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Abstract

Solid tumors consist of tumor cells associated with stromal and immune cells, secreted factors

and extracellular matrix (ECM), that together constitute the tumor microenvironment. Among

stromal cells, cancer-associated fibroblasts (CAFs) are of particular interest. CAFs modulate

the architecture of the ECM by exerting forces and contracting collagen fibres, creating paths that

facilitate cancer cell migration. The characterization of the collagen fibre network and its space and

time-dependent microstructural modifications is key to investigating the interactions between cells

and the ECM. Developing image analysis tools for that purpose is still a challenge. The structural

complexity of the collagen network calls for specific statistical descriptors. Moreover, the low signal-

to-noise ratio of imaging techniques available for time-resolved studies rules out standard image

analysis methods. In this work, we propose an innovative data analysis approach to investigate the

remodelling of fibrillar collagen in a three-dimensional spheroid model of cellular invasion, which

is based on the stochastic modelling of the gel structure and on grey-tone image analysis. The

method was used to study the reshaping of a collagen matrix by migrating breast cancer-derived

CAFs. The structure of the gels at the scale of a few microns consists in regions with high fibre

density separated by depleted regions, which can be thought of as fibre aggregates and pores. To

characterize this structure, we developed a two-scale stochastic model with a clipped Gaussian

field model to describe the aggregates-and-pores large-scale structure, and a homogeneous Boolean

model to describe the small-scale fibre network within the aggregates. The model parameters

are identified by fitting the grey-tone histograms and correlation functions of confocal microscopy

images. The specificity of the method is that it applies to the unprocessed grey-tone images,

and it can therefore be used with low magnification, noisy time-lapse reflectance images. When

applied to the spheroid time-resolved images, the method revealed two different matrix densification

mechanisms for the gel in direct contact or far from the cells.

∗ cedric.gommes@uliege.be
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I. INTRODUCTION

In living tissues, cells are commonly embedded within complex networks of extracellular

matrix (ECM) constituted of diverse highly cross-linked components, including fibrous pro-

teins, proteoglycans, glycoproteins and polysaccharides [1–3]. Each of the individual ECM

components exhibits specific biomechanical and biochemical properties that are related to its

polymer structure, size and binding affinities to signaling molecules [4, 5]. These properties

in turn modulate several cellular processes including proliferation, differentiation, survival

and motility by ligating specialized cell surface receptors [6, 7]. Cell-matrix interactions also

lead to ECM remodeling by the cells, with the ECM fibres being synthesized, re-oriented,

deformed and degraded by the cells, particularly fibroblasts [8]. The topology of the ECM

(organization of fibres, matrix porosity and density) also influences the mechanical properties

of the matrix [9, 10]. For instance, aligned bundles of collagen increase matrix stiffness [4].

Along with fibre organization, the degree of porosity of the ECM influences its rheological

properties which in turn modulates the cell behavior [11].

Collagens are the most abundant components of the ECM and their structure and compo-

sition differ across various tissue types [12, 13]. The collagen family is composed of 28 types

consisting in fibril-forming, fibril-associated, network-forming and other structures subfam-

ilies [14, 15]. Type I collagen represents the most common fibrillar collagen in vertebrates.

Its synthesis, stiffening and remodelling are involved in both physiological processes such

as wound healing, inflammation, tissue repair and pathological ones such as angiogenesis or

tumor fibrosis which promotes growth and invasion [14, 16–18]. Many solid tumors such as

those of the breast, lung and pancreas are characterized by the presence of a desmoplastic

stroma typified by an accumulation of fibrillar collagen. This collagen accretion increases the

stiffness and creates discrete structural patterns called tumor-associated collagen signatures

(TACS) in the stroma. These anisotropic patterns promote directed cell migration into and

through the stroma by contact guidance [19–22]. The stroma comprises a complex ecosys-

tem of endothelial cells, immune cells, and cancer-associated fibroblasts (CAFs) [23]. The

latter make up the majority of the desmoplastic stroma and have been shown to promote

the growth of primary tumors [24–26].

Understanding how CAFs influence the architecture of collagen is key to improving our

understanding of cancer cell invasion through a dense collagenous stroma as observed in
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breast, lung and pancreatic cancers. At macroscopic scales, this can be studied with gel-

contraction assays [27–29] and bead tracking [30–33], whereby the mechanical deformation

of the collagen matrix is monitored without having to explicitly consider the underlying

remodelling of the collagen network. More detailed understanding of the process, based on

local influence of individual cells on the matrix and the biochemical interactions involved

can be obtained using atomic-force and confocal microscopy at the scale of the cells [34].

However, few studies have attempted to reconcile the macroscopic and cellular approaches

to characterize the influence of cells on collagen architecture.

Developing image analysis tools to characterize the collagen-fiber network and its space-

and time-dependent microstructural modifications in the context of cellular migration is

challenging for a variety of reasons. In particular, the low signal-to-noise ratio of imaging

techniques suitable for time-resolved studies at the required resolution precludes standard

image analysis methods based on the segmentation of the fibrillar structures [35, 36]. Grey-

tone image analysis methods have been developed in this context, but they focus on the

analysis of fibre orientation using a variety of methods such as pixel-wised gradient esti-

mations [37], Fourier transforms [38], or mathematical morphological operations [39]. In

addition to fibre orientation, however, key aspects of ECM remodelling concern the spatial

distribution of collagen fibres. Grey-tone image analysis methods that can address that

question, and statistically capture possibly non-homogeneous fibre densification patterns,

are yet to be developed.

The paper proposes such a method based on the stochastic modelling of grey-tone struc-

tures in microscopy images, and on the identification of the model parameters from their

correlation functions and grey-tone histograms. Acellular collagen gels with different concen-

trations are considered first, in order to develop and validate the methodology. The question

of ECM remodelling is then addressed in the context of a collagen-embedded CAF spheroid

model, and the local evolution of the fibre network that accompanies cellular migration is

studied in space- and time-resolved way.

