
BamQuery: a proteogenomic tool for the genome-wide exploration 

of the immunopeptidome  

Maria Virginia Ruiz Cuevas1,2, Marie-Pierre Hardy1, Jean-David Larouche1,3, Anca 

Apavaloaei1,3, Eralda Kina1,3, Krystel Vincent1, Patrick Gendron1, Jean-Philippe Laverdure1, 

Chantal Durette1, Pierre Thibault1,4,6, Sébastien Lemieux1,2,6, Claude Perreault1,3,6,7 and Grégory 

Ehx1,5,6,7 

1 Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 

Quebec H3C 3J7, Canada.  

2 Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, 

Quebec H3C 3J7, Canada. 

3 Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.  

4 Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada 

5 Laboratory of Hematology, GIGA-I3, University of Liege and CHU of Liege, Liege, Belgium 

6 Senior authors 

7 Lead Contact 

*Correspondence: g.ehx@uliege.be (GE) 

 

ABSTRACT 

MHC-I-associated peptides (MAPs) derive from selective yet highly diverse genomic regions, 

including allegedly non-protein-coding sequences, such as endogenous retroelements (EREs). 

Quantifying canonical (exonic) and non-canonical MAPs-encoding RNA expression in malignant 

and benign cells is critical for identifying tumor antigens (TAs) but represents a challenge for 

immunologists. We present BamQuery, a computational tool attributing an exhaustive RNA 

expression to MAPs of any origin (exon, intron, UTR, intergenic) from bulk and single-cell 

RNA-sequencing data. We show that non-canonical MAPs (including TAs) can derive from 

multiple different genomic regions (up to 35,343 for EREs), abundantly expressed in normal 

tissues. We also show that supposedly tumor-specific mutated MAPs, viral MAPs, and MAPs 

derived from proteasomal splicing can arise from different unmutated non-canonical genomic 

regions. The genome-wide approach of BamQuery allows comprehensive mapping of all MAPs 

in healthy and cancer tissues. BamQuery can also help predict MAP immunogenicity and identify 

safe and actionable TAs.  

KEYWORDS: immunopeptidome; computational biology; major histocompatibility complex; 

tumor antigens 

ABBREVIATIONS: MAP: MHC-I associated peptide; TA: Tumor antigen; ncMAP: non-

canonical MAP; ncRNA: non-coding RNA; ERE: Endogenous retroelement; MCS: MAP coding 

sequence; ncMCS: non-canonical MCS; RPHM: Read-per-hundred-million; mTEC: Medullary 

thymic epithelial cell; DC: Dendritic cell; TSA: Tumor-specific antigen; CTA: Cancer-testis 

antigen; DLBCL: Diffuse large B-cell lymphoma.  
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1. INTRODUCTION 

The immunopeptidome is the repertoire of MHC-I-associated peptides (MAPs) that represents in 

real-time the landscape of the intracellular proteome as it is molded by protein translation and 

degradation1. In recent years, immunopeptidomic data has been harvested to identify relevant and 

targetable tumor antigens. Indeed, MAPs deriving from mutations characterizing the neoplastic 

transformation (mutated tumor antigens (TA), also known as neoantigens) can be recognized by 

cytotoxic T cells and used as anti-cancer therapeutic targets2.  

The immunopeptidome is typically assumed to result from the degradation of canonical 

proteins, coded by exons and translated from known open-reading frames. However, recent 

proteogenomics (proteomic informed by genomics such as RNA sequencing (RNA-seq)) findings 

evidenced that ~5-10% MAPs can also derive from non-canonical (nc) regions of the genome, 

such as introns, non-coding RNAs (ncRNA) or endogenous retroelements (EREs), as well as 

from out-of-frame translation of exons3-5. While 99% of somatic mutations are located in non-

coding regions6, the vast majority of the discovered ncMAPs are non-mutated4, 7-10. Many 

ncMAPs are found exclusively in cancer cells and attract attention as (1) they can be 

immunogenic in vitro as well as in vivo; (2) they are more numerous in the immunopeptidome of 

malignant cells than mutated TAs and (3) several non-coding TAs are widely-shared between 

cancer patients whereas mutations mainly generate private antigens11, 12. In the context of 

proteogenomics usage, ncMAPs discovery and actionable TAs identification have raised three 

challenges that are often addressed inconsistently by immunologists.  

First, the attribution of an exact RNA expression to MAPs. Typically, proteogenomic 

pipelines quantify MAPs RNA expression through the estimation of their parental transcript 

expression by using conventional transcript abundance quantification tools. However, such tools 

cannot be used reliably for ncMAPs which often derive from unannotated genomic regions. 

Furthermore, such approaches do not consider that MAPs (8-11 residues) could derive from 

multiple regions of the genome due to the degeneracy of the genetic code. Therefore, studies 

failing to consider all genomic regions susceptible to generating a given MAP would 

underestimate its RNA expression.  

Second, the attribution of a biotype to MAPs. Due to the multiplicity of genomic regions 

able to generate the same MAP, and possibly having different biotypes, a MAP could be 

mislabeled for example as ERE-derived while a canonical region could also generate it through 

out-of-frame translation.  

The third challenge is to prioritize TAs. Ideally, TAs should be immunogenic and 

specifically expressed (or overexpressed) by malignant cells13. Because RNA expression is a 

reliable proxy of the MAP presentation probability8, 14, RNA-seq data of tumor and normal 

samples are powerful tools to perform TA prioritization. While tumor specificity can be 

evaluated by comparing MAP RNA expression between tumor and normal samples, evaluating 

MAPs RNA expression in medullary thymic epithelial cells (mTECs) should be a good predictor 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.510944doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.510944


3 
 

3 
 

of immunogenicity because mTEC MAPs induce central immune tolerance15. However, for the 

reasons mentioned above, comparing reliably MAPs RNA expression between tumors, their 

paired normal samples, and mTECs requires considering all their possible genomic regions of 

origin. 

To address these challenges, we developed BamQuery, an annotation-independent tool 

that enables the attribution of an exhaustive RNA expression profile to any MAP of interest in 

any RNA-seq dataset of interest.  

 

 

2. RESULTS 

 

Exhaustive capture of MAPs RNA expression 

Because genomic annotations cover vast regions that are unlikely to represent accurately the local 

RNA expression of an 8-11 residues peptide (especially for ncMAPs deriving from introns, 

Extended Data Fig. 1a) and because no annotations are available for MAPs deriving from 

intergenic regions, we designed BamQuery to evaluate MAPs RNA expression independently of 

annotations. Due to the small size of MAP-coding sequences (MCS, 24-33 nucleotides), counting 

the RNA-seq reads containing each MCS able to code for a given peptide is the most thorough 

and less error-prone method to evaluate MAPs RNA expression. To make BamQuery readily 

available, it had to work on a broadly used data format. Given that querying MCS in fastq files is 

time-consuming (> 1 minute / MCS), we designed BamQuery to work on bam files in five steps 

(Fig. 1a, and Methods): (1) reverse-translation of each MAP into all possible MCS; (2) mapping 

of MCS to the genome using STAR16 to identify those having perfect matches with the reference 

and attribute them a genomic location. At this step, we also include to the reference genome the 

mutations from the dbSNP annotations17 to enable the mapping of mutated sequences; (3) 

counting of the primary RNA-seq reads encompassing exactly the MCS at their respective 

location (~0.0005 minute / MCS / location) and sum read counts of each MAP across locations; 

(4) normalization of the read count of each MAP by the total primary alignment read count of the 

sample and multiplication by 1×108 to yield read-per-hundred-million (RPHM) numbers and (5) 

attribution of biotypes to MAPs based on the reference annotations overlapping the various 

expressed (RPHM>0) regions.  

