
Citation: Poirier, W.; Bouchara, J.-P.;

Giraud, S. Lignin-Modifying

Enzymes in Scedosporium Species. J.

Fungi 2023, 9, 105. https://doi.org/

10.3390/jof9010105

Academic Editor: David S. Perlin

Received: 24 November 2022

Revised: 6 January 2023

Accepted: 9 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Article

Lignin-Modifying Enzymes in Scedosporium Species
Wilfried Poirier * , Jean-Philippe Bouchara and Sandrine Giraud

University of Angers, University of Brest, IRF (Infections Respiratoires Fongiques), SFR ICAT 4208,
CEDEX 9, 49933 Angers, France
* Correspondence: wilfried.poirier94@gmail.com; Tel.: +33-(0)2-44-68-83-64

Abstract: Scedosporium species are usually soil saprophytes but some members of the genus such
as S. apiospermum and S. aurantiacum have been regularly reported as causing human respiratory
infections, particularly in patients with cystic fibrosis (CF). Because of their low sensitivity to almost
all available antifungal drugs, a better understanding of the pathogenic mechanisms of these fungi
is mandatory. Likewise, identification of the origin of the contamination of patients with CF may
be helpful to propose prophylactic measures. In this aim, environmental studies were conducted
demonstrating that Scedosporium species are abundant in human-made environments and associated
with nutrient-rich substrates. Although their natural habitat remains unknown, there is accumulated
evidence to consider them as wood-decaying fungi. This study aimed to demonstrate the ability
of these fungi to utilize lignocellulose compounds, especially lignin, as a carbon source. First, the
lignolytic properties of Scedosporium species were confirmed by cultural methods, and biochemi-
cal assays suggested the involvement of peroxidases and oxidases as lignin-modifying enzymes.
Scedosporium genomes were then screened using tBLASTn searches. Fifteen candidate genes were
identified, including four peroxidase and seven oxidase genes, and some of them were shown, by
real-time PCR experiments, to be overexpressed in lignin-containing medium, thus confirming their
involvement in lignin degradation.
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1. Introduction

Fungi are key players in the degradation of lignocellulosic biomass. Besides cellulose
and hemicelluloses (mainly xylans), lignin is a macromolecule providing strength as well
as rigidity to the plant cell wall and protecting its two polysaccharidic partners against
microbial attack by hydrolytic enzymes. Meanwhile, the degradation of cellulose and
hemicellulose involves glycosidases (mainly cellobiohydrolases, cellulose cellobiosidases
and glycosidases, or xylanases and xylohydrolases, respectively), degradation of lignin is
more complex as it is a polyphenolic macromolecule resulting from the polymerization
of three types of monolignols (paracoumarylic, coniferylic and sinapylic acids). As a
consequence, whereas many microorganisms are able to use cellulose and hemicellulose as
the carbon source, only a few groups of fungi are able to degrade lignin, among which the
wood-decaying Basidiomycetes, also termed “white-rot fungi”, are the most efficient. They
mineralize the complex lignin polymer by the synergistic action of several extracellular
enzymes, such as peroxidases and laccases [1].

During the past few decades, the metabolic pathways and the enzymatic mechanisms
involved in lignin degradation by Basidiomycetes have been extensively studied [2,3].
Conversely, little is known about the lignocellulose degradation by Ascomycetes. Wood
decay by some Ascomycetes was first observed in 1954 by Savory [4,5]. These fungi were
designated as “soft-rot fungi” due to their ability to degrade cellulose in notable amounts
compared to lignin. Nevertheless, several studies demonstrated that some Ascomycetes
may also attack lignin. They are able to mineralize lignin or lignin model compounds, but
to a much lower extent than the wood-inhabiting white-rot fungi [6–11]. Laccases seem to
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be key elements in the degradation process. Indeed, in most of the studies, these fungi have
been reported to produce laccases whereas no peroxidase activity was detected. Moreover,
whereas lignin degradation is considered as secondary metabolism in white-rot fungi, the
Sordariomycete Phialemonium inflatum (formerly Paecilomyces inflatus) mineralizes lignin
during its initial growth stage, thus during primary metabolism [12].