II. MATERIALS AND METHODS

Dulbecco’s modified Eagle medium (DMEM), L-glutamine, sodium pyruvate, penicillin,

streptomycin and 0.25% trypsin/EDTA solution were purchased from ThermoFisher Sci-
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entific. Recombinant platelet-derived growth factor BB isotype (PDGF-BB) was obtained

from R&D Systems. Fetal bovine serum (FBS), sodium bicarbonate, carboxymethylcellu-

lose and 10× concentrated DMEM, high viscosity carboxymethylcellulose sodium salt were

obtained from Sigma-Aldrich. High concentration acid soluble native type I rat tail col-

lagen was purchased from Corning and DQ-CollagenTMtype I from bovine skin fluorescein

conjugate was obtained from ThermoFisher. SPY650-DNA, a non-toxic, cell permeable and

highly specific live cell DNA probe was purchased from Spirochrome.

A. Preparation of collagen gels

Type I collagen gels were prepared for imaging of collagen architecture and spheroid

invasion assays. Collagen gels of 2.0 mg/mL and 3.0 mg/mL were prepared by diluting the

stock collagen solution (8-11 mg/mL) with 10x concentrated DMEM, NaHCO3, 1N NaOH,

milliQ H2O and neutralized to pH 7.2. To visualize collagen fibers by confocal fluorescence

microscopy (CFM), fluorogenic DQ-collagen I was mixed with unlabeled diluted collagen as

previously described [40], obtaining a final concentration of 20 µg/mL. Collagen dilutions

were performed and maintained on ice until use. Droplets (25 µL) of diluted collagens were

spotted in 35mm-glass bottom µ-dishes (Ibidi) and polymerized during 45 min at 19◦C,

followed by a 30 min incubation at 37◦C. The polymerization temperature of 19◦C was

chosen to provide matrix architecture comparable to in vivo with a network consisting of a

mixture of a few thin bundles and many thick bundles [41]. After completion of collagen

polymerization, 1 mL of preheated DMEM supplemented with 5% FBS was added to the

dishes. Image acquisition was performed after 24 h of incubation at 37◦C with 5% CO2.

B. Cell culture

Mouse CAFs (CAFs) have been isolated from mammary gland tumors of mammary

specific polyomavirus middle T antigen overexpression mouse model (MMTV-PyMT) at 12

weeks as previously described [42] and immortalized with the pLenti HPV16 E6-E7 RFP,

expressing a cytoplasmic red fluorescent protein (RFP). CAFs were grown in high-glucose

DMEM supplemented with 10% FBS, 2mM L-glutamine, 1mM sodium pyruvate, 100IU/ml

penicillin, 100µg/mL streptomycin. Cultures were maintained at 37◦C with 5% CO2 until
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their confluence reaches about 80%.

C. Spheroid invasion assay

Spheroids were prepared by seeding 1000 CAFs in 100 µL of spheroid formation medium

composed of 0.22 µm-filtered DMEM medium supplemented with 10% FBS and 20% car-

boxymethylcellulose 4000 centipoise. Cells were seeded in round-bottom non-adherent 96-

well plates (CELLSTAR, Greiner Bio-One) and centrifugated at 1000 rpm for 5 min. Plates

were incubated at 37◦C with 5% CO2 for 48 hours to promote spheroid formation. The

content of each well was transferred in a petri dish with a 200 µL pipette (with cutted tip)

and individual spheroids were collected under a binocular microscope with a 10 µL pipette.

Each spheroid was resuspended in 23 µL of diluted collagen (2 mg/mL) and spotted as a

25 µl drop in a prechilled 8 well-glass bottom chamber slide (Ibidi). The slides were then

transferred immediately to 19◦C and flipped to maintain the spheroids in the middle of

the collagen drop (preventing their sedimentation to the glass surface or to the collagen/air

interface). The extent of collagen polymerization and spheroid positioning were carefully

controlled by microscopic examination throughout the polymerization step. After 30 min at

19◦C, the slides were transferred at 37◦C to complete the polymerization. Preheated culture

medium (300 µL/well) supplemented with 5% FBS, 10 ng/mL PDGF-BB and SPY650-DNA

(1000-fold dilution) was added to the slides and time-lapse imaging was initiated within an

hour after collagen polymerization.

D. Confocal microscopy

Images of the three-dimensional (3D) collagen gels were acquired with an inverted con-

focal laser scanning microscope (LSM 880 Airyscan Elyra S1, Zeiss) with a Plan-Neofluar

10×/0.30 N.A. or a Plan-Neofluar 20×/0.50 N.A. objective (Zeiss). The DQ-collagen con-

taining gels were excited with 488 nm laser. Non-fluorescent collagen gels were imaged by

confocal reflectance microscopy (CRM) in Airyscan high resolution mode with a simultane-

ous excitation of the matrix by 488 nm and 633 nm lasers. To avoid edge effects, images were

acquired at least 100 µm away from the gel border, avoiding regions close to the gel/glass

and gel/medium interfaces. To visualize collagen fibres of acellular gels (gels containing
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no cells), samples were imaged both by CFM and CRM, using the 20× objective. The

resulting images have dimensions of 1000×1000×90 voxels with anisotropic voxel size of

0.42×0.42×1.10 µm3, corresponding to a physical volume of approximately 500×500×100

µm3.

Time-lapse imaging of spheroid-containing collagen gels was performed using the 10×

objective with the samples incubated at 5% CO2 and 37◦C in the on-stage incubator (Oko-

lab). The collagen matrix was imaged by CRM in Airyscan high resolution mode with a

1.4× digital zoom (scaling per pixel: 0.59 µm × 0.59 µm × 3.29 µm) and CAF were im-

aged by CFM in Fast Airyscan mode (scaling per pixel: 0.91µm × 0.91 µm × 3.29 µm).

