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A B S T R A C T

Familial susceptibility to alcoholism is likely to be linked to the externalizing diathesis seen in high-risk offspring
from high-density alcohol use disorder (AUD) families. The present study aimed at comparing resting brain
functional connectivity and their association with externalizing symptoms and alcoholism familial density in 40
substance-naive high-risk (HR) male offspring from high-density AUD families and 30 matched healthy low-risk
(LR) males without a family history of substance dependence using graph theory-based network analysis. The HR
subjects from high-density AUD families compared with LR, showed significantly reduced clustering, small-
worldness, and local network efficiency. The frontoparietal, cingulo-opercular, sensorimotor and cerebellar
networks exhibited significantly reduced functional segregation. These disruptions exhibited independent
incremental value in predicting the externalizing symptoms over and above the demographic variables. The
reduction of functional segregation in HR subjects was significant across both the younger and older age groups
and was proportional to the family loading of AUDs. Detection and estimation of these developmentally relevant
disruptions in small-world architecture at critical brain regions sub-serving cognitive, affective, and sensor-
imotor processes are vital for understanding the familial risk for early onset alcoholism as well as for
understanding the pathophysiological mechanism of externalizing behaviors.

1. Introduction

A family history of alcoholism constitutes a significant risk factor for
the development of alcohol use disorders (AUDs) (Cotton, 1979). This
risk is further elevated for individuals with a high family loading of
early-onset AUD in multiple first- and second-degree relatives
(Cloninger et al., 1986; Cotton, 1979; Schuckit, 1985). These indivi-
duals at high risk (HR) for AUDs can be reliably differentiated from
persons at low risk (LR), even prior to their initiation of alcohol, on a
variety of psychological and neurobiological predictors that are not
confounded by alcohol (Cservenka, 2016; Hill and O'Brien, 2015).
These include excessive externalizing behaviors (Hussong et al., 2008,
2007), atypical brain volumes (Benegal et al., 2007; Hill et al., 2013,
2011, 2009; Venkatasubramanian et al., 2007), atypical task-related
functional brain activity (Acheson et al., 2009; Rangaswamy et al.,
2004; Schweinsburg et al., 2004; Silveri et al., 2011) and connectivity
(Cservenka et al., 2014; Herting et al., 2011; Spadoni et al., 2013;

Wetherill et al., 2012). They also differ in neurocognitive measures of
executive function (Gierski et al., 2013; Nigg et al., 2004) and
attentional processing (Benegal et al., 1995; Hill et al., 1999). These
premorbid deficits indicate that the familial susceptibility to alcoholism
is likely to be linked to a neurodevelopmental process that may underlie
heritable aspects of an AUD.

Externalizing temperaments and disorders (including attention-
deficit/hyperactivity disorder (ADHD), oppositional defiant (ODD)
and conduct disorders (CD) in childhood and adult ADHD, antisocial
personality disorder (ASPD) in young adults) strongly predict vulner-
ability for early-onset alcohol and other substance use disorders (SUDs)
(Brook et al., 2010; Kuperman et al., 2005; McGue et al., 2001). The
overlap is so high that SUDs are considered a part of the externalizing-
spectrum of disorders (Krueger et al., 2005; Witkiewitz et al., 2013).
While family environmental effects do moderate risk vulnerability in
offspring outcomes (Jacob et al., 2003; Verhulst et al., 2015), both
SUDS and externalizing disorders are estimated to be highly heritable
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(Bornovalova et al., 2010; Goodwin, 1979; Hicks et al., 2013; Verhulst
et al., 2015), and exhibit extensive overlaps in endophenotype mea-
sures between them (Salvatore et al., 2015).

Previous studies examining endophenotypic risk for alcoholism and
related externalizing disorders, have reported differences in focal brain
morphology and activity. However, it is increasingly apparent that
these foci represent nodes of aberrant functional brain-networks and a
network paradigm is critical for understanding the functional aberra-
tions that are associated with familial-risk for alcoholism (Cservenka
et al., 2015a). The resting state functional connectivity has proved to be
a useful measure for investigating functionally coupled intrinsic net-
works in the human brain (Biswal et al., 1995; Fox and Raichle, 2007).
Popular methods for analyzing resting-state data include seed-based
approaches, independent component analysis, and graph methods (Lee
et al., 2013). Graph theory analysis of resting-state fMRI (rsfMRI) data
offer powerful tools in characterizing and quantifying the subject
specific alterations in the large-scale functional brain network archi-
tecture (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Sporns
et al., 2004).

Graph theory-based approaches model the brain as a complex
network represented graphically as a collection of 'N' nodes denoting
neural elements (neurons or brain regions) that are linked by 'E' edges
representing functional connections. Two basic measures that are used
to characterize functional brain-networks in graph model are the
clustering coefficient (C), which quantifies the local connectivity as
an index of network segregation, and the characteristic path length (L),
which quantifies the global connectivity as an index of network
integration. A typical Erdos-Renyi type of random network is char-
acterized by low local segregation and high global integration, whereas
a non-random ordered network has high local segregation with low
global integration. A small world network is said to possess best of both
worlds, defined by high local segregation as well as high global
integration (Watts and Strogatz, 1998), providing an efficient tempor-
ospatial system at remarkably low wiring and energy costs (Bullmore
and Sporns, 2009). Moreover, such resting state functional brain graph
properties exhibit substantial heritability (Fornito et al., 2011; Glahn
et al., 2010; Smit et al., 2010, 2008) and have also found applications in
characterizing adolescent brain development (Sato et al., 2014; Vogel
et al., 2013). As such, these graph measures could be used to decipher
distinct neural signatures underlying the developmental vulnerability
to externalizing disorders and addictions.

The exact mechanisms underlying familial susceptibility to alcohol-
ism in alcohol-naïve HR offspring are not fully understood, and we
primarily hypothesized that the brain regions that are implicated in
task-related studies that examine familial vulnerability to alcoholism
(Herting et al., 2011; Rangaswamy et al., 2004; Wetherill et al., 2012)
may also show disrupted graph-theoretical measures, of segregation
and integration, during resting state. Given that the period from early
adolescence to young adulthood is a time of heightened risk for the
emergence of alcohol abuse, we additionally explored the age-related
differences in network segregation measures between the risk-groups,
using a cross-sectional approach. We also explored the relationship of
externalizing symptom profile and the density of alcoholism family
loading with measures of network segregation.

2. Methods

2.1. Participants

The study population consisted of 90 consenting male participants
−50 HR alcohol-naïve subjects from high-density AUD families and 40
LR alcohol-naïve control subjects (without a family history of alcohol or
other substance dependence, in first degree relatives), matched on age,
education, sex, handedness and socioeconomic status. The HR subjects
were ascertained by selecting alcohol-naïve male offspring of a treat-
ment-seeking alcohol dependent father from high-density AUD family,

recruited from the Centre for Addiction Medicine, National Institute of
Mental Health and Neurosciences (NIMHANS), a tertiary care neurop-
sychiatry hospital in Bangalore, India. A high-density AUD family was
identified when the affected father had an established diagnosis of
alcohol dependence (DSM-IV criteria) before the age of 25 (early-onset)
and had at least two further affected first-degree relatives (parents,
siblings and/or other children) with alcohol dependence. All such male
offspring (age ≤21 years) who fulfilled these criteria were enrolled.
The LR subjects were recruited through community advertisement in
local schools and hospitals. Subjects were excluded from the assess-
ments if they had any of the following during a detailed clinical
interview and physical examination: (1) recent substance use (i.e.,
positive breath-analyzer test and/or urine screen) or significant lifetime
alcohol or substance use (> 1 lifetime alcoholic drinks,> 2 cigarettes/
day and/or any other drug use); (2) presence of comorbid psychiatric
(exception of sub-syndromal externalizing spectrum), medical, neuro-
logical disorder or a history of lifetime or recent use of psychoactive or
neurological drugs; (3) presence of contraindications for MRI and (4)
lifetime history of head injury, seizures or neurosurgery. Written
informed consent and assent were obtained from all participants and
their parents in accordance with the NIMHANS Institutional Ethics
Review Board.

2.2. Clinical assessments

2.2.1. Assessment of participants
All HR and LR subjects were assessed on the semi-structured

assessment for genetics of alcoholism (SSAGA II), child, adolescent or
adult versions (Bucholz et al., 1994) as indicated to assess externalizing
symptoms specifically and to rule out any other syndromal psychiatric
diagnoses. This instrument has previously been translated and used in
relevant regional languages (Hindi and Kannada) (Benegal et al., 2007;
Venkatasubramanian et al., 2007). The items pertaining to the externa-
lizing spectrum [ADHD, ODD and CD diagnoses from child/adolescent
versions (age< 18y); and adult ADHD, ASPD diagnoses from adult
version (age 18y+)] were added and proportionally scaled to compute
a cross-diagnoses dimensional externalizing symptom score (ESS)
(Benegal et al., 2007; Dick et al., 2008; Venkatasubramanian et al.,
2007). The symptom counts were square-root transformed to approx-
imate normality and stabilize the variance as per a Box-Cox power
transformation analysis (optimal λ=0.52) (Snedecor and Cochran,
1989). The Annett's handedness questionnaire (Annett, 1967) was used
to ascertain that all subjects were right-handed.

