

From consistency to flexibility: handling spatial information 1

schema thanks to a middleware in a 3D city-modeling context 2

Gilles-Antoine Nys 1,* and Roland Billen 1 3
1 Geomatics Unit, UR Spheres, University of Liège (ULiège), Allée du six Août, 19, 4000 Liège, Belgium; 4

ganys/rbillen@uliege.be (R.B.) 5
* Correspondence: ganys@uliege.be (G.A.N.) 6

Abstract: Twinning elements of reality gains a growing interest in support of decision-making, 7
learning and simulations: a single and shared model should provide a unique integrative basis for 8
managing assets of any replica of the real world. From a technical viewpoint, sharing and opening 9
information requires both an exchange format and a high degree of freedom and flexibility. It should 10
allow an important number of users to manage this information, to modify it, etc. Storing and 11
manipulating spatial information concerning the urban built context currently focuses on ensuring 12
consistency thanks to relational databases and predefined schemas. Following a paradigm shift from 13
a relational database to a NoSQL database, a schema validation middleware is proposed to improve 14
the flexibility storage by conceding a share of its consistency. The flexibility improvements thus 15
provide users a common basis that is able to evolve all along the lifecycle of their models and 16
applications as required for twinning things. It allows users and their applications to take advantage 17
of new storage features such as common: versioning, partitioning, prioritization, applications 18
profiles, etc. The middleware and their new capabilities are illustrated thanks to the CityJSON 19
encoding and its simplified schema for a document-oriented database. 20

Keywords: Schemaless database, NoSQL, middleware, 3D city model, CityJSON 21

 22

1. Introduction 23

The digitization of real world elements improves activities and applications in many domains. 24
This could be achieved, for example, through the creation of a digital model providing a single 25
integration basis for all these activities. However, in practice, even if a conceptual schema allows 26
structuring elements around a common base, different competing models might exist and provide a 27
different representation of the same reality: not all users are interested in the same aspect or the same 28
details. 29

The design of a digital model is a long and difficult process that requires compromises. As the 30
needs of each application are not the same, one often prefers to use a specific model, close to the needs 31
of the application, which itself is also specific. It is often the reason that does not allow the 32
implementation of a shared digital model: what is the vision of reality that is necessary but also 33
sufficient regarding all the users’ activities around the model? Should applications that are 34
considered more complex make concessions by using a generic model or should we impose 35
complexity on applications that can be limited to something simpler? This would lead to a potential 36
disconnection with reality on the one hand due to a loss of information in a generalization. On the 37
other hand, situations where interactions would be cumbersome and too expensive in terms of 38
resources without reason can appear. 39

Therefore, several questions remain unanswered and requires a response whether it can be 40
illustrated in a paradigm shift in the management of the data, in the technique and its applications or 41
by using the new capabilities offered by the recent technological advances in hardware: 42

a) Is this choice still relevant nowadays? 43
b) Given that there is only one ground truth but an infinite number of potential digital 44

models, why should there be any compromise? 45
c) Could we not propose a solution that would allow storing a unique digital reality while 46

making the representation we make of it dynamic according to our needs? 47
In addition to the substantial investment involved in designing a digital model, saving the 48

model, often in relational mode, seems to explain some of the compromises made. In a web 49
application, the server, which allows exchanges and a part of the processing, and the client, which is 50
the data consumer, do not impose any concrete limitation. Structured beforehand and thus 51
guarantying the application consistency, the rigidity and inertia of the relational model make it a 52
change-resistant solution (complicated addition of heterogeneous data, modifications of the basic 53
schema are always at the expense of some performance, difficult maintenance, complex horizontal 54
scalability, etc.). 55

Would it not be possible to propose a storage solution that allows various independent 56
applications to store and search relevant information in a single place? The guarantee on consistency 57
would then be carried over to the server and the interoperability would be ensured using exchange 58
standards. In this type of architecture, a document-oriented NoSQL database would allow 59
completely free-shared storage of information without prior structuring. The server would then be 60
responsible for the information structure by filtering it during exchanges with the various clients 61
(both for storage but client requests). 62

The contribution of this paper is twofold. On the one hand, from a purely technical point of view, 63
it provides a middleware, which acts as a bi-directional filter on server queries and would then filtrate 64
information following CityJSON semi-structured schemas. Added to the simplified database schema 65
for the storage of CityJSON models in a document-oriented database, it provides the core basis of an 66
accessible storage solution. Provided in a convenient and well document framework, it should allow 67
people developing their own use keeping in mind standardization. This flexible but still consistent 68
data management helps developers to make bridges between the constituting parts of much greater 69
city models management platforms. 70

On the other hand, in a dynamic that is always moving towards greater openness and 71
information sharing, a new solution is proposed as an alternative to traditional solutions. Digital 72
Twinning, a unique and digital 3D replica of a city, is now possible by using this first assumption. It 73
is illustrated relying on a storage paradigm still too little used in our opinion: NoSQL databases. 74
NoSQL databases and web-related technologies gained interest in the scope of 3D city modelling. 75
However, most of the time, the new propositions are framed in a succession of improvements of a 76
recognized tools limited to the purpose they had when they were set up. The new solutions are still 77
too often neglected in favor of traditional solutions without addressing the problem from the start: 78
the design of the tool. 79

All the principles and ideas developed in this paper are illustrated in the context of three-80
dimensional urban modelling and city digital twinning. The contribution is therefore not about the 81
concept of middleware itself, but also in the answers to the recent questions formulated above. 82

 83
The paper is structured as follows: the main topics studied are the exchanges standards and the 84

role of the database in a GIS architecture. First, the various standardized way of querying and 85
accessing geographical information, the city modelling standards, their semantic data model 86
(CityGML and CityJSON) and the usage of these standards in shared or unshared web architectures 87
are presented. The state of the art is assessed to frame this research in storing 3D city models in 88
databases and deliver them on the web. Then, after a quick presentation on what NoSQL databases 89
are and their differences with relational databases, the paradigm shift to a NoSQL database and its 90
basic specifications are evaluated. The principle and benefits of a schemaless database are discussed 91

afterward. Insights are also given concerning the usage of middleware in geospatial data 92
management. Different methods of accessing information through features query services are 93
presented in parallel with the major contribution of this paper: a bi-directional filter that simplifies 94
the recording of information but guarantees the consistency of exchanges. Finally, future 95
developments are considered as improvements and new possibilities that can be developed thanks 96
to this new paradigm and the middleware. 97

2. Related works 98

Related works are divided in two different but interconnected parts: “Exchanges and 99
standardization” and “Role of the database”. While the first presents standards for structuring 100
information in the urban built environment, the second part is a focus on the role of the database and 101
its various shapes. The logical articulation of this part goes from a more general section to a more 102
specific section that places our contribution in its context. 103

2.1. Exchanges and standardization 104

A “Digital Twin” is defined as “a virtual representation of a physical asset enabled through data 105
and simulators for real-time prediction, monitoring, control and optimization of the asset for 106
improved decision making throughout the life cycle of the asset and beyond” (Rasheed, San, and 107
Kvamsdal 2019). On a conceptual level, especially in city modelling, the prospective potential of 108
reality twinning is large (Shahat, Hyun, and Yeom 2021). Even if a wholly mirrored city is yet not 109
available, improvements are relatively fast. In particular, improved data processing would make it 110
easier to use the models and find information, but also to share it. Above all, the pooling of 111
information from all kinds of sources is the main advantage of twinning. At this stage, all these 112
considerations are anticipated to accurately reflect and affect the city and model's functions: data 113
management, visualization, situational awareness, planning and prediction, integration and 114
collaboration. Consequently, the search and processing of data must be simple and attractive 115
(Schrotter and Hürzeler 2020). Indeed, supporting decision processes should be made in a 116
comprehensible way all along the lifecycle management. The focus is made on the contrast between 117
the static of the relational databases and the continuous evolution of users’ needs. Behind the idea 118
that the digitalization enhances the communication, The World Avatar (TWA) is a project led by the 119
CARES center of the University of Cambridge in Singapore (Mei Qi et al. 2021). The TWA intends to 120
capture the idea of representing every aspect of the real world in a digital model. It is thus a large-121
scale project gathering various researchers in a wide range of research areas. In concrete terms, it 122
takes the form of a dynamic knowledge graph (dKG) that should improve the interoperability 123
between heterogeneous data formats, software and applications (Chadzynski et al. 2021). 124