CAF images were rescaled to fit the images of the collagen matrix. CAF-derived RFP was

excited by a 561 nm laser and detected at 591 nm. The SPY650 DNA nuclear stain was

excited by a 633nm laser and the signal was captured at 654 nm. The imaging procedures

for the spheroids and the matrix required a sequential imaging of the same tridimensional

zone, leading to two 3D image files. Images were recorded every 30 min up to 16 h. 3D

stacks were obtained at a step size of 2-µm intervals. Type I collagen fibrils have a diameter

ranging from 20 nm to several hundred nm [43] while fibres are larger in diameter. Given

that the size of each pixel is 0.42 and 0.59 µm (for 20× and 10× objectives, respectively),

it is not possible to distinguish fibrils from fibres [44], therefore the term “fibres” was used

to include both fibrils and fibres.

The raw images were converted using the Airyscan algorithm from the Zeiss Zen Black

software. The images were then subjected to a histogram stretching and converted to tiff

format through the Zeiss Zen Blue software. This operation turned the original 16-bit

images into 8-bit images, which were corrected by histogram adjustment to maximize the

conservation of valuable information.

III. RESULTS

A. Covariance and grey-tone correlation function

Examples of images of the dilute (2 mg/mL) and concentrated (3 mg/mL) gels obtained

through confocal fluorescence (CFM) and confocal reflectance (CRM) microscopy are given

in Fig 1. These are 2D single-z images taken out of the 3D images. The structural analysis
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FIG. 1. Images of the 2 mg/mL (a) and 3 mg/mL (b) acellular gels obtained by confocal microscopy

in fluorescence (a1 and b1) and reflectance (a2 and b2) modes. The bottom row displays fused

images with fluorescence and reflectance data in green and magenta, respectively.

is based on 15 images such as presented in the figure, for each gel and each imaging mode.

Type I collagen fibrils have a diameter ranging from 20 nm to several hundred nm [43] while

fibres are larger in diameter. Given that the size of each pixel is 0.42 and 0.59 µm (for

20x and 10x objectives, respectively), it is not possible to distinguish fibrils and fibres [44],

therefore the term “fibres” was used to include both fibrils and fibres. The most salient

structures are the fibre aggregates that are a few tens of micrometers across. The fused

images in Fig 1a3 and b3 show that there is limited overlap between the CRM and CFM

microscopy data: the fibres and aggregates are well captured in CFM but it is mostly the

aggregates that are visible in the CRM data.

In order to follow a standard image analysis procedure, and justify further less-standard

developments, we first explored a method based on image segmentation. In that spirit, the

grey-tone images of the gels are converted to binary images following a method described in

the Supplementary Material (see Fig. S1). Examples of segmented images of the gels, with

collagen in white and the rest in black, are provided in the insets of Figs. 2a and 2b.

The segmented gel images display complex and disordered structures, which are also
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FIG. 2. Experimental covariance (top) and grey-tone correlation function (bottom) of the 2 mg/mL

(blue circle, a1, b1, c1, d1) and 3 mg/mL (red diamond, a2, b2, c2, d2) gels, imaged in fluorescence

(a, c) and reflectance (b, d) modes. The insets display one of the fifteen images used for each

condition, and the error bars are the standard errors of the mean.

corrupted by noise in the case of the reflectance images (Figs. 2b1 and 2b2). In this context,

the covariance - which describes the spatial correlation between all pixels intensities in the

images [45–48]- was used to quantitatively analyze the gel structures. The covariances shown

in Fig. 2a and 2b were obtained from fifteen images taken in the same gel with dimension

200 × 200 µm2 as illustrated in the insets, via a Fourier-transform algorithm, and the error

bars are the standard errors of the means.

The covariance C(r) of say, the white component of an image, has a clear geometrical

interpretation as it is defined as the probability that any couple of points at distance r

from one another both belong to that phase. For very small values of r, this definition

coincides with the probability for a single point to belong to the white phase, which is

numerically equal to its density φ1 normalized between 0 and 1. In the opposite limit, that

is for very large distances r the covariance converges to the value φ2
1, which corresponds to a

horizontal asymptote in Fig 2. The shape of the covariance curve between those two limits

characterizes the structures present in the images. In particular the progressive decrease of

C(r) over distances of a few tens of microns testifies to the presence of structures with those
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dimensions, which we qualitatively referred to earlier as fibre aggregates.

The covariance of the fluorescence images of the gels (in Fig. 2a) highlights at once the

unsuitability of image segmentation in the present context. The covariance of the 2mg/mL

gel is found to be larger than that of the 3mg/mL gel for any r, which means that densities

of the segmented images contradict the actual collagen concentrations of the gels. This

results from the fact that collagen-rich areas of the images display a variety of grey-tones

related to the local fibre density (see Fig. S1b), which information is lost during the all-or-

nothing segmentation procedure. This general observation calls for grey-tone image analysis

methods that preserve the structural information in the images. In that spirit, the grey-tone

correlation functions C(r) of the gels are shown in Fig. 2c and 2d. The latter are measured

directly on the unprocessed images and they characterise the statistical correlation between

grey-tones of all pixels that are at distance r from one another. In the case where the

images contain only the values 0 and 1, this definition is mathematically equivalent to the

covariance. We postpone to a later section the discussion of the structural significance of

the grey-tone correlation function, but we already notice at this stage that the grey-tone

data in Figs. 2c and 2d scale with the actual collagen concentration of the 2mg/mL and

3mg/mL gels as they should.

B. Structural models

Covariance and grey-tone correlation functions convey indirect yet very rich structural

information [49–51], which can notably be retrieved using structural models. We here present

two models aimed at extracting structural information from the covariance data in Fig. 2,

which we generalize later to grey-tone correlation functions. In order to cope with the

disordered structure of the gel, the models have to be stochastic [47, 48, 52, 53].