2.2.2. Assessment of parents
The SSAGA II – Adult version was also used to assess alcohol and

related disorders as well as in screening out other psychiatric disorders
in parents. The Family Interview for Genetic Studies (FIGS) (Maxwell,
1992) was used with three or more adult informants in the family, to
document family loading (FL) for alcoholism and to screen for other
psychiatric disorders in first-degree relatives. FL was calculated as per
family patterns of alcoholism analyses criteria (Turner et al., 1993).
Parents and grandparents, with diagnosable AUDs, each contributed a
score of 1. Scores for aunts, uncles and siblings were the proportion of
AUDs in each of their sibships. The LR subjects had no relatives with a
history of AUDs. HR offspring with the mother having diagnosable
AUDs or use of alcohol during the index pregnancy were excluded, to
rule out fetal alcohol effects. Further, Lewis Murray obstetric complica-
tions scale (Lewis and Murray, 1987) was used for recall of the
pregnancy history from mother to rule out significant adverse obstetric
and perinatal events at birth as a confounding etiology for brain
developmental delays or deficits. Socioeconomic status (SES) was
ascertained using the revised Kuppuswamy's Socioeconomic Status
scale (Kumar et al., 2012). This scale provides a composite three-factor
SES index based on education and occupation of the head of the family
along with monthly income of the household.
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2.3. Image acquisition and data preprocessing

Blood-Oxygen-Level Dependent (BOLD) resting-state functional MRI
(rsfMRI) scans covering the whole brain were obtained with a Siemens
3T Skyra MRI (Erlangen Germany) using a 32 channel head coil. The
functional data consisted of 153 whole-brain gradient-echo echo-planar
images (EPI). The EPI sequence lasted for 5 min and participants were
asked to keep their eyes open during the session, lie as quietly as
possible, and avoid falling asleep. Both visual confirmation through a
video monitor during the scan sequence and a verbal confirmation
immediately following the scan sequence controlled for the accuracy of
adherence to these instructions. The scan parameters were as follows:
repetition time [TR]=2000 ms; echo time [TE]=30 ms; flip angle=78;
slice thickness=3.75 mm; slice order: descending; number of slices
=37; distance factor=25%; matrix=64*64*64 mm3, FOV=192*
192 mm2, voxel size=3*3*3.75 mm3. After obtaining the fMRI images,
a T1-weighted, three-dimensional, high-resolution imaging was per-
formed for anatomical co-registration and segmentation. The T1-
Magnetization-Prepared Rapid Acquisition with Gradient Echo
(MPRAGE) was acquired with TR=1900 ms, TE=2.43, TI=900 ms,
FOV=240*240 mm2 yielding 192 sagittal slices and a voxel size of
1*1*1 mm3.

The functional and structural MRI preprocessing were performed
using SPM8 (SPM8; Wellcome Department of Cognitive Neurology,
London) (http://www.fil.ion.ucl.ac.uk/spm/). The first three functional
images were discarded to allow for signal equilibration and to provide
time for habituation of the subject in the scanner. Preprocessing steps
included: realignment, slice-time correction, co-registration followed
by segmentation of the structural data for regressing out the white
matter and CSF effects and normalization to MNI152 standard space of
3x3x3mm3. The two groups did not differ in the amount of warping
required to fit the images to MNI space [t=0.54, p=0.60,
HR=26.6± 5.9%, LR=25.8±6.15%]. Because rsfMRI is sensitive to
micro head movements, following additional preprocessing steps were
applied to reduce motion artifacts. First, subjects with a maximum head
movement of> 1.5 mm (half a voxel's width) in any axis were excluded
[n=16 (HR=7, LR=9)]. Second, a frame-wise displacement (FD)
scalar was computed for each participant (FDi=|Δdix|+
|Δdiy|+|Δdiz|+|Δαi|+|Δβi|+|Δγi|), where Δdix=d(i−1)x−dix, and si-
milarly for the other five rigid body parameters [dix diy diz αi βi γi]) to
estimate the volume-by-volume micro-movements in the six rigid body
parameters (Power et al., 2012, 2015). Subjects with mean FD>0.25
mm were also excluded [n=4 (HR=3, LR=1)]. Thus, after excluding
these 20 subjects (10 in each of HR and LR group), the final sample
comprised of 70 subjects (HR=40, LR=30). The excluded subjects did
not differ in clinical or demographic variables when compared to the
final sample (HR: age: t=−0.6, p=0.5; education: t=−0.7, p=0.4;
SES: t=−0.9, p=0.3; FL: t=1.3, p=0.2; ESS: t=−0.5, p=0.6; LR:
age: t=0.5, p=0.6; education: t=0.6, p=0.4; SES: t=−0.1, p=0.9;
ESS: t=1.1, p=0.3). For the remaining 70 subjects, motion correction
was further carried out using Friston 24-parameter model regression (3
translations, 3 rotations, 3 translations and 3 rotations shifted 1 volume
before, and the 12 corresponding quadratic terms to control for non-
linear influences) on the unsmoothed normalized data (Friston et al.,
1996). Also, the data was temporally band-pass filtered (0.01–0.09 Hz)
to minimize the effects of low frequency drift and high frequency noise.

2.4. Brain network construction

The Dosenbach's 160 ROI (Dos-160) template was used to parcellate
the brain into functionally segregated ROIs that covered most of the
cortex (Supplement Table S1). The ROIs in this template were derived
based on prior meta-analytic studies of cognitive control, error proces-
sing, default mode, memory, language and sensorimotor functions
(Dosenbach et al., 2010). The nodes of functional networks were
extracted from rsfMRI data into 160 spheres (radius=5 mm) of the

Dos-160 template using MarsBaR toolbox® (http://marsbar.
sourceforge.net). The time series of an ROI was the average of all the
voxels in that ROI. The rsfMRI time series were correlated region by
region for each subject across the length of the time series (L=150),
and a 160*160 matrix was constructed for each subject by applying a
correlation threshold T (Fisher's r-to-z) to the Pearson's correlation
coefficients using a sparsity-based method. Popular techniques to
threshold brain network matrix include, sparsity-based and weight-
based methods. A weight based technique, often results in network
matrices with unequal connection density. This can be problematic
because graph-theoretical measures can vary as a function of the
number of edges in the network. Sparsity-based thresholding explicitly
addresses this problem. With this method, T is allowed to vary across
subjects to achieve a desired, fixed connection density.

2.5. Graph theory analysis

The graph metrics of the functional brain-networks were defined on
the basis of a 160*160 graph, G(N, E), where G is a non-zero subset
with nodes (N=ROIs) and edges (E=intermodal correlation coeffi-
cients, Fisher's Z values) as a measure of functional connectivity
between nodes calculated using the Brain Connectivity Toolbox
(http://www.brain-connectivity-toolbox.net/). To characterize the
graph properties of the functional brain-networks, following network
metrics were computed using MATLAB® scripts developed in-house.
The global metrics comprised: (1) small-world parameters including
clustering coefficient (Cp), characteristic path length (Lp), normalized
clustering coefficient (γ), normalized characteristic path length (λ) and
small-worldness (σ); and (2) network efficiency including global
efficiency (EGlob) and local efficiency (ELoc). The regional metrics
consisted of nodal normalized clustering coefficient (Ci) and efficiency
(ei). The definitions and the descriptions of the various network
parameter measured in the current study are summarized in Table 1
(Rubinov and Sporns, 2010).

To enable comparison of global network properties across groups
and participants, we used sparsity threshold to ensure the same number
of network edges for each participant by retaining only those connec-
tions whose edge strengths exceed a given threshold. To avoid biases
associated with using a single threshold, we determined a range of
sparsity according to the following criteria (Fornito et al., 2010; Watts
and Strogatz, 1998): (1) the average degree of all nodes of each network
was larger than 2*log (N). N is the number of nodes (here, N=160); (2)
The γ scalar of each threshold network was larger than 1.1 for all
subjects. By this procedure, the range of sparsity (0.06≤S ≤0.45, with
an increment of ΔS=0.01) was generated. This procedure guaranteed
that the thresholded networks were estimable for small-worldness and
also avoids excess network fragmentation at sparser thresholds (Fornito
et al., 2010).

