably,
in the last 2 weeks of the study, activity scores decreased again for all rhesus macaques
(p = 0.0193). In contrast with these observations, the activity scores of the cynomolgus
macaques remained unaffected throughout the study, which implies a species-related
difference in reaction to SARS-CoV-2 infection. Activity curves for the individual animals
are documented in Supplementary Figure S2.

Figure 2. Cumulative activity scores. The activity of the animals was measured by telemetry throughout the study.
The cumulative activity scores for rhesus and cynomolgus macaques were calculated as the area under the curve (AUC) per
week. Measurements done during biotechnical handlings were omitted from the calculations.
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A scoring list was used to enumerate overt clinical symptoms that may be caused
by the SARS-CoV-2 infection (Supplementary Table S2). The cumulative clinical score per
week of each animal was calculated (Supplementary Figure S3). In the first week after
infection, the scoring of the four rhesus and two cynomolgus macaques did not exceed 25
(of maximum 770 per week), while for the remaining two animals a higher, but statistically
not significant, median score was calculated. In the subsequent weeks after infection, none
of the animals showed clinical signs suggestive of COVID-19.

Blood samples were analyzed for changes in cell subsets and in biochemical param-
eters upon SARS-CoV-2 infection (Supplementary Figure S4). Data were related to a set
of normal (standard) values derived from a large group of uninfected, healthy macaques
from the same breeding colony. C-reactive protein levels, which are increased in COVID-19
patients with pneumonia [37], were not elevated in the infected macaques. In humans,
acute kidney injury has been related to SARS-CoV-2 infection [38,39], and elevated levels
of serum creatinine and blood urea were detected in 10–15% of a cohort of COVID-19
patients [40]. Hence, we measured creatinine and urea levels in blood samples at multiple
days post-infection but did not find evidence of kidney malfunction in the macaques.
Equally, depending on the severity of the disease, blood coagulation disorders, such as
highly elevated D-dimer levels, have been reported for patients [41,42], but no elevated
D-dimer levels were measured in either macaque species. Elevated levels of glucose and
alanine transferase were measured in the first week pi in the blood of most animals, and
amylase was increased in one rhesus macaque, R15080. Also, for other blood cell subsets,
no significant deviations from the normal values were seen in the infected monkeys.

3.3. Humoral Immune Response to SARS-CoV-2 Infection

Humoral immune responses to the viral spike (S) and nucleoprotein (N) proteins were
readily detectable after infection (Figure 3 and Supplementary Figure S5).

IgG titers to the ectodomain of the spike protein were first detectable 6–8 days pi.
Titers continued to rise and reached a plateau after approximately 4 weeks. IgG levels in
cynomolgus macaques showed more variation compared to rhesus macaques. Especially,
the IgG kinetics in J16012 deviated from the other animals. In this animal, a peak in
IgG was observed 17 days pi, and titers rapidly declined thereafter, and then remained
consistently low throughout the rest of the study period. Overall, IgG was detectable
slightly earlier in cynomolgus macaques compared to rhesus macaques, but the differences
were not statistically relevant. In addition to the total anti-S IgG, IgG directed to the
receptor-binding domain (RBD) were analyzed. The development of anti-RBD IgG fully
mirrored the IgG antibodies binding to the entire S protein. IgM directed to the full-length S
protein and the RBD were also measured (Supplementary Figure S5), and titers developed
around the same time point post-infection as IgG titers. Overall, IgM titers in cynomolgus
macaques were higher than in rhesus macaques, except for R15090. Anti-RBD IgM in
rhesus macaques remained low in the study period, while in three out of four cynomolgus
macaques rising anti-RBD IgM titers were measured.

In addition to the immunoglobulin responses to the spike protein, antibody responses
to the nucleoprotein (N) were measured. Total immunoglobulin (Ig) in sera was determined
by DR-ELISA. Ig responses became evident between day 10 and 12 pi. For both rhesus as
well as cynomolgus macaques, a peak in levels was measured between 12 and 23 days pi,
except in Ji0408005, where the peak was at day 30 pi.

Total Ig was reflected by IgG directed to the N protein. Notably, IgM responses to N
were virtually undetectable in the longitudinal serum samples. Only in one animal, cynomol-
gus macaque J16012, IgM titers were transiently detectable (Supplementary Figure S5).



Viruses 2021, 13, 1673 10 of 22

Figure 3. Development of a SARS-CoV-2 antibody response in rhesus and cynomolgus macaques.
The humoral immune response was determined using an anti-S IgG ELISA, an anti-RBD ELISA, a
serological test to detect IgG directed to the N protein, and a DR-ELISA measuring the total antibody
response to N (left to right). Results of DR-ELISA are shown as S/P: sample to positive control ratio:
S/P =

test sample−mean negative control
mean positive control−mean negative control and Units = test sample at x dpi

test sample at 0 dpi .

3.4. Cytokine and Chemokine Measurements in Sera of Infected Macaques

We measured a panel of 13 cytokines and chemokines to characterize the inflammatory
response triggered by SARS-CoV-2. In general, the cytokine and chemokine responses
reflect two phases. The first phase is characterized by a transient decrease in IP-10, IL-6,
MIP-1α, MIP-1β, and IFN-γ levels (Figure 4; Supplementary Figure S6 individual levels)
while others were maintained at a stable level (Eotaxin, TNF-α, and IL-8). This trend was
observed in both species, except for IP-10 and RANTES. At day 2 pi, the serum levels
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of IP-10 were nine-fold (95% CI 2.72–29.89) higher in the cynomolgus macaques than in
rhesus macaques (t-test; p = 0.005). Also, the response pattern of RANTES was different
between the two species. In cynomolgus macaques, RANTES rapidly decreased after
exposure to SARS-CoV-2 and slowly returned to normal levels at the end of the follow-up
period. In rhesus macaques, a transient dip in RANTES levels was observed early after
infection. The levels returned to normal within 8 days pi but started to decline again in
the following days, this is referred to as the second phase of the infection. At the end of
the study, RANTES levels were back to normal in both species. MCP-1 (CCL2) showed
a variable increase in two out of four rhesus macaques and in all cynomolgus macaques
(Supplementary Figure S6).

Figure 4. Cytokine and chemokine levels in peripheral blood after SARS-CoV-2 infection. Longitudinal sera collected after
SARS-CoV-2 infection were tested. Results were expressed as pg/mL. Statistically significant differences in the geometric
mean between rhesus and cynomolgus macaques are indicated with *.