When using stochastic models, a structure is defined through probabilistic rules and this

calls for specific concepts. In particular, it is convenient to introduce the indicator function

of the structure I(x), which takes the value 1 if the point x belongs to the structure and 0

otherwise [47]. With such definition, the density of the model is calculated as

φ1 = 〈I(x)〉 (1)

where the brackets 〈〉 stand for the average value, calculated either over x or over all the
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FIG. 3. Homogeneous fibre model, obtained as a Boolean model of randomly oriented rectangles.

The two realisations are obtained with length and diameter LF = 20 µm, DF = 1 µm (a and N)

and LF = 100 µm, DF = 10 µm (b and �), and the calculated covariances are compared with that

of the 2mg/mL gel imaged by CFM (same as Fig. 2a1)

possible realization of the model. Similarly, the covariance is calculated as the following

two-point average

C11(r) = 〈I(x)I(x + r)〉 (2)

because the product I(x)I(x + r) is equal to one, only if the points x and x + r belong

to the structure. In the latter equation, we have assumed statistical isotropy so that the

dependence is only through the modulus r = |r|.

1. Homogeneous fibre model

The simplest model we consider to analyze the structures in Fig. 1 assumes that the

gel matrix is statistically homogeneous. The model consists in tossing fibres (modelled as

elongated rectangles) with random position and orientation, as sketched in Fig. 3. Such

model is described by three parameters, namely: the number density of fibres θ (unit µm−2),

as well as their length LF and diameter DF (both in units of µm). Note that the statistical

homogeneity of the model does not rule out the existence of aggregates, which form when

a large number of fibres coincidentally fall in the same region of space. The same holds for

pores in the gel matrix.

The homogeneous fibre model is a particular case of a Boolean model [45, 48], for which
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the density and covariance are known analytically. In particular, the fibre density is

φF = 1− exp [−η] (3)

where η = θDFLF is the density one would expect in absence of fibre overlap. The covariance

is given by the following expression

CFF (r) = 2φF − 1 + (1− φF )2 exp [ηKF (r)] (4)

where KF (r) is the geometrical covariogram of the randomly-oriented fibres, which is calcu-

lated as

KF (r) =
2

π

∫ π/2

0

[
1− r

DF

sin(t)

] [
1− r

LF
cos(t)

]
dt (5)

for r < DF and the upper integration bound is replaced by asin(DF/r) for r ≥ DF .

The covariance of the homogeneous fibre model is plotted in Fig. 3 for two fibres sizes.

For the purpose of illustration, the model is compared with the experimental covariance of

the segmented image of the 2mg/mL gel (from CFM). In the figure, the number of fibres

θ is chosen to achieve a density φF ' 0.54 comparable to the segmented image. As a

consequence, the asymptotic values of CFF (r) are a close match to the gel covariance both

for r = 0 and for r → ∞. The shape of the covariance at intermediate distances, however,

cannot be captured by the homogeneous model. The model can account for either the small-

or large-r data but not the two simultaneously. In the former case, the model captures the

small-scale structure of the gel (Fig. 3a) but it is unable to account for the aggregates,

which are found to be more prevalent than what can be expected from randomness alone.

In the latter case, the large-scale structure of the gel is reasonably reproduced, but this is

done by replacing fibre aggregates by unrealistically large rectangles (Fig. 3b).

2. Fibre aggregates model

The inability of the homogeneous fibre model to reproduce the experimental covariance

of gels proves that structures larger than individual fibres are more frequent than what can

be accounted for by statistical fluctuations alone. The existence of such large pores and

aggregates is notably apparent when comparing the realization of the homogeneous model

in Fig. 3a with the insets of Fig. 2.
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To address this issue, we introduce a second model that builds on two distinctly different

structures. At the smallest scale the structure is assumed to be that of homogeneously-

distributed fibres, corresponding to indicator function IF (x).The larger-scale structure, how-

ever, is accounted for by creating the indicator function of the entire structure I(x) through

the following multiplication

I(x) = IF (x)× IA(x) (6)

where IA(x) is the indicator function of the aggregates, equal to one if x is inside an aggre-

gate. Mathematically, Eq. (6) is equivalent to starting with a homogeneous fibre structure

and subsequently carving pores out of it, using IA(x) as a mathematical cookie-cutter.

Independently of the specific models chosen for IF (x) and IA(x), evaluating the average

value of Eq. (6) yields the following density for the two-scale structure

φ1 = φFφA (7)

where φA is the density of the aggregates, and φF is the density of the fibres within the

aggregates. Equation (7) results from the general definition of the density in Eq. (1), with

the assumption that the fibre and aggregate models are statistically independent from one

another. The same assumption provides the following relation for the covariance of the solid

phase

C11(r) = CFF (r)CAA(r) (8)

as a consequence of Eq. (2).

For the small-scale structure, we assume the same fibre model as considered earlier,

with density φF and covariance CFF (r) given in Eqs. (3) and (4). As the aggregates are

very disordered with no well-defined shape, we model them with a clipped Gaussian-field

approach [53–55] as described in the Supplementary Material. The two parameters of the

large-scale model are the density of the aggregates φA and a single characteristic length LA

that controls their size.

As illustrated in Fig. 4 for the segmented image of the 2mg/mL gel in fluorescence mode,

the fibre-aggregate model captures well the experimental covariance of the gels. For the

fitting of the data, the parameter LF in the fibre model is irrelevant as the actual length

of the fibres is controlled by the size of the aggregates. Equation 5 was therefore simplified

to its limit LF → ∞. The values of the remaining parameters are gathered in Tab. I for
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FIG. 4. Covariance of the fibre-aggregate model, with homogeneous fibre model at small scale (a

and �) and clipped Gaussian-field model for the large-scale aggregates (b and �), combined to yield

a two-scale structure (c and N). The calculated covariance is compared with that of the 2mg/mL

gel imaged by fluorescence microscopy (same as Fig. 2a1)

TABLE I. Structural parameters of the gels, obtained from fitting the covariance (binary images)

or the correlation function and histogram (grey-tone images) with the fibre-aggregate model.