2.6. Statistical analysis

The socio-demographic, behavioral and clinical data were tested for
normality using the Shapiro-Wilk test and appropriate statistics were
used. Statistical comparisons of the global graph metrics, between the
two risk groups, were done at both individual sparsity threshold and by
using an integrated network summary scalar. The integrated measure
provides a summary score over the entire sparsity range, making it
more sensitive at identifying brain network graph metric alterations
than a single sparsity threshold method (Achard and Bullmore, 2007;
He et al., 2009). For a given scalar, the integrated global metric was
defined as

∑X X k S S= ( ∆ )∆ ,glob
int

k=6

45

where ΔS is the sparsity interval of 0.01, and X(kΔS) is one of the global
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network metric (γ, λ, σ, EGlob and ELoc) at a sparsity of kΔS. Similarly,
the integrated nodal metric for a node i was defined as

∑Y i Y i k S S( ) = ( , ∆ )∆ ,nod
int

k=6

45

where Y(i,kΔS) represents the nodal parameter (Ci, ei) of the node i at a
sparsity of kΔS. Multiple comparisons correction was carried out for the
global and regional network measures using the False Discovery Rate
(FDR) set at 5% calculated using the Benjamini-Hochberg procedure
(http://go.warwick.ac.uk/tenichols/software/fdr/FDR.m). Further, the
brain regions showing significant differences in the two groups were
identified and rendered on a brain surface model using the BrainNet
Viewer (http://www.nitrc.org/projects/bnv/).

2.7. Relationship between graph-theoretical measures and clinical
parameters

To explore relationship between altered network measures and
clinical parameters, we used Pearson's correlation analysis. Also, a
hierarchical regression analysis was performed to evaluate if the
network alterations had unique incremental explanatory power in
predicting ESS over and above the demographic variables.
Standardized residuals and Cook's distance were examined to ensure
that there are no outliers and influential cases. Multicollinearity
between predictor variables was checked using a threshold for variance
inflation factor (VIF) set at< 1.5. To explore the influence of age, the
entire sample was subdivided into four groups (age ≤14 and>14
years, the median age of the entire sample was 14 years), namely
younger HR (n=23), younger LR (n=14), older HR (n=17) and older
LR (n=16). To examine the effect of AUD family loading (FL), the
entire group was further subdivided into three groups, FL=0 (n=30,
all LR), FL< 2.3 (FL score< 2.3 and ≠0, n=19) and FL>2.3 (FL
score> 2.3, n=21) (the median FL score in HR group was 2.32). A one-
way ANOVA was conducted among the age and FL sub-groups to
examine their specific influence on nodal clustering (Ci) values.
Additionally, we also examined the regression slopes of Ci for age
within both groups and for FL within HR group. Because these analyses
were exploratory in nature, we used a statistical significance level of
P<0.05 (uncorrected).

3. Results

3.1. Demographic comparisons

Seventy subjects were included in the final graph theory analyses of
resting state functional connectivity (40 h, 30LR). The clinical and
demographic characteristics of the samples are described in Table 2.
They were all right-handed, alcohol naïve, adolescent and young adults.
The groups did not differ in mean age (HR=14.3±3.7 years,
LR=14.9± 3.9 years), total gray matter volume, years of education,
and socioeconomic status. The HR group had a high FL of alcoholism
and significantly greater total externalizing scores. The head motion
parameters during the rsfMRI scan did not differ between the two
groups and showed no significant correlation with clinical parameters
or network metrics (ESS: r=0.01, p=0.93; FL: r=−0.01, p=0.92; γ:
r=−0.07, p=0.57; λ: r=0.08, p=0.49; σ: r=−0.08, p=0.5; ELoc:
r=−0.02, p=0.84; EGlob: r=−0.01, p=0.95).

Table 1
Mathematical definitions and description of the various network parameters of the graph G (N, E) with N nodes and E edges measured in the current study.

Network parameters Description Definition

Nodal clustering coefficient (Ci) It reflects the degree of local interconnectivity or segregation among the neighbors of a given node.
The Ci of a node is the ratio between the number of existing connections (E) and the number of all
possible connections between the nodes in the neighborhood.

C =i
2Ei

ki(ki −1)

Clustering coefficient (Cp
Abs) It is the average of the clustering coefficients over all nodes in the network. It quantifies the local

interconnectivity of a network and the degree to which regions cluster or segregate.
C = ∑ Cp

Abs 1
n i∈N i

Characteristic path length (Lp
Abs) It is the shortest path length required to link two nodes ( i, j), averaged over all pairs of nodes. It is

measured as the mean harmonic distance between all possible pairs of nodes and indicates the level of
network integration.

L = ∑ ∑ min{L }i G N i j Np
Abs 1

n ∈
1
− 1 ≠ ∈ i,j

Normalized clustering coefficient
(γ)

It is the ratio of the absolute clustering coefficient to averaged clustering coefficient of 1000 matched
random networks that keep the same number of nodes, edges, and degree distributions as the real
networks for each sparsity level to obtain a difference distribution. A high γ is characterized by
densely connected local clusters indicates a higher level of global network segregation.

γ =
CpAbs

CpRand

Normalized characteristic path
length (λ)

It is the ratio of the absolute characteristic path length to the averaged characteristic path length of
1000 matched random networks that keep the same number of nodes, edges, and degree
distributions. A network with a low λ is characterized by short distances between any two nodes and
indicates a higher level of global network integration.

λ =
LpAbs

LpRand

Small Worldness (σ) It is the ratio between network segregation (γ) and network integration (λ). Small world networks are
characterized by high normalized clustering coefficient (γ>1) and low normalized characteristic
path length (λ ≈ 1) compared to random networks, such that, σ>1.

σ = γ
λ

Global efficiency (EGlob) It is the average of the inverse of the shortest path lengths in a network and indicates the global
efficiency of parallel information transfer in the network.

E (G) = ∑iGlob
1

N(N − 1) ≠j∈G
1
dij

Local efficiency (ELoc) It is the inverse of the average shortest path connecting the given node with all other nodes and
indicates the efficiency of a given node in communicating with the rest of the brain.

E (G) = ∑ E (G )Loc
1
N i∈G Glob i

Table 2
Clinical and demographic profile.

HRa

(Mean±SD)
(n=40)

LRb

(Mean± SD)
(n=30)

P value
(2-tailed)

Age (years)c 14.25±3.71 14.90± 3.98 0.49
Education (years) 8.57± 2.92 8.70± 3.49 0.87
Socioeconomic statusd 11.22±3.30 11.57± 1.99 0.59
Head displacement (mm)
Maximum 0.55± 0.34 0.56± 0.28 0.85
Framewise 0.14± 0.04 0.13± 0.04 0.32
Total gray matter volume (ml) 732.38± 62.74 719.75± 50.33 0.39
Externalizing symptom scoree 3.86± 0.59 1.89± 0.73 < 0.001
AUD family loadingf 2.26± 0.51 0 –

a High Risk offsprings from multiplex AUD families.
b Low Risk healthy controls from community families.
c Age range was 8–21 years in both HR and LR groups.
d Three-factor socioeconomic index of Kuppuswamy for Indian urban families, revised

2012.
e Square-root transformed summative counts of externalizing symptoms.
f Family loading of Alcohol Use Disorders (AUD) calculated as per Turner et al. (1993).
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3.2. Differences in global network parameters

The whole-brain functional networks for both groups showed
typical features of small-world properties (γ>1 and λ≈1). However,
compared with matched LR controls, the HR offspring exhibited
significantly reduced normalized clustering coefficient (γ), small-world-
ness (σ) and normalized local efficiency with comparable normalized
characteristic path length (λ) and normalized global efficiency over a
wide range of sparsity thresholds (γ: 0.07≤S ≤0.21; σ: 0.06≤S≤0.24;
ELoc: 0.06≤S≤0.16). To address the potential confounds including age,
education, SES, head motion and total gray matter volumes, the
statistical comparisons of the integrated global parameters were done
after regressing out these confounds. Having accounted for their
influence, we still found a significant reduction in γ, σ and ELoc [γ: F
(1,63)=7.98, p=0.006, η2=0.112; σ: F(1,63)=8.74, p=0.004,
η2=0.122; ELoc: F(1,63)=9.17, p=0.004, η2=0.127] (See Fig. 1: a–f).

3.3. Differences in regional nodal parameters

The brain regions that demonstrated significant decreases in the
normalized nodal clustering coefficient (Ci

int) in HR offspring were
lateralized to right cerebral (sub-regions of frontoparietal, cingulo-
opercular, sensorimotor networks) and left cerebellar hemispheres (See
Table 3 and Fig. 2). There were no region which showed increased Ci

int

values in HR group. For the nodal efficiency e( )i
int measures, there were

no significant between group differences that survived multiple com-
parisons correction.