 125
In GIS architecture, many efforts have been made on the database tier (Zlatanova and Stoter 126

2006). However, there is still much room for improvement. For instance, relational databases do not 127
support co-existing schema versions natively. It is thus complex to develop tools without imposing 128
them to be created prior of any production launch. Smart solutions need to be found in order to allow 129
concurrent versioning. Among these solutions, a bidirectional database evolution language provides 130
a solution for the co-existence of schema versions using delta-code (Herrmann et al. 2017). This 131
language allows increasing the freedom to easily change the physical table schema but at the expense 132
of some performance. Once the schema of a relational database has evolved, the stored data should 133
also comply with the new structure. It imposes to guarantee the usability of the newly ordered 134
database but also its completeness. A formal basis, which helps developers with the expensive and 135
error-prone task of manual co-evolution (of both schema and data) is compulsory (Herrmann et al. 136
2018). 137

 138
The consumption of performance is highlighted in comparison between the features of the 139

relational versus the NoSQL databases. An empirical comparison of their average execution times 140

gives insight on their specific advantages (Baralis et al. 2017). The number of concurrent users and 141
dataset cardinalities have been also considered as they represent the great advantages of NoSQL. 142
Among all the NoSQL database variations that exist, the document-oriented databases allow a great 143
flexibility regarding the information structuration and their modifications. It allows storing 144
documents in many convenient ways without imposing any predefined and strict schema, as would 145
a relational database. Research is being carried out on the automatic creation of structures based on 146
UML diagrams. However, it ensures the storage flexibility as it is the main asset of these NoSQL 147
stores. A validation scenario presents the creation, its complexity metrics and states on the NoSQL 148
assets (Gómez, Roncancio, and Casallas 2021). 149

 150
Indeed, modelling a relational database might become a tremendous process: all requirements 151

must be assessed beforehand in order to build an application that meets all user needs. In the NoSQL 152
environment, there is no equivalent to the Unified Modelling Language (UML) used by relational 153
databases. Some could use new notation based on UML or Entity Relationship (ER), eXtensible 154
Markup Language (XML), etc. (Vera-Olivera et al. 2021). A systematic review on NoSQL databases 155
explores the current state of research regarding their design methods (Roy-Hubara and Sturm 2020). 156
One of its findings states that database design should meet non-functional requirements. It means 157
that database design should not state on what to do or must do but how to do things: in other words, 158
the absence of predefined schema is an opportunity and must be taken to its advantage. 159

 160
A middleware is a piece of software that implements communication solutions for an operating 161

system. It is commonly used in distributed architecture to support input/output between stacks. In 162
the scope of GIS architecture, it allows merging multiple and heterogeneous data sources (Cha et al. 163
1999) and multi-storage paradigm architectures (Wong, Swartz, and Sarkar 2002; Li et al. 2018). 164
Handling inputs and outputs also favors data integration without impacting on performance (Haas 165
et al. 1999). For example, some propose to facilitate the merging of city modelling and building 166
information modelling standards through a dedicated middleware (Schultz and Bhatt 2013). 167

Looking at the large family of NoSQL databases, the validation of exchanges using schemas is 168
nothing new. For example for knowledge graphs such as these based on the RDF model uses the 169
Shapes Constraint Language (SHACL) (Knublauch and Kontokostas 2017). In the context of spatial 170
validation, it emphasizes recursive filtering and validation (Corman, Reutter, and Savković 2018) and 171
the reusability of validation schemes (Debruyne and McGlinn 2021). Such a technical solution is one 172
of the basic pillars of the work towards a global European infrastructure (Huang et al. 2019). These 173
principles are commonly called "application profiles". 174

In the same way but at a different level of the web architecture and a more global ingestion 175
process, GraphQL is an API layer that allows people querying and mutating already existing data. It 176
is the closest thing to a universal method of questioning. The request defines itself the desired 177
structure of the answer. Recent improvements on GraphQL demonstrate their usage in network 178
bandwidth optimization (Brito, Mombach, and Valente 2019). However, like any new technology, it 179
comes with drawbacks (Hartig and Pérez 2018; Wittern et al. 2019). However, there is no official 180
spatial features nor capabilities. 181

 182
Geospatial data are data about objects, events, or phenomena that have a location on the surface 183

of the earth. It combines location information, which can be static or dynamic (usually coordinates or 184
combinations and complex arrangements of them) and attribute information (characteristics and 185
knowledge of the object). Given all these considerations, the exchange and the storage of such 186
information imposes the usage of dedicated tools: spatial standards and spatial databases. The Open 187
Geospatial Consortium (OGC) has a mission to improve geodata accessibility providing standards 188
and normative exchanges formats. These standards are global resources that are publicly available 189
and free to use. Among others, the Web Features Service (WFS) Interface Standard provides an 190
interface allowing requests for 2D geographical features. A new version has recently been published 191
in a legacy review (Clemens, Panagiotis, and Charles 2019). It has been done as to allow platform-192

independent calls across the web. This review is part of a new bigger family: “OGC APIs”. These 193
APIs are developed in order to make it easy for anyone to provide geospatial data on the web but in 194
a standardized way. The different APIs are meant to provide building blocks that can be used to build 195
APIs that are novel and more complex. Along with the maps, coverage and processing services, the 196
features are part of the improvements brought in this new standards family. The “OGC API - Features 197
- Part 1: Core” is restricted to read-access and describes the mandatory capabilities to implement a 198
data access interface (Clemens et al. 2019). Future capabilities such as creation and modification of 199
existing features but also additional coordinate references should be developed in future parts. 200
Alongside, 3D Tiles is designed for streaming and rendering of massive 3D content (Patrick, Sean, 201
and Gabby 2019). It should not be confused with the OGC API - Features as the second concerns a 202
way to serve information on a specific element and all its semantic information: attributes, versioning, 203
etc. 204

 205
In addition to the exchange protocols, the OGC standards also provide standards for the 206

exchanges and representation of knowledge. CityGML is the most widely used standard for 3D city 207
modelling (Gröger and Plümer 2012). Recent developments are related to extending the standard 208
features: linking with other common standards (Biljecki et al. 2021), wind simulations (Deininger et 209
al. 2020), heating demand prediction (Rossknecht and Airaksinen 2020), etc. Among other solutions, 210
3DCityDB is a software package that consists of a database schema for spatially enhanced relational 211
databases. It improves the database with a set of procedures and software tools allowing to import, 212
manage, analyze, visualize, and export CityGML models (Yao et al. 2018). Another CityGML data 213
model usage consists of a compact and developers-friendly encoding alternative of this data model: 214
CityJSON (Ledoux et al. 2019). Besides its simplicity and easiness to handle city models, many 215
advantages derive from the JSON encoding and its semi-opened structure: native support of 216
metadata and refined levels-of-detail (Nys, Poux, and Billen 2020), easier integration in common GIS 217
tools (Vitalis, Arroyo Ohori, and Stoter 2020), lightweight and scalable base to support complex web 218
applications (Virtanen et al. 2021), usage of combinatorial maps in topology structure (Stelios Vitalis, 219
Ohori, and Stoter 2019), etc. This new encoding solution opens possibilities by reducing the cost of 220
modifying data but also facilitates its exchange. It is part of a dynamic that is increasingly focused on 221
the web and the pooling of knowledge: servicification. This dynamic is the process to migrate code 222
and applications to a modular and service-oriented architecture. This results in the production of 223
reusable and decoupled components while also reducing duplication. It finally results in a better 224
usage of resources and the sharing of capabilities and information. Servicification in geographical 225
systems is well illustrated in SOA architecture (Service-Oriented Architecture) (Allah Bukhsh, van 226
Sinderen, and Singh 2015; Nys and Billen 2021). A flexible architecture allows the composition and 227
sequencing of data processing. The geospatial intelligence provided by such services is a proper 228
solution to most of the geospatial application problems (Fricke, Döllner, and Asche 2018). 229
 230

2.2. Role of the database 231

It is understood that 3D city models are great integrating bases for complex studies in various 232
fields. This can be seen from the ever-increasing number of application domains extensions (ADEs) 233
for CityGML (Biljecki, Kumar, and Nagel 2018): energy, noise, 3D cadaster, etc. However, even if the 234
semantic information is well integrated in such models, their usability in simulations is not 235
straightforward: this kind of linkage is often studied by the actors in the field of 3D modelling and 236
not simulation experts. The method of storage is not necessarily responsible (Widl, Agugiaro, and 237
Peters-Anders 2021). One is proposing to review the way in which the information, recorded in a 238
relational database, is accessed and thus linked to the simulation tools (Yao et al. 2018). Without 239
modifying the base, this solution makes it possible to spread the use of city models and their linked 240
information. 241