Imaging Processing Gel φF (-) φA (-) DF (µm) LA (µm) φ1 (-)

CFM

Binary
2 mg/mL 0.76± 0.03 0.72± 0.01 1.9± 0.2 8.2± 1 0.55± 0.01

3 mg/mL 0.76± 0.01 0.69± 0.01 1.5± 0.1 6.3± 0.4 0.52± 0.01

Grey-tone
2 mg/mL 0.73± 0.04 0.32± 0.05 1.9± 0.1 6.6± 1 0.23± 0.03

3 mg/mL 0.78± 0.06 0.49± 0.04 2.3± 0.1 7.7± 1 0.38± 0.06

CRM

Binary
2 mg/mL 0.60± 0.02 0.88± 0.04 0.7± 0.09 15± 1 0.53± 0.04

3 mg/mL 0.67± 0.01 0.90± 0.02 0.90± 0.03 13± 1 0.61± 0.01

Grey-tone
2 mg/mL 0.78± 0.05 0.41± 0.03 0.98± 0.2 7.6± 0.5 0.32± 0.01

3 mg/mL 0.61± 0.06 0.56± 0.01 0.62± 0.1 14± 7 0.34± 0.02

φF , DF : density and diameter of the fibres; φA, LA: density and size of the aggregates; φ1: total

fibre density. The error bars are the standard deviations observed from the fits of the fifteen

images in each condition.

the two gels and the two imaging modes. From the fitted parameters φF and φA of the

fibre-aggregate model, the total density of the fibres φ1 was calculated through Eq. (7) and

is also reported in Tab. I.

Realizations of the fibre aggregate model for the two gels and the two imaging modes are

given in Fig. 5. These realizations illustrate the structures captured by the covariance in the
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FIG. 5. Realizations of the fibre aggregate model, for the 2mg/mL (a1, a2) and 3mg/mL (b1, b2)

gels, based on the average values of the parameters fitted from the covariance of the CFM (a1 and

b1) and CRM (a2 and b2) segmented images.

segmented images of the gels, and they largely illustrate the drawbacks of a data-analysis

based on image segmentation. As mentioned earlier, the segmentation of the fluorescence

data leads to inconsistencies between the density of the segmented images and the gel con-

centrations. In addition, the significant noise in the reflectance data lead to unrealistically

large values for the aggregate density (see Figs. 2b1-b2 and 5b1-b2).

3. Greytone model

In order to overcome the limitations of image segmentation, we expand here the binary

fibre-aggregate model so as to allow the identification of its parameters directly from grey-

tone images. The binary models ignore the fact that large image intensities are associated

with large local fibre concentrations. In the grey-tone model, we therefore assume that

every fibre contributes additively (by a quantity ∆) to the local grey-tone of the image.

Namely, the image intensity where 2, 3 or more fibres overlap is 2∆, 3∆, etc. The model

also accounts explicitly for the noisiness of the data, through uncorrelated Gaussian noise

n(x) with variance σ2, and for a background intensity b.

These assumptions can be formally written by expressing the local image intensity at

point x as

I(x) = b+ IA(x)×∆
∑
i

I(i)F (x) + n(x) (9)
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where IA(x) is the indicator function of the aggregates as before, and the sum accounts for

the overlapping of the fibres. In the sum, each term I(i)F (x) is the indicator function of a

homogeneous fibre model with vanishingly small number density η(i) so as to the overlapping

of fibres. The fibre density φF is then obtained again through Eq. (3)., with the total number

density η =
∑

i η
(i).

The statistical independence of all contributions in Eq. (9) -namely, IA(x), n(x) and

I(i)F (x) for all i’s- enables one to calculate the corresponding grey-tone correlation function.

This is done through to application of Eq. (2) to the image intensity in Eq. (9), and the

result is

C(r) = 〈I〉2 + η∆2KF (r)CAA(r) + (η∆)2
(
CAA(r)− φ2

A

)
+ σ2δ(r) (10)

where KF (r) is the geometrical covariogram of the fibres, CAA(r) is the covariance of the

aggregates, the last term is the correlation function of uncorrelated Gaussian noise where

δ(r) is equal to 1 if r = 0 and to 0 otherwise, and

〈I〉 = b+ ηφA∆ (11)

is the average intensity of the image.

In addition to correlation functions, the grey-tone modelling enables one to extract struc-

tural information from the grey-tone distribution itself. Because the fibres in the model are

distributed according to a Boolean process, the probability for exactly k fibres to overlap at

any point of space is a Poisson variable, namely

Prob
{
k overlapping fibres

}
=
ηk exp[−η]

k!
(12)

which contains Eq. (3) as a particular case, when all probabilities for k larger or equal to 1

are added. As each fibre contributes a quantity ∆ to the local intensity, Eq. (12) can also

be interpreted as the probability for observing the intensity k × ∆ for any point inside an

aggregate. Accounting also for the background intensity b and for the Gaussian noise, the

intensity distribution is therefore

f(I) = (1− φAφF )gσ[I − b] + φA exp[−η]
∞∑
k=1

ηk

k!
gσ[I − (b+ k∆)] (13)

where

gσ[x] =
1√
2πσ

exp[− x2

2σ2
] (14)
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FIG. 6. Greytone fibre-aggregates model of the 2mg/mL type-I collagen gel, imaged by fluorescence

microscopy, with (a1) histogram of grey levels (bars: experimental values; blue shade: model),

(b) the correlation function (dots: experimental value; solid line: model), as well as realizations

of the fibres (c), aggregates (d) and complete model (e). In (a2) the values inferred from the

segmented images in the pores (back bars) and fibre areas (white bars) are compared with the

model contributions to the background (dark shade) and increasing number of overlapping fibres

(bright shades).

is the centred Gaussian probability density. The quantity f(I)dI is the probability for a

pixel to have intensity in the interval [I, I + dI]. In Eq. (13) the first term accounts for

grey-tone distribution of the background, outside the aggregates or between fibres within the

aggregates. In the second term, the sum over k is on the increasing number of overlapping

fibres within the aggregates.