3.4. Relationship between small-world connectivity differences and clinical
parameters

Bivariate correlations revealed a significant negative correlation of

the ESS with the normalized nodal clustering coefficient values at right
dlPFC (r=−0.469, p<0.001), right IPL (r=−0.375, p=0.001), right
dACC (r=−0.373, p=0.001), right parietal sensorimotor cortex
(r=−0.379, p=0.001), and left inferior cerebellum (r=−0.398,
p=0.001) indicating that reduced functional segregation in these brain
regions was associated with greater severity of externalizing symptoms
across the groups (Fig. 3A-E). As ESS had a significant negative
correlation with age (r=−0.350, p=0.003), a hierarchical regression
analysis was performed to evaluate if each of the network alterations
had unique incremental explanatory power in predicting the ESS over
and above the demographic variables. The order of entry of predictor
variables and the results of the five models are presented in Table 4.
The first model (demographic variables) was significant F(2, 67)=4.82,
p=0.011, R2=0.126. Further, the second (frontoparietal), third (cin-
gulo-opercular) and fifth (cerebellar) models exhibited significant
independent incremental value in the overall predictability of the
model over and above the demographic variables, F(4,65)=9.02,
p=<0.001; F(5,64)=9.58, p=<0.001 and F(7,62)=8.44,
p=<0.001 respectively. The final model significantly accounted for
48.8% (Model 1=12.6%; Models 2–5=36.2%) variance in the ESS. The
standardized β-coefficient of all the predictors indicated a negative
effect on ESS.

To examine the effects of age, a general linear model (ANCOVA)
with age, group, and age × group as regressors of the nodal clustering
coefficient value (Ci

Avg) was examined. Because of the exploratory
nature of these analyses, we used the average nodal clustering
coefficient of the significant nodes as the dependent variable instead
of fitting a linear model on each node separately. For Ci

Avg, age×group
interaction was significant F(1,66)=6.32, p=0.014, suggesting signifi-
cantly different regression slopes of age between the groups. To
illustrate this interaction, Ci

Avgwas regressed on age within each group
and slopes were tested to determine if they differed from zero. The LR

Fig. 1. Graphical representation of the whole-brain small-world network results in high-risk (HR) and low-risk (LR) groups. The graphs (a-e) show comparison of mean and standard
errors for (a) Normalized clustering coefficient (γ); (b) Normalized Characteristic Path length (λ); (c) Small-worldness (σ); (d) Normalized Local Efficiency (ELoc); (e) Normalized Global
Efficiency (EGlob) between the HR (Red line) and LR (Blue line) groups over the network sparsity threshold S (0.06≤S ≤0.45, with increment of 0.01). Shaded areas indicate the range of
sparsity thresholds where between-group differences were statistically significant (p< 0.05, FDR). (f) The bar plots demonstrate between-group differences in the integrated global
parameters. The symbol (*) indicates significant reduction in HR (Red) group compared to LR (Blue) group (p=0.006, p=0.004, p=0.004 for γ, σ and ELoc respectively). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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subjects in fact exhibited a significantly positive relationship F(1,28)
=9.71, p=0.004, R2=0.257, with nodal clustering increasing with age.
In contrast, for the HR subjects the regression slope did not differ from
zero F(1,38)=0.10, p=0.75, R2=0.003, remaining approximately the
same with age (Fig. 4A). To illustrate the main effect of age on Ci

Avg, we
subdivided the HR and LR groups using median split (median
age=14y) and conducted a one-way between-group ANOVA among
the four groups. This yielded a statistically significant effect F(3,66)
=19.02, p<0.001, η2=0.464. Further, a post-hoc Tukey test revealed
that the HR offspring had significantly reduced clustering in both the
younger (M1=1.25± 0.08, M2=1.40±0.11, p<0.001) and older
(M1=1.26±0.09, M2=1.43±0.09, p<0.001) groups. Interestingly,
younger subjects in the LR group had significantly better clustering
than even subjects in the older HR group (p<0.001) (Fig. 4B).

The regression of Ci
Avgon FL score within HR group revealed a

significant negative relationship F(1,38)=8.83, p=0.005, R2=0.189,
with nodal clustering reducing with greater FL score (Fig. 4C). To
further illustrate the graded risk across the HR and LR groups, we
subdivided the HR group using median split (median FL=2.3) and
conducted a one-way between-group ANOVA among the three groups.
This yeilded a significant effect F(2,67)=33.38, p<0.001, η2=0.499.
A post-hoc Tukey test revealed significantly reduced clustering in HR
groups [FL< 2.3 (1.29±0.08, p<0.001) and FL>2.3 (1.22± 0.06,
p<0.001)] compared to the LR group (FL=0) (1.42±0.09) group.
Also, the FL>2.3 group had significantly reduced clustering compared
to the FL< 2.3 group (p=0.016) (Fig. 4D).

4. Discussion

The current study utilized a novel application of graph theory
analysis of resting state functional networks to assess the familial risk
for alcoholism and mapped them with the phenotypic manifestation of
externalizing behaviors. Our results suggest that the functional brain-
networks of HR offspring are characterized by disrupted graph-theore-
tical properties at both the global and regional levels. Moreover, as
these abnormalities in the resting state functional network architecture
predate any significant alcohol use, they represent premorbid familial
vulnerability for alcoholism and are not confounded by alcohol-induced
neurotoxicity.

4.1. Small-world characteristics of HR offspring

The human brain is a complex network with various important
topological attributes including small-worldness, and high efficiency at
low wiring cost (Bullmore and Sporns, 2009; Sporns et al., 2004). The
HR offspring from high-density alcoholism families, in this study,
exhibited significantly reduced clustering, small-worldness and local
efficiency but comparable path lengths and global efficiency relative to
matched LR individuals with no family history of alcohol or drug
dependence. The reduction in clustering assumed significance in

frontoparietal, cingulo-opercular, sensorimotor and cerebellar net-
works.

The aberrant resting brain graph properties observed in HR off-
spring indicate a disruption of the balance between the measures of
functional segregation and integration in the energy-efficient organiza-
tion of the human functional brain-networks. Specifically, the reduction
in clustering co-efficient values (functional segregation) in HR offspring
suggest a limited ability of their brain-networks, to segregate informa-
tion flow for specialized processing regionally and also within the
whole-brain network. Further, as the characteristic path length values
(functional integration among multiple, spatially distributed brain
regions) was comparable between the groups, the reduction in the
small worldness was predominantly due to the reduction of local
segregation in HR subjects. Also, the HR subjects demonstrated reduced
local network efficiency despite preserved global efficiency. Consistent
with studies that have used large scale network analysis of white matter
tracts in typically developing subjects (Chen et al., 2013), these
functional differences could be reflective of underlying dynamic
differences in trajectories of cortical gray and white matter maturation.
This pattern of disruption in the network architecture of the HR
offspring, with impaired functional segregation (clustering) but spared
functional integration (path lengths), represents a shift away from the
optimum small-world network organization.

4.2. Disrupted small-world characteristics in manifestation of externalizing
behaviors

Externalizing behaviors are considered strong risk factors for early-
onset problem alcohol use (Kuperman et al., 2005; McGue et al., 2001).
Consistent with substantial previous literature (Benegal et al., 2007;
Hussong et al., 2008, 2007; Venkatasubramanian et al., 2007), the HR
offspring in the present study had significantly higher scores of
externalizing symptoms than the LR group. Importantly, there was a
strong inverse correlation between the regional clustering coefficient
values across various networks and the expressed externalizing beha-
viors of the subjects. Together with age, these network abnormalities
incrementally predicted around 49% variance in scores of externalizing
symptoms. Several brain regions, including right dlPFC-IPL, right
dACC, right sensory parietal cortex and left inferior cerebellum,
demonstrated reduced clustering coefficient values indicating reduced
ability to segregate and specialize information flow efficiently in these
regions. Functional abnormalities in these brain regions have pre-
viously been reported in seed based functional connectivity studies
examining familial risk for alcoholism (Herting et al., 2011; Spadoni
et al., 2013; Wetherill et al., 2012) as well as in graph theory based
studies of externalizing disorders like ADHD (Cortese et al., 2012; Fair
et al., 2012; Sripada et al., 2014).

The brain regions, implicated here, have high functional relevance
to the externalizing diatheses and the vulnerability to addictions seen in
HR children. Specifically, the abnormalities in frontoparietal and

Table 3
Brain regions that showed significant decrease in the normalized clustering coefficient in HR when compared to LR.