 242

The management of versions and history within 3D city modelling, which can be generalized by 243
allowing different views on the same information, can be done through the use of an ADE of 244
CityGML (Chaturvedi et al. 2017). This independent extension considers new aspects as managing 245
multiple temporal interpretations of a city and its features. It is now part of the CityGML 3.0 data 246
model and should thus be implemented in its various uses (Kutzner, Chaturvedi, and Kolbe 2020). 247
Despite the proposed solutions for versioning, several issues remain (S. Vitalis et al. 2019; Kutzner et 248
al. 2020). Six issues were evaluated and discussed among the data providers’ incentives, the database 249
implementation, etc. but more specifically: the need to collect additional lifecycle and versioning 250
information (Eriksson and Harrie 2021). The problem highlighted on the additional information is 251
that it requires a substantial restructuring of the technical solution and work processes. In addition, 252
the increasing complexity of the database implementation increases with the number of versioning 253
features included (Eriksson et al. 2021). 254

 255
Besides the relational databases, the vast panel of NoSQL databases offer complementary 256

solutions. NoSQL databases propose to review the storage structure of relational database. Among 257
others, when the links between the elements are preponderant, graph databases are the most suitable. 258
For instance, thanks to the graph isomorphism tools, even if they are resources consuming, change 259
detection is made between versions of CityGML models (Nguyen and Kolbe 2020). Moreover, a much 260
precise definition of the change types is given based on the graph structure. As it has been said, the 261
graphs are useful for modelling the relationships between the city features. More precisely, the 262
translation of these relations in Resource Description Framework (RDF) triples structures the 263
semantic information of the urban built environment: the only inconvenient is that the geometric 264
information is neglected (Malinverni et al. 2020). It is worth mentioning that ontologies are preserved 265
during data conversions and can therefore be queried afterwards. It opens up fusion possibilities for 266
city models with various sources using a NoSQL graph database: IFC, IndoorGML, etc. Structuring 267
information in graphs also provide solution for bi-directional transformations. It allows deriving 268
models from real CityGML models and instrument modelling and analysis facilities for digital 269
models (Visconti et al. 2021). 270
 271

Document-oriented NoSQL databases offer interesting possibilities. Besides any processing 272
efficiency, the whole data structure has been reformed. It is much simpler than relational databases 273
that use joint keys for example (Bartoszewski, Piorkowski, and Lupa 2019). Changing the user's 274
perspective on data can improve or even rethink the basic idea of relational databases. The database 275
design itself gives an answer to the multipurpose needs for WebGIS (Sutanta and Nurnawati 2019). 276
Without providing a complete solution compared to what relational solutions offer, the NoSQL 277
databases offer premises of spatial data management on the web (da Costa Rainho and Bernardino 278
2018). Especially in 3D city modelling, the shift from consistency to flexibility opens many 279
possibilities (Nys and Billen 2021). In this research, a combination between CityJSON and the NoSQL 280
document-oriented database provides an alternative to the traditional geodata management. The 281
parallel can be drawn with 3DCityDB, which proposes a data schema for storage in a relational 282
database. The comparison between the two tools was made in terms of performance but also in terms 283
of their capabilities. In short, it improves the modularity of information thanks to the lack of schema 284
for the database. Gains of performances and capabilities are remarkable kiss-cool effects too. For 285
instance, proposing new extensions, and thus improving and adding features to the schema, is easier 286
and supported in a convenient way thanks to the schema and its translation in the semi-open 287
database structure (Nys et al. 2021). 288

 289

3. Schemaless database 290

This definition of Rasheed et al. for “Digital Twin”, even if it remains vague on the “virtual 291
representation” term, focuses on the long-term usage and lifecycle of the information. This 292

representation should therefore be required to be modular and flexible in order to adapt to current 293
but also future needs. Without going for a complete avatar, a digital replica whose main characteristic 294
is its shared uniqueness is a point worth studying. Even if relational databases provide solutions and 295
capabilities, those are not suited for development in line with modifications in usage needs and 296
horizontal scaling. It can therefore be considered that they do not address the root of the problem: 297
the flexibility of schemes and thus the whole architecture modularity. 298

Tacking a step back, a web GIS architecture is constituted of three components: a client, a server 299
and a database. While there is no limitation on the number for each tier, it should be at least one 300
element for each. Thus, a wide range of combinations is possible. Moreover, the elements are not 301
always parts of the same whole; they might be under responsibility of different organization, located 302
in various places, etc. Most of the time, the server and the database are closely linked and why not 303
installed on the same physical machine (the architecture thus become a “two-tier architecture”). A 304
brief explanation of the usefulness of each tier provides a better understanding of the paradigm shift 305
proposed started in previous research in which this contribution fits (Nys and Billen 2021). 306

The client is the consumer of the data. It can be a viewer, a GIS standalone software, a web 307
application, etc. Since the “frontend’s” capabilities are evolving, clients support more and more 308
processing. For instance, the web browsers, thanks to the creation of the V8 JavaScript Engine 309
(Chromium Project of Google), handle more and more capabilities (Kulawiak, Dawidowicz, and 310
Pacholczyk 2019): heavy graphics computations, graphs manipulation, etc. 311

The server takes care of the processing part, or at least part of it, as the frontend improves as 312
mentioned above. It manages the database connections and receive the clients’ queries (Wagemann 313
et al. 2018). It is possible for a client to query a database directly, but the presence of a server makes 314
it possible to improve security, set up statistics, structure and guarantee the consistency of exchanges. 315
With the database, it is part of what is called “backend”. 316

The database saves information; it structures the data and allows its accessibility. For example, 317
the relational mode structures information in tables and defines the relationships between them 318
thanks to associations and cardinalities. Therefore, a predefined schema is mandatory so that the 319
defined boxes and their links can be filled in later. It is the main advantage of using relational 320
databases: the guarantee of consistency. Still, one can suffer of the predefinition of such framework. 321
The users’ needs and applications capabilities might evolve and no longer fit this schema. It could 322
then be interesting to provide an alternative that concedes a loss of consistency to improve the 323
architecture flexibility. A partial answer to this problem is to shift the use of a traditional database 324
and move towards a NoSQL solution (Nys and Billen 2021). This contribution is in line with this 325
answer and proposes to make a step further from the consistency to the flexibility of databases in the 326
scope of modeling urban environments. 327

3.1.NoSQL paradigm 328

Before considering NoSQL solutions, attempts to improve the relational model are worth 329
mentioning. One of these is the BiDEL language (Herrmann et al. 2017). However, these solutions 330
gets around the problem without tackling its root. The language acts like an additional layer that 331
improve the relational database capabilities. The database itself is not adequate to handle specific 332
features. For instance, thanks to BiDEL, the versioning is simplified but it imposes to manage a new 333
technology that adds complexity and potential problems. Tackling the rigid structure of the relational 334
databases is avoided but not solved. It would be more interesting to find an integrated solution. 335

The research topics of the TWA project study the formalization, the evaluation and the repair of 336
ontologies based on the CityGML and many other data models (in field such as environment, 337
weather, etc.) (Mei Qi et al. 2021). Their integrated and dynamic knowledge graph structures 338
information from a semantic point of view at least. As a complementary layer, the 3D geometric 339
information brings unavoidable information concerning urban management. Undoubtedly, it should 340
find an interest in developing a geometry support, if not at the beginning, at least at some point. This 341
project nevertheless illustrates an important need: NoSQL databases not only offer new capabilities 342

but also provide a very new storage paradigm and many advantages. Subsequent to it, it is not only 343
the arrangement of the data that changes; it is the whole perception of it. 344

 345
At this point, an explanation on the NoSQL storage paradigm should be given. NoSQL solutions 346

(Not Only SQL) are defined as “everything that is not relational”. In fact, it is much more complex 347
than that. The NoSQL family responds to capabilities that are indeed different from the relational 348
databases but still correspond to a set of definitions. The main difference between relational databases 349
and NoSQL solutions lies in the management of their schemes. NoSQL databases, without going into 350
the details of their various families, do not limit the data to be filled in predefined boxes. In other 351
words, the database does not impose a schema for the data to be stored. NoSQL databases are 352
“schema less databases”. Besides the ACID characteristics of traditional databases (Atomicity, 353
Consistency, Isolation and Durability), the NoSQL databases follows the BASE principles: 354
 Basically Available: the data are always available; there is no downtime despite any network 355

failure or temporary inconstancies. A “non-response” is impossible from the store. Whether it is 356
a success or an error, there is always an answer to every request. 357

 Soft state: even without any input, the system state could change over time. This characteristic 358
is required for the following “eventually consistent” property. 359