Figure 6 illustrates the fitting of the microscopy images with the grey-tone model. The

model captures nicely both the distribution of grey levels (Fig. 6a1) and the correlation

function (Fig. 6b). As an independent check, Fig. 6a2 compares the modelled distribution

of grey tones with the values measured in the regions of the image that were classified as

pores or fibres in the segmented images (see Fig. S1). The comparison should be considered

with caution, as it is the unsuitability of the segmentation that justified the present grey-

tone approach. The agreement of the two methods, however, seem reasonable. The various

contributions to the fibre intensity in Fig. 6a2 also testify to the importance of fibre overlap
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FIG. 7. Realizations of the grey-level fibre aggregate model, for the 2mg/mL (a1, a2) and 3mg/mL

(b1, b2) gels, based on the average values of the parameters fitted from the fluorescence (a1 and

b1) and reflectance (a2 and b2) images.

for the image analysis. The values of the fitted parameters on the two gels and two imaging

modes are reported in Tab. I. Realizations obtained from the average values of the fitted

parameters are given in Fig. 7.

IV. TIME- AND SPACE-RESOLVED ANALYSIS OF THE GEL STRUCTURE IN

THE SPHEROID MODEL

Time-resolved reflectance images of the platelet-derived growth factor-BB (PDGF-BB)-

treated CAF spheroid and surrounding gel are shown in Fig. 8, for times ranging from 30

min to 750 min. In order to characterize the spatiotemporal dynamics of cell interaction

with the surrounding collagen matrix during cell migration, the system was imaged at lower

resolution than the acellular gels considered so far. At the scale of the spheroid, individual

fibres are not visible and the only structures detected in the gels are the aggregates. The

images testify to a progressive local densification of the gel structure close to the spheroid and

migrating cells but it is unclear whether other structural characteristics of the gel evolve as

well. Moreover, as the gel heterogeneity seems to develop at the same scale as the spheroid,

it is difficult to ascertain whether the effect of the cells is through direct contact with the

gel, or if long-range effects are also operative.
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In order to quantitatively investigate the modification of the gel structure in relation

with cell migration, the gel area surrounding the spheroid was decomposed into layers cor-

responding to increasing distances to the closest cells (shown as different colors in Fig. 9

left). At each time step, the layers were recalculated according to the updated position of

the cells. The shapes of the equal-distance layers become increasingly complex with time,

as a consequence of the irregularity of the cell invasion pattern. The histogram of grey tones

and the correlation function of the collagen were measured within each layer at each time

step (Fig. 9 middle and right).

The densification of the fibres in the vicinity of the spheroid as well as of the migrating

cells is manifest in Fig. 9 through the progressive shifting of the grey-tone distributions

towards brighter values (middle panel), and notably the 90 % percentile (vertical lines). A

similar evolution is observed in the correlation functions that progressively shift towards

larger values with time. The evolution is quite rapid for the collagen in direct contact with

the cells (d1) and much slower for larger distance (d3).

In order to analyse the structural modifications corresponding to the changes in grey-

tone distributions and correlation functions, all the data measured at 9 successive time

steps and 5 different distances from the cells were fitted simultaneously with the grey-tone

model (see Fig. 9 for 3 times and 3 distances). Among the parameters of the grey-tone

model, the densities and sizes bear a structural meaning (see Tab. I), but other parameters

merely characterize the imaging mode. This is notably the case for the fibre contrast ∆, the

background intensity b, and the noise intensity σ (see Eqs. 10 and 13). For the fitting of the

FIG. 8. Images of the CAF spheroid and surrounding gel at various times: t1 = 30 min, t3 = 210

min, t9=750 min. The images correspond to one height z cutting through the spheroid, with the

cells shown in red and the density of the gel coded from blue to yellow.
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FIG. 9. Collagen structure analysis in the neighbourhood of the CAF spheroid, at different times

(t1 = 30 min, t3 = 210 min t9 = 750 min) and distances from the cells (d1 < 100 µm, 100 µm < d2 <

200 µm and 200 µm < d3 < 300 µm). In the original images (left) the gel is shown in grey and the

cells in bright red, and the same colour code is used for the distances in the grey-tone distributions

(middle) and correlation functions (right). The middle panel displays the distributions of grey-

tone intensity I, with the bars being the experimental distributions and the 90 % percentile shown

as a vertical line. The shaded areas are the grey-tone model, with the background contribution

(darker) and increasing number of fibre overlaps. In the right panel the grey-tone correlation

functions C(r) are shown, with the dots being the experimental values and the solid lines being

the grey-tone model.

data, different values of the structural parameters were allowed for each time and distance,

but a unique value of the imaging parameters was allowed for all images. This is justified as

the time series images of the gel and spheroid were measured through a time-laps protocol

with unchanged imaging parameters. The values of the imaging parameters from the fit are

b ' 9, ∆ ' 15 and σ ' 5. The structural parameters are DF ' 2 µm and LA ' 19 µm for

all distances and times, and the volume fractions φA and φF are as shown in Fig. 10a and

10b.

Fig. 10 testifies to qualitatively different structural changes in the gel in direct contact

with the CAF cells and distant from them. Close to the cells (blue series), a large number of
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FIG. 10. Fitted collagen structure for various times and distances to the CAF cells, with aggregate

density φA (a) and fibre density within the aggregates φF (b). The grey surface is a guide to

the eye. Specific realizations are shown on the right panel to illustrate the significance of the

parameters. The colour code for distances is the same as in Fig. 9; the non-colored symbols point

to intermediate distances not shown in Fig. 9.

aggregates have already formed before the first measurement time (t < 30 min). It remains

relatively constant afterward with density φA ' 80 %, which can also be described in terms

of a matrix porosity that remains constant around 20 %. In the meantime, the fibre density

within the aggregates increases steadily all throughout the experiment. This contrasts with

the situation far from the cells (yellow series), where the aggregate density φA increases

far more progressively and the fibre density within the aggregates φF remains altogether

constant. These qualitatively different structural changes close and far from the cells are

illustrated with right panel of Fig. 10 for various distances and times.