To test BamQuery, we collected robustly validated benign MAPs from the HLA Ligand 

Atlas18 (1,702 canonical MAPs shared across at least 20 tissues, Extended Data Fig. 1b,c) and 

queried them in the transcriptome of eight mTEC samples sequenced previously9, 19. As a control, 

we used the primary reads contained in the mTEC bam files previously aligned with STAR to 

generate databases of 27-nucleotide-long k-mers (reads chunked into smaller sequences) and 

queried these databases for all possible 27-mer-MCSs encoding 9-amino acid-long MAPs 

(1,211/1,702). Despite rare discrepancies possibly due to limitations of the STAR aligner in 

BamQuery, the comparison of read counts between BamQuery and k-mer databases showed an 
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almost perfect correlation (94% mean accuracy), demonstrating the exhaustivity of BamQuery 

(Fig. 1b, Extended Data Fig. 1d). Next, we compared BamQuery to Kallisto20, a transcript 

abundance quantification tool (reference MAPs RNA quantification method) that was chosen 

because it provides results similar to other tools while having the fastest computing speed21. A 

poor correlation between Kallisto and BamQuery was found (Fig. 1c) as most Kallisto 

measurements were skewed toward lower values than BamQuery’s. Specifically, Kallisto did not 

detect expression for 32 MAPs while BamQuery reported considerable RPHM values. In fact, 

BamQuery revealed that these MAPs are the result of multiple genomic locations (mean = 11) 

and are completely lost when only a single MAP source transcript is quantified (Extended Data 

Fig. 1e,f), as is typically done with transcript abundance quantification tools. Overall, these 

results evidence the accuracy and superiority of BamQuery over conventional approaches.   
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Fig. 1 | Exhaustive capture of MAPs RNA expression.  

a, Overview of the BamQuery approach to measuring MAPs RNA expression levels.  

b, Pearson’s correlation between BamQuery-acquired read counts and Jellyfish’s K-mer counts for MCS of 

canonical nine-mer MAPs (n=1,211) from the HLA Ligand Atlas (present in at least 20 different tissues) and 8 

mTEC samples.  

c, Pearson’s correlation between BamQuery RPHM quantification and Kallisto TPM quantification for canonical 

MAPs (n=1,702) from the HLA Ligand Atlas (present in at least 20 different tissues) and 8 mTEC samples. Red lines 

in (b) and (c) are linear regressions.  

 

 

New insights into the immunopeptidome biology 

Next, we explored the biological features of the immunopeptidome by evaluating the expression 

of the 1,702 canonical MAPs from the HLA ligand atlas along with 724 MAPs previously 

reported as non-canonical (EREs, intronic, and ncRNAs-derived, Supplementary Table 1) in 

normal tissues, including mTEC samples22, and tissues from GTEx23 (Supplementary Table 2). 
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BamQuery attributed a genomic location to 100% MAPs: among canonical MAPs, all originally 

annotated genes were attributed to their respective MAP by BamQuery and among a large list of 

well-annotated ncMAPs8, the originally annotated genomic location was re-located by BamQuery 

with an accuracy of 100%.  

Comparing all 9-mers together (to prevent biases due to differences of length 

proportions), a higher number of possible MCS (total number of MCS after reverse-translation) 

was found for non-canonical vs canonical MAPs, especially for those mapping to introns and 

EREs (Fig. 2a). To better understand this bias, we investigated whether this could be linked to the 

degeneracy of codons. We found that residues encoded by six synonymous codons (R/L/S) were 

enriched in intron- and ERE-derived MAPs, with leucine being the most enriched (Fig. 2b-c). 

Previously, we observed that MAP source transcripts use rare codons more frequently than 

transcripts that do not generate MAPs4. Therefore, we hypothesized that ncMAPs would use rare 

codons more frequently than canonical ones. Indeed, we found that the genomic codon frequency 

of residues encoded by 6 synonymous codons (R/L/S) was on average lower than those encoded 

by lower numbers of synonymous codons (Extended Data Fig. 2a) and that the codons of ncMCS 

presented a lower genomic frequency than canonical ones (Fig. 2d). As rare codons are rate 

limiting for protein synthesis24-26 and as MAPs derive frequently from defective ribosomal 

products (DRiPs) generated by alterations of protein synthesis rate27, our data suggest that DRiPs 

contribute more to the generation of ncMAPs than to canonical ones.  

Next, we analyzed the relation between the number of possible MCS per MAP (i.e., 

diversity of synonymous codons) and the number of genomic regions able to code for a given 

MAP. Canonical MAPs essentially derived from a single genomic location (60%), while non-

canonical MAPs could derive from multiple regions (Fig. 2e). ERE MAPs presented the greatest 

numbers of possible regions, in agreement with their repeated nature (between 1.536 and 2.9×106 

possible regions). However, their number of possible MCS did not correlate with the number of 

possible locations, showing that amino acid residue composition cannot be used to predict the 

number of possible regions of origin (Fig. 2f).  

Finally, given the multiplicity of possible regions of origin, we computed the most likely 

biotype of each MAP. For this, we used machine learning (expectation-maximization algorithm) 

to rank the biotypes (in-frame, intron, ERE, etc.) as a function of their likelihood of generating 

the reads covering them across the whole set of GTEx tissues. In general, canonical in-frame 

transcripts are more likely translated than non-canonical ones. For this reason, BamQuery's best 

guess automatically ranks as “in-frame” any MAP having at least one in-frame canonical origin, 

which was the case for all canonical MAPs from our dataset (Extended Data Fig. 2b). BamQuery 

can also attribute biotypes based only on the likelihood ranks (considering the number of reads 

overlapping each transcript). In this case, ~26% of canonical MAPs were assigned with a greater 

probability to ncRNAs (Fig. 2g). Furthermore, while ncRNA and intron MAPs were predicted to 

belong mainly from their identified biotype (73 and 81%) (Extended Data Fig. 2c), only 56% of 

ERE-derived MAPs were estimated to derive from EREs, and 6% of them could derive from 
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canonical regions (5% in-frame) (Fig. 2h). Altogether, these data show that many published 

MAPs could be mislabeled, either as canonical or non-canonical. 

 

 

Fig. 2 | New insights into the immunopeptidome biology.  

a-h Published MAPs reported as canonical (n=1,702) and non-canonical (ncRNA (n=378), intronic (n=114) and 

EREs (n=232)) were searched with BamQuery in GTEx tissues and mTEC bam files in unstranded mode (GTEx data 

being unstranded) with genome version GRCh38.p13, gene set annotations release v38_104 and dbSNP release 151. 