The Scedosporium species (formerly known as the asexual state of Pseudallescheria
species) are soil saprophytic filamentous fungi that are known to determine severe dissemi-
nated infections in immunocompromised patients by inhalation of some airborne spores,
but also to colonize the respiratory tract of immunocompetent individuals with chronic
pulmonary disease. They are notably the second filamentous fungi in terms of frequency in
the respiratory tract of patients with cystic fibrosis. These Sordariomycetes exhibit a low
susceptibility to current antifungal drugs, and a better understanding of their pathogenic
mechanisms is required to identify new therapeutic targets. Likewise, a better knowledge
of the origin of the contamination of patients should allow us to propose prophylactic
measures. In this context, several environmental studies have been performed which
demonstrated that Scedosporium species are mostly found in polluted environments and
anthropogenic areas such as agricultural soils, gardens, wastewaters, playgrounds or city
parks [13–15]. Nevertheless, the natural habitat of these fungi remains to be determined.
They are capable to grow in environments with a high osmotic pressure or in poorly aerated
soils, to tolerate high salt concentrations [16], and to degrade hydrocarbons. In addition,
there is now accumulated evidence to consider them as wood-decaying fungi.

Since it has been reported that filamentous fungi may use the lignin modifying path-
way to degrade complex molecules [17–19], this work aimed to analyze the lignocellulolytic
properties of Scedosporium species.

2. Materials and Methods
2.1. Isolates and Culture Conditions

The study was conducted on three Scedosporium species. Three isolates per species
(including one whole-genome sequenced) were used: S. apiospermum IHEM 14462, IHEM
23580 and UA 110350824; S. aurantiacum IHEM 23578, UA 100353192-01 and UA 110344103;
and S. dehoogii UA 120008799, UA 110354504 and UA 110354521. Isolates were maintained
by regular passages on YPDA plates (containing in g per liter: yeast extract, 5; peptone, 10;
dextrose, 20; agar, 20; and chloramphenicol, 0.5).

Growth studies were carried out in triplicate on a synthetic agar-based medium
derived from the Scedo-Select III selective culture medium [20] and containing in g per
liter: carbon source, 0.9; ammonium sulphate, 5; potassium dihydrogenophosphate, 1.25;
magnesium sulphate, 0.625; agar, 20; and chloramphenicol, 0.5. Different compounds
were compared in this culture medium as the unique carbon source: glucose for control
conditions, xylan (SERVA Electrophoresis GmbH, Heidelberg, Germany), cellulose (Sigma-
Aldrich, Saint Louis, MI, USA) or lignin (Sigma-Aldrich). Mycelium from a 14-day-old
YPDA culture was collected using a sterile needle and inoculated by central pricking. Plates
were incubated at 37 ◦C and growth was evaluated by measuring the diameter of the
colonies every day for ten days. Results were compared with those obtained on the rich
and commonly used medium, YPDA. For statistical analyses, an ANOVA–Tukey test was
performed to compare growth at 10 days within each culture conditions, * p-value < 0.05.

For other experiments, isolates were grown on Potato Dextrose Agar (Conda, Madrid,
Spain) plates at 37 ◦C for seven days to enhance sporulation. Conidia were harvested
from colonies by aseptically scraping the plates in water and filtration through Miracloth®

mesh filter (Merck, Darmstad, Germany) to remove the hyphae, and finally enumerated
by hemocytometer counts. To evaluate the impact of the carbon source on the expression
level of the target genes, a short duration of incubation (the same for all carbon sources)
was needed to avoid degradation of mRMAs. As the germination kinetic vary according
to the carbon source, a normalization of the germination step therefore was performed by
preincubation of the conidia in YPD medium for 24 h in order to obtain germ tubes. Briefly,
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2 × 107 conidia were inoculated in 50 mL of YEPD medium (containing in g per liter: yeast
extract, 5; peptone, 10; dextrose, 20; and chloramphenicol, 0.5). After a 24 h-incubation at
37 ◦C with agitation (120 rpm), germ tubes collected on 11-µm pore-size nylon filters were
inoculated in 50 mL of derived Scedo-Select III broth (containing the same components as
the agar-based culture medium, except agar) with the appropriate carbon source, which
was then incubated with agitation (120 rpm) at 37 ◦C during 4 h for RNA extraction or 24 h
for enzymatic assays.