V. DISCUSSION

The structure of collagen gels is a highly hierarchical one [56]. Starting form molecular

dimensions, the smallest structures are the tropocollagen triple helices (diameter 1.5 nm),

assembled into protofibrils and fibrils (6 to 100 nm), woven into fibres (1 µm), which are

eventually connected to form the gel matrix. The matrix, however, is not homogeneous at
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a scale larger than 10 µm, as visible in all images of Fig. 1. A central structure of collagen

at large scale is he presence of fibre aggregates, which can also be thought of in terms of

pores in the matrix. The latter are the most salient structures in the gels at the scale of the

cells (Fig. 8), and it is therefore natural to enquire how they are modified by neighboring

cells. We addressed this question by developing first a novel image analysis methodology

to characterize the large-scale structure of collagen, by validating it on two acellular gels,

and finally applying it to characterise the collagen structure surrounding a spheroid of CAF

cells.

The characterisation of the disordered pore-and-aggregate structure of the gels is chal-

lenging, and calls for a statistical description. The approach we explored here is based on

a mathematical modelling, which aims at statistically capturing the main structural char-

acteristics of the gels through a small number of meaningful parameters. It is important to

stress that the goal of the models is not to reproduce a local gel structure, as one would typ-

ically observe in a single image, but also to capture the structure variability. This feature

is essential to assign a single value to the structural parameters based on many different

images of one and a single gel.

In that spirit we first considered a homogeneous fibre model (Fig. 3). This simple model

was found to be incompatible the experimental covariances of the collagen, which statistically

confirmed the presence of fibre aggregates and pores. We then proposed a two-scale model,

where the small-scale structure is described as a homogeneous model of random fibres, and

the large-scale aggregate structure is obtained by using a clipped Gaussian-field to carve

pores out of it Fig. 4). In this two-scale model, two parameters φA and LA describe the

density and size of the aggregates, and two parameters φF and DF describe the density and

the diameter of the fibres inside the aggregates. Analytical expressions were derived to fit

experimental characteristics of the gels measured from the images, and infer the values of

the mentioned structural parameters.

A classical image analysis method consists in segmenting first the images to identify ob-

jects of interest and subsequently measure them. This approach was proved unsuitable in the

present context, as segmentation would result in the loss of valuable structural information.

The collagen-rich areas of the gels are indeed characterized by broad grey-tone distributions

(see Fig. S1b), with large intensities being associated with the close proximity or overlap-

ping of many fibres. Image segmentation would amount to treating all these regions on the
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same footing, and would therefore bias any measurement.

We developed a method to identify the model parameters directly from grey-tone mi-

croscopy images, through the fitting of the covariance function and histogram of intensities.

The covariance -or correlation function, in the case of grey-tone images- is a very informative

structural descriptor [51, 57] that can easily be measured on any image through fast Fourier

transforms. Covariance analysis offers a variety of advantages. First, it provides a robust

and fully objective statistical description of the spatial distribution of the objects that make

up an image. This is particularly useful for structures as complex and disordered as fibrillar

collagen gels. Second, it reduces the impact and possible bias of image preprocessing, which

is absent altogether in the case of grey-tone correlation functions. Finally, it also provides

an efficient way to cope with noisy images, as noise is typically defined as the non-correlated

contribution to an image.

Globally, the procedure based on grey-tone measurements (correlation functions and in-

tensity distributions) and on their modelling proved to be quite consistent with respect to

the two types of imaging modes considered in the paper. The absolute values of the param-

eters obtained through reflectance and fluorescence data differ slightly, but identical trends

are detected when comparing the 2mg/mL and 3mg/mL acellular gels (Tab. I). The overall

fibre density φ1 is larger in the 3 mg/mL gel, as it should. Our analysis shows that this

is due largely to an increased density of aggregates φA while the fibre density within the

aggregates φF is almost identical in the two gels. The characteristic size of the aggregates

LA is larger in the 3mg/mL gel because the aggregates are more numerous and form a larger

connected structure. To further highlight the importance of using grey-tone images, we also

performed the same analysis on segmented images. In that case, segmentation leads to the

undesirable situation where the density of the segmented images is opposite to the known

collagen concentration of the gels in the case of fluorescence data (Tab. I and Fig. 2a).

From a methodological point of view, the application of the grey-tone model to analyze

the structure of the 2mg/mL and 3 mg/mL gels in both reflectance and fluorescence modes,

validated the overall image analysis approach and enabled us to apply it to the dynamic

model of CAF spheroid invasion (Figs. 9 and 10). Matrix remodelling has been widely

documented in earlier works [33, 58–61]. Contractility of collagen-embedded cells generates

strains on the collagen fibres, leading to their local densification [62, 63] and reorganiza-

tion [59, 60, 64]. This process is especially evident for cells of mesenchymal origin such as
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CAFs, which are characterized by high expression levels of the contractile myosin protein and

collagen-binding integrins [63]. In our experimental model, CAF spheroids were treated with

PDGF-BB, a growth factor known to stimulate collagen gel contraction [65, 66]. By pulling

on collagen fibers, cells stiffen their microenvironment and induce irreversible collagen de-

formations, thereby altering locally the mechanical properties of the ECM. This remodeled

microenvironment in turn provides guidance cues for the nearby cells through durotactic

and/or topotactic migrations [67–69]. Besides these guidance cues, high concentrations of

fibrillar collagen also promote the local invasion of cells by inducing the formation of special-

ized cellular extensions termed invadopodia implicated in the local proteolytic remodeling

of the ECM [70].