Figures a,e,f,g were generated with the comparison of 9-mers only (n=1,211 canonical, n=207 ncRNA, n=68 

intronic, n=157 EREs) to prevent possible biases introduced by variable frequencies of 8/10/11-mers among the 

compared groups. Figures b,c,h were generated with the complete MAP dataset (n=1,702 canonical, n=378 ncRNA, 

n=114 intronic, n=232 EREs). Mann-Whitney U test was used for indicated comparisons (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001).  

a, Number of possible MCS after reverse-translation of indicated MAP groups.  

b, Average frequency (%) of amino acids encoded by the indicated number of synonymous codons in indicated MAP 

groups.  

c, Heat map of amino acid frequency in indicated MAP groups.  

d, Mean of the MCS average usage frequency of codons (among 1000 codons located in human reference protein-

coding sequences) encoding each of the 20 amino acids of indicated MAP groups.  

e, Number of MCS genomic locations able to code for the indicated MAP groups.  

f, Pearson’s correlation between the number of possible MCS after reverse translation vs the number of MCS 

genomic locations able to code for the assessed ERE MAPs. The red line is a linear regression.  
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g, Percentage of MAPs attributed to indicated biotypes by BamQuery based on the EM-established biotype ranks and 

on the genomic regions expressed in GTEx tissues and mTECs. The X-axis indicates the biotype reported in the 

original study (groups). For clarity, BamQuery biotypes were summarized into five general categories: protein-

coding regions, non-coding RNAs, EREs, intronic and intergenic.  

h, Percentage of the most likely biotype attributed by BamQuery to EREs MAPs. 

 

Single-cell proteogenomic analyses 

High-throughput single-cell RNA sequencing (scRNA-seq) enables the examination of individual 

cells’ transcriptome28, 29. Therefore, we sought to perform single-cell analyses using BamQuery. 

Given the end-bias of the Chromium library design typically used in scRNA-seq, we evaluated 

whether read coverage would allow BamQuery analyses of canonical and non-canonical MAPs in 

cancerous30 and normal31 lung tissues scRNA-seq data. As expected, reads showed a bias toward 

the 3’ end of the canonical genes (Extended Data Fig. 3a). However, the coverage extended far 

from the 3’ end, in agreement with a report detecting mutations in various regions of the gene 

body32. We also found a surprisingly high (~50% of reads) and homogeneous read coverage in 

introns and ERE regions, in agreement with previous reports33, 34, and suggesting that BamQuery 

would be able to detect expression for ncMAPs in scRNA-seq. 

BamQuery detected expression for 50-60% of the canonical and non-canonical MAPs 

(Supplementary Table 1) in scRNA-seq, while 86% were found in bulk RNA-seq of GTEx lung 

samples (Fig. 3a). This lower number of MAPs expressed on single-cell data resulting from lower 

read coverage did not hamper the feasibility of scRNA-seq analyses. Indeed, canonical MAPs 

were uniformly expressed at the 5' and 3' ends of their transcripts (Fig. 3b). Also, the expressed 

rate of intronic and ERE MAPs in scRNA-seq data was more comparable to bulk RNA-seq data 

than canonical MAPs (Fig. 3c). This likely results from the more homogeneous read coverage 

observed in non-coding than in coding regions (Extended Data Fig. 3a).  

Therefore, we explored the patterns of MAPs expression in normal and malignant lungs. 

Differential expression analysis showed that 12.86% (186/1446) and 16.46% (248/1506) of 

MAPs presented cell type-specific expression profiles in normal and malignant samples, 

respectively (Fig. 3d and Supplementary Tables 3-4). Several differentially expressed MAPs 

derived from genes having cell type-specific functions such as YTAVVPLVY in B cells 

(immunoglobulin J polypeptide), STFQQMWISK in muscle cells (Beta-actin-like protein 2), and 

FLLFPDMEA in macrophages (complement C1q B chain) (Extended Data Fig. 3b). To further 

assess the reliability of MAP expression, we re-clustered the normal lung dataset based uniquely 

on MAPs expression. This provided a clear separation of the hematopoietic and stromal 

compartments (Fig. 3e, Extended Data Fig. 3c) and allowed the clustering of specific cell 

populations such as alveolar cells or the monocytes and macrophages (Extended Data Fig. 3d,e). 

Strikingly, most MAPs identified as differentially expressed in the normal lung dataset had an 

expression restricted to either the hematopoietic or stromal lineages, showing a clear dichotomy 

between these two compartments in terms of MAP expression (Extended Data Fig. 3f). 
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Finally, given the growing interest in TAs shared between tumor cells, we assessed the 

clonality of 45 MAPs whose coding sequences were overexpressed by cancer cells through co-

expression analyses. This highlighted two clusters of MAPs co-expressed in lung cancer cells 

(Fig. 3f) for which a distinct expression profile was observed in the lung (Fig. 3g). Indeed, MAPs 

of cluster 1 were expressed by a limited number of cancer cells, whereas MAPs of cluster 2 were 

ubiquitously expressed, making them more desirable immunotherapeutic targets. These data 

demonstrate the capacity of BamQuery to perform scRNA-seq analyses and evidence its potential 

to assess TAs intra-tumoral heterogeneity.  

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.510944doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.510944


10 
 

10 
 

 
Fig. 3 | Single cell proteogenomic analyses.  

a-g Canonical (n=1,702) and non-canonical MAPs (ncRNA (378), intronic (114) and EREs (232)) were searched 

with BamQuery in bam files of scRNA-seq of normal and cancerous lung samples in single-cell in stranded mode 

with genome version GRCh38.p13, gene set annotations release v38_104 and dbSNP release 151.  

a, Median percentage of MAPs detected in normal and cancerous lung scRNA-seq, as well as in bulk RNA-seq 

samples of normal lungs from GTEx (n=150).  

b, Number of canonical MAPs located in the 5’ (first half of the transcript) or 3’ (second half of the transcript) region 

of the transcript detected in indicated scRNA-seq datasets. 

c, Median percentage of indicated MAP groups detected in normal and cancerous lung scRNA-seq, as well as in bulk 

RNA-seq samples of normal lungs from GTEx.  

d, Number of MAPs identified as differentially expressed by the different populations of cells in the normal lung 

(left panel) or cancerous lung (right panel). The originally reported biotype of the MAPs is indicated by the color 

code.  

e, TSNE analysis of the hematopoietic (blue) and stromal (orange) cells from the normal lung based on their MAP 

expression.  
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f, Heatmap showing the co-expression (spearman rho, color bar) of MAPs overexpressed by lung cancer cells (rows 

vs columns). Two clusters of MAPs are highlighted on the left side of the heatmap (cluster 1 and cluster 2).  

g, TSNE showing the expression of MAPs (color bar) from cluster 1 (higher panel) or from cluster 2 (lower panel). 

Grey color indicates the null expression of a MAP in a cell. 

 

MAP expression is underestimated in healthy tissues 

Given the ability of BamQuery to capture MAPs RNA expression exhaustively, we evaluated the 

genomic origin of previously reported MAPs. First, we examined 1,062 colorectal cancer (CRC) 

TAs identified by their presence and absence from the immunopeptidome of malignant and 

paired benign cells, respectively35. To evaluate their probability of being presented by normal 

cells, we queried them in 3 datasets: GTEx, mTECs, and sorted dendritic cells (DCs)36, 37 

(Supplementary Table 2). Four percent of TAs presented an expression <8.55 RPHM (minimum 

expression required to result in a probability >5% of generating a MAP8) in all normal tissues, 

except for testis, as these antigens would be classified as cancer-testis antigens (CTAs) (Fig. 4a). 