 Eventual consistency: if no further updates are made to an item for a long enough period, all 360
users will see the same value for the updated item. In the meantime, anything can happen. The 361
system will eventually become consistent once it stops receiving input. 362
The “eventual consistency” characteristic is the linchpin. The soft state characteristic is one of its 363

requirements and the availability is a quality of life asset but does not have any link with the 364
consistency. The third characteristic is indeed the most interesting one: the eventual consistency 365
means that the consistency is not set by the database itself and might not be always guaranteed. The 366
database could deliver different information to various users in some state. The compromises made 367
on consistency and the above-mentioned responses’ heterogeneity can be considered as potentially 368
harmful. This is true if the database is considered as an isolated component. The server, and why not, 369
the clients, might have a role to play in the consistency assessments. 370

As they have been defined in the previous section, clients are passive consumers and thus free 371
regarding the data structure. Both databases and clients should be independent services but clients 372
must be able to work with what the databases provide, as they are more flexible. Even if they can 373
support a part of the computations, clients should not require to control and validate the server 374
responses. They just visualize or process the data but does not restructure or modify it. Otherwise, 375
they will become an active component and the server may have neglected some of its responsibility. 376

The key idea of this contribution is to take the opposite view of the “schema less” database and 377
to take advantage of this actual flexibility. Since no schema is mandatory by the database, the 378
opportunity is to store data without any restrictions beside technical constraints: format, encoding, 379
etc. Any shape of information can thus be stored in the same place. Taking the assumption that an 380
infinite number of record variants can be stored in a unique database, one can consider that some 381
records will share a common basis or correspond to a common structure. Where several pieces of 382
information relate to the same real object, the use of a single and unequivocal identifier should allow 383
connecting these pieces. Moreover, each element might have common attributes and/or ways of 384
representation with one another (versions, extensions, etc.). They are actually different copies or 385
views of the same entity. Stating on a common basis and referring to real objects uniquely, one can 386
consequently define the foundation of a shared but limitless model. 387

Every city is unique. It has its own history, its specific space, its citizens and their own lifestyles, 388
etc. Many public services and stakeholders have their own views of the city and its assets. However, 389
they should not be allowed to harm or modify those of others. In addition, if interactions should be 390
possible, they should be done at least under pre-established conditions. 391

 392
Back to the data store framework and its infinite theoretical set of city models, a common basis 393

should determine the constituting elements of a city and their relationships: it is the main purpose of 394

standards such as the CityGML data model. Since CityGML is a semi-open standard, it consist not 395
only of a shared ground for city modelling but also for extensions and future applications. It thus 396
offers the possibility to reuse the compliant data in different fields and applications that are 397
themselves compliant to the data model. However, the majority of recent developments in 3D city 398
modeling accept the relational storage mode and its advantages without questioning its initial 399
capabilities. Hence, they focus on developing extensions proposing new features, new attributes and 400
new relationships without considering any use of a unique and common digital model. Such a model, 401
whose core can itself evolve as improvements are made, has been little studied. Among others, the 402
ACID characteristics are part of these limitations. 403

3.2. Architecture specifications 404

Before presenting the architecture capabilities and the benefits of the new component, a specific 405
point of its features should be discussed regarding the paradigm shift. As defined in the previous 406
sections, its groundwork relies on three things: the usage of a NoSQL database that improves 407
flexibility at the expense of some consistency, the usage of a common definition basis such as the 408
CityGML data model and finally a new component that filtrates information. These specifications are 409
available thanks to the simplified database schema for the management of CityJSON 3D city models 410
in a document-oriented store (Nys and Billen 2021). 411

Thence, a first step towards ensuring consistency is done by implicitly choosing that all 412
applications must be standard compliant. In the case of urban modeling and JSON-related 413
technologies, CityJSON 1.1 is unavoidable. It is here worth mentioning that it remains an unspoken 414
consensus for some tier: the database itself is not structured following any schema. No conditions are 415
set during creation and modification on records about any cardinalities, document structure, 416
document size limitations, etc. This is the role of the proposed component, which is mounted on the 417
existing application server, and only it. The server can thus be used to lock users’ exchanges and 418
structure queries on the server but nowhere else. 419

While the current applications developed around this simplified database schema of CityJSON 420
concerned the storage of multiple city models in a unique store, the new architecture will make an 421
additional hypothesis: the store remains unique but the unicity is now generalized to the stored 422
model also. Note that the number of frontend elements is still limitless. In summary, one database is 423
shared by several server, or Application Programming Interfaces (APIs), that are themselves 424
receiving queries from an unlimited number of clients on the web. All this is done under the 425
assumption that the hardware is not a limited resource. The Figure 1Figure 1 illustrates the 426
architecture of the shared database. 427

Formatted: Font: Not Bold

 428
Figure 1. Architecture of a shared and unique database 429

Two requirements depicted in the Figure 1Figure 1 need an explanation: accordingly, in the 430
simplified schema, a document, or record, corresponds to a model of a city or to an element of the 431
urban built environment (i.e. an AbstractCityObject). Hence, in order to be able to refer to the correct 432
record, a document stored in the database must be defined by a unique way of identification. For 433
example the “name” attribute in each level of the architecture should be formatted in a similar 434
manner. Secondly, a Class, which specifies the city object family, might also be given to objects in 435
order to simplify the various queries. These classes are used to manage the different schemes by the 436
server. Examples of Classes are CityModel, Buildings, SolitaryVegetationObject, etc. according to the 437
CityGML model specifications. Other parameters (Param_1, Param_2, etc.) might also be defined in 438
the core specification but also come from extensions. For instance, since the stored documents should 439
implicitly comply with the specifications of CityJSON, it is thus possible for an application to query 440
a Building object knowing beforehand some of its attribute: address, roofType, etc. 441

These considerations are generic to any number of clients and applications. As a result, 442
information can be derived from a theoretically infinite number of architecture elements except for 443
the database, which is deliberately intended to be unique. Hence, the whole architecture can be 444
abstracted by a tree, so that the database would be the trunk and the clients the leaves. The servers 445
will then be the tree branches (see Figure 2Figure 2). For the growth of the tree, the only limitations 446
are network and hardware considerations since the data is constrained. 447

Formatted: Font: Not Bold

Formatted: Font: Not Bold

 448
Figure 2. Abstraction of the architecture in tree form 449

Besides the semantic formalization of the shared information, this component could be the basis 450
of more complex mechanisms. One can imagine that the unique model is used by various users from 451
the same city government. While each city service is working on its specific aspect of the city model, 452
details can be brought thanks to the filters (and thus versions, extensions, etc.). Besides, the security 453
issues of a non-strict user, several concurrent schemas might be used by the same user community 454
limiting accessibility in respect of the grade or hierarchy like application profiles do. This choice is 455
left to the developers, as they may be interested in developing stand-alone applications or in routing 456
users through a larger application. 457

Concerning the versioning, the new architecture not only ease data versions management but 458
also the data model versioning. It is customary that a database and thus the stored information 459
comply with a unique data model version. Updating the data when a new version of the data model 460
is released can lead to the database becoming obsolete if there has been no insight on backwards 461
compatibility. As a result, in this architecture, there is no need for data update in the database, only 462
technical maintenance is mandatory. The filter will then serve information in respect of the desired 463
version picking relevant information from the semi-structured whole. The same information can 464
therefore be easily shared by different versions or different applications. 465

Thanks to the BASE characteristics of the NoSQL databases, the data are always available. This 466
means that the database should always be operational and able to respond at any time. As the server 467
component is independent of the database, any maintenance on a specific application will not limit 468
the usage of the others. It therefore improve the flexibility of the whole architecture and provides a 469
modularly solution for further developments. 470

As a comparison with a current good practice, GraphQL is an API layer that lies between a server 471
and clients. It allows querying and mutating data in a generalized way (Wittern et al. 2019). Several 472
notable differences are to be noted: first, GraphQL only allows a single endpoint on a database and 473
imposes developing new features in the same way. Server functions and data manipulation are 474
limited (Brito et al. 2019). Such a limitation would have limited us in the development of the 475
application clients and especially with its links to the OGC API. Moreover, the document collections 476
in the predefined simplified schema are built keeping in mind performances and most common 477
queries. Staying with the development of advanced capabilities, GraphQL lacks of temporal and 478
spatial features (Hartig and Pérez 2018). Such features are mandatory in the scope of city modeling. 479
Mutations have another major concern because the tool was not originally created for this purpose: 480
mutating functions are not conducted in parallel: each change waits until the previous one is finished. 481
It is a major drawback when it comes to open the architecture to the many. It affects users experience 482
in a very negative way. Finally, errors handling can become tremendous for developers since HTTP 483
requests only serve 200 status queries (or 5xx if the server is not available at all). Avoiding these 484
drawbacks and allowing developers to create the best endpoints they need is an imperative. 485