Brain regions Hemisphere MNI co-ordinates T P*

X Y Z

Fronto-parietal network
Dorsolateral Pre-Frontal Cortex (dlPFC) R 46 28 31 −4.55 < 0.0001
Inferior Parietal Lobule (IPL) R 44 −52 47 −3.70 0.00069
Cingulo-opercular network
Dorsal Anterior Cingulate (dACC) R 9 20 34 −3.60 0.00068
Sensorimotor network
Parietal Gyrus R 18 −27 62 −3.88 0.00021
Cerebellar network
Inferior Cerebellum L −34 −67 −29 −3.69 0.00035

* P-value corrected for multiple comparisons with false discovery rate< 0.05.
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cingulo-opercular networks, which represent a dual-system for top-
down executive control, are critical (Dosenbach et al., 2007). The
dorsal anterior cingulate cortex and cingulo-opercular system provide
stable control (set-maintenance) during task-performance (Dosenbach

et al., 2006), by continuously monitoring for errors. On the other hand,
the dorsolateral prefrontal cortex, and the frontoparietal system are
triggered by error cues and exert adaptive control by rapidly resolving
such errors (MacDonald et al., 2000). Defects in these dual-mechanisms

Fig. 2. Surface visualization of the brain regions showing significant reductions in the integrated nodal clustering coefficient values (γ) in high-risk (HR) offspring when compared to low-
risk (LR) group. The bar plots demonstrate the γ values for the two groups at different brain regions and the symbol (*) indicates significant reduction (p-value< 0.05, FDR corrected).
Nodal size is proportional to the T-value and the color map is indicative of the Cohen's d value. All regions had Cohen's d value> 0.8 indicating large effect sizes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

B. Holla et al. Psychiatry Research: Neuroimaging 265 (2017) 54–64

60



that provide stability and adaptability, may ultimately result in an
apparent failure to recognize and learn from mistakes (Hauser et al.,
2014). Additionally, the cerebellar network implicated in this study, is
known to interact with this dual-system in mediating the top-down
control (Dosenbach et al., 2008). Our findings suggest that even prior to
developing alcohol dependence or addiction, youth with familial
history of alcoholism already exhibit deficits in functional networks
relevant for top-down executive control that is similar to those seen in
AUD adults (Beck et al., 2012). Although these network alterations
could be a function of both heritable and family environmental factors

that exist in high-density AUD families, it could explain the heightened
risk of formation of drug habit in HR offspring and the subsequent
inability to break an established drug habit (Bechara et al., 2002).

4.3. Small-world characteristics within age and AUD family-loading groups

Our results indicate significant and robust differences in functional
network segregation measures for both the younger and older age
groups, presumably reflecting aberrant maturation of the functional
network architecture in the HR offsprings. Additionally, the younger LR
group already exhibited significantly better clustering than the older
HR group, indicating severe developmental differences in the ability of
the affected brain regions for segregated neural processing. Hence, in
light of the previous electrophysiological (Hill et al., 1999), neuropsy-
chological (Corral et al., 2003) and neuroimaging (Spadoni et al., 2013)
studies in HR offsprings that report developmental delays, our findings
could further explain the basis of heightened developmental vulner-
ability in these individuals, indicating that the protracted neuromatura-
tion of functional networks could underlie externalizing temperaments
and disorders, and be a potential mechanism for early-onset drug and
alcohol problems.

Furthermore, our results also indicated that the density of FL for
alcoholism was associated with progressive reduction in functional
network segregation measures. This is consistent with previous studies
examining alcoholism family history density (Cservenka et al., 2014,
2015b), suggesting that the HR offspring carry the burden of familial
susceptibility, genetic or otherwise, as functional network abnormal-
ities proportional to the degree of their familial loading.

4.4. Lateralization of the small-world deficits

The deficits in functional segregation measures, at brain region that
are involved in cognitive control and attention processing, were

Fig. 3. Scatter plots of the normalized nodal clustering coefficient values (γ) in high-risk (HR) and low-risk (LR) groups changing with the externalizing symptom score (ESS) (square-root
transformed) at (A) dorsolateral Pre-Frontal Cortex (dlPFC), (B) Inferior Parietal Lobule (IPL), (C) dorsal Anterior Cingulate (dACC), (D) parietal gyrus, and (E) left inferior cerebellum.
Subjects with greater externalizing symptoms exhibited significantly reduced clustering co-efficient values, a measure of functional segregation.

Table 4
Hierarchical Regression Models Predicting Externalizing Symptom Score across the
groups (n=70).

Externalizing Symptom Scorea

Predictor variable R2 ΔR2 p-value
(F change)

Beta p-value
(Beta)

Step 1: Demographic variables 0.126 0.126 0.011
Age −0.295 0.004
SES −0.056 0.549
Step 2: Fronto-Parietal Network 0.357 0.231 <0.001
dlPFC −0.282 0.017
IPL −0.071 0.521
Step 3: Cingulo-Opercular

Network
0.428 0.071 0.006

dACC −0.214 0.031
Step 4: Sensorimotor network 0.453 0.024 0.099
Parietal Gyrus −0.152 0.127
Step 5: Cerebellar network 0.488 0.035 0.042
Inferior Cerebellum −0.206 0.042

a Square-root transformed summative counts of externalizing symptoms. dlPFC,
Dorsolateral Pre-Frontal Cortex; IPL, Inferior Parietal Lobule; dACC, Dorsal Anterior
Cingulate; Significant results are highlighted in bold text; Beta indicates standardized
regression coefficients with all the predictors entered.
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lateralized to the right cerebral and contra-lateral cerebellar hemi-
spheres. Given the dominance of right hemisphere for inhibitory control
in healthy individuals (Aron et al., 2004; Chikazoe et al., 2007; Garavan
et al., 1999) and the fact that right lateralization of abnormalities is a
fairly consistent finding in ADHD with resting state (Sripada et al.,
2014) and task-related (Depue et al., 2010; Smith et al., 2008) fMRI
studies, the lateralization of deficits in our HR sample is significant.
Further, an independent large sample of HR offspring with high
impulsivity also demonstrated disruptions in orbitofrontal cortex
(OFC) laterality with reduced right OFC volume (Hill et al., 2009).
Hence, the right lateralized deficits in HR offspring (with externalizing
diatheses) could reflect subtle precursors of the bilateral deficits that
are seen in adults with AUDs (Beck et al., 2012).

4.5. Disruption in small world architecture – a quantitative endophenotype
in the risk to develop alcoholism?

The small-world measures of the resting state functional networks
have strong genetic underpinnings and are substantially heritable.
(Fornito et al., 2011; Glahn et al., 2010; Smit et al., 2008). Additionally,
they also exhibit high phenotypic and genetic stability over develop-
mental age span (Smit et al., 2010). Although the evidence is
preliminary, the small world disruptions that were closely linked to
the expressed externalizing behaviors and AUD FL density, may be
considered as a resting brain network correlate for vulnerability to
alcoholism. Future studies should attempt at further characterizing and
validating this as a potential endophenotypic marker. Moreover, such
individualized risk predictors are vital for any prevention and inter-

vention strategies in at-risk vulnerable population (Hill and O'Brien,
2015).

4.6. Limitations

While this is the first study to examine the small-world architecture
of the resting brain in high-risk offspring using graph-theoretical
approach, it has certain limitations that should be considered when
interpreting the results. First, since this study was a cross-sectional
design, it is unclear if the developmental differences that were found
across the age groups are indicative of a developmental delay or more
severe deficits. Longitudinal investigations in subjects carefully
matched for puberty, age and gender will be crucial to understand
how the age mediates the functional network maturation in HR
offspring. Second, as the rsfMRI based assessments, including those
based on graph theoretical analysis, are highly sensitive to head motion
we employed a strict threshold for excessive head movements that lead
to exclusion of 20 subjects (10 HR and 10 LR). Third, we examined only
male offspring of treatment-seeking AUD father. Although, this sam-
pling strategy ensured high density of AUDs in the targeted families,
this might limit the generalizability across the gender and non-treat-
ment seeking community families. Fourth, although we explored the
relationship of externalizing symptoms with graph-theoretical mea-
sures, further examination of its relationship with neuro-cognitive tests
are warranted. Finally, although several converging lines of evidence
indicate that the functional brain networks in humans do have a small
world architecture (Achard and Bullmore, 2007; Bullmore and Sporns,
2009; Salvador et al., 2005), it is still possible that at a structural

Fig. 4. (A) Regression slopes of the average clustering coefficient value (Ci
Avg) of the significant nodes for high-risk (HR) and low-risk (LR) groups over the age range studied, (B)

Comparison of Ci
Avgacross age groups, (C) Regression slopes of Ci

Avg for HR group with Family Loading (FL) scores, and (D) Comparison of Ci
Avgacross AUD FL groups. The symbols

(**< 0.001, *<0.05) indicates significant difference in post-hoc Tukey Test. The functional segregation in HR subjects showed a relatively flat progression from childhood to young
adulthood, and was proportional to family loading of AUDs.
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cellular level the brain might exhibit large-world properties (Hilgetag
and Goulas, 2016). In the current study, technical factors that could
artefactually affect the propensity for small-worldness (Hilgetag and
Goulas, 2016), were controlled by adopting a spatially coarse-grained
parcellation scheme using Dosenbach's functional atlas which uses
representative ROI spheres of uniform size. Also, while deriving the
binarized connectivity matrices, only the top S% of the strong links over
sparsity range were used instead of a single threshold, thus reducing the
erroneous influence of weak connections.