Strikingly, among the 7 TAs reported previously as being lowly expressed at RNA level in 

normal matched tissues, BamQuery revealed that only one (KYLEKYYNL) presented a low 

expression across all peripheral tissues. Finally, no expression was found for the RYLAVAAVF 

peptide (the only mutated TA reported in this study), while its wild-type counterpart was highly 

expressed, making it a promising target for CRC immunotherapies (Fig. 4b). 

Second, we wondered whether mutated TAs would be as tumor-specific as expected. We 

analyzed 45 8-11 amino acid long mutated peptides (7 from gene fusions, 28 from aberrant splice 

junctions, and 10 from single nucleotide variations, SNV) reported as tumor-specific in 

medulloblastoma (no RNA expression in GTEx)38. BamQuery could attribute a genomic location 

to 39 of them and mapped 7/10 SNV peptides to their reported genes (Extended Data Fig. 4a). 

Unexpectedly, BamQuery attributed non-discontinued ("unspliced") expressed genomic locations 

to 82% of fusion and spliced peptides, evidencing that non-mutated (and mostly non-canonical, 

Fig. 4c) genomic regions could also code for those peptides. Overall, only 26 of 45 TAs 

presented low expression in normal tissues (Extended Data Fig. 4b) including all detected SNV-

derived peptides. Therefore, we wondered whether mutated MAPs reported as cancer-specific in 

previous publications and public databases10, 39, 40 would be verified as such by BamQuery. From 

323 mutated TAs (Supplementary Table 5), 23 (7%) were highly expressed in normal tissues 

where 25% of the peptides have more than 5 non-mutated genomic locations perfectly matching 

their MCS (Fig. 4d).  

Third, we examined 6 ERE-derived MAPs reported as TAs (lowly expressed in normal 

tissues, including mTECs, and highly expressed in multiple cancer specimens) in triple-negative 

breast cancer41. While the original study identified an average of 8 locations for these peptides, 

BamQuery identified ~66 locations per MAP (Fig. 4e). Moreover, these MAPs showed higher 

expression in normal breast samples compared to cancer samples (Fig. 4f). These results 

highlight the importance of considering all genomic locations able to generate a given MAP 

when measuring RNA expression.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.510944doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.510944


12 
 

12 
 

Fourth, we evaluated whether BamQuery would detect non-discontinued genomic 

locations and RNA expression for MAPs supposedly impossible to be expressed by the human 

genome. We first examined 99 MAPs deriving from proteasomal splicing (generated from post-

translational recombination of protein fragments)42. Fifteen could be generated by expressed 

regions (Fig. 4g), suggesting a possible misclassification of these peptides. Finally, considering 

the tight link between Epstein–Barr virus (EBV) infection and autoimmune disorders such as 

multiple sclerosis43, we examined the expression of 511 EBV-derived MAPs in the IEDB 

database. Four of them could be coded by the human genome and were expressed at high levels 

by normal tissues (Fig. 4h). Interestingly, one of them, CPLSKILL, can be presented by HLA-B8 

molecules, an allele frequently associated with autoimmune disorders44.  

Altogether, these results demonstrate that BamQuery is crucial to attribute an exhaustive 

RNA expression to MAPs and suggest that it could help select safe-to-target MAPs.  
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Fig. 4 | Underestimated MAP expression in healthy tissues. 

a-h Published human colorectal cancer (CRC) TAAs, mutated TAs, ERE-derived TSAs, proteasomal splicing 

peptides, and Epstein-Barr virus (EBV) MAPs were searched with BamQuery in the GTEx tissues (n=12–50 / 

tissue), mTECs (n=11) and/or DCs (n=19) bam files in unstranded mode with genome version GRCh38.p13, gene set 

annotations release v38_104 and dbSNP release 155 (except for the search for mutated TAs (d) where dbSNP was 

not considered, dbSNP=0).  

a, Heatmap of average RNA expression of published CRC TAAs in indicated tissues. Boxes in which a peptide has 

an average rphm>8.55 are highlighted in black.  

b, Heatmap of average RNA expression of the CRC mutated TA RYLAVAAVF and its wild type RYLTVAAVF in 

indicated tissues.  

c, Percentage of the most likely biotype attributed by BamQuery to published fusions, junctions, and SNVs-derived 

TAs.  

d, Heatmap of average RNA expression of published mutated TAs (n=23) in indicated tissues. The number of 

genomic locations expressed is presented on the left.  

e, Number of genomic locations at which the expression of the EREs TSAs was assessed by BamQuery vs by the 

original study. Light blue dots represent each assessed MAP and the orange triangle represents the average.  

f, Heatmap of average RNA expression of the EREs-derived TSAs in mTECs, normal breast tissues from GTEx 

(n=50), and triple-negative breast cancer samples from TCGA (n=158).  

g, Heatmap of average RNA expression of published proteasomal splicing MAPs (n=99) in indicated tissues. The 

number of genomic locations expressed is presented on the left.  

h, Heatmap of average RNA expression of EBV MAPs in indicated tissues.  
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Discovery of tumor-specific antigens in diffuse large B-cell lymphoma 

Given the capacity of BamQuery to prioritize TAs, we wondered whether it could help 

identify tumor-specific antigens (TSAs) from raw immunopeptidomic data. By using a 

proteogenomic approach enabling the identification of TSAs9, we identified 6,869 MAPs from 3 

published datasets of diffuse large B-cell lymphoma samples (DLBCL)5.  

We first quantified the expression of the 6,869 MAPs in mTECs with BamQuery. A 

genomic location was found for 6,833 of them and most of them (~86%) were highly expressed 

in mTECs (≥8.55 RPHM). To discriminate MAPs at risk of causing off-target toxicity when 

targeted, the remaining MAPs (14%) were queried in GTEx as well as in sorted benign B cells36, 

45, and 5% of them were retained as being lowly expressed (<8.55 RPHM). Finally, the retained 

MAPs being upregulated (fold change ≥5) by the DLBCL samples in TCGA vs benign B cells 

and having evidence of translation based on the presence of ribosomal profiling elongation reads 

(queried with BamQuery in matched RIBO-seq data5, Extended Data Fig. 5a,b) were flagged as 

TSAs (67 MAPs, ~1%, Fig. 5a, Supplementary Tables 6-7). Among them, 11 were promising as 

they were highly shared between DLBCL patients (Fig. 5b).  