2.2. Enzymatic Assays

Culture supernatants were collected after 24 h of incubation and preserved by freeze-
drying before lyophilization. Lyophilizates were resuspended in 1 mL of saline and used
for two-point enzymatic assays. For each enzymatic assay, three independent experiments
were realized and all reactions were carried out in duplicate. Protein concentration was
determined by fluorimetry using Qubit. The specific activity corresponds to the number of
international enzyme units (i.e., µmoles of substrates converted per unit time) per mg of
total proteins. According to the data distribution, statistical analysis was performed using
a Student’s t-test or Mann–Whitney test.

2.2.1. Detection of Peroxidase Activity

Detection of peroxidase activity was performed using the O-PhenyleneDiamine (OPD;
Sigma-Aldrich) oxidation test [21]. Two different controls were used: (i) a control lyophilizate
obtained from a fungus-free culture medium submitted to the same incubation time and
temperature; (ii) a control lyophilizate supplemented with 2.5 µL of horseradish peroxidase-
conjugated antibodies (0.5 ng/µL).

The reaction mixture contained OPD (0.75 mg/mL final concentration), 5 µL of hy-
drogen peroxide 30%, 12.5 µL of lyophilizate and an appropriate volume of 0.1 M citric
acid/sodium phosphate buffer pH 5 to reach a final volume of 250 µL. The mix was incu-
bated at room temperature for 5 min, and the reaction was stopped with 62.5 µL of 0.2 M
sulfuric acid. OPD oxidation yielded a soluble end-product which was yellow-orange in
color. The absorbance was determined at 490 nm. The extinction coefficient used was
1.578 mM−1cm−1, as described previously [22].

2.2.2. Detection of Oxidase Activity

The ability of the isolates to produce extracellular oxidases was quantified using 2-2′-
Azinobis(3-ethylBenzoThiazoline-6-Sulphonic acid) (ABTS; Sigma-Aldrich) as described
by Shrestha et al. [23]. ABTS working solution consisted in 0.1 mM ABTS and hydrogen
peroxide 0.0075% in 0.1 M citric acid/sodium phosphate buffer pH 5. The reaction solution
was composed by equal volumes (i.e., 150 µL) of ABTS working solution and samples.
A negative control (obtained from a fungus-free culture medium) and a positive control
(the same supplemented with a suitable amount of Aspergillus laccase from Sigma-Aldrich)
were included in each series of tests. All reactions were incubated at 37 ◦C for 20 min. The
oxidation of ABTS was followed by measurement of the absorption at 420 nm. The molar
extinction coefficient used was 36 mM−1cm−1.

2.3. Genome Mining

A literature review was performed to identify lignocellulolytic fungi and then focused
on lignin-modifying enzymes. Orthologs of the genes identified by this way were searched
in Scedosporium genomes (JOWA01000000 for S. apiospermum, JUDQ01 for S. aurantiacum
and PGIR00000000.1 for S. dehoogii) through tBLASTn analysis (https://blast.ncbi.nlm.
nih.gov/Blast.cgi, accessed on 10 January 2023). Only results with an E-value < 1 × 10−6

on at least 40% of the query sequence were considered. Gene organization (exon/intron)
was determined using HMMER program on EnsemblFungi (https://fungi.ensembl.org/
hmmer/index.html, accessed on 10 January 2023) and validated with Augustus (https:
//bioinf.uni-greifswald.de/augustus/, accessed on 10 January 2023).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://fungi.ensembl.org/hmmer/index.html
https://fungi.ensembl.org/hmmer/index.html
https://bioinf.uni-greifswald.de/augustus/
https://bioinf.uni-greifswald.de/augustus/
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For classification analysis, all peroxidase sequences were collected from PeroxiBase
(http://peroxibase.toulouse.inra.fr, accessed on 10 January 2023) [24], and multicopper oxi-
dase (MCO) sequences from the NCBI GenBank [25]. The Geneious software package [26]
was used for the phylogenetic study. An alignment was created using the default settings
for multiple alignments. Phylogenetic trees were constructed by the neighbor-joining
method. Bootstrapping was carried out with 500 replications.