4.7. Summary

Externalizing behaviors and temperaments, which increase vulner-
ability to AUDs, appear to be modulated by developmentally relevant
disruptions in small-world architecture of the resting brain in HR
offspring. Specifically, several brain regions sub-serving cognitive,
affective, and sensorimotor processes, demonstrated significantly re-
duced functional segregation indicating reduced ability to segregate
and specialize information flow efficiently in these regions, which may
ultimately contribute to their addiction vulnerability. Our findings add
to the nascent literature regarding the role of characterizing resting
brain network alterations underlying familial vulnerability to alcohol-
ism in at-risk population. Detection and estimation of these alterations
could be vital in understanding the pathobiology of externalizing
behaviors as well as familial risk for early-onset alcoholism.

Authors contribution

VB, RDB and GVS were responsible for the study concept and
design. VB, RDB, GVS and BH, oversaw data collection. RDB and BB
oversaw data analysis. BH and RP conducted the data analysis. VB,
RDB, GVS, BB and BH assisted with interpretation of findings. BH
drafted the manuscript. VB, RDB, GVS, BB and RP provided critical
revision of the manuscript for important intellectual content. All
authors critically reviewed content and approved final version for
publication.

Conflict of interest

None of the authors have any financial disclosure to make or have
any conflict of interest.

Acknowledgments

This study was supported by the Centre for Addiction Medicine,
Department of Psychiatry, NIMHANS. The Wellcome Trust/DBT India
Alliance supported authors BH (14/1/10012) and GVS (500236/Z/11/
Z).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.pscychresns.2017.05.
002.

References

Achard, S., Bullmore, E., 2007. Efficiency and cost of economical brain functional
networks. PLoS Comput. Biol. 3, e17.

Acheson, A., Robinson, J.L., Glahn, D.C., Lovallo, W.R., Fox, P.T., 2009. Differential
activation of the anterior cingulate cortex and caudate nucleus during a gambling
simulation in persons with a family history of alcoholism: studies from the Oklahoma
Family Health Patterns Project. Drug Alcohol Depend. 100, 17–23.

Annett, M., 1967. The binomial distribution of right, mixed and left handedness. Q. J.
Exp. Psychol. 19, 327–333.

Aron, A.R., Robbins, T.W., Poldrack, R.A., 2004. Inhibition and the right inferior frontal
cortex. Trends Cogn. Sci. 8, 170–177.

Bechara, A., Dolan, S., Hindes, A., 2002. Decision-making and addiction (part II): myopia

for the future or hypersensitivity to reward? Neuropsychologia 40, 1690–1705.
Beck, A., Wustenberg, T., Genauck, A., Wrase, J., Schlagenhauf, F., Smolka, M.N., Mann,

K., Heinz, A., 2012. Effect of brain structure, brain function, and brain connectivity
on relapse in alcohol-dependent patients. Arch. General. Psychiatry 69, 842–852.

Benegal, V., Jain, S., Subbukrishna, D.K., Channabasavanna, S.M., 1995. P300 amplitudes
vary inversely with continuum of risk in first degree male relatives of alcoholics.
Psychiatr. Genet. 5, 149–156.

Benegal, V., Antony, G., Venkatasubramanian, G., Jayakumar, P.N., 2007. Gray matter
volume abnormalities and externalizing symptoms in subjects at high risk for alcohol
dependence. Addict. Biol. 12, 122–132.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34,
537–541.

Bornovalova, M.A., Hicks, B.M., Iacono, W.G., McGue, M., 2010. Familial transmission
and heritability of childhood disruptive disorders. Am. J. Psychiatry 167, 1066–1074.

Brook, D.W., Brook, J.S., Zhang, C., Koppel, J., 2010. Association between attention-
deficit/hyperactivity disorder in adolescence and substance use disorders in
adulthood. Arch. Pediatr. Adolesc. Med. 164, 930–934.

Bucholz, K.K., Cadoret, R., Cloninger, C.R., Dinwiddie, S.H., Hesselbrock, V.M.,
Nurnberger Jr., J.I., Reich, T., Schmidt, I., Schuckit, M.A., 1994. A new, semi-
structured psychiatric interview for use in genetic linkage studies: a report on the
reliability of the SSAGA. J. Stud. Alcohol 55, 149–158.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

Chen, Z., Liu, M., Gross, D.W., Beaulieu, C., 2013. Graph theoretical analysis of
developmental patterns of the white matter network. Front. Hum. Neurosci. 7, 716.

Chikazoe, J., Konishi, S., Asari, T., Jimura, K., Miyashita, Y., 2007. Activation of right
inferior frontal gyrus during response inhibition across response modalities. J. Cogn.
Neurosci. 19, 69–80.

Cloninger, C.R., Sigvardsson, S., Reich, T., Bohman, M., 1986. Inheritance of risk to
develop alcoholism. NIDA Res. Monogr. 66, 86–96.

Corral, M., Holguin, S.R., Cadaveira, F., 2003. Neuropsychological characteristics of
young children from high-density alcoholism families: a three-year follow-up. J. Stud.
Alcohol 64, 195–199.

Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M.P., Castellanos,
F.X., 2012. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI
studies. Am. J. Psychiatry 169, 1038–1055.

Cotton, N.S., 1979. The familial incidence of alcoholism: a review. J. Stud. Alcohol 40,
89–116.

Cservenka, A., 2016. Neurobiological phenotypes associated with a family history of
alcoholism. Drug Alcohol Depend. 158, 8–21.

Cservenka, A., Casimo, K., Fair, D.A., Nagel, B.J., 2014. Resting state functional
connectivity of the nucleus accumbens in youth with a family history of alcoholism.
Psychiatry Res. 221, 210–219.

Cservenka, A., Alarcon, G., Jones, S.A., Nagel, B.J., 2015a. Advances in human
neuroconnectivity research: applications for understanding familial history risk for
alcoholism. Alcohol Res.: Curr. Rev. 37, 89–95.

Cservenka, A., Gillespie, A.J., Michael, P.G., Nagel, B.J., 2015b. Family history density of
alcoholism relates to left nucleus accumbens volume in adolescent girls. J. Stud.
Alcohol Drugs 76, 47–56.

Depue, B.E., Burgess, G.C., Willcutt, E.G., Ruzic, L., Banich, M.T., 2010. Inhibitory control
of memory retrieval and motor processing associated with the right lateral prefrontal
cortex: evidence from deficits in individuals with ADHD. Neuropsychologia 48,
3909–3917.

Dick, D.M., Aliev, F., Wang, J.C., Grucza, R.A., Schuckit, M., Kuperman, S., Kramer, J.,
Hinrichs, A., Bertelsen, S., Budde, J.P., Hesselbrock, V., Porjesz, B., Edenberg, H.J.,
Bierut, L.J., Goate, A., 2008. Using dimensional models of externalizing
psychopathology to aid in gene identification. Arch. General. Psychiatry 65,
310–318.

Dosenbach, N.U., Fair, D.A., Cohen, A.L., Schlaggar, B.L., Petersen, S.E., 2008. A dual-
networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105.

Dosenbach, N.U., Visscher, K.M., Palmer, E.D., Miezin, F.M., Wenger, K.K., Kang, H.C.,
Burgund, E.D., Grimes, A.L., Schlaggar, B.L., Petersen, S.E., 2006. A core system for
the implementation of task sets. Neuron 50, 799–812.

Dosenbach, N.U., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, R.A.,
Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E., Schlaggar, B.L., Petersen, S.E.,
2007. Distinct brain networks for adaptive and stable task control in humans. Proc.
Natl. Acad. Sci. USA 104, 11073–11078.

Dosenbach, N.U., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., Nelson,
S.M., Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, J.W.,
Feczko, E., Coalson, R.S., Pruett Jr., J.R., Barch, D.M., Petersen, S.E., Schlaggar, B.L.,
2010. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361.

Fair, D.A., Nigg, J.T., Iyer, S., Bathula, D., Mills, K.L., Dosenbach, N.U., Schlaggar, B.L.,
Mennes, M., Gutman, D., Bangaru, S., Buitelaar, J.K., Dickstein, D.P., Di Martino, A.,
Kennedy, D.N., Kelly, C., Luna, B., Schweitzer, J.B., Velanova, K., Wang, Y.F.,
Mostofsky, S., Castellanos, F.X., Milham, M.P., 2012. Distinct neural signatures
detected for ADHD subtypes after controlling for micro-movements in resting state
functional connectivity MRI data. Front. Syst. Neurosci. 6, 80.