3.5. Development of Lung Lesions and Lymph Node Activation during SARS-CoV2 Infection

Chest CTs of the macaques after infection revealed several manifestations of COVID-19
with a variable time course and lung involvement (Table 1). The most common lesions found
were ground-glass opacities (GGO), consolidations, and crazy paving patterns [3,33,43].
Lung lesions were already seen in the first CT obtained two days after infection (max. CT
score 2.5/30), in five out of eight monkeys, three rhesus, and two cynomolgus macaques.
Thereafter, lung involvement was seen in most animals and CT scores increased. Around
days 8 and 10 pi, lung lesions had become manifested in all animals, and in several
macaques, the scores had increased. Individual differences were considerable, varying
from low scores on irregular time points (R15090) to high CT scores almost throughout the
entire study period (J16012). The average cumulative CT score at day 38 pi was 12.9 for the
rhesus macaques and 25 for the cynomolgus macaques (Mann–Whitney U test, p = 0.1702)
with an average increase of 0.44 and 0.71 per day for rhesus and cynomolgus macaques,
respectively (Mann–Whitney U test, p = 0.5036) (Figure 5).
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Table 1. CT scores of lung lesions in SARS-CoV-2-infected macaques. Scoring was performed
independently by two experienced scientists.

Animals

D
ay

s
pi

R14002 R15080 R15090 R15096 J16004 J16012 J16017 Ji408005

0 0 0 0 0 0 0 0 0

2 0 0.5 1.5 2 2.5 1.5 0 0

4 0 0 0 3 0 4.5 0 0

6 0 0 0 2 0 5 0 4

8 3.5 0 1.5 2.5 0 5 4.5 2

10 1.75 2 0 2 2 0.5 2.5 3.5

12 2.5 2.5 0 1 2 1.5 0 0

14 1 1.5 0.5 2.5 1 0.5 0.5 2

16 0 0 0 3.5 3 6.5 1.5 3.5

22 2.5 0 0 3 3 6 0.5 2.5

29/30 0 2 3 4 3 4.5 0 5

36/38 nd nd nd nd 5 6.5 1.5 3

Figure 5. Cumulative CT scores. Cumulative CT scores for each animal were calculated based on the
CT scores depicted in Table 1.

For visualization and quantification of lymph node activation in the mediastinum,
the tracheobronchial area, four (rhesus macaques) or five (cynomolgus macaques) weekly
PET-CTs were obtained over a period of 5 weeks, starting at day 8 pi. The PET-CTs showed
increased metabolic uptake in at least one tracheobronchial lymph node for all the macaques
at all time points. The volume of the lymph nodes associated with this increased uptake
ranged from 27 to 2350 mm3 (mean 620 mm3, std 534 mm3) (Supplementary Figure S7).
On average, a lymph node is defined as enlarged when the volume is at least 194 mm3 [44].
The volume, average uptake (SUVmean), and the maximum uptake (SUVpeak) of the
lymph nodes decreased simultaneously, while the density stayed approximately the same
over time for most animals, except for one animal (J16012). This indicates that even
in the enlarged lymph nodes no form of necrosis was initiated over time, as otherwise
the density would have changed, the maximum uptake would be unaffected, and the
average uptake would have decreased. No differences were observed between rhesus and
cynomolgus macaques apart from the anatomical density represented by the Hounsfield
units (HUs) (p < 0.001) (Supplementary Figure S7). Based on control scans in healthy
animals (n = 24) we determined a negative correlation (r = 0.7154, p ≤ 0.0001) between
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weight and anatomical density of, at least, the subcarinal area in macaques, which can
explain this difference.

From the longitudinal analysis, we conclude that the differentiation of lung lesions
can be performed solely on the CT results, as the metabolic activity was only minimally
increased on the PET images. An interesting finding is that the location of the lung lesions
was not fixed but varied per time point, for instance, in macaque J16012. This animal
showed the most prominent lesions in both lungs. The longitudinal PET-CT follow-up
(Figure 6) showed two “waves” of the lymph nodes’ activation. The first peak on day 8
and another peak on day 29 of which the explanation is unknown. At the time point of
euthanasia (day 35), activation of tracheobronchial lymph nodes was still observed which
is indicative for SARS-CoV-2 induced pathogenesis in the post-acute or convalescent phase
of the infection.

Figure 6. Longitudinal development of both lung lesions and metabolic activity in tracheobronchial lymph nodes of J16017
over time after a SARS-CoV-2 infection. Representative coronal slices with a thickness of 3 mm of J16017 were used for
visualization. On days 0 and 4, only CT images were obtained, afterwards, until day 35, CT was combined with PET. The
location of the lesions, marked with arrows, differed almost per time point, but are most prominently localized in the left
lung on day 35.

3.6. Gross Pathology

Rhesus macaques R15080 and R15096 were euthanized on day 35 pi, and animals
R15090 and R14002, on day 36 pi. The cynomolgus macaques J16012 and J16017 were
euthanized on day 38 pi and animals J16004 and Ji0408005 on day 42 pi.

Macroscopically, the lungs of the rhesus and cynomolgus macaques appeared mostly
unremarkable. One rhesus macaque (R15096) had few small foci with hyperemia at the dor-
sal aspects of the caudal left and right lung lobes, and in three cynomolgus macaques, the
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lungs had similar foci of hyperemia, confined also to the caudal pulmonary lobes. The gross
examination of extrapulmonary organs revealed mildly to moderately enlarged cervical
and mesenteric lymph nodes. The rest of the organs were macroscopically unremarkable.

3.7. Wide-Spread Presence of Viral RNA in Post-Mortem Tissue Samples, and Evidence of Active
Virus Replication in the Respiratory Tract of Infected Macaques

Post-mortem tissue samples were analyzed for the presence of viral RNA (Figure 7,
Supplementary Table S3) and subgenomic messenger RNA (Table 2). After euthanasia,
viral RNA was detected in tissue samples of four out of eight animals, one rhesus (R14002)
and three cynomolgus macaques (J16012, J16017, and Ji408005). Between the PCR-positive
animals, striking differences were observed in the number of positive tissues. J16012
and Ji408005 were only positive in respiratory tract tissues, Ji408005 tested positive in
the pharyngeal mucosa, lung, and two lung lymph nodes, while viral RNA was detected
in the carinal part of the trachea, lung, and four lung lymph nodes of animal J16012.
In the two other PCR-positive macaques (R14002 and J16017), RNA was detected in
the respiratory system and the tracheobronchial lymph nodes, but also in cervical and
mesenteric lymph nodes, skin, conjunctiva, liver, spleen, kidney, salivary gland, and heart,
all organs and tissues that have been described as target tissues in humans [45]. High viral
RNA loads were measured in some lymph nodes of these animals, ranging from 2 × 105

to 1 × 106 GE/g of tissue. Also, in the heart of J16017 and R10002, high viral RNA loads
(between 5 × 103 and 1.15 × 105 GE/g of tissue) were detected (Supplementary Table S4).