Our use of a two-scale stochastic model to describe the collagen structure and the identifi-

cation of its parameters from grey-tone images, enables us to describe the ECM remodelling

in more detail than simply the collagen density. The pristine state of the ECM in the CAF

spheroid model is the one observed at early times t and large distances d from the cells. The

relevant values of the aggregate and fibre densities are φA ' 0.6 and φF ' 0.5 based on Figs

10a and 10b. These values are reasonably consistent with those of the 2mg/mL acellular

gels in Tab. I, and the slight differences can be attributed to the lower resolution used

in the time-resolved analysis of the spheroid. Starting from that initial state, our space-

and time-dependent analysis of the collagen structure shows that the ECM densification

happens via two distinct mechanisms, namely: the increased density of fibre aggregates φA

and the increased fibre density φF within the aggregates. The two mechanisms are both at

work in the gel in close contact with the cells. The aggregate density increases very fast,

from about φA ' 60% to 80% in less than 30 mins (Fig. 10a), similar to the cancer cell

spheroids investigated by [64] which exert a strong contraction of the surrounding collagen

immediately after embedding in the matrix. The fibre densification also takes place inside

the aggregates is a much more progressive way, as it occurs over hours (Fig. 10b).

The global densification of the gel resulting from the two processes is quite significant, as

the overall fibre density in contact with the cells - estimated as φ1 = φA×φF - approximately

passes from φ1 ' 30% to 50%. It is important to stress that this only concerns the fraction

of fibres that are visible in our experiments, which is determined by the imaging technique

(CRM vs CFM) and by the spatial resolution of the imaging system (∼0.59µm/pixel in

our case). As smaller fibrils and protofibrils are undetected at the considered scale, the
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apparent densification does not contradict the fact that the total collagen concentration

has to remain locally constant. We also cannot exclude that a fraction of the aggregate

densification observed by CRM in our spheroid model results from a CAF-mediated partial

reorientation of the more vertical collagen fibres relative to the imaging plane [71]. In any

event, the analysis testifies to significant yet different remodelling of the gel structure at two

scales simultaneously.

Interestingly, the remodelling of the collagen is not limited to the regions in direct contact

with the cells. Significant structural changes are observed also in regions as far as 300 µm

away from the closest CAF cell, but the phenomenology is distinctly different there. In those

regions, the density of fibre aggregates increases slowly, over hours, while the fibre density

within the aggregates remains constant. Similar long-range (up to 1300 µm) mechanical

signals generated by fibroblasts have been shown to propagate through fibrillar collagen

networks. Such mechanical cues can be sensed far beyond the signal source by cells sharing

the same substrate, which is responsible for the ability of contractile fibroblasts to induce

the migration of macrophages towards the force source [32].

From a methodological point of view, it is important to stress that the discrimination

between the two types of densification processes is robust. Considering Fig. 6a2, an increase

of aggregate density φA with constant fibre density φF would be manifest through a reduction

of the background contribution (dark blue) in favor of the fibre contribution (bright blue)

but the shapes of the two contributions would remain unchanged. By contrast, any increase

in the fibre density φF is accompanied by an increasing number of pixels where the fibres

overlap, which would necessarily extend the grey-tone distribution towards higher intensities.

With that in mind, the observed shifting of the 90%-percentile of the image intensity in Fig. 9

can only be interpreted as an increase of φF , independently of any evolution of the aggregate

density φA. As for the grey-tone correlation function, its two asymptotic values for r = 0

and r → ∞ depend only on the total fibre density φ1 = φA × φF . The combination of

the grey-tone distribution and correlation function is therefore key to discriminate the two

different densification processes.
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VI. CONCLUSION

In this study, we developed an innovative image analysis approach to investigate the

remodelling of fibrillar collagen in a 3D spheroid model of cellular invasion. Unlike existing

work, most of which focus on fibre the densification of the collagen network and on small-scale

fibre reorientation, we focused here on the structural modification of the collagen matrix at

the scale of a few microns, comparable with that of the cells. This was achieved by first

developing a novel image analysis method based on the stochastic modelling of the acellular

gel structure, and applying it afterwards to study the space- and time-dependent reshaping

of the collagen matrix by migrating CAFs.

The analysis of acellular collagen gels (without embedded cells) investigated by confocal

microscopy in both reflectance and fluorescence modes, shows that the structure of the gels

is not homogeneous at the scale of about 10 microns. The structure consists in regions with

high fibre density separated by depleted regions, which can be thought of as fibre aggregates

and pores. In order to mathematically describe this structure, we developed a two-scale

stochastic model with a clipped Gaussian-field model for the aggregates and pores, and a

homogeneous Boolean model to describe the fibre network within the aggregates. We also

developed a method to identify the model parameters from the grey-tone distributions and

correlation functions of the gel images. The specificity of the method is that it applies to the

unprocessed grey-tone images, and it can therefore be used with noisy time-lapse reflectance

images of non-fluorescent collagen.

When applied to the collagen-embedded CAF spheroid images, the developed method

testifies that the invasion of PDGF-BB-treated CAFs is accompanied by an overall densifi-

cation of the collagen gel while the sizes of the pores and aggregates, as well as that of the

fibres, remains largely unchanged. Interestingly, the densification occurs differently for the

gel in direct contact with the cells or far away from them. The gel in close contact with the

invading cells densifies through the rapid increase of the number of aggregates, over less than

30 min, followed by the slow increase of fibre density within the aggregates, over hours. By

contrast, the densification occurring in the gel located farther away from the cells occurs via

the slow increase of the aggregate density, while the density of fibres within the aggregates

remains constant.

At the present stage, one can only speculate on the biomechanical mechanisms responsible
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for the two-scale densification. The very observation of two distinct phenomenologies hint

at diverse mechanisms, which presumably involve both biochemical and mechanical effects.
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