Fornito, A., Zalesky, A., Bullmore, E.T., 2010. Network scaling effects in graph analytic
studies of human resting-state FMRI data. Front. Syst. Neurosci. 4, 22.

Fornito, A., Zalesky, A., Bassett, D.S., Meunier, D., Ellison-Wright, I., Yucel, M., Wood,
S.J., Shaw, K., O'Connor, J., Nertney, D., Mowry, B.J., Pantelis, C., Bullmore, E.T.,
2011. Genetic influences on cost-efficient organization of human cortical functional
networks. J. Neurosci.: Off. J. Soc. Neurosci. 31, 3261–3270.

Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711.

B. Holla et al. Psychiatry Research: Neuroimaging 265 (2017) 54–64

63

http://dx.doi.org/10.1016/j.pscychresns.2017.05.002
http://dx.doi.org/10.1016/j.pscychresns.2017.05.002
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref1
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref1
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref2
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref2
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref2
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref2
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref3
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref3
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref4
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref4
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref5
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref5
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref6
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref6
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref6
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref7
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref7
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref7
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref8
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref8
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref8
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref9
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref9
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref9
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref10
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref10
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref11
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref11
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref11
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref12
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref12
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref12
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref12
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref13
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref13
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref14
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref14
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref15
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref15
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref15
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref16
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref16
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref17
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref17
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref17
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref18
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref18
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref18
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref19
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref19
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref20
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref20
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref21
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref21
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref21
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref22
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref22
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref22
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref23
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref23
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref23
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref24
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref24
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref24
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref24
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref25
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref25
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref25
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref25
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref25
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref26
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref26
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref27
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref27
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref27
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref28
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref28
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref28
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref28
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref29
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref29
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref29
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref29
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref30
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref30
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref30
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref30
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref30
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref30
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref31
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref31
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref32
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref32
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref32
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref32
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref33
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref33


Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R., 1996. Movement-
related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355.

Garavan, H., Ross, T.J., Stein, E.A., 1999. Right hemispheric dominance of inhibitory
control: an event-related functional MRI study. Proc. Natl. Acad. Sci. USA 96,
8301–8306.

Gierski, F., Hubsch, B., Stefaniak, N., Benzerouk, F., Cuervo-Lombard, C., Bera-Potelle, C.,
Cohen, R., Kahn, J.P., Limosin, F., 2013. Executive functions in adult offspring of
alcohol-dependent probands: toward a cognitive endophenotype? Alcohol., Clin. Exp.
Res. 37 (Suppl 1), E356–E363.

Glahn, D.C., Winkler, A.M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M.A.,
Curran, J.C., Olvera, R.L., Laird, A.R., Smith, S.M., Beckmann, C.F., Fox, P.T.,
Blangero, J., 2010. Genetic control over the resting brain. Proc. Natl. Acad. Sci. USA
107, 1223–1228.

Goodwin, D.W., 1979. Alcoholism and heredity. A review and hypothesis. Arch. Gen.
Psychiatry 36, 57–61.

Hauser, T.U., Iannaccone, R., Ball, J., Mathys, C., Brandeis, D., Walitza, S., Brem, S., 2014.
Role of the medial prefrontal cortex in impaired decision making in juvenile
attention-deficit/hyperactivity disorder. JAMA Psychiatry 71, 1165–1173.

He, Y., Dagher, A., Chen, Z., Charil, A., Zijdenbos, A., Worsley, K., Evans, A., 2009.
Impaired small-world efficiency in structural cortical networks in multiple sclerosis
associated with white matter lesion load. Brain: J. Neurol. 132, 3366–3379.

Herting, M.M., Fair, D., Nagel, B.J., 2011. Altered fronto-cerebellar connectivity in
alcohol-naive youth with a family history of alcoholism. NeuroImage 54, 2582–2589.

Hicks, B.M., Foster, K.T., Iacono, W.G., McGue, M., 2013. Genetic and environmental
influences on the familial transmission of externalizing disorders in adoptive and
twin offspring. JAMA Psychiatry 70, 1076–1083.

Hilgetag, C.C., Goulas, A., 2016. Is the brain really a small-world network? Brain Struct.
Funct. 221, 2361–2366.

Hill, S.Y., O'Brien, J., 2015. Psychological and neurobiological precursors of alcohol use
disorders in high risk youth. Curr. Addict. Rep. 2, 104–113.

Hill, S.Y., Wang, S., Carter, H., McDermott, M.D., Zezza, N., Stiffler, S., 2013. Amygdala
volume in offspring from multiplex for alcohol dependence families: the moderating
influence of childhood environment and 5-HTTLPR variation. J. Alcohol. Drug
Depend.(Suppl. 1).

Hill, S.Y., Shen, S., Locke, J., Steinhauer, S.R., Konicky, C., Lowers, L., Connolly, J., 1999.
Developmental delay in P300 production in children at high risk for developing
alcohol-related disorders. Biol. Psychiatry 46, 970–981.

Hill, S.Y., Wang, S., Carter, H., Tessner, K., Holmes, B., McDermott, M., Zezza, N., Stiffler,
S., 2011. Cerebellum volume in high-risk offspring from multiplex alcohol
dependence families: association with allelic variation in GABRA2 and BDNF.
Psychiatry Res. 194, 304–313.

Hill, S.Y., Wang, S., Kostelnik, B., Carter, H., Holmes, B., McDermott, M., Zezza, N.,
Stiffler, S., Keshavan, M.S., 2009. Disruption of orbitofrontal cortex laterality in
offspring from multiplex alcohol dependence families. Biol. Psychiatry 65, 129–136.

Hussong, A., Bauer, D., Chassin, L., 2008. Telescoped trajectories from alcohol initiation
to disorder in children of alcoholic parents. J. Abnorm. Psychol. 117, 63–78.

Hussong, A.M., Wirth, R.J., Edwards, M.C., Curran, P.J., Chassin, L.A., Zucker, R.A., 2007.
Externalizing symptoms among children of alcoholic parents: entry points for an
antisocial pathway to alcoholism. J. Abnorm. Psychol. 116, 529–542.

Jacob, T., Waterman, B., Heath, A., True, W., Bucholz, K.K., Haber, R., Scherrer, J., Fu, Q.,
2003. Genetic and environmental effects on offspring alcoholism: new insights using
an offspring-of-twins design. Arch. Gen. Psychiatry 60, 1265–1272.

Krueger, R.F., Markon, K.E., Patrick, C.J., Iacono, W.G., 2005. Externalizing
psychopathology in adulthood: a dimensional-spectrum conceptualization and its
implications for DSM-V. J. Abnorm. Psychol. 114, 537–550.

Kumar, N., Gupta, N., Kishore, J., 2012. Kuppuswamy's socioeconomic scale: updating
income ranges for the year 2012. Indian J. Public Health 56, 103–104.

Kuperman, S., Chan, G., Kramer, J.R., Bierut, L., Bucholz, K.K., Fox, L., Hesselbrock, V.,
Numberger Jr., J.I., Reich, T., Reich, W., Schuckit, M.A., Collaborative Study on the
Genetics of, A, 2005. Relationship of age of first drink to child behavioral problems
and family psychopathology. Alcohol. Clin. Exp. Res. 29, 1869–1876.

Lee, M.H., Smyser, C.D., Shimony, J.S., 2013. Resting-state fMRI: a review of methods and
clinical applications. AJNR Am. J. Neuroradiol. 34, 1866–1872.

Lewis, S.W., Murray, R.M., 1987. Obstetric complications, neurodevelopmental deviance,
and risk of schizophrenia. J. Psychiatr. Res. 21, 413–421.

MacDonald 3rd, A.W., Cohen, J.D., Stenger, V.A., Carter, C.S., 2000. Dissociating the role
of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control.
Science 288, 1835–1838.

Maxwell, M., 1992. Family Interview for Genetic Studies (FIGS): A Manual for FIGS,
Clinical Neurogenetics Branch, Intramural Research Program. National Institute of
Mental Health, Bethesda, MD.

McGue, M., Iacono, W.G., Legrand, L.N., Malone, S., Elkins, I., 2001. Origins and
consequences of age at first drink. I. Associations with substance-use disorders,
disinhibitory behavior and psychopathology, and P3 amplitude. Alcohol. Clin. Exp.