2.4. RNA Isolation, Reverse Transcription and Real-Time Quantitative PCR

Fungal cells were ground in liquid nitrogen with a mortar and pestle. Total RNAs
were extracted using the NucleoSpin® RNA plant kit (Macherey-Nagel, Dueren, Germany),
according to the manufacturer’s instructions. RNA samples were then treated with 2 U
of RNase-free DNase I (AmbionTM Life Technologies, Carlsbad, CA, USA), following the
manufacturer’s recommendations. RNA quantity and quality were evaluated by Qubit
dosage and agarose-gel electrophoresis, respectively. Complementary DNA (cDNA) was
synthetized from 500 ng total RNA using High Capacity cDNA Reverse Transcription
kit (Applied Biosystems, Foster City, CA, USA), and random primers, according to the
protocol supplied by the manufacturer. Thereafter, cDNA samples were 10-fold diluted and
used as template for real-time quantitative PCR (qPCR). PCR reactions were performed
in a final volume of 12.5 µL containing FAST SyBR®Green PCR Master Mix (Applied
Biosystems), 200 nM of each primer (Integrated DNA Technologies Inc., Leuven, Belgium)
and 2 µL of diluted cDNA. Primers used for qPCR experiments and PCR efficiencies are
compiled in Tables S1 and S2 (Supplementary Materials), respectively. qPCR reactions were
carried out on a StepOnePlusTM thermocycler (Applied Biosystems) with the following
amplification program: 95 ◦C for 20 s, 40 cycles of 95 ◦C for 3 s, 60 ◦C for 30 s. Melting
curve analysis (95 ◦C for 15 s and stepwise annealing from 60 to 95 with 0.3 ◦C increments)
was performed immediately after the amplification. For each gene, fold changes relative to
standard condition (i.e., in the presence of glucose as the carbon source) were calculated
with the delta–delta Ct method [27,28]. Two reference genes were selected among nine
candidates on the basis of their stable expression (validated by an ANOVA–Tukey statistical
test) whatever the culture conditions and the species considered [29–32]. For each point,
three biological replicates and two technical replicates were performed and a variation in
expression of a given gene was considered significant if the log2 fold change ± standard
deviation was <−1 or >1.

3. Results

Figure 1a illustrates the results obtained for S. apiospermum IHEM 14462 isolate. The
fungus was not able to develop in the absence of any carbon source (data not shown),
and it grew more slowly on a lignin-containing synthetic medium compared to the other
culture media (Figures 1a and S1). In addition, for most of the strains, the mean diameter
of the colonies after ten days of incubation was significantly higher in the presence of
cellulose or xylan compared to the results obtained in the presence of lignin or, strikingly,
of glucose (Figure 1b). This suggests that these Scedosporium species are able to assimilate
lignocellulosic compounds, including lignin. Therefore, we decided to further investigate
this property. During the last few decades, the ability to attack lignin has been found
to depend on two main types of enzymatic activities: peroxidase and laccase. In order
to quantify these activities, enzymatic assays were performed using OPD and ABTS as
substrates for peroxidase and laccase activities, respectively.

There was an important inter-experimental variability (possibly explained by the
fact the analysis was conducted during the early phase of hyphal growth—after 24 h of
incubation) leading to important standard deviations. Significant differences were observed
for three of the strains tested regarding the peroxidase activity and three other strains for
laccase activities (Figure 2). Nevertheless, for all the species both enzymatic activities tend
to increase in the presence of lignin as carbon source.

http://peroxibase.toulouse.inra.fr
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Figure 1. (a) Kinetics of growth of Scedosporium apiospermum IHEM 14462 on a synthetic agar-
based medium Scedo-Select III containing a unique carbon source: glucose for control conditions,
lignin, cellulose or xylan. (b) Colony diameter (mm) after 10 days of culture on agar-based media
according to the carbon source. Fungal culture collections: IHEM, clinical strains; and UA, clinical or
environmental strains. For statistical analyses, an ANOVA–Tukey test was performed to compare
growth at 10 days within each culture conditions, * p-value < 0.05.