Figure 7. Viral RNA loads in tissues of SARS-CoV-2-infected rhesus macaques (R14002) and cynomolgus macaques (J16012,
J16017, and Ji408005). Viral RNA was quantified by qRT-PCR and calculated per gram of tissue. Only animals with viral
RNA-positive tissues are shown. On the y-axis, the tissues are listed, on the x-axis the RNA copies per g tissue. Tissues in
which no RNA was observed in any of the animals are not shown. The tissues are grouped by color codes as indicated on
the right. Tissues that tested positive for sgmRNA are indicated with *. Abbreviations: L, left; R, right; LN, lymph node; UR,
upper right lung lobe; AR, accessory right lung lobe; MR, middle right lung lobe; LR, lower right lung lobe; UL, upper left
lung lobe; ML, middle left lung lobe; LL, lower left lung lobe.
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Table 2. Determination of sgmRNA copies per gram of tissue. PCR analysis was done on all
tissues that tested positive for SARS-CoV-2 RNA in the RdRp gene assay (Figure 7). Only sgmRNA
PCR-positive tissue samples above the LLOQ of 20 RNA copies/reaction are indicated.

R14002 J16012 J16017 Ji408005

Lung, upper right lobe - - - 1.6 × 103

Lung, accessory lobe - 1.52 × 104 - -
Lung, upper left lobe 2.5 × 104 - - -

Bronchus left - - 1.27 × 105 -
Bronchus right - - 3.3 × 104 -

Trachea - - 1.84 × 104 -
Left paratracheal LN - - 4.22 × 104 -

- - 8.4 × 104 -
Left hilar (bronchial) LN 6.8 × 103 1.52 × 104 9.6 × 104 -

- - 7.4 × 103 -
Subcarinal LN - 1.11 × 105 1.56 × 104 -

Right hilar (bronchial) LN - 3.99 × 105 2.4 104 1.98 × 104

- - - 6.88 × 104

Right paratracheal LN - 1.34 × 105 1.26 × 104 -
- - 9.2 × 103 -

SARS-CoV-2 replication was evidenced by using sgmRNA PCR analysis on all tissue
samples that tested positive in previous viral RNA tests. As sgmRNA is synthesized during
virus replication, this assay is recognized as an alternative to virus isolation from tissue
samples. In Table 2 and Figure 7, the sgmRNA-positive tissues are shown. Despite the
virus being no longer detectable in nasal and tracheal swabs from the 4 animals for more
than 26 days (R14002), 30 days (J16017), or even 34 days (J16012 and Ji408005), sgmRNA
was detectable in the respiratory tract tissues of all four macaques, convincingly indicating
that SARS-CoV-2 continued to replicate in these animals after the alleged resolution of
infection that was concluded from the negative nasal and tracheal swab samples.

3.8. Histopathology

The histological examination of the lung tissue samples revealed unremarkable or re-
solving minimal lesions that were indicative of a previous infection with SARS-CoV-2. The
nature of the lesions was similar in both rhesus and cynomolgus macaques and comprised
of some or all of the following: focal areas with minimal to mild interstitial mononuclear
inflammatory infiltrates, foci of bronchiolar smooth muscle hyperplasia (Figure 8A panel 2),
vascular congestion, multifocal mild expansion of alveolar septa with delicate collagen
(Trichrome stain; Figure 8A panel 3), and occasional foci of type II pneumocytes hyper-
plasia and few intra-alveolar macrophages (Figure 8A panel 4). The latter finding was
confirmed by IHC using an anti-TTF-1 antibody (Figure 8A, insert panel 4). Gram staining
of the pulmonary lobes of all animals was negative. The extrapulmonary organs were his-
tologically mostly unremarkable, or exhibited mild, nonspecific background lesions, such
as chronic-active colitis, and enteritis. However, the conjunctiva of cynomolgus macaque
J16017 showed multifocal and perivascular foci of moderate lymphocytic infiltrates in the
substantia propria (Figure 8C panel 2). Indeed, this finding was supported by PET-CT
images (Figure 8C): an increased FDG-uptake was measured in the left eye compared to
the right eye of J16017 which is indicative of ongoing SARS-CoV-2-induced pathogenesis.
PCR analysis confirmed the presence of viral RNA in the eye of this animal (Figure 7),
clearly demonstrating ocular SARS-CoV-2 infection in J16017. In addition, the cervical
lymph node of the same animal exhibited marked lymphoid hyperplasia (follicular type)
(Figure 8B panel 1). Similar to the conjunctiva, this histological finding was accompanied
by the detection of SARS-CoV-2 RNA in this lymph node. Using IHC, the presence of viral
antigen could not be established. Rhesus macaque R14002 showed evidence of SARS-CoV-
2 infection in the mesenteric lymph nodes by positive PCR and histologically exhibited
marked lymphoid hyperplasia—paracortical type (Figure 8B panel 2).
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Figure 8. Histopathology of tissues from rhesus and cynomolgus macaques infected with SARS-CoV-
2 and euthanized 36 to 42 days post-infection. (A) Panel 1. Lung of healthy, uninfected macaque
(Hematoxylin and Eosin (HE) staining, original magnification 100×); Panel 2. Lung of rhesus
macaque infected with SARS-CoV-2 and euthanized day 36 pi. Focal area with mild alveolar septa
expansion with a low number of mononuclear inflammatory cells (asterisks) and foci of bronchiolar
smooth muscle hyperplasia (arrows) (HE, 100×); Panel 3. Masson’s trichrome staining shows the
presence of collagen (lighter blue) mildly expanding the alveolar septa at some areas indicated by
arrows. The internal control is the blood vessel on the left side with lighter blue staining of tunica
adventitia (Trichrome stain, 630×); Panel 4. Lung of infected rhesus macaque with foci of mildly
thickened alveolar walls lined by cuboidal to columnar epithelial cells with hyperchromatic nuclei
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representing type II pneumocyte hyperplasia (arrows) and few aggregates of macrophages in the
alveolar lumina (asterisks) (HE, 400×). Panel 4 inset: TTF1 marker was used to identify and confirm
type II pneumocytes, stained in red-brown (IHC, 400×). (B) Panel 1. Cervical lymph node of
cynomolgus macaque J16017 with marked follicular lymphoid hyperplasia. Numerous lymphoid
follicles in the cortex (square), paracortex (arrowhead), and medulla (asterisk) are indicated (HE,
50×); Panel 2. Mesenteric lymph node of rhesus macaque R14002 with marked paracortical lymphoid
hyperplasia and medullar sinusoidal histiocytosis. Cortex (square), paracortex (arrowhead), and
medulla (asterisk) are indicated (HE, 50×). (C) Panel 1. PET-CT image of the skull of J16017 with
prominent metabolic activity in the left ocular region (arrow); Panel 2. Conjunctiva of the same
individual. Numerous perivascular and multifocal lymphocytes infiltrating the stratified squamous
epithelium and the substantia propria. Goblet cell (arrow), non-keratinized stratified squamous
epithelium (arrowhead), and substantia propria (asterisk) are indicated (HE, 200×).