Res. 25, 1156–1165.
Nigg, J.T., Glass, J.M., Wong, M.M., Poon, E., Jester, J.M., Fitzgerald, H.E., Puttler, L.I.,

Adams, K.M., Zucker, R.A., 2004. Neuropsychological executive functioning in
children at elevated risk for alcoholism: findings in early adolescence. J. Abnorm.
Psychol. 113, 302–314.

Power, J.D., Schlaggar, B.L., Petersen, S.E., 2015. Recent progress and outstanding issues
in motion correction in resting state fMRI. NeuroImage 105, 536–551.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
systematic correlations in functional connectivity MRI networks arise from subject
motion. NeuroImage 59, 2142–2154.

Rangaswamy, M., Porjesz, B., Ardekani, B.A., Choi, S.J., Tanabe, J.L., Lim, K.O., Begleiter,
H., 2004. A functional MRI study of visual oddball: evidence for frontoparietal
dysfunction in subjects at risk for alcoholism. Neuroimage 21, 329–339.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and
interpretations. NeuroImage 52, 1059–1069.

Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E., 2005.
Neurophysiological architecture of functional magnetic resonance images of human
brain. Cereb. cortex 15, 1332–1342.

Salvatore, J.E., Gottesman, I.I., Dick, D.M., 2015. Endophenotypes for alcohol use
disorder: an update on the field. Curr. Addict. Rep. 2, 76–90.

Sato, J.R., Salum, G.A., Gadelha, A., Picon, F.A., Pan, P.M., Vieira, G., Zugman, A.,
Hoexter, M.Q., Anes, M., Moura, L.M., Gomes Del'Aquilla, M.A., Amaro Jr., E.,
McGuire, P., Crossley, N., Lacerda, A., Rohde, L.A., Miguel, E.C., Bressan, R.A.,
Jackowski, A.P., 2014. Age effects on the default mode and control networks in
typically developing children. J. Psychiatr. Res. 58, 89–95.

Schuckit, M.A., 1985. Genetics and the risk for alcoholism. JAMA 254, 2614–2617.
Schweinsburg, A.D., Paulus, M.P., Barlett, V.C., Killeen, L.A., Caldwell, L.C., Pulido, C.,

Brown, S.A., Tapert, S.F., 2004. An FMRI study of response inhibition in youths with
a family history of alcoholism. Ann. N.Y. Acad. Sci. 1021, 391–394.

Silveri, M.M., Rogowska, J., McCaffrey, A., Yurgelun‐Todd, D.A., 2011. Adolescents at
risk for alcohol abuse demonstrate altered frontal lobe activation during Stroop
performance. Alcohol.: Clin. Exp. Res. 35, 218–228.

Smit, D.J., Stam, C.J., Posthuma, D., Boomsma, D.I., de Geus, E.J., 2008. Heritability of
"small-world" networks in the brain: a graph theoretical analysis of resting-state EEG
functional connectivity. Hum. Brain Mapp. 29, 1368–1378.

Smit, D.J., Boersma, M., van Beijsterveldt, C.E., Posthuma, D., Boomsma, D.I., Stam, C.J.,
de Geus, E.J., 2010. Endophenotypes in a dynamically connected brain. Behav.
Genet. 40, 167–177.

Smith, A.B., Taylor, E., Brammer, M., Halari, R., Rubia, K., 2008. Reduced activation in
right lateral prefrontal cortex and anterior cingulate gyrus in medication-naive
adolescents with attention deficit hyperactivity disorder during time discrimination.
J. Child Psychol. Psychiatry Allied Discip. 49, 977–985.

Snedecor, G.W., Cochran, W.G., 1989. Statistical Methods, 8th ed. Iowa State Univ. Press
Iowa, Ames.

Spadoni, A.D., Simmons, A.N., Yang, T.T., Tapert, S.F., 2013. Family history of alcohol
use disorders and neuromaturation: a functional connectivity study with adolescents.
Am. J. Drug Alcohol Abus. 39, 356–364.

Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization, development
and function of complex brain networks. Trends Cogn. Sci. 8, 418–425.

Sripada, C., Kessler, D., Fang, Y., Welsh, R.C., Prem Kumar, K., Angstadt, M., 2014.
Disrupted network architecture of the resting brain in attention-deficit/hyperactivity
disorder. Hum. Brain Mapp. 35, 4693–4705.

Turner, W.M., Cutter, H.S., Worobec, T.G., O'Farrell, T.J., Bayog, R.D., Tsuang, M.T.,
1993. Family history models of alcoholism: age of onset, consequences and
dependence. J. Stud. Alcohol 54, 164–171.

Venkatasubramanian, G., Anthony, G., Reddy, U.S., Reddy, V.V., Jayakumar, P.N.,
Benegal, V., 2007. Corpus callosum abnormalities associated with greater
externalizing behaviors in subjects at high risk for alcohol dependence. Psychiatry
Res. 156, 209–215.

Verhulst, B., Neale, M.C., Kendler, K.S., 2015. The heritability of alcohol use disorders: a
meta-analysis of twin and adoption studies. Psychol. Med. 45, 1061–1072.

Vogel, A.C., Church, J.A., Power, J.D., Miezin, F.M., Petersen, S.E., Schlaggar, B.L., 2013.
Functional network architecture of reading-related regions across development. Brain
Lang. 125, 231–243.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of 'small-world' networks. Nature
393, 440–442.

Wetherill, R.R., Bava, S., Thompson, W.K., Boucquey, V., Pulido, C., Yang, T.T., Tapert,
S.F., 2012. Frontoparietal connectivity in substance-naive youth with and without a
family history of alcoholism. Brain Res. 1432, 66–73.

Witkiewitz, K., King, K., McMahon, R.J., Wu, J., Luk, J., Bierman, K.L., Coie, J.D., Dodge,
K.A., Greenberg, M.T., Lochman, J.E., Pinderhughes, E.E., Conduct Problems
Prevention Research, G, 2013. Evidence for a multi-dimensional latent structural
model of externalizing disorders. J. Abnorm. Child Psychol. 41, 223–237.

B. Holla et al. Psychiatry Research: Neuroimaging 265 (2017) 54–64

64

http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref34
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref34
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref35
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref35
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref35
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref36
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref36
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref36
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref36
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref37
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref37
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref37
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref37
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref38
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref38
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref39
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref39
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref39
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref40
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref40
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref40
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref41
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref41
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref42
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref42
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref42
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref43
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref43
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref44
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref44
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref45
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref45
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref45
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref45
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref46
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref46
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref46
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref47
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref47
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref47
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref47
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref48
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref48
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref48
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref49
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref49
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref50
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref50
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref50
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref51
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref51
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref51
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref52
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref52
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref52
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref53
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref53
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref54
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref54
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref54
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref54
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref55
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref55
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref56
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref56
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref57
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref57
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref57
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref58
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref58
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref58
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref59
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref59
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref59
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref59
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref60
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref60
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref60
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref60
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref61
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref61
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref62
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref62
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref62
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref63
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref63
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref63
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref64
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref64
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref65
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref65
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref65
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref66
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref66
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref67
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref67
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref67
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref67
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref67
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref68
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref69
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref69
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref69
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref70
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref70
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref70
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref71
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref71
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref71
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref72
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref72
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref72
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref73
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref73
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref73
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref73
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref74
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref74
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref75
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref75
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref75
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref76
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref76
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref77
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref77
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref77
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref78
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref78
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref78
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref79
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref79
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref79
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref79
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref80
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref80
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref81
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref81
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref81
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref82
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref82
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref83
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref83
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref83
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref84
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref84
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref84
http://refhub.elsevier.com/S0925-4927(16)30268-2/sbref84

	Disrupted resting brain graph measures in individuals at high risk for alcoholism
	Introduction
	Methods
	Participants
	Clinical assessments
	Assessment of participants
	Assessment of parents

	Image acquisition and data preprocessing
	Brain network construction
	Graph theory analysis
	Statistical analysis
	Relationship between graph-theoretical measures and clinical parameters

	Results
	Demographic comparisons
	Differences in global network parameters
	Differences in regional nodal parameters
	Relationship between small-world connectivity differences and clinical parameters

	Discussion
	Small-world characteristics of HR offspring
	Disrupted small-world characteristics in manifestation of externalizing behaviors
	Small-world characteristics within age and AUD family-loading groups
	Lateralization of the small-world deficits
	Disruption in small world architecture – a quantitative endophenotype in the risk to develop alcoholism?
	Limitations
	Summary

	Authors contribution
	Conflict of interest
	Acknowledgments
	Supporting information
	References