Since maintaining the data consistency is no more the responsibility of the database, it is now 486
the role of another architecture tier: the server. In the proposed architecture, because of the storage 487

paradigm shift, this guarantee is transferred to the server or at least to one of its components. The 488
present improvements are made in line with the previous: it proposes a proof of concept using 489
JavaScript libraries. The new component is hosted on a NodeJS server, a JavaScript runtime 490
environment. The component is built on the mongoose library, an open source solution that provides 491
built-in type casting, schema validation, query formalization and building, business logic hooks, etc. 492
(https://www.npmjs.com/package/mongoose). Among these features, formalizing a query and the 493
built-in type casting do not concern any aspect of storage consistency. By contrast, the schema 494
validation is the cornerstone of the proposed improvement. In practical terms, mongoose acts like a 495
bi-directional coat that filtrates information between the client, the server and the database. It acts 496
both as a mediator and as a wrapper (i.e. in both directions). A predefined schema on the server maps 497
a requested resource to a collection of documents in the database and serves relevant information to 498
client and vice versa. It also allows verifying the format and encoding of any exchanged resource. 499
This second feature does not play a role in the consistency of schemes besides technical 500
considerations. 501

 502
As far as semantic information is concerned, thanks to the discriminated schemas of mongoose 503

and its inheritance capabilities (which are not possible in JSON schemas); some variations can be 504
added to the schema definitions without having to modify the initial requirements. For instance, a 505
Building is nothing more than an AbstractCityObject with an address, a roofType, etc. The added 506
information is still compliant with the AbstractCityObject schema. A SolitaryVegetationObject is an 507
AbstractCityObject that might have a specie, a trunkDiameter, etc. Nevertheless, there is no requirement 508
for each application to have the same exact definition of what a type of feature exactly is. It is a matter 509
of agreeing on the common basis from the CityJSON specifications. The notion of hierarchy being 510
absent from JSON schemas, this point reinforces the demonstration of the architecture flexibility as it 511
simplify modifications without damaging the already existing schemas. Note that JSON schemas 512
require checking several concurrent schemas rather than offering the possibility to specialize them. 513

By going further into the technical definition of the architecture: such a filter stands as a 514
middleware. A middleware is a software that lies between an operating system (i.e. the server) and 515
the applications running on it. Common middleware provide security layers (limiting the number of 516
request, cryptography, etc.), cross-origin requests managers (accessing restricted resources from a 517
remote domain), authentication layers (checking tokens and/or registered users, etc.), etc. 518

Beside these technical features, it also allows for the removal of excess information sent by clients 519
or delivered to them but also the databases. The component filters information and maps it to the 520
documents collections in the document-oriented database. This is done so that the semi-structured 521
database is not polluted by incorrectly structured or unwanted information. This mapping consist of 522
a collection of features schemas (not JSON schemas), themselves built on the CityJSON specifications. 523
In addition to the schemas, inheritance is added between collection elements thanks to the mongoose 524
features. In the proposed architecture, all the capabilities of a middleware are used such as it acts like 525
a bidirectional filter: 526

(a) In one direction, based on the queries made by the clients (i.e. in a writing way), it filters the 527
city objects and their attributes before any storage and/or potential updates. For the reminder, every 528
API might be independent and built in such a way as to allow flexibility. They offer several different 529
types of requests with different accesses, different connections, and different schemas as a result. For 530
instance (see Figure 3Figure 3), the application #2 is not allowed to modify (and perhaps damage) the 531
objects and attributes handled by the application #1. Be aware, however, that some objects might be 532
shared by several applications and the same thing for the attributes of shared objects. The value of a 533
common standardized and documented basis is again demonstrated here. It is a major prerequisite. 534

(b) In the other direction, for the documents queried by the clients from the database, the filter 535
works exactly the same way. There are not only the format and the encoding that are verified but also 536
the semantic information thanks to the schema specifications. It is retrieved from the database given 537
that the attributes are checked and validated by the application-related schema. No feature object or 538
attribute that has not been defined beforehand in the schema will be served as a response. It is 539

Formatted: Font: Not Bold

important to note that while format consistency can easily be checked, logical consistency, i.e. the 540
compliance of values with their semantics, cannot be verified regarding coherent meaning. This could 541
limit the applications interaction and information retrieving but it is part of the responsibility of each 542
data producer and its policy on whether or not to open the data and document it. In this context, the 543
technical elements necessary for this sharing are provided without taking a position on this last 544
aspect. 545

 546
Figure 3. Illustrated example of the bi-directional filter principles 547

In the Figure 3Figure 3, the example represents two applications that want to register and 548
retrieve information on the same object of the same class. Considering that both the unique identifiers 549
are the same (whether they are URIs (Uniform Resource Identifier), UUID (Universally Unique 550
Identifier), etc.), the object is defined by four attributes: two attributes handled by each applications. 551
Some points are noticeable: 552
 The attribute_2 is not stored in the database because it is not allowed in the server schema of the 553

first application. As it does not pass the filter in a writing way, the information is not send to the 554
database and thus cannot be queried afterwards. 555

 The attribute_4 is not stored because it is not properly formatted with respect to what is required 556
in the second application’s schema. If this attribute has been correctly formatted, it will be stored 557
in the database and made searchable by clients. 558

 Both attribute_1 and attribute_3 are stored in the database but their use is limited to the separate 559
framework of the two applications. 560
In the example above, the attributes are “basic and common” data types: string, integer, float32, 561

etc. In the context of spatial information, and in the even more specific 3D city modelling, “spatial” 562
data types require a dedicated management to handle their specificities. In addition to the complex 563
representation of the built environment, the formatting of geographical information and features 564
geometries imposes conditions. It should be noted that geometries must follow well-defined patterns 565
most of which are defined by international standards. Among others, the concept of level of detail 566
needs to be discussed and addressed (Biljecki 2013). 567

 568
As defined in the simplified CityJSON schema for document-oriented databases, the geometries 569

are managed in a dedicated mass-collection regardless of their type, the number per element and 570
their level of detail (Nys and Billen 2021). For the reminder, every type of geometry has its own 571
validation schema whether it is a Solid, a MultiSurface, etc. They all share a common basis but some 572
specificities are brought in their specific sub-schema definitions by inheritance. It works the same 573

Formatted: Font: Not Bold

way as the AbstractCityObject and the Buildings schemas. The schemas are independent of any level 574
of detail and all types of geometries can be arranged to create various types of levels of detail. A 575
unique identifier refers these geometry documents, one for each level of detail, to the feature 576
documents in the city objects collection. While storing and thus writing a geometry in the database, 577
each element and level are checked against their scheme. On the contrary, in order to optimize and 578
better adapt to the users’ needs, querying a specific geometry can be done specifying the desired 579
level-of-detail. All attributes of the geometry are served since it is a feature in its own right. 580

In practice, given that CityJSON handles the “refined levels-of-detail” (Biljecki, Ledoux, and 581
Stoter 2016; Nys et al. 2020), the geometries can be queried in a compound manner. Either, the 582
specified LoD is itself a refined one and thus can be retrieved if it exists. Either, if it does not exist or 583
is a broader one: the most detailed one is recovered while remaining in a coherent level order. For 584
instance, for a geometry stored in 2.1 and 2.2 levels, querying a unique geometry for the 2nd level will 585
respond with only the 2.2 document. Besides it, one cannot retrieve a LoD greater than the expected. 586
It is done in way to reduce exchange weight and providing redundant information. 587

3.3.OGC API - Features 588

Besides the operations presented above and their request mode, it could be interesting for the 589
users to handle features in a more standardized way. It is important to allow every user to have a 590
view of what is stored in the database. It must be done in a reading-limited way so as not to 591
compromise the database. Therefore, the new OGC API - Features has been implemented in order to 592
provide a normalized and convenient way to do so (Clemens et al. 2019). It thus guarantees the 593
consistency of the database keeping things secure and avoiding data mutation. Again, this could be 594
done not through the database itself but thanks to the middleware. It is worth mentioning that not 595
all information should be requested by everyone: the idea is to "see" what can be obtained. This must 596
of course be done within the access limitation, security, hierarchy, etc. 597

The Figure 4Figure 4 depicts how the OGC API service is connected to the architecture. While 598
all the other well-separated applications are limited to their own part of the data (and to the shared 599
parts), the OGC API - Features service has access to everything (under conditions of safety, 600
regulations, etc.). It is important to clarify that this service is a read-only protocol and should be 601
considered as a view on the stored model. 602