BamQuery biotype classification showed that most TSAs derived from protein-coding 

regions of the genome, as only ~25% of them derived from non-coding RNA (20%), EREs (1%), 

and intronic (4%) regions (Fig. 5c). Furthermore, based on their high expression in testis, 29 

TSAs were flagged as CTAs46 (Supplementary Table 8) where most of them were known cancer 

biomarkers, supporting their relevance as immunotherapeutic targets. Additionally, upregulated 

TSAs in DLBCL samples compared to normal tissues (GTEx blood and benign B cells) had 

higher immunogenicity scores predicted by Repitope47 compared to previously published non-

immunogenic controls48 (Fig. 5d). The expression of these TSAs correlated also with a greater 

expression of cytotoxic T cell markers (CD8A+CD8B), as well as with TCR signaling and other 

pro-inflammatory responses in DLBCL patients (Fig. 5e-f, Supplementary Table 9), supporting 

the biological value of TSAs discovered with BamQuery.  
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Fig. 5 | Discrimination of potential immunotherapeutic targets in DLBCL. 

a-c DLBCL MAPs, identified through a TSA-discovery proteogenomic approach, were searched with BamQuery in 

GTEx tissues (n=12–50 / tissue), mTECs (n=11), sorted blood B-cells (n=14), our DLBCL specimens (n=3) and/or 

TCGA DLBCL (n=48) bam files in unstranded mode with genome version GRCh38.104 and dbSNP version 155.  

a, Heatmap of average RNA expression of 67 TSA candidates in indicated tissues. Boxes in which a peptide has an 

rphm>8.55 are highlighted in black.  

b, Heatmap of average RNA expression of the highest shared and expressed TSA candidates (11) in cancer samples 

DLBCL from TCGA (n=48). Boxes in which MAPs expression (rphm) is >8.55 are highlighted in black.  

c, Percentage of the most likely biotype attributed by BamQuery for TSA candidates (n=67).  

d, Repitope immunogenic scores calculated for negative control thymic MAPs (n=158), highly expressed DLBCL 

TSAs (n=18, 25% of TSAs most upregulated by DLBCL TCGA versus normal blood in GTEx and sorted B cells), 

and positive control HIV MAPs (n=450). Mann-Whitney U test was used for comparisons (*p<0.05, ****p<0.0001).  

e, Pearson’s correlation in TCGA DLBCL patients (n=48) between the count of highly expressed (HE) TSAs 

expressed by each patient and the expression of cytotoxic T cells markers (CD8A+CD8B, in counts per million 

(cpm)). The red line is a linear regression.  

f, Network analysis of GO term enrichment among genes overexpressed by patients expressing an above-median 

number of HE-TSAs. Line color reflects the similarity coefficient between connected nodes. Node color reflects the 

false discovery rate (FDR) of the enrichment. Node size is proportional to gene set size. 
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BamQuery: an online tool to facilitate TA prioritization 

We implemented an online portal to perform analyses on user-defined lists of MAPs. As we 

could not enable searches on GTEx (due to restricted use of these data), we included queries of 

MAPs in mTECs and DCs36, 37 (Supplementary Table 2) as a proxy of tumor-specificity and 

immunogenicity. While expression in mTECs is considered a good proxy for normal cell 

expression49, 50, we showed previously that mTECs share more transcriptomic features with 

epithelial than hematopoietic cells8. Prioritizing TAs based only on mTECs would therefore not 

be sufficient and we included DCs as they exert a non-redundant role in central tolerance 

establishment with mTECs51.  

To validate this choice, we randomly selected 10% of hematopoietic-specific (2,429) and 

10% of epithelium-specific (3,237) MAPs from the HLA ligand atlas (Extended Data Fig. 6a, b). 

We queried their expression in mTECs, DCs, GTEx epithelial tissues, and a set of hematopoietic 

cells (Supplementary Table 2). At the RNA level, DCs and mTECs presented the highest 

hematopoietic and epithelial MAPs expression levels, respectively (Extended Data Fig. 6c, d).  

We refined our analysis by focusing on hematopoietic and epithelial MAPs being lowly (<8.55 

RPHM) expressed in mTECs and DCs, respectively. This revealed dramatically higher 

expression of hematopoietic and epithelial MAPs in hematopoietic (highest in DCs) and 

epithelial tissues (highest in mTECs), respectively (Fig. 6a, b). We conclude that MAPs lowly 

expressed in mTECs are highly expressed in DCs, and vice-versa.  

Next, we tested whether MAPs expression in mTECs and DCs would predict their 

immunogenicity. We queried in mTECs and DCs 1,180 and 4,917 non-mutated human MAPs 

verified experimentally as immunogenic and non-immunogenic, respectively, and curated in 

Ogishi et al.47. Immunogenic MAPs presented a lower expression than non-immunogenic MAPs 

in both types of samples (Fig. 6c). On this dataset, we trained a logistic regression model to 

classify immunogenic and non-immunogenic MAPs using the RPHM values of mTECs and DCs 

as features. Measurements of model performance and robustness using the cross-validation 

method (area under the ROC curve (AUC) = ~0.75, Extended Data Fig. 6e) showed that the 

RPHM values of MAPs in mTECs and DCs are predictors of MAP immunogenicity.  

 Finally, we evaluated whether MAP expression in both mTECs and DCs reflects the 

probability of presentation in benign tissues. Using 10% of random MAPs from the HLA Ligand 

Atlas (8,694), we found that MAPs lowly expressed in both mTECs and DCs were less presented 

(Fig. 6d) and expressed (Fig. 6e) in tissues of the HLA Ligand Atlas and GTEx, respectively. 

Upon examination of these MAPs features, we found that the probability of being highly 

expressed in mTECs and DCs increased exponentially with the number of possible genomic 

regions (Fig. 6f). Altogether, these results show that concomitant expression in mTECs and DCs 

expression is a reliable proxy of the presentation/expression in benign tissues and that MAPs 

having fewer possible regions of origin have a greater probability of being safe-to-target TAs.  
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The BamQuery public interface is accessible through http://bamquery.iric.ca/ and 

incorporates the logistic regression predictor model to report the conferred probability that a 

MAP is immunogenic. BamQuery is also available as a standalone version that can be configured 

to work with proprietary bam files. We believe that BamQuery will greatly help researchers in 

their attempts to identify specific and immunogenic TAs. 

 

 
Fig. 6 | BamQuery: an online tool to facilitate TAs prioritization. 

a-b, Average RNA expression of hematopoietic-specific (a) and epithelial-specific (b) MAPs in mTECs (n = 11), 

non-hematolymphoid GTEx tissues (n = 2,389), DCs (n =19) and hematolymphoid GTEx tissues (n=196). Wilcoxon 

rank-sum test two-sided was used for comparisons (****p<0.0001).  

c, Average RNA expression of non-mutated human immunogenic (n=1180) and non-immunogenic (n=4917) MAPs 

in mTECs (n = 11) and DCs (n =19). Mann-Whitney U test was used for comparisons (****p<0.0001).  

d-e, Average mTECs+DCs RNA expression of a random selection of MAPs from the HLA Ligand Atlas (n=8621, 

10% of the Atlas) as a function of the number of the HLA Ligand Atlas tissues presenting them (d) or as a function 

of the number of GTEx tissues in which the MAPs are expressed above an average of 8.55 RPHM (e). The average 

expression was correlated (Spearman) with the number of tissues. Error bar, SEM.  

f, Spearman’s correlation between the number of expressed genomic locations and the average expression in mTECs 

and DCs of the same MAPs used in (d). The red line is a linear regression (distorted by the log transformation of the 

x-axis).  
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3. DISCUSSION 

Fuelled by studies focused on TAs, the immunopeptidomics field is expanding rapidly3, 52, 53. This 

expansion comes with an impressive diversity of homemade methodological approaches 

addressing the challenges raised by the characterization of non-canonical and mutated MAPs. 