4. Discussion

In humans, COVID-19 displays a broad spectrum of disease symptoms [3,46]. To
investigate factors leading to the different COVID-19 manifestations animal models are
essential as the moment and site of infection can be controlled and the subsequent response
can be monitored in detail. Due to their similarity to humans, NHPs play a pivotal
role in this type of preclinical research. To best appreciate the potential of the various
macaque species as SARS-CoV-2 infection models, a thorough characterization of the entire
course of infection is needed. The comparative study reported here contributes to this
knowledge and further validates the different macaque models that are currently in use for
COVID-19 research.

The study specifically focused on the post-acute phase of the SARS-CoV-2 infection
in rhesus and cynomolgus macaques, defined as the 3–4 week period following the dis-
appearance of detectable virus from the nose and throat swab samples. The majority of
published COVID-19 NHP studies concentrate on the first two weeks of infection when
evidence was found for acute viral interstitial pneumonia and virus clearance from the
nose and throat samples and lung lavages [24,27,47–49]. As the PET-CTs performed in
this study on days 8 and 10 pi revealed an increase in 18F-FDG-uptake in the lungs and
various tracheobronchial lymph nodes, it was decided to extend the observation period
with weekly PET-CTs for all macaques for several weeks (rhesus macaques 35 or 36 days
pi, for cynomolgus macaques 38 or 42 days pi, depending on the PET-CT findings).

During the entire study, including the acute infection phase, only mild clinical symp-
toms were noticed. This sharply contrasts with findings of others that described SARS-CoV-
2-induced clinical disease, with clear signs of fever directly following infection, respiratory
symptoms, and changes in hematology and clinical chemistry parameters [24,26]. Unbi-
ased measurement of the body temperature and activity of each animal was performed
continuously by using telemetry. This is an important asset as in both macaque species
a small, but notable elevation in body temperature was recorded in the first two weeks,
the period of active virus replication. Differences in animal activity indicated that SARS-
CoV-2 infection also influenced the well-being of the animals without causing obvious
clinical symptoms. No indications for renal involvement or coagulation disorders were
found in the macaques, and C-reactive protein (CRP) levels, a marker for pneumonia in
humans [37], were also not afflicted. The clinical findings deviate from those described by
other researchers. This discrepancy may be due, for instance, to the virus strain used for
the challenge, the methods used for virus inoculation, the origin, genetic background, and
environmental conditions of the animals.

In COVID-19 patients, the acute respiratory syndrome sometimes coincides with
hypercytokinemia, occasionally resulting in multi-organ failure [50]. Patients with severe
COVID-19 had significantly elevated plasma levels of proinflammatory cytokines [51]. In
this study, macaques did not show overt disease symptoms but levels of certain cytokines,
such as IL-6, IFN-γ, MIP-1α, and MIP-1β increased in the plasma of both macaque species,
showing that the chemokine system is involved in SARS-CoV-2 infection. The cytokine
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profiles after SARS-CoV-2 were highly comparable between the macaque species, except
for IP-10 and MCP-1, suggesting differential involvement of monocyte activation between
the species. We observed an increase in IL-6 levels at the end of the study in some indi-
viduals. In humans, IL-6 is involved in many inflammatory diseases. In patients with
COVID-19, systemic production of IL-6 is associated with disease progression [52]. Also,
in our study, the elevation of IL-6 corresponded with lung pathology as indicated by the
highest CT/pathology scores in these animals. In humans, higher IL-6 levels coincide with
increased CRP. We did not observe this correlation in the macaques, underlining subtle
differences between human and NHP pathology in response to SARS-CoV-2 infection.

Antibody responses were detectable in all animals after infection. IgG titers to the
N and S proteins, as well as the receptor-binding domain (RBD) on S, started to develop
around day 14, and apart from individual differences, continued to rise during the follow-
up period. The development of IgG accurately followed the course of virus infection, as it
became first detectable within one week after the virus had become undetectable in sera by
RT-PCR. This was in line with the findings of others [25,32,53]. No IgM directed to the N
protein was detected in seven out of eight animals. This result was confirmed by a second,
in-house developed IgM-ELISA (not shown) and thus a technical flaw in the serological
assay used was excluded. We cannot explain the lack of N-specific IgM response to
infection. In contrast, elevated antibody levels against S and the RBD were measured, most
prominent in the cynomolgus macaques. Overall, IgM titers developed simultaneously
with IgG, a salient phenomenon also reported by Hartman et al. in SARS-CoV-2-infected
African Green monkeys [53].

Imaging was used to visualize possible lung pathology. In humans, CT is also applied,
but the type of lung lesions found are only partly specific to COVID-19 [3,54]. In the
current study, purpose-bred NHPs with a well-documented health status were used, and
pre-infection control scans were made. In this well-controlled NHP study, CT imaging
is likely a valuable tool to monitor the progression of COVID-19-related lung pathology.
Based on the criteria set to determine clinical severity [55], the macaques featured moderate
disease levels as all eight individuals showed levels of pneumonia during the infection.
As in other NHP studies [32], lesions were observed in the lungs of infected animals.
Differences in the location of lesions between the different studies may be related to
different circumstances e.g., the method of administration of the virus into the trachea.
Similar to Finch et al. [32], we did not collect bronchoalveolar lavage (BAL) samples in
order to avoid unwanted interference with CT imaging [34,53,56,57]. Instead, we collected
tracheal swabs for viral load analysis. The viral RNA loads, but also the temporal pattern
of RNA detection in swabs samples, were similar to those observed in BAL [23,48,58,59].