 603
Figure 4. Implementation of the OGC API - Features service 604

A problem arises from the fact that most of the exchange standards, protocols and OGC services 605
(Web Features Service, Web Map Service, etc.) are suited for two-dimensional geodata. CityJSON, as 606
a 3D modelling standard, cannot be queried in a convenient way using the standards with a few 607
exceptions. Moreover, the document-oriented database does not support any 3D indexing methods. 608
It was thus necessary to build workaround solutions in order to allow spatial filtering at least in two 609
dimensions. 610

Initially, OGC standards serve features with a single geometry. However, a CityJSON object can 611
have an undefined number of geometries. These geometries provide a wide range of information 612

Formatted: Font: Not Bold

corresponding to various levels-of-detail. An alternative is proposed to limit misunderstandings. 613
Besides the limit, offset and bounding boxes parameters already used in the specifications, a new 614
attribute is added to the query parameters: the lod (level-of-detail). As a reminder, the geometries are 615
stored independently of any feature as a bulk in a dedicated collection. The simplified schema 616
separates them in several documents even if they concern the same object. This is justified by the fact 617
that the level of detail plays an important and very specific role in urban information management 618
but also because of the spatial indexing capabilities of the database. The lod is thus introduced as a 619
parameter in its own right in requests. In any case, where this parameter is not supported by an 620
application, it is simply neglected and it is the greatest lod that is served. 621

In the official schema of the AbstractCityObject, the geographicalExtent attribute stores the 3D 622
boundary box of the distinct features. Projecting the 3D box, a new 2D attribute bbox is created on the 623
fly during the storage process. This new spatial extent is then used to build the spatial indexing in 624
the database. This extent is also created for the whole city model itself. An important condition is 625
imposed by MongoDB for spatial indexing: the coordinate of the any spatial information should be 626
expressed as a GeoJSON object (RFC 7946). It thus imposes the use of the World Geodetic System 627
1984 (WGS84 - EPSG:4326) and thus the projection of the bbox attribute. If no reference system is 628
provided in the model, it is considered as already expressed in WGS84 by default. This is a major 629
drawback for the management of spatial information in document-oriented databases. 630

Future work should include the improvements brought by the added parts of the OGC API – 631
Features family: Coordinate Reference Systems by Reference, Filtering and the Common Query 632
Language and the Simple Transactions. This should be handled by the middleware, as it is neither 633
the responsibility of the database provider. 634

Second possible improvement coming from the semantic web, the Uniform Resource Identifier 635
(URI) is a great candidate for the unique identifier format. This URI identifier is a unique sequence 636
of characters that identifies a logical or physical resource used by web technologies. While the 637
purpose of the URI is to allow data extracted from various databases to be linked and to be identified 638
unambiguously, it could also improve the management of the legitimacy of data. Such an identifier 639
could be part of a certification process in which the responsibility of the city objects is part of the 640
prerogatives of the city services. Its identity and its responsibility can thus be translated in the URI 641
syntax in one way or another. 642

4. Conclusion 643

This paper makes a step towards a paradigm shift for the storage of geographical information: 644
it provides a technical component and insights that concedes a loss of consistency in favor of more 645
flexibility. It is illustrated in the context of 3D city modelling thanks to the implementation of a 646
schema validation middleware. This could be performed, among other approaches, with the 647
replacement of a relational database by a NoSQL document-oriented database. The main 648
characteristic of the database considers that it does not handle any data schema. It therefore does not 649
require filling in predefined boxes or meeting non-technical requirements as does relational. 650
Conversely, the logical, conceptual and physical models are not prerequisites. The consistency 651
management is then shifted to the server and more specifically to a filter layer: a schema validation 652
middleware. 653

With a more focused view to this new architecture, the database can be considered as the 654
principal foundation of a more complex whole: the database is unique but allows an undefined 655
number of applications to retrieve information. A condition is however imposed in order to shift the 656
consistency guarantee from the database to the server: exchanges should comply with a common 657
standard. In the particular context of 3D city modelling, and keeping in mind the simplicity of use, 658
applications and their exchanges should favor the CityJSON specifications. 659

Technically, the server filters all requests in both directions: from clients to the database and 660
from the database to clients. This bi-directional filter allows storing and updating elements on the 661
database by restricting them to predefined semantic information. The other way, it limits the 662

information requested from the database depending on the users’ right access, versions, etc. A view 663
on the actual state of the database can be given thanks to the OGC API - Features exchange standard. 664
Restricted to the read access, this view allows users to get generic information on the models 665
elements. In summary, such type of filter can be used in order to implement security layers, 666
versioning and above all to enclose the users’ possibilities. 667

The consistency counterbalanced by the middleware implementation will open many 668
possibilities in application development and digital twining. City stakeholders should benefit from a 669
single data store that can be shared across all their activities and responsibilities. Without any 670
limitations or compromises made on previous storage capabilities, the city models will become real 671
integrating bases for all the city services activities. 672

Back to the introduction, the answer to the first question on the relevancy of a new generation is 673
nuanced. It is important to provide a new solution for the management of a "unique and digital 3D 674
replica of a city" that improves the applications flexibility but the usage of the traditional solutions is 675
not outdated. An ecosystem based on several solutions should provide a relevant answer. At the 676
same time a document-oriented solution for its flexibility and accessibility, a knowledge graph 677
solution for the support of contextualization and semantic both linked to a relational solution, which 678
has already demonstrated its capabilities in handling spatial methods, should meet current 679
requirements and tackle future needs. The product resulting from the fusion of these storage modes 680
could ideally take advantage of the benefits of each while attempting to offset their disadvantages. 681
Therefore, few compromises should be made considering them in the very beginning of the 682
conception rather than providing partial solutions on a succession of choices. We believe that this 683
contribution makes a step further towards such a hybrid architecture. Shifting the storage paradigm 684
should then not be seen as a complete reverse but rather as a more global vision that would allow 685
reaching a better management of what “digital twins” are intend to be. 686

Remaining challenges could also be divided in improvements specific to the middleware and 687
improvements specific to the vision of a unique replica and its contextualization. Developments 688
should concern the identity of a feature through its lifecycle (creation, modifications, etc.). The 689
middleware and its various schemas could suffer from a lack of management added to the unicity of 690
the stored information. A dedicated study thus need to be conducted on the optimized way to 691
identify city models and their elements. While CityJSON features are commonly identified by UUID 692
or GML_ID, the Uniform Resource Identifier is freer in its use. However, it should be considered as 693
a very relevant solution since an URI can take whatever shape needed as long as it provides a means 694
of locating (on the web, not spatial). One can for instance create a formatted URI translating the 695
identity of the data provider. The data responsibility could then be established and both 696
documentation and support could be released in a very convenient manner. 697

Since we considered GraphQL and SHACL as related works, specific access methods could be 698
developed to propose them as alternatives to our middleware and the OGC API services. Just like the 699
latter, it would be normalized windows on the data stored by the provider no matter the users’ habits. 700
This consideration, alongside with the proposed usage of URIs, could lead to a hybrid storage 701
solution based on document and graph oriented databases in which the identification of an object 702
and its uniqueness would be guaranteed. We assume it will consist a good base to climb the Semantic 703
Web Stacks: in our opinion, the principal requirement to reach the dreamed “Digital Twins”. Finally, 704
still with this objective in mind, data integration should also be one of the main future developments 705
following this contribution. Regardless of the access method chosen, different levels of integration 706
must be considered: Does the base model need to be enhanced? Should new attributes be created? Is 707
this part of the data model's mission or should applications handle the integration themselves? 708

References 709

Allah Bukhsh, Zaharah, Marten van Sinderen, and P. M. Singh. 2015. ‘SOA and EDA: A Comparative 710
Study - Similarities, Differences and Conceptual Guidelines on Their Usage’: Pp. 213–20 in Proceedings 711

of the 12th International Conference on e-Business. Colmar, Alsace, France: SCITEPRESS - Science and 712
and Technology Publications. 713

Baralis, Elena, Andrea Dalla Valle, Paolo Garza, Claudio Rossi, and Francesco Scullino. 2017. ‘SQL 714
versus NoSQL Databases for Geospatial Applications’. Pp. 3388–97 in. IEEE. 715