Genes reported in the literature as encoding such enzymes were used to screen the
genome of S. apiospermum strain IHEM 14462 by tBLASTn searches. Fifteen putative genes
were identified, four encoding members of the peroxidase family and the others encoding
genes belonging to the MCO superfamily. Among these genes, three were annotated as
encoding uncharacterized or hypothetical proteins (SAPIO_CDS2597, SAPIO_CDS8589
and SAPIO_CDS9845) and three others were considered by Augustus as pseudogenes
(SAPIO_CDS2438, SAPIO_CDS4198 and SAPIO_CDS4646) because of the lack of introns.
To assess whether the genes predicted in silico were actually involved in lignin metabolism,
we studied their expression in Scedosporium cells grown for 4 h in a lignin-containing
synthetic liquid medium and in control conditions. In this aim, gene structure, especially
the position of intronic sequences, was verified when possible and forward/reverse primers
were designed from distinct exons (Table S1). PCR efficiency was evaluated and considered
as acceptable within a range of 80% to 120% (Table S2).

As the 2−∆∆CT method was used to analyze the relative gene expression, the first step
was to select reference genes. Among the nine genes considered as the most interesting for
qPCR studies in filamentous fungi [32], seven showed significant differences between the
three Scedosporium species tested and two did not show significant variations whatever the
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culture conditions (Figure 3). Thus, the expression of actin and β-tubulin genes was used
for normalization.
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Figure 2. (a) Peroxidase and (b) oxidase activities (UI/mg proteins) of culture supernatants collected
after 24 h of incubation. For each enzymatic assay, three independent experiments were realized and
all reactions were carried out in duplicate. According to the data distribution, statistical analysis was
performed using a Student’s t-test or Mann–Whitney test, * p-value < 0.05.

Similar expression patterns were obtained for S. apiospermum and S. dehoogii (Figure 4).
All peroxidase genes, except SAPIO_CDS10447, were overexpressed compared to control
conditions suggesting direct or indirect involvement in lignin degradation. In S. aurantiacum,
only two of these genes (SAPIO_CDS4198 and SAPIO_CDS10583) were overexpressed.
Considering the MCO superfamily, only SAPIO_CDS8659 was overexpressed in all species.
Three other genes were also overexpressed but only in two species S. apiospermum and S. de-
hoogii: SAPIO_CDS2438, SAPIO_CDS0314 and SAPIO_CDS4646. Finally, SAPIO_CDS10367
was overexpressed only in S. dehoogii.
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Figure 3. Variations in the expression of several reference genes in the different culture conditions
studied. For each gene, an ANOVA–Tukey test was performed to analyze the variations between
Scedosporium species. * p-value < 0.01; ns: non-significant. Outliers are represented by an empty circle.
TFC1: transcription protein on polymerase III promoters; UbcB: ubiquitin carrier protein; Sac7: rho
guanosine triphosphatase activator; Fis1: mitochondrial membrane fission protein; SarA: guanosine
triphosphate-binding protein; UBC6: protein catabolic process; Act: Actin; Tub: β-tubulin; GAPDH: D-
glyceraldehyde-3-phosphate dehydrogenase.
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4. Discussion

This study reports for the first time the ability of Scedosporium species to use each com-
ponent of lignocellulose (i.e., lignin, cellulose and xylan) independently as a carbon source.
Even if results should be confirmed on natural lignin (kraft lignin was used in our experi-
ments), they suggest that the Scedosporium species participates in biomass degradation, an
essential role in the Earth’s carbon cycle. Two of the three ecological groups of lignocellu-
lolytic fungi, the white- and brown-rot fungi, mainly belong to Basidiomycetes whereas
wood-decaying Ascomycetes are usually included in soft-rot fungi. Basidiomycetes seem
to be the only organism capable of an efficient lignin mineralization using specific class II
peroxidases (lignin, manganese or versatile peroxidases). In contrast, little is known about
the capability of Ascomycetes to attack the complex structure of lignin polymers. In a previ-
ous work, we demonstrate that the Scedosporium species displays all the genetic equipment
needed for the intracellular degradation of phenolics’ compounds. These lower funneling
pathways degrade aromatic compounds, such as those resulting from the extracellular
degradation of lignin [33].