PET-CT imaging of the respiratory tract started in the late acute phase of infection
and was regularly performed until euthanasia. It became evident that after the assumed
resolution of infection, as witnessed by negative testing for viral RNA in nasal and tracheal
swabs, clear signs of pneumonia were still present in the lungs, with both sustained and
newly formed lesions. Besides, an increased 18F-FDG uptake was detectable in the lungs
and tracheobronchial lymph nodes of all animals. This indicates that despite mild disease
symptoms in the acute phase of infection, and resolved viremia, SARS-CoV-2-induced
pathogenesis continued. In addition, the detection of subgenomic messenger RNA in
the respiratory tract and lung lymph nodes of 50% of animals implies that replication of
SARS-CoV-2 continued unnoticed, and one can only hypothesize that this can cause disease
symptoms in the macaques at a later stage. This finding in a recognized NHP model for
COVID-19 research is of particular interest because of the growing concern for long-COVID
in humans [60]. More than a year after the start of the pandemic, it is evident that humans
can suffer from COVID-19-related symptoms, weeks to months after seemingly resolving
the infection [5–7].

COVID-19 was initially regarded as a respiratory disease, but patients that succumb
to this disease can display a complex array of pathologies that cover a broad spectrum
of symptoms. In the macaques, viral RNA was also detected in other tissues, such as
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in the conjunctiva, salivary gland, cervical and mesenteric lymph nodes, heart, and kid-
ney. In COVID-19 patients, these organs can also be affected by SARS-CoV-2, causing
extra-pulmonary disease symptoms [46,61,62]. Histopathological findings of lymphocytic
infiltrates in the lamina propria of the conjunctiva and lymphoid hyperplasia in a cervi-
cal lymph node (both in J16017) correlate with the detection of viral RNA and highlight
similarities in the disease course between NHP and humans.

Subtle differences were observed between the two macaque species in reaction to
the SARS-CoV-2 infection that may affect disease or pathology, but based on the results
presented here, both species are equally useful in COVID-19 research.

PET-CT imaging, in combination with viral RNA and subgenomic messenger RNA de-
tection, revealed new insights in the post-acute phase of SARS-CoV-2 infection in macaques.
Our data indicate widespread tissue dissemination of SARS-CoV-2 in individual monkeys
and provide evidence for continuing virus replication in lungs and surrounding lymph
nodes after alleged convalescence of infection. This finding is intriguing as it has been
hypothesized that persistent infection contributes to long COVID-19 in humans [60]. One
wonders whether the current worldwide COVID-19 vaccination program will not only
eliminate the acute disease but will have a positive effect on minimizing the long-COVID-
related pathologies as well.
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bronchial lymph nodes, Table S1: List of animals used in the study. R: rhesus macaque, C: cynomolgus
macaque. Table S2: Clinical symptoms scoring list, Table S3A: Viral loads in swab and blood samples
(RNA genome equivalents/mL), Table S3B: Subgenomic messenger RNA in tracheal and nasal swab
samples (sgmRNA copies/mL), Table S4: Viral RNA loads in tissues of infected macaques, Table S5:
list of consumables.

Author Contributions: Conceptualization, E.J.V., B.E.V., and K.P.B.; formal analysis, E.J.R., B.E.V.,
M.A.S., G.K. and P.M.; investigation, K.P.B., B.E.V., M.A.S., Z.C.F., G.K.-K., H.N., N.v.D., I.N., G.K.,
E.Z.-S., L.M., A.C.R.H., P.S., R.A.W.V., T.H., B.O., D.A., R.F.A., H.O., and I.K.; resources, D.M. and
B.L.H.; data curation, B.E.V. and K.P.B.; writing—original draft preparation, E.J.V., K.P.B., and B.E.V.;
writing—review and editing, W.M.B., J.A.M.L., and R.E.B.; visualization, K.P.B., P.M., and E.J.R.;
supervision, E.J.V. and B.E.V.; project administration, B.E.V. and E.J.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by funding from the Biomedical Primate Research Centre. K.P.B.
was supported by the European Union’s Marie Skłodowska-Curie Innovative Training Network
HONOURs; grant agreement no. 721367. This publication was also supported by the European Virus
Archive GLOBAL (EVA-GLOBAL) project that has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement no. 871029.

Institutional Review Board Statement: The research protocol was approved by national authorities
(CCD, Central Committee for Animal Experiments; license number AVD5020020209404). Approval to
start was obtained after further assessment of the detailed study protocol by the institutional animal
welfare body (AWB) (in Dutch: Instantie voor Dierenwelzijn, IvD). The BPRC is accredited by the
American Association for Accreditation of Laboratory Animal Care (AAALAC) International and is
compliant with European directive 2010/63/EU as well as the “Standard for Humane Care and Use
of Laboratory Animals by Foreign Institutions” provided by the Department of Health and Human
Services of the US National Institutes of Health (NIH, identification number A5539-01).

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in the main text or the Supplementary Materials.
Correspondence and request for materials should be addressed to EJV (verschoor@bprc.nl).

Acknowledgments: We would like to thank the Animal Science Department, especially the animal
caretakers and veterinarians for the excellent care of the animals. Francisca van Hassel for her

https://www.mdpi.com/article/10.3390/v13081673/s1
https://www.mdpi.com/article/10.3390/v13081673/s1


Viruses 2021, 13, 1673 20 of 22

assistance in figure design and Billy van Diemen for ICT support. We also thank Cristina Aira
(Eurofins Ingenasa, Madrid) and Joan Martí-Carreras for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Whetton, A.D.; Preston, G.W.; Abubeker, S.; Geifman, N. Proteomics and Informatics for Understanding Phases and Identifying

Biomarkers in COVID-19 Disease. J. Proteome Res. 2020, 19, 4219–4232. [CrossRef]
2. Polak, S.B.; Van Gool, I.C.; Cohen, D.; von der Thusen, J.H.; van Paassen, J. A systematic review of pathological findings in

COVID-19: A pathophysiological timeline and possible mechanisms of disease progression. Mod. Pathol. 2020, 33, 2128–2138.
[CrossRef]