Bartoszewski, Dominik, Adam Piorkowski, and Michal Lupa. 2019. ‘The Comparison of Processing 716
Efficiency of Spatial Data for PostGIS and MongoDB Databases’. Pp. 291–302 in Beyond Databases, 717
Architectures and Structures. Paving the Road to Smart Data Processing and Analysis. Vol. 1018, 718
Communications in Computer and Information Science, edited by S. Kozielski, D. Mrozek, P. Kasprowski, 719
B. Małysiak-Mrozek, and D. Kostrzewa. Cham: Springer International Publishing. 720

Biljecki, F. 2013. The Concept of Level Detail in 3D City Models: PhD Research Proposal. Delft University 721
of Technology. 722

Biljecki, Filip, Kavisha Kumar, and Claus Nagel. 2018. ‘CityGML Application Domain Extension 723
(ADE): Overview of Developments’. Open Geospatial Data, Software and Standards 3(1):13. doi: 724
10.1186/s40965-018-0055-6. 725

Biljecki, Filip, Hugo Ledoux, and Jantien Stoter. 2016. ‘An Improved LOD Specification for 3D 726
Building Models’. Computers, Environment and Urban Systems 59:25–37. doi: 727
10.1016/j.compenvurbsys.2016.04.005. 728

Biljecki, Filip, Joie Lim, James Crawford, Diana Moraru, Helga Tauscher, Amol Konde, Kamel 729
Adouane, Simon Lawrence, Patrick Janssen, and Rudi Stouffs. 2021. ‘Extending CityGML for IFC-730
Sourced 3D City Models’. Automation in Construction 121:103440. doi: 10.1016/j.autcon.2020.103440. 731

Brito, Gleison, Thais Mombach, and Marco Tulio Valente. 2019. ‘Migrating to GraphQL: A Practical 732
Assessment’. Pp. 140–50 in 2019 IEEE 26th International Conference on Software Analysis, Evolution and 733
Reengineering (SANER). Hangzhou, China: IEEE. 734

Cha, Sang Kyun, Ki Hong Kim, Chang Bin Song, Joo Kwan Kim, and Yong Sik Kwon. 1999. ‘A 735
Middleware Architecture for Transparent Access to Multiple Spatial Object Databases’. Pp. 267–82 in 736
Interoperating Geographic Information Systems, edited by M. Goodchild, M. Egenhofer, R. Fegeas, and 737
C. Kottman. Boston, MA: Springer US. 738

Chadzynski, Arkadiusz, Nenad Krdzavac, Feroz Farazi, Mei Qi Lim, Shiying Li, Ayda Grisiute, Pieter 739
Herthogs, Aurel von Richthofen, Stephen Cairns, and Markus Kraft. 2021. ‘Semantic 3D City 740
Database — An Enabler for a Dynamic Geospatial Knowledge Graph’. Energy and AI 6:100106. doi: 741
10.1016/j.egyai.2021.100106. 742

Chaturvedi, Kanishk, Carl Stephen Smyth, Gilles Gesquière, Tatjana Kutzner, and Thomas H. Kolbe. 743
2017. ‘Managing Versions and History Within Semantic 3D City Models for the Next Generation of 744
CityGML’. Pp. 191–206 in Advances in 3D Geoinformation, edited by A. Abdul-Rahman. Cham: 745
Springer International Publishing. 746

Clemens, Portele, Vretanos Panagiotis, and Heazel Charles. 2019. ‘OGC API - Feature - Part 1: Core’. 747

Corman, Julien, Juan L. Reutter, and Ognjen Savković. 2018. ‘Semantics and Validation of Recursive 748
SHACL’. Pp. 318–36 in The Semantic Web – ISWC 2018. Vol. 11136, Lecture Notes in Computer Science, 749
edited by D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. 750
Kaffee, and E. Simperl. Cham: Springer International Publishing. 751

da Costa Rainho, Filipe, and Jorge Bernardino. 2018. ‘Web GIS: A New System to Store Spatial Data 752
Using GeoJSON in MongoDB’. Pp. 1–6 in 2018 13th Iberian Conference on Information Systems and 753
Technologies (CISTI). Caceres: IEEE. 754

Debruyne, Christophe, and Kris McGlinn. 2021. ‘Reusable SHACL Constraint Components for 755
Validating Geospatial Linked Data’. in Reusable SHACL Constraint Components for Validating Geospatial 756
Linked Data. CEUR. 757

Deininger, Martina E., Maximilian von der Grün, Raul Piepereit, Sven Schneider, Thunyathep 758
Santhanavanich, Volker Coors, and Ursula Voß. 2020. ‘A Continuous, Semi-Automated Workflow: 759
From 3D City Models with Geometric Optimization and CFD Simulations to Visualization of Wind 760
in an Urban Environment’. ISPRS International Journal of Geo-Information 9(11):657. doi: 761
10.3390/ijgi9110657. 762

Eriksson, Helen, and Lars Harrie. 2021. ‘Versioning of 3D City Models for Municipality Applications: 763
Needs, Obstacles and Recommendations’. ISPRS International Journal of Geo-Information 10(2):55. doi: 764
10.3390/ijgi10020055. 765

Eriksson, Helen, Jing Sun, Väino Tarandi, and Lars Harrie. 2021. ‘Comparison of Versioning Methods 766
to Improve the Information Flow in the Planning and Building Processes’. Transactions in GIS 767
25(1):134–63. doi: 10.1111/tgis.12672. 768

Fricke, Andreas, Jürgen Döllner, and Hartmut Asche. 2018. ‘Servicification – Trend or Paradigm Shift 769
in Geospatial Data Processing?’ Pp. 339–50 in Computational Science and Its Applications – ICCSA 2018. 770
Vol. 10962, Lecture Notes in Computer Science, edited by O. Gervasi, B. Murgante, S. Misra, E. Stankova, 771
C. M. Torre, A. M. A. C. Rocha, D. Taniar, B. O. Apduhan, E. Tarantino, and Y. Ryu. Cham: Springer 772
International Publishing. 773

Gómez, Paola, Claudia Roncancio, and Rubby Casallas. 2021. ‘Analysis and Evaluation of Document-774
Oriented Structures’. Data & Knowledge Engineering 134:101893. doi: 10.1016/j.datak.2021.101893. 775

Gröger, Gerhard, and Lutz Plümer. 2012. ‘CityGML – Interoperable Semantic 3D City Models’. ISPRS 776
Journal of Photogrammetry and Remote Sensing 71:12–33. doi: 10.1016/j.isprsjprs.2012.04.004. 777

Haas, L., Renée J. Miller, B. Niswonger, M. Roth, P. Schwarz, and E. Wimmers. 1999. ‘Transforming 778
Heterogeneous Data with Database Middleware: Beyond Integration’. IEEE Data Engineering Bulletin 779
22:31–36. 780

Hartig, Olaf, and Jorge Pérez. 2018. ‘Semantics and Complexity of GraphQL’. Pp. 1155–64 in 781
Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18. Lyon, France: ACM 782
Press. 783

Herrmann, Kai, Hannes Voigt, Andreas Behrend, Jonas Rausch, and Wolfgang Lehner. 2017. ‘Living 784
in Parallel Realities -- Co-Existing Schema Versions with a Bidirectional Database Evolution 785
Language’. Proceedings of the 2017 ACM International Conference on Management of Data 1101–16. doi: 786
10.1145/3035918.3064046. 787

Herrmann, Kai, Hannes Voigt, Jonas Rausch, Andreas Behrend, and Wolfgang Lehner. 2018. ‘Robust 788
and Simple Database Evolution’. Information Systems Frontiers 20(1):45–61. doi: 10.1007/s10796-016-789
9730-2. 790

Huang, Weiming, Syed Amir Raza, Oleg Mirzov, and Lars Harrie. 2019. ‘Assessment and 791
Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data 792
Infrastructure’. ISPRS International Journal of Geo-Information 8(7):310. doi: 10.3390/ijgi8070310. 793

Knublauch, Holger, and Dimitris Kontokostas. 2017. Shapes Constraint Language (SHACL). W3C. 794

Kulawiak, Marcin, Agnieszka Dawidowicz, and Marek Emanuel Pacholczyk. 2019. ‘Analysis of 795
Server-Side and Client-Side Web-GIS Data Processing Methods on the Example of JTS and JSTS Using 796
Open Data from OSM and Geoportal’. Computers & Geosciences 129:26–37. doi: 797
10.1016/j.cageo.2019.04.011. 798

Kutzner, Tatjana, Kanishk Chaturvedi, and Thomas H. Kolbe. 2020. ‘CityGML 3.0: New Functions 799
Open Up New Applications’. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation 800
Science. doi: 10.1007/s41064-020-00095-z. 801