Specifically, the fact that ~75% of the human genome can be transcribed54 (and therefore 

possibly translated) evidenced the necessity of examining the expression of each region able to 

code for a presumed TA. BamQuery was designed not only to enable such examination but also 

to enable a uniformization of TA validation approaches across laboratories.  

The recent discovery that a significant fraction of the immunopeptidome derives from 

non-coding regions has brought the contribution of the “dark genome” into the spotlight2. Since 

then, multiple studies have attempted to characterize cryptic MAPs, most often by using mass 

spectrometry informed by databases dedicated to the identification of specific classes of ncMAPs 

(intron-derived, ERE-derived, etc.)7, 19, 55. However, these approaches suffer from their dedication 

as the identified MAPs could also derive from other transcripts, absent from these databases. 

Accordingly, based on evidence showing that greater RNA expression confers a greater 

probability of MAPs generation7, 13, we implemented a biotype annotation tool in BamQuery and 

showed that many presumed ncMAPs could be coded with greater probability by regions 

annotated with different biotypes. Strikingly, an important fraction of the canonical MAPs 

(~30%) could also be translated, with a greater probability, from non-canonical regions. While 

this result requires more in-depth analyses to elucidate the true origin of these MAPs, this 

possible dramatic contribution of the non-coding genome to the immunopeptidome is a sobering 

thought given that cryptic proteins are translated as efficiently as canonical proteins and generate 

MAPs 5-fold more efficiently per translation event5.   

Therapies targeting truly tumor-specific antigens can be highly effective56, while those 

targeting antigens unsuspectedly expressed by normal cells can be lethal for patients57. Notably, 

BamQuery evidenced a high expression of many TAs, including mutated and ERE MAPs, in 

normal tissues, resulting from previously unreported coding regions and suggesting that targeting 

them would be unsafe. Here, we acknowledge that our approach can be considered very cautious. 

Indeed, by summing the RNA-seq reads of all regions able to code a given TA, BamQuery does 

not consider that possibly only one region is translated and generates MAPs. Eventually, the 

availability of RIBO-seq data (which can be analyzed with BamQuery as well) could help to 

address this question. Meanwhile, in the absence of tools robustly predicting the translational 

origin of MAPs, the approach reported herein is the most circumspect for TA selection. Ideally, 

we recommend prioritizing TAs with a single possible region of origin (with cancer-specific 

expression) because other regions cannot code for such TAs in normal tissues.  

Thanks to its exhaustivity, speed, ease of use, and versatility (bulk & single-cell RNA-seq 

+ RIBO-seq, usable with mouse or human genome, on any kind of wild-type or mutated MAPs), 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.510944doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.510944


19 
 

19 
 

BamQuery enables for the first time a uniformization of proteogenomic analyses in MHC-I 

immunopeptidomics.  
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4. METHODS 

 

Data and Code Availability 

The Python and R scripts generated during this study are available on GitHub, 

https://github.com/lemieux-lab/BamQuery. The standalone version of BamQuery can be 

downloaded at http://bamquery.iric.ca/installation.html. Details regarding all samples used in this 

study are listed in Supplementary Table 2. 

 

Datasets 

The eight human mTEC samples have been prepared and sequenced for previous studies of our 

team (GEO:GSE127825 and GEO:GSE127826) (Larouche et al., 202019; Laumont et al., 20189). 
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Three additional mTEC samples were published (ArrayExpress:E-MTAB-7383) by Fergurson et 

al. 22.  

 

BamQuery 

BamQuery is designed to analyze MAPs ranging in length from 8 to 11 amino acids (aa). As 

peptide input, BamQuery supports three different formats that can be pulled into a single input 

file. 

A) Peptide mode: only the amino acid sequence of the MAP is provided, hence BamQuery 

performs a comprehensive search for its RNA-seq expression. All results reported in the present 

article were obtained with this mode.  

B) MAP coding sequence (MCS) mode: the amino acid sequence of the MAP is provided, hence 

BamQuery performs the search for the expression of the given MCS only. 

C) Manual mode: the amino acid sequence of the MAP is provided followed by an MCS, the 

corresponding location in the genome of the given MCS, and the strand (+ forward or - reverse), 

whereby BamQuery performs the expression search at the given location for the given MCS at 

the given genomic location and strand (useful to evaluate the expression of mutated MAPs whose 

genomic location is known but which cannot be located by BamQuery due to unavailable 

annotations in dbSNP or STAR failure). 

BamQuery performs five important steps for each peptide queried.  

1) Reverse translation of MAPs. 

Each input MAP in peptide mode is reverse-translated into all possible MCS. The MCS are 

compiled into a fastq file.  

2) Identification of genomic locations.  

MCS are then mapped to the reference genome (user-defined, meaning that several genome 

versions are supported (GENCODE 26, 33 or 38)) using STAR v2.7.9.a16 running with default 

parameters except for –seedSearchStartLmax, --winAnchorMultimapNmax, --

outFilterMultimapNmax, --limitOutSJcollapsed, --limitOutSAMoneReadBytes, --

alignTranscriptsPerWindowNmax, --seedNoneLociPerWindow, --seedPerWindowNmax, --

alignTranscriptsPerReadNmax that were replaced by 20, 10.000, 10.000, 5.000.000 , 2.660.000, 

1.000, 1.000, 1.000, 20.000, respectively. MCS genomic locations (perfect alignments) are 

selected from the output STAR file Aligned.out.sam. Perfect alignments are defined as MCS 

matching exactly the reference genomic sequence or as MCS bearing mismatches annotated as 

known polymorphisms in the dbSNP database (user-selected dbSNP 149, 151, or 155 releases). 

Therefore, each alignment included in Aligned.out.sam is exanimated to compare the read 

sequence nucleotide by nucleotide against the reference genomic sequence at that position 

(assessed using the samtools fetch command within python via the pysam 

(https://github.com/pysam-developers/pysam) library at the genomic location of the given 

alignment). If a difference is detected between a nucleotide of the aligned read sequence and the 

nucleotide of the reference genomic sequence at a given position, the position is queried in the 
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python dictionary containing the SNVs of the dbSNP database selected by the user. If all 

discrepancies in the current alignment are known (supported by the SNVs in the dbSNP database) 

the alignment is retained as it is considered perfect, otherwise, the alignment is discarded. To 

reduce the complexity of tracing perfect STAR alignments, only single nucleotide variants 

(SNVs) of dbSNP annotations were considered to define perfect alignments. 

3) MAP RNA-seq reads counting.  