Results from our study are a first step for classifying Scedosporium species among
the soft-rot fungi. Further characterization of the peroxidase arsenal analyzed in this
study should allow definitive exclusion of these Ascomycetes from white-rot fungi. All
Scedosporium peroxidases identified by genome mining belonged to class I peroxidase
(Figure 5): two, encoded by SAPIO_CDS4198 and SAPIO_CDS10583, were catalase peroxi-
dases, whereas the others belonged to the cytochrome c peroxidase (SAPIO_CDS3675) or
the hybrid ascorbate-cytochrome c peroxidase (SAPIO_CDS10447) subclasses. The presence
of a C-terminal WSC (cell wall integrity and stress response component) domain allows us
to classify the latter among the hybrid-type B peroxidases [34].
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Previous studies suggested that Ascomycetes mainly used oxidases as lignolytic enzymes. 
Five out of the eleven putative genes of the MCO superfamily were overexpressed in at 
least one Scedosporium species, including two encoding unclassified related-MCO 
proteins, SAPIO_CDS4646 and SAPIO_CDS2438. The increased gene expression of the 
canonical MCO of FET3 subfamily SAPIO_CDS0314, the Abr-1-like protein encoded by 
SAPIO_CDS8659 and the “ferroxidase/laccase” encoded by SAPIO_CDS10367 suggests a 
link between the lignolytic properties and iron metabolism (Figure 6). 

Figure 5. Classification of candidate enzymes among fungal peroxidases. An alignment of the
protein sequences was created using the default settings for multiple alignments. Phylogenetic trees
were constructed by the neighbor-joining method with cladogram presentation. Bootstrapping was
carried out with 500 replications. Class I peroxidases are colored in pink, class II in blue and class
III in green. Genes studied within Scedosporium species are marked in red. * Identification number
from RedoxBase.
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Peroxidase and oxidase activities were detected for the three Scedosporium species
studied, and they were shown to be markedly increased when Scedosporium isolates were
cultivated in the presence of lignin, suggesting their involvement in lignin degradation.
Previous studies suggested that Ascomycetes mainly used oxidases as lignolytic enzymes.
Five out of the eleven putative genes of the MCO superfamily were overexpressed in at least
one Scedosporium species, including two encoding unclassified related-MCO proteins, SA-
PIO_CDS4646 and SAPIO_CDS2438. The increased gene expression of the canonical MCO
of FET3 subfamily SAPIO_CDS0314, the Abr-1-like protein encoded by SAPIO_CDS8659
and the “ferroxidase/laccase” encoded by SAPIO_CDS10367 suggests a link between the
lignolytic properties and iron metabolism (Figure 6).
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In brown-rot fungi, lignin chemical changes involving small oxidants are largely
documented, the Fenton system being the best-known candidate for production of oxidant
molecules. Fe2+ reacts with H2O2 to produce water, Fe3+ and usually a hydroxyl radical [35].
The use of extracellular reactive oxygen species (ROS) for lignolytic activity of fungi has
been described since the middle of the last century. The mechanism has not been specified,
but previous studies evidenced the involvement of ROS production in the attack of lignin in
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soft-rot fungi, and mineralization of synthetic lignin was decreased by the specific inhibition
of hydroxyl radical production [35,36]. Proteins overexpressed in Scedosporium species in
lignin-containing medium suggest that such mechanisms may be implicated. Nevertheless,
complementary experiments (functional genomic studies and structural analysis of lignin
by-products) are required to understand the role and functions of these proteins as well as
the chemical reactions involved.

Although the natural habitat of Scedosporium species remains to be determined, indirect
evidence suggest an association of the fungi with wood. Several strains of the genus
Scedosporium were recovered from submerged woods in estuarian or marine coasts [37,38],
from forest soils or wood [16,39] but also from xylophagous insects [40–42]. Recent works
on Ascomycetes showed that these fungi use the same enzymatic arsenal to degrade
lignocellulose and organic pollutants such as aromatic hydrocarbons [17–19]. The lignolytic
ability of Scedosporium species may also explain their occurrence in polluted environments.
In addition, a link between catabolism of hydrocarbons and fungal virulence, suggested for
human fungal pathogens [43], was demonstrated in plant pathogenic fungi. For instance,
Martins et al. [44] reported an increase in the pathogenic potential in human of some
fungi upon exposure to aromatic chlorinated compounds. In plants, Sclerotinia sclerotiorum
metabolizes salicylate, a key antifungal defense component of the host [45] and the virulence
of Botrytis cinerea on grape is correlated at least in part with its ability to metabolize stilbene-
type phytoalexins [46]. A better understanding of Scedosporium species adaptation to their
environment and especially polluted environments may allow us to identify interesting
pathways as targets for the development of more potent antifungal drugs.
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