Ledoux, Hugo, Ken Arroyo Ohori, Kavisha Kumar, Balázs Dukai, Anna Labetski, and Stelios Vitalis. 802
2019. ‘CityJSON: A Compact and Easy-to-Use Encoding of the CityGML Data Model’. 803
ArXiv:1902.09155 [Cs]. 804

Li, Dingding, Wande Chen, Mingming Pan, He Li, Hai Liu, and Yong Tang. 2018. ‘DBHUB: A 805
Lightweight Middleware for Accessing Heterogeneous Database Systems’. Pp. 408–19 in Cloud 806
Computing and Security. Vol. 11063, Lecture Notes in Computer Science, edited by X. Sun, Z. Pan, and E. 807
Bertino. Cham: Springer International Publishing. 808

Malinverni, Eva Savina, Berardo Naticchia, Jose Luis Lerma Garcia, Alban Gorreja, Joaquin Lopez 809
Uriarte, and Francesco Di Stefano. 2020. ‘A Semantic Graph Database for the Interoperability of 3D 810
GIS Data’. Applied Geomatics. doi: 10.1007/s12518-020-00334-3. 811

Mei Qi, Lim, Wang Xiaonan, Inderwildi Oliver R., and Kraft Markus. 2021. The World Avatar - a World 812
Model for Facilitating Interoperability. 277. Cambridge. 813

Nguyen, S. H., and T. H. Kolbe. 2020. ‘A MULTI-PERSPECTIVE APPROACH TO INTERPRETING 814
SPATIO-SEMANTIC CHANGES OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH 815

DATABASE’. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences VI-816
4/W1-2020:143–50. doi: 10.5194/isprs-annals-VI-4-W1-2020-143-2020. 817

Nys, Gilles-Antoine, and Roland Billen. 2021. ‘From Consistency to Flexibility: A Simplified Database 818
Schema for the Management of CityJSON 3D City Models’. Transactions in GIS tgis.12807. doi: 819
10.1111/tgis.12807. 820

Nys, Gilles-Antoine, Abderrazzaq Kharroubi, Florent Poux, and Roland Billen. 2021. ‘AN 821
EXTENSION OF CITYJSON TO SUPPORT POINT CLOUDS’. The International Archives of the 822
Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2021:301–6. doi: 823
10.5194/isprs-archives-XLIII-B4-2021-301-2021. 824

Nys, Gilles-Antoine, Florent Poux, and Roland Billen. 2020. ‘CityJSON Building Generation from 825
Airborne LiDAR 3D Point Clouds’. ISPRS International Journal of Geo-Information 9(9):521. doi: 826
10.3390/ijgi9090521. 827

Patrick, Cozzi, Lilley Sean, and Getz Gabby. 2019. ‘3D Tiles Specification 1.0’. 828

Rasheed, Adil, Omer San, and Trond Kvamsdal. 2019. ‘Digital Twin: Values, Challenges and 829
Enablers’. ArXiv:1910.01719 [Eess]. 830

Rossknecht, Maxim, and Enni Airaksinen. 2020. ‘Concept and Evaluation of Heating Demand 831
Prediction Based on 3D City Models and the CityGML Energy ADE—Case Study Helsinki’. ISPRS 832
International Journal of Geo-Information 9(10):602. doi: 10.3390/ijgi9100602. 833

Roy-Hubara, Noa, and Arnon Sturm. 2020. ‘Design Methods for the New Database Era: A Systematic 834
Literature Review’. Software and Systems Modeling 19(2):297–312. doi: 10.1007/s10270-019-00739-8. 835

Schrotter, Gerhard, and Christian Hürzeler. 2020. ‘The Digital Twin of the City of Zurich for Urban 836
Planning’. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science 88(1):99–112. 837
doi: 10.1007/s41064-020-00092-2. 838

Schultz, Carl, and Mehul Bhatt. 2013. ‘InSpace3D: A Middleware for Built Environment Data Access 839
and Analytics’. Procedia Computer Science 18:80–89. doi: 10.1016/j.procs.2013.05.171. 840

Shahat, Ehab, Chang T. Hyun, and Chunho Yeom. 2021. ‘City Digital Twin Potentials: A Review and 841
Research Agenda’. Sustainability 13(6):3386. doi: 10.3390/su13063386. 842

Sutanta, E., and E. K. Nurnawati. 2019. ‘The Design of Relational Database for Multipurpose WebGIS 843
Applications’. Journal of Physics: Conference Series 1413:012029. doi: 10.1088/1742-6596/1413/1/012029. 844

Vera-Olivera, Harley, Ruizhe Guo, Ruben Cruz Huacarpuma, Ana Paula Bernardi Da Silva, Ari Melo 845
Mariano, and Holanda Maristela. 2021. ‘Data Modeling and NoSQL Databases - A Systematic 846
Mapping Review’. ACM Computing Surveys 54(6):1–26. doi: 10.1145/3457608. 847

Virtanen, Juho-Pekka, Kaisa Jaalama, Tuulia Puustinen, Arttu Julin, Juha Hyyppä, and Hannu 848
Hyyppä. 2021. ‘Near Real-Time Semantic View Analysis of 3D City Models in Web Browser’. ISPRS 849
International Journal of Geo-Information 10(3):138. doi: 10.3390/ijgi10030138. 850

Visconti, Ennio, Christos Tsigkanos, Zhenjiang Hu, and Carlo Ghezzi. 2021. ‘Model-Driven 851
Engineering City Spaces via Bidirectional Model Transformations’. Software and Systems Modeling 852
20(6):2003–22. doi: 10.1007/s10270-020-00851-0. 853

Vitalis, S., A. Labetski, K. Arroyo Ohori, H. Ledoux, and J. Stoter. 2019. ‘A DATA STRUCTURE TO 854
INCORPORATE VERSIONING IN 3D CITY MODELS’. ISPRS Annals of the Photogrammetry, Remote 855
Sensing and Spatial Information Sciences IV-4/W8:123–30. doi: 10.5194/isprs-annals-IV-4-W8-123-2019. 856

Vitalis, Stelios, Ken Arroyo Ohori, and Jantien Stoter. 2020. ‘CityJSON in QGIS: Development of an 857
Open-source Plugin’. Transactions in GIS tgis.12657. doi: 10.1111/tgis.12657. 858

Vitalis, Stelios, Ken Ohori, and Jantien Stoter. 2019. ‘Incorporating Topological Representation in 3D 859
City Models’. ISPRS International Journal of Geo-Information 8(8):347. doi: 10.3390/ijgi8080347. 860

Wagemann, Julia, Oliver Clements, Ramiro Marco Figuera, Angelo Pio Rossi, and Simone Mantovani. 861
2018. ‘Geospatial Web Services Pave New Ways for Server-Based on-Demand Access and Processing 862
of Big Earth Data’. International Journal of Digital Earth 11(1):7–25. doi: 10.1080/17538947.2017.1351583. 863

Widl, Edmund, Giorgio Agugiaro, and Jan Peters-Anders. 2021. ‘Linking Semantic 3D City Models 864
with Domain-Specific Simulation Tools for the Planning and Validation of Energy Applications at 865
District Level’. Sustainability 13(16):8782. doi: 10.3390/su13168782. 866

Wittern, Erik, Alan Cha, James C. Davis, Guillaume Baudart, and Louis Mandel. 2019. ‘An Empirical 867
Study of GraphQL Schemas’. Pp. 3–19 in Service-Oriented Computing. Vol. 11895, Lecture Notes in 868
Computer Science, edited by S. Yangui, I. Bouassida Rodriguez, K. Drira, and Z. Tari. Cham: Springer 869
International Publishing. 870

Wong, S. H., S. L. Swartz, and D. Sarkar. 2002. ‘A Middleware Architecture for Open and 871
Interoperable GISs’. IEEE Multimedia 9(2):62–76. doi: 10.1109/93.998065. 872

Yao, Zhihang, Claus Nagel, Felix Kunde, György Hudra, Philipp Willkomm, Andreas Donaubauer, 873
Thomas Adolphi, and Thomas H. Kolbe. 2018. ‘3DCityDB - a 3D Geodatabase Solution for the 874
Management, Analysis, and Visualization of Semantic 3D City Models Based on CityGML’. Open 875
Geospatial Data, Software and Standards 3(1). doi: 10.1186/s40965-018-0046-7. 876

Zlatanova, Sisi, and Jantien Stoter. 2006. ‘The Role of DBMS in the New Generation GIS Architecture’. 877
Pp. 155–80 in Frontiers of Geographic Information Technology, edited by S. Rana and J. Sharma. 878
Berlin/Heidelberg: Springer-Verlag. 879

 880