3. Kwee, T.C.; Kwee, R.M. Chest CT in COVID-19: What the Radiologist Needs to Know. Radiographics 2020, 40, 1848–1865.
[CrossRef] [PubMed]

4. Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in
patients with viral pneumonia. Emerg. Microbes Infect. 2020, 9, 727–732. [CrossRef] [PubMed]

5. Oronsky, B.; Larson, C.; Hammond, T.C.; Oronsky, A.; Kesari, S.; Lybeck, M.; Reid, T.R. A Review of Persistent Post-COVID
Syndrome (PPCS). Clin. Rev. Allergy Immunol. 2021, 3, 1–9. [CrossRef]

6. Sollini, M.; Morbelli, S.; Ciccarelli, M.; Cecconi, M.; Aghemo, A.; Morelli, P.; Chiola, S.; Gelardi, F.; Chiti, A. Long COVID
hallmarks on [18F]FDG-PET/CT: A case-control study. Eur. J. Nucl. Med. Mol. Imaging 2021, 7, 1–11. [CrossRef]

7. Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.;
et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–4631. [CrossRef]

8. Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.;
Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 7862, 259–264. [CrossRef]

9. Cleary, S.J.; Pitchford, S.C.; Amison, R.T.; Carrington, R.; Robaina Cabrera, C.L.; Magnen, M.; Looney, M.R.; Gray, E.; Page,
C.P. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br. J. Pharmacol. 2020, 177, 4851–4865.
[CrossRef]

10. McCray, P.B., Jr.; Pewe, L.; Wohlford-Lenane, C.; Hickey, M.; Manzel, L.; Shi, L.; Netland, J.; Jia, H.P.; Halabi, C.; Sigmund, C.D.;
et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 2007, 81, 813–821.
[CrossRef]

11. Lutz, C.; Maher, L.; Lee, C.; Kang, W. COVID-19 preclinical models: Human angiotensin-converting enzyme 2 transgenic mice.
Hum. Genom. 2020, 14, 20. [CrossRef]

12. Sanchez-Felipe, L.; Vercruysse, T.; Sharma, S.; Ma, J.; Lemmens, V.; Van Looveren, D.; Arkalagud Javarappa, M.P.; Boudewijns, R.;
Malengier-Devlies, B.; Liesenborghs, L.; et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate.
Nature 2021, 590, 320–325. [CrossRef]

13. Boudewijns, R.; Thibaut, H.J.; Kaptein, S.J.F.; Li, R.; Vergote, V.; Seldeslachts, L.; Van Weyenbergh, J.; De Keyzer, C.; Bervoets, L.;
Sharma, S.; et al. STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters.
Nat. Commun. 2020, 11, 5838. [CrossRef]

14. Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and
Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e2. [CrossRef]

15. Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.M.A.; van Fentener Vlissingen, M.; Rockx, B.;
Haagmans, B.L.; Koopmans, M.P.G.; et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun.
2020, 11, 3496. [CrossRef]

16. Zhou, B.; Thao, T.T.N.; Hoffmann, D.; Taddeo, A.; Ebert, N.; Labroussaa, F.; Pohlmann, A.; King, J.; Steiner, S.; Kelly, J.N.; et al.
SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 2021, 592, 122–127. [CrossRef]

17. De Vries, R.D.; Schmitz, K.S.; Bovier, F.T.; Predella, C.; Khao, J.; Noack, D.; Haagmans, B.L.; Herfst, S.; Stearns, K.N.; Drew-Bear,
J.; et al. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 2021, 371,
1379–1382. [CrossRef]

18. Matute-Bello, G.; Frevert, C.W.; Martin, T.R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295,
L379–L399. [CrossRef]

19. Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18,
390–404. [CrossRef]

20. Gong, S.R.; Bao, L.L. The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models. Anim. Model Exp. Med.
2018, 1, 125–133. [CrossRef]

21. Sutton, T.C.; Subbarao, K. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.
Virology 2015, 479–480, 247–258. [CrossRef]

22. Lu, S.; Zhao, Y.; Yu, W.; Yang, Y.; Gao, J.; Wang, J.; Kuang, D.; Yang, M.; Yang, J.; Ma, C.; et al. Comparison of nonhuman primates
identified the suitable model for COVID-19. Signal Transduct. Target. Ther. 2020, 5, 157. [CrossRef] [PubMed]

23. Singh, A.; Singh, R.S.; Sarma, P.; Batra, G.; Joshi, R.; Kaur, H.; Sharma, A.R.; Prakash, A.; Medhi, B. A Comprehensive Review of
Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol. Sin. 2020, 35, 290–304. [CrossRef]

http://doi.org/10.1021/acs.jproteome.0c00326
http://doi.org/10.1038/s41379-020-0603-3
http://doi.org/10.1148/rg.2020200159
http://www.ncbi.nlm.nih.gov/pubmed/33095680
http://doi.org/10.1080/22221751.2020.1746199
http://www.ncbi.nlm.nih.gov/pubmed/32196410
http://doi.org/10.1007/s12016-021-08848-3
http://doi.org/10.1007/s00259-021-05294-3
http://doi.org/10.1038/s41591-021-01292-y
http://doi.org/10.1038/s41591-021-01283-z
http://doi.org/10.1111/bph.15143
http://doi.org/10.1128/JVI.02012-06
http://doi.org/10.1186/s40246-020-00272-6
http://doi.org/10.1038/s41586-020-3035-9
http://doi.org/10.1038/s41467-020-19684-y
http://doi.org/10.1016/j.chom.2020.03.023
http://doi.org/10.1038/s41467-020-17367-2
http://doi.org/10.1038/s41586-021-03361-1
http://doi.org/10.1126/science.abf4896
http://doi.org/10.1152/ajplung.00010.2008
http://doi.org/10.1038/s41577-018-0005-7
http://doi.org/10.1002/ame2.12017
http://doi.org/10.1016/j.virol.2015.02.030
http://doi.org/10.1038/s41392-020-00269-6
http://www.ncbi.nlm.nih.gov/pubmed/32814760
http://doi.org/10.1007/s12250-020-00252-z


Viruses 2021, 13, 1673 21 of 22

24. Johnston, S.C.; Ricks, K.M.; Jay, A.; Raymond, J.L.; Rossi, F.; Zeng, X.; Scruggs, J.; Dyer, D.; Frick, O.; Koehler, J.W.; et al.
Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS ONE 2021, 16, e0246366.
[CrossRef]