Next, the expression of each MCS is queried in each BAM file (CRAM files are also supported) 

using the samtools view58 command within python via the pysam library (only primary alignment 

reads (pysam option -F0X100), originally present in fastq files, are queried) at their respective 

genomic location. BamQuery supports RNA-seq unstrandedness / strandedness libraries (user-

defined parameter, default: strandedness). To collect reads in unstranded libraries, the -F0X100 

option is used in the pysam view command. In stranded libraries, depending on the sequencing 

reads type (single-end, paired-end), library preparation (forward or backward) and sense of the 

MCS genomic location (forward or backward), the options in the pysam view command are: -

F0X100 & -f0X50 for R1 mate and -F0X100 & -f0XA0 for R2 mate in paired-end, forward 

library and reverse genomic location; -F0X100 & -f0X60 for R1 mate and -F0X100 & -f0X90 for 

R2 mate in paired-end, forward library and forward genomic location; -F0X110 for R1 mate  in 

single-end, forward library and forward genomic location; -F0X100 & -f10 for R1 mate in single-

end, forward library and reverse genomic location; -F0X100 & -f0X60 for R1 mate and -F0X100 

& -f0X90 for R2 mate in paired-end, reverse library and reverse genomic location; -F0X100 & -

f0X50 for R1 mate and -F0X100 & -f0XA0 for R2 mate in paired-end, reverse library and 

forward genomic location; -F0X110 for R1 mate in single-end, reverse library and reverse 

genomic location; -F0X100 & -f10 for R1 mate in single-end, reverse library and forward 

genomic location. The retrieved reads are examined one by one and counted if they exactly span 

the queried MCS at the genomic location. Therefore, each retrieved read is transformed into a list 

in Python and its alignment location is transformed into an array containing the location of each 

amino acid in the read. The indices of the array locations corresponding to the first and last amino 

acid locations in the MCS at a given genomic location are used to extract from the read list the 

subsequence that is compared to the MCS. If both the MCS and the subsequence of a retrieved 

read are the same, the read count for the current MCS increases by one. Finally, the total read 

count (trMAP) for a given MAP is computed by summing all RNA-seq reads from all MCS 

genomic locations. 

4) Normalization.  

The trMAP count is transformed into “reads per hundred million” values (RPHM) by normalizing 

them with the total number of primary reads sequenced (corresponding to the total read number 

present in fastq files) according to the formula: RPHM =  
trMAP

Rt
∗  108 where Rt represents the 

total number of primary RNA-seq reads of the sample. These final values are log-transformed 

log10(RPHM + 1) to allow comparison and averaging between samples, thus removing the bias 

of large values. 
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5) Biotype classification.  

All genomic locations identified for each MAP are compiled into a bed file and their biotypes are 

obtained using BEDtools59 intersect with the following options -a (annotation file), -b (genomic 

locations), -wao (writes the original annotation and genomic location entries along with the 

number of base pairs of overlap between the two features), and the following annotations: 

RepeatMasker (GRCh38/hg38 assembly, to annotate the EREs) and GENCODE (for all other 

biotypes, gene set annotations releases v26_88, v33_99, v38_104 ). The complete list of biotypes 

annotated by BamQuery based on RepeatMasker and GENCODE can be consulted at 

http://bamquery.iric.ca/biotype_classification.html.  

Given that MAPs may have alignments in regions where several different biotypes 

overlap (such as protein-coding transcripts overlapping with non-coding RNAs, see the example 

shown in Extended Data Fig. 7a), we used the expectation-maximization (EM) statistical model 

to estimate, for each biotype, the read distribution coefficient. In this model, reads at each 

genomic location are weighted for each biotype at the given location according to their 

coefficients and consequently, the biotype of each MAP is scored according to the percentage of 

reads corresponding to each biotype (in-frame, introns, ncRNA, ERE, etc.). The EM algorithm 

iterates between the expectation (E) and maximization (M) step until the parameter set of the last 

iteration is unchanged, therefore finding the parameter set that maximizes the posterior 

probability of the observed data, in our case the reads that overlap with one or more biotypes. To 

train the EM algorithm, we first collected canonical and ncMAPs (Supplementary Table 1) and 

ran BamQuery on normal and cancer datasets (normal: GTEx and mTECs, cancer: TCGA) to 

obtain the total reads covering each MAP at each MCS genome location. We then computed the 

probability of each biotype as follows: 

Let ∅ = (∅A, ∅B, ∅c … ), be the set of parameters to estimate, where ∅A, ∅B, ∅c… are the 

probabilities that the read belongs to the In_frame (A), non_coding_exon (B), intron (C), etc. 

biotypes. EM starts with an arbitrary initial estimation of 0.1 for each biotype’s probability. In the 

E-step, the distribution of the total number of reads for each MAP is computed using the current 

biotype’s parameters, as follows:  

Let Ri =  total reads of MAPi 

Z(∅j
t, Li) =  

∑ (rk ∗  
∅j

t

∑ ∅b
kB

b=1

)L
k=1

Ri
 

 

Where ∅j
t is the current probability for biotype j in MAPi. Li is the MCS genome locations for 

MAPi. rk is the number of reads overlapping location k and B is the set of biotypes overlapping 

the location k. 

In the M-step, the new set of parameters is determined using the current computations, as 

follows: 
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∅j
t+1 =  

∑ ∅j
tMAPs

i=1

total MAPs
 

Where ∅j
t+1 is the new probability for biotype j obtained after summing all the probabilities 

distributions of all MAPs computed in the last E step and normalizing by the total number of 

MAPs. The iterative process concludes if the following condition is met for all biotypes: ∅j
t =

∅j
t+1 and the last set of estimated parameters is used to assign the proportion of reads assigned to 

each biotype at any genomic location. 

Therefore, BamQuery scores for each MAP the biotype as the percentage of reads assigned to 

each biotype class (in-frame, introns, ncRNA, ERE, etc.). For example, a canonical MAP with 

alignments in non-canonical regions could be indicated as follows In_frame: 84.09% - Intronic: 

15.91%, meaning that ~84% of the total reads overlap with a known transcript and that the MAP 

is within the known protein frame, while ~16% of the reads overlap with transcripts in an intronic 

region. 

 

BamQuery informs the biotype of each MAP in three different settings, as follows: 

1. Biotype computed for each MCS genome location: BamQuery reports the percentage 

contribution of the biotypes overlapping the given location.  The percentage of each 

biotype is calculated as the coefficient of each biotype normalized by the sum of the 

coefficients of all biotypes in the location, as follows: 

∅i,j
k =

∅i,j
k

∑ ∅b
kB

b=1

 

 

Where ∅i,j
k  is the coefficient assigned to the biotype j for the  MAPi at the location k.  

2. Biotype computed from all MCS genome locations found in the set of queried samples: 

the biotype of each MAP is assigned based on the total read count in the sample set. This 

calculation follows three steps: 

a. The total number of reads in each MCS genome location is distributed according 

to the biotype percentages assigned to the location in the previous step.  

b. Normalization of the distributed count of reads by the total number of reads in the 

entire set of samples. 

c. The final biotype of each MAP is obtained by summing all normalized reads 

distributions across its MCS genomic location. 

3. Biotype for each subset of samples (e.g., GTEx, TCGA, mTEC samples): the biotype of 

each peptide is assigned following the same steps as before but according to the total 

count of reads in each subset of samples.  

4. Best guess biotype: BamQuery also reports the most likely biotype for each MAP (Best 

Guess) following the rules below: 
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a. Since a MAP is most likely to be generated from a known canonical protein if the 

MAP ever appears in-frame of a protein the best guess assigned is In-frame with 

the certainty given in the biotype classification. 

b. Otherwise, the best guess biotype is assigned according to the biotype with the 

highest percentage of the biotype ranking. 