25. Woolsey, C.; Borisevich, V.; Prasad, A.N.; Agans, K.N.; Deer, D.J.; Dobias, N.S.; Heymann, J.C.; Foster, S.L.; Levine, C.B.; Medina,
L.; et al. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat. Immunol. 2021,
22, 86–98. [CrossRef]

26. Munster, V.J.; Feldmann, F.; Williamson, B.N.; van Doremalen, N.; Perez-Perez, L.; Schulz, J.; Meade-White, K.; Okumura, A.;
Callison, J.; Brumbaugh, B.; et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 2020, 585, 268–272.
[CrossRef]

27. Rockx, B.; Kuiken, T.; Herfst, S.; Bestebroer, T.; Lamers, M.M.; Oude Munnink, B.B.; de Meulder, D.; van Amerongen, G.; van den
Brand, J.; Okba, N.M.A.; et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science
2020, 368, 1012–1015. [CrossRef]

28. Brining, D.L.; Mattoon, J.S.; Kercher, L.; LaCasse, R.A.; Safronetz, D.; Feldmann, H.; Parnell, M.J. Thoracic radiography as a
refinement methodology for the study of H1N1 influenza in cynomologus macaques (Macaca fascicularis). Comp. Med. 2010, 60,
389–395.

29. Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M.L.;
et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2001483. [CrossRef]

30. Wolfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Muller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.;
et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [CrossRef]

31. Stammes, M.A.; Bakker, J.; Vervenne, R.A.W.; Zijlmans, D.G.M.; van Geest, L.; Vierboom, M.P.M.; Langermans, J.A.M.; Verreck,
F.A.W. Recommendations for Standardizing Thorax PET–CT in Non-Human Primates by Recent Experience from Macaque
Studies. Animals 2021, 11, 204. [CrossRef]

32. Finch, C.L.; Crozier, I.; Lee, J.H.; Byrum, R.; Cooper, T.K.; Liang, J.; Sharer, K.; Solomon, J.; Sayre, P.J.; Kocher, G.; et al.
Characteristic and quantifiable COVID-19-like abnormalities in CT- and PET/CT-imaged lungs of SARS-CoV-2-infected crab-
eating macaques (Macaca fascicularis). bioRxiv 2020. [CrossRef]

33. Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; et al. Time Course of Lung Changes at
Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology 2020, 295, 715–721. [CrossRef]

34. Maaskant, A.; Meijer, L.; Bakker, J.; van Geest, L.; Zijlmans, D.G.M.; Langermans, J.A.M.; Verschoor, E.J.; Stammes, M.A.
Bronchoalveolar lavage affects thorax computed tomography of healthy and SARS-CoV-2 infected rhesus macaques bioRxiv. PloS
ONE 2021, 16, e0252941. [CrossRef]

35. Hoste, A.C.R.; Venteo, A.; Fresco-Taboada, A.; Tapia, I.; Monedero, A.; Lopez, L.; Jebbink, M.F.; Perez-Ramirez, E.; Jimenez-
Clavero, M.A.; Almonacid, M.; et al. Two serological approaches for detection of antibodies to SARS-CoV-2 in different scenarios:
A screening tool and a point-of-care test. Diagn. Microbiol. Infect. Dis. 2020, 98, 115167. [CrossRef]

36. Dagotto, G.; Mercado, N.B.; Martinez, D.R.; Hou, Y.J.; Nkolola, J.P.; Carnahan, R.H.; Crowe, J.E., Jr.; Baric, R.S.; Barouch, D.H.
Comparison of Subgenomic and Total RNA in SARS-CoV-2 Challenged Rhesus Macaques. J. Virol. 2021, 95, e02370-20. [CrossRef]

37. Wang, L. C-reactive protein levels in the early stage of COVID-19. Med. Mal. Infect. 2020, 50, 332–334. [CrossRef] [PubMed]
38. Ronco, C.; Reis, T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat. Rev. Nephrol. 2020, 16,

308–310. [CrossRef] [PubMed]
39. Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8,

738–742. [CrossRef]
40. Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with

in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [CrossRef]
41. Spiezia, L.; Boscolo, A.; Poletto, F.; Cerruti, L.; Tiberio, I.; Campello, E.; Navalesi, P.; Simioni, P. COVID-19-Related Severe

Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb. Haemost. 2020, 120,
998–1000. [CrossRef]

42. Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040.
[CrossRef]

43. Kovacs, A.; Palasti, P.; Vereb, D.; Bozsik, B.; Palko, A.; Kincses, Z.T. The sensitivity and specificity of chest CT in the diagnosis of
COVID-19. Eur. Radiol. 2021, 31, 2819–2824. [CrossRef]

44. Glazer, G.M.; Gross, B.H.; Quint, L.E.; Francis, I.R.; Bookstein, F.L.; Orringer, M.B. Normal mediastinal lymph nodes: Number
and size according to American Thoracic Society mapping. AJR Am. J. Roentgenol. 1985, 144, 261–265. [CrossRef]

45. Ashraf, U.M.; Abokor, A.A.; Edwards, J.M.; Waigi, E.W.; Royfman, R.S.; Hasan, S.A.; Smedlund, K.B.; Hardy, A.M.G.; Chakravarti,
R.; Koch, L.G. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol. Genom. 2021, 53, 51–60. [CrossRef]

46. Walitt, B.; Bartrum, E. A clinical primer for the expected and potential post-COVID-19 syndromes. Pain Rep. 2021, 6, e887.
[CrossRef]

47. Chandrashekar, A.; Liu, J.; Martinot, A.J.; McMahan, K.; Mercado, N.B.; Peter, L.; Tostanoski, L.H.; Yu, J.; Maliga, Z.; Nekorchuk,
M.; et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 2020, 369, 812–817. [CrossRef]

http://doi.org/10.1371/journal.pone.0246366
http://doi.org/10.1038/s41590-020-00835-8
http://doi.org/10.1038/s41586-020-2324-7
http://doi.org/10.1126/science.abb7314
http://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
http://doi.org/10.1038/s41586-020-2196-x
http://doi.org/10.3390/ani11010204
http://doi.org/10.1101/2020.05.14.096727
http://doi.org/10.1148/radiol.2020200370
http://doi.org/10.1371/journal.pone.0252941
http://doi.org/10.1016/j.diagmicrobio.2020.115167
http://doi.org/10.1128/JVI.02370-20
http://doi.org/10.1016/j.medmal.2020.03.007
http://www.ncbi.nlm.nih.gov/pubmed/32243911
http://doi.org/10.1038/s41581-020-0284-7
http://www.ncbi.nlm.nih.gov/pubmed/32273593
http://doi.org/10.1016/S2213-2600(20)30229-0
http://doi.org/10.1016/j.kint.2020.03.005
http://doi.org/10.1055/s-0040-1714350
http://doi.org/10.1182/blood.2020006000
http://doi.org/10.1007/s00330-020-07347-x
http://doi.org/10.2214/ajr.144.2.261
http://doi.org/10.1152/physiolgenomics.00087.2020
http://doi.org/10.1097/PR9.0000000000000887
http://doi.org/10.1126/science.abc4776