Full documentation of supported options, examples of use, and descriptions of BamQuery reports 

can be found at http://bamquery.iric.ca/ 

 

K-mer databases 

K-mer databases were generated by retrieving the primary mapped reads from the bam files of 

each mTEC sample with samtools view 58 (-F260 option) followed by SamToFastq from Picard 

tools to recover R1 and R2 fastq files (https://broadinstitute.github.io/picard/index.html). Next, 

R1 reads were reverse complemented using the fastx_reverse_complement function of the 

FASTX-Toolkit v0.0.14. and fastq files of all mTEC samples were concatenated. Finally, 

Jellyfish count (v2.2.3, options -m = 27 and -s =1G)60  was used to generate the database from the 

fastq file, and jellyfish query was used to query the MCS in the database.  

 

Kallisto quantification 

Transcript expression quantifications of mTEC samples were performed with kallisto20 v0.43.0 

quant with default parameters except for --rf-stranded. The expression of each HLA atlas peptide 

was obtained from the mean TPM expression value of all transcripts associated with the peptide 

source genes. 

 

BamQuery Accuracy 

For each MCS of the canonical nine-mer MAPs, we defined the BamQuery accuracy, as follows: 

Accurracy =  100% − error rate 

error rate =  
|BamQuery read count − Jellyfish read count|

Jellyfish read count
∗ 100 

 

Therefore, the accuracy is the difference in the error rate with respect to 100%, the error rate 

being the percentage value of the difference in the observed MCS read count in BamQuery and 

the actual MCS read count in Jellyfish. 

 

Single cell RNA-seq analyses 

Previously published single-cell RNA-seq data from the healthy and cancerous lungs were 

downloaded from the NCBI BIOPROJECT (accession number PRJEB31843) and Array Express 

(accession number E-MTAB-6653), respectively. Reads were aligned on the human reference 

genome (GRCh38) using STAR version 2.7.9a16. Cell population annotations were performed 

using gene lists from Madissoon et al.31 and Lambrechts et al.30 for the healthy and cancerous 
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lung datasets, respectively. For the subsequent profiling of MAP expression with BamQuery, the 

HCATisStab7509734 and the BT1375 samples were subsampled from the healthy and cancerous 

lung datasets, respectively. Read count normalization, log transformation, and dimensionality 

reduction were performed using the scater v1.18.6 and scran v1.18.7 R packages. The differential 

expression analyses of MAPs between the cell populations of the healthy and cancerous lungs 

were performed with the FindAllMarkers function of Seurat with the MAST model. Cells of the 

healthy lungs were also re-clustered based on their MAP expression using the runUMAP and 

runTSNE functions of the scater package, and cell lineages and populations previously annotated 

based on gene expression were represented on the resulting UMAP and TSNE graphs. Co-

expression of MAPs in the tumor cells of the lung was also assessed. To do so, we selected the 

MAPs identified as overexpressed in lung cancer cells by the differential expression analysis and 

computed spearman correlations between the expression of each possible pair of MAPs. Finally, 

MAP expression in the cell populations of the healthy lung was visualized with Seurat61 v4.1.0. 

 

Immunogenicity predictions 

Immunogenicity predictions of HE-TSAs were performed with Repitope47. Feature computation 

was performed with the predefined MHCI_Human_MinimumFeatureSet variable and updated 

(July 12, 2019) FeatureDF_MHCI and FragmentLibrary files provided on the Mendeley 

repository of the package (https://data.mendeley.com/datasets/sydw5xnxpt/1). HIV MAPs 

(positive control) were obtained from 

https://www.hiv.lanl.gov/content/immunology/tables/ctl_summary.html.  

 

Differential gene expression analysis 

Transcript expression quantifications were performed on TCGA DLBCL bulk RNA-seq samples 

with kallisto v0.43.0 with default parameters. Then, with BamQuery, we attributed to each 

patient a count of highly expressed TSA transcripts (HE-TSA), i.e., the number of TSAs whose 

expression was above their median RNA expression across all patients having a non-null 

expression of the given TSAs. Patients having an above-median number of HE-TSAs (n=26) 

were compared to those below-median (n=22) through a differential gene expression analysis. 

This analysis was conducted in R3.6.1 as reported previously62. In brief, raw read counts were 

converted to counts per million (cpm), normalized relative to the library size, and lowly 

expressed genes were filtered out by keeping genes with cpm >1 in at least 2 samples using 

edgeR 3.26.8 and limma 3.40.6. This was followed by voom transformations and linear modeling 

using limma’s lmfit. Finally, moderated t-statistics were computed with eBayes. Genes with p-

values < 0.05 and -1≥log2(FC)≥1 were considered significantly differentially expressed (386 

genes upregulated and 1304 downregulated).  

 

GO term and enrichment map analyses 

Biological-process gene-ontology (GO) term over-representation was performed with DAVID 

(https://david.ncifcrf.gov) on genes upregulated by DLBCL patients expressing high levels of 

HE-TSAs. Functional annotations with p-value < 0.05 were considered significant. The GO-term 
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list was then imported in Cytoscape v3.7.2 and used to cluster redundant GO terms and visualize 

the results with EnrichmentMap v3.2.1 and default parameters. The network was visualized using 

the default “Prefuse Force-Directed Layout” in Cytoscape. Groups of similar GO terms were 

manually circled.  

 

Other bioinformatic analyses 

Amino acid compositions were assessed with the ProtParam module of Biopython. Read 

coverage in scRNA-seq data was evaluated with the geneBody_coverage module of RSeQC on 

the bam file generated by CellRanger. Codon frequencies were obtained from the codon usage 

database (http://www.kazusa.or.jp/codon/).  

 

Logistic regression model 

The cross-validation procedure was used to split the training data set into training and validation 

subsets using the StratifiedShuffleSplit function of the sklearn python library with 10 numbers of 

splits and 0.2 for test size. Next, the logistic regression model of the sklearn python library was 

used to classify immunogenic and non-immunogenic MAPs with the default parameters except 

for the liblinear solver.  

 

Construction of MS database for TSA identification 

We used RNA-seq data from 3 published datasets of diffuse large B-cell lymphoma samples 

(DLBCL)5. Cancer-specific proteomes were built using k-mer profiling as described previously9. 

RNA-Seq reads were chopped into 33-nucleotide k-mers and only those present <2 in mTECs 

were kept. Overlapping k-mers were assembled into contigs, which were then three-frame 

translated and linked using “JJ” as separators. This database was concatenated with each 

sample’s canonical proteome for MAP identification.  

 

Quantification and Statistical Analysis 

All statistical tests used are mentioned in the respective figure legends. For all statistical tests, *, 

**, ***, *** and **** refers to p< 0.05, p< 0.01, p< 0.001 and p< 0.0001, respectively, and are 

reported in the figures. Correlations were assessed with the Pearson or Spearman correlation 

coefficient, a red line in the correlation plots represents the linear regression. Plots and statistical 

tests were performed using scipy.stats and seaborn packages of Python v3.6.8. Unless mentioned 

otherwise, all boxes in box plots show the third (75th) and first quartiles (25th) and the box band 

shows the median (second quartile) of the distribution; whiskers extend to 1.5 times the 

interquartile distance from the box. Unless mentioned otherwise, all bar plots show the average 

with error bars: 95% confidence interval (CI).  
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