Viruses 2021, 13, 1673 22 of 22

48. Williamson, B.N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D.P.; Schulz, J.; van Doremalen, N.; Leighton, I.; Yinda,
C.K.; Perez-Perez, L.; et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 2020, 585, 273–276.
[CrossRef]

49. De Wit, E.; Rasmussen, A.L.; Falzarano, D.; Bushmaker, T.; Feldmann, F.; Brining, D.L.; Fischer, E.R.; Martellaro, C.; Okumura, A.;
Chang, J.; et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in
rhesus macaques. Proc. Natl. Acad. Sci. USA 2013, 110, 16598–16603. [CrossRef]

50. Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement
of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [CrossRef]

51. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef]

52. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [CrossRef]

53. Hartman, A.L.; Nambulli, S.; McMillen, C.M.; White, A.G.; Tilston-Lunel, N.L.; Albe, J.R.; Cottle, E.; Dunn, M.D.; Frye, L.J.;
Gilliland, T.H.; et al. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT
imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog 2020, 16, e1008903.
[CrossRef]

54. Simpson, S.; Kay, F.U.; Abbara, S.; Bhalla, S.; Chung, J.H.; Chung, M.; Henry, T.S.; Kanne, J.P.; Kligerman, S.; Ko, J.P.; et al.
Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19.
Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA-Secondary Publication. J. Thorac.
Imaging 2020, 35, 219–227. [CrossRef]

55. Fan, L.; Liu, S. CT and COVID-19: Chinese experience and recommendations concerning detection, staging and follow-up. Eur.
Radiol. 2020, 30, 5214–5216. [CrossRef]

56. Blair, R.V.; Vaccari, M.; Doyle-Meyers, L.A.; Roy, C.J.; Russell-Lodrigue, K.; Fahlberg, M.; Monjure, C.J.; Beddingfield, B.; Plante,
K.S.; Plante, J.A.; et al. Acute Respiratory Distress in Aged, SARS-CoV-2-Infected African Green Monkeys but Not Rhesus
Macaques. Am. J. Pathol. 2021, 191, 274–282. [CrossRef]

57. Singh, D.K.; Singh, B.; Ganatra, S.R.; Gazi, M.; Cole, J.; Thippeshappa, R.; Alfson, K.J.; Clemmons, E.; Gonzalez, O.; Escobedo, R.;
et al. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat. Microbiol.
2021, 6, 73–86. [CrossRef] [PubMed]

58. Yu, J.; Tostanoski, L.H.; Peter, L.; Mercado, N.B.; McMahan, K.; Mahrokhian, S.H.; Nkolola, J.P.; Liu, J.; Li, Z.; Chandrashekar, A.;
et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 2020, 369, 806–811. [CrossRef]

59. Mercado, N.B.; Zahn, R.; Wegmann, F.; Loos, C.; Chandrashekar, A.; Yu, J.; Liu, J.; Peter, L.; McMahan, K.; Tostanoski, L.H.; et al.
Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020, 383, 1544–1555. [CrossRef]

60. Jacobs, J.J.L. Persistent SARS-2 infections contribute to long COVID-19. Med. Hypotheses 2021, 149, 110538. [CrossRef]
61. Johnson, K.D.; Harris, C.; Cain, J.K.; Hummer, C.; Goyal, H.; Perisetti, A. Pulmonary and Extra-Pulmonary Clinical Manifestations

of COVID-19. Front. Med. 2020, 7, 526. [CrossRef]
62. Mehta, O.P.; Bhandari, P.; Raut, A.; Kacimi, S.E.O.; Huy, N.T. Coronavirus Disease (COVID-19): Comprehensive Review of

Clinical Presentation. Front. Public Health 2020, 8, 582932. [CrossRef]

http://doi.org/10.1038/s41586-020-2423-5
http://doi.org/10.1073/pnas.1310744110
http://doi.org/10.1016/j.cytogfr.2020.05.003
http://doi.org/10.1016/S0140-6736(20)30183-5
http://doi.org/10.1016/S0140-6736(20)30251-8
http://doi.org/10.1371/journal.ppat.1008903
http://doi.org/10.1097/RTI.0000000000000524
http://doi.org/10.1007/s00330-020-06898-3
http://doi.org/10.1016/j.ajpath.2020.10.016
http://doi.org/10.1038/s41564-020-00841-4
http://www.ncbi.nlm.nih.gov/pubmed/33340034
http://doi.org/10.1126/science.abc6284
http://doi.org/10.1038/s41586-020-2607-z
http://doi.org/10.1016/j.mehy.2021.110538
http://doi.org/10.3389/fmed.2020.00526
http://doi.org/10.3389/fpubh.2020.582932

	Introduction 
	Materials and Methods 
	Ethics and Biosafety Statement 
	Animals 
	Virus 
	Experimental Infections and Post-Exposure Study Follow-Up 
	Biochemistry and Hematology 
	Detection of Viral RNA in Swabs, Blood, and Tissue 
	Imaging 
	PET-CT 
	Gated-CT 

	Cytokine and Chemokine Analysis 
	Serology 
	Necropsy and Histological Analysis 
	Immunohistochemistry 

	Results 
	Infection of Macaques with SARS-CoV-2 
	Body Temperature, Activity, Clinical Symptoms, and Blood Parameters after SARS-CoV-2 Infection 
	Humoral Immune Response to SARS-CoV-2 Infection 
	Cytokine and Chemokine Measurements in Sera of Infected Macaques 
	Development of Lung Lesions and Lymph Node Activation during SARS-CoV2 Infection 
	Gross Pathology 
	Wide-Spread Presence of Viral RNA in Post-Mortem Tissue Samples, and Evidence of Active Virus Replication in the Respiratory Tract of Infected Macaques 
	Histopathology 

	Discussion 
	References

