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Mind blanking (MB) is the inability to report mental events during unconstraint thinking. Previous 
work shows that MB is linked to decreased levels of cortical arousal, indicating dominance of cerebral 
mechanisms when reporting mental states. What remains inconclusive is whether MB can also ensue 
from autonomic arousal manipulations, pointing to the implication of peripheral physiology to mental 
events. Using experience sampling, neural, and physiological measurements in 26 participants, we first 
show that MB was reported more frequently in low arousal conditions, elicited by sleep deprivation. 
Also, there was partial evidence for a higher occurence of MB reports in high arousal conditions, 
elicited by intense physical exercise. Transition probabilities revealed that, after sleep deprivation, 
mind wandering was more likely to be followed by MB and less likely to be followed by more mind 
wandering reports. Using classification schemes, we found higher performance of a balanced random 
forest classifier trained on both neural and physiological markers in comparison to performance when 
solely neural or physiological were used. Collectively, we show that both cortical and autonomic 
arousal affect MB report occurrences. Our results establish that MB is supported by combined brain-
body configurations, and, by linking mental and physiological states, they pave the way for novel 
embodied accounts of spontaneous thinking.
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During ongoing mentation, our mind constantly shifts across different mental states. These mental states typically 
bear some content (“what we think about”) and indicate a relationship towards that content (i.e., perceiving, 
fearing, hoping, remembering)1. As we move through the environment, our thoughts fluctuate between the 
external and internal milieu2,3, resulting in a fluid stream of consciousness4. External content is tightly coupled 
to the processing of environmental stimuli and task-demanding conditions. Internal content is more associated 
with self-referential processing and internal dialogue, widely referred to as “mind wandering” (MW)4. Inclusive 
as this external-internal dipole may seem, it does not capture the full scope of the “aboutness” of mental content. 
Recent work has highlighted another mental state, where people report that they are “thinking of nothing” 
or “their mind just went away”, a phenomenological experience termed “mind blanking”  (MB)5. As MB is 
relatively new in the landscape of ongoing cognition, the extent of MB episodes in daily and clinical settings 
remains widely uncharacterized. For example, a recent study found that MB might be miscategorized as MW in 
ADHD symptom evaluation6. Therefore, the experience of MB occurrences poses a challenge to our everyday 
functioning and our understanding of the continuous nature of the stream of consciousness.
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Currently, there is no clear answer as to how MB reports are generated. So far, behavioral studies show that 
MB can arise after conscious mental effort to empty our mind7–9, is usually unintentional5,10,11 and gets reported 
less frequently during unconstrained thinking compared to MW and sensory/perceptual mental states5,11–13. At 
the brain level, the inability to report mental events after the prompt to “empty the mind” has been associated 
with activation of the anterior cingulate/medial prefrontal cortex, and deactivation of inferior frontal gyrus/
Broca’s areas and the hippocampus, which the authors interpreted as the inability to verbalize internal mentation 
(inner speech)8. Recently, we found that the functional connectome of fMRI volumes around MB reports was 
similar to a unique brain pattern of overall positive inter-areal connectivity12 which was also characterized 
by increased amplitude of fMRI global signal (i.e. averaged connectivity across all grey matter voxels), an 
implicit indicator of low arousal14–16. For example, the amplitude of the global signal correlated negatively with 
EEG vigilance markers (alpha, beta EEG frequency bands), while increases in EEG vigilance due to caffeine 
ingestion were associated with reduced global signal amplitude14. Our findings corroborate recent EEG-related 
evidence supporting the possibility of “local sleeps” during MB reportability10,17. “Local sleeps” refer to the scalp 
distribution of EEG potentials during wakefulness, in the form of high-intensity, slow oscillatory activity in the 
theta/delta band, which could differentiate between MB and MW, with more frontocentral potentials tied to 
MW and parietal to MB10. Together, the presence of slow waves preceding MB reports and the high fMRI global 
signal hint toward the role of arousal in mental content reportability. Starting from this line of evidence, we infer 
that arousal fluctuations drive MB reportability.

Arousal is a multidimensional construct generally referring to the behavioral state of being awake and alert, 
supporting wakefulness, responsiveness to environmental stimuli, and attentiveness18,19. Anatomically, arousal 
is supported by the ascending arousal system, the autonomic nervous system, and the endocrine system18. Early 
on, Lacey viewed arousal in terms of behavioral arousal (indicated by a responding organism, like restlessness 
and crying), cortical arousal (evidenced by desynchronized fast oscillatory activity), and autonomic arousal 
(indicated by changes in bodily functions)20. Cortical arousal is self-generated through the reticulate formation 
and propagated through dorsal, thalamic, and ventral subthalamic pathways21, and can be indexed by the alpha, 
theta, and delta EEG bands during wakefulness22,23. Lower levels of cortical arousal in the form of slow waves 
have been associated with an increased number of missed stimuli in behavioral tasks11,23 and decreased thought 
intensity24. Also, lower levels of arousal indexed by pupil size have been correlated with a higher probability of 
MB reports in sustained attention tasks11,25,26.

Much as it may have been done in terms of cortical arousal, the present study will focus on how autonomic 
arousal influences MB reportability, which is widely understudied. Our choice is justified by the theoretical 
assumption that mental function is tightly linked to peripheral body functions, as expressed by the embodied 
cognition stance27. Briefly, embodiment holds that cognition is bound to a living body interacting with a 
dynamic environment, and conceptualizes cognition as the result of brain-body interactions during dynamic 
contexts. From that perspective, modifications in autonomic arousal are expected to lead to differential 
reportability of mental states. Autonomic arousal links the body and the brain through spinal cord projections 
from peripheral organs to the brainstem and can be indexed by physiological signals reflecting sympathetic/
parasympathetic balance, such as heart rate, galvanic skin response, and fluctuations in pupil size28. Converging 
evidence suggests that afferent physiological signals and biological rhythms, such as the cardiac or the respiratory 
phase, play a modulatory role in conscious perception29,30, metacognition31, affective salience of information32, 
and perceptual confidence of sensory sampling33, both during task performance and in-silico simulations34. 
Alterations in autonomic arousal were also found to influence brain activity in that fMRI volumes characterized 
by lower arousal levels (indexed by decreased pupil size) showed reduced in-between network integration and 
inter-subject variability in comparison to scans characterized by high arousal levels (indexed by increased pupil 
size)35.

Taken together, we here advocated for a link between autonomic arousal and thought reportability. Firstly, 
we examined how MB report distribution shifted across different autonomic arousal conditions. To this end, 
we used experience sampling under differently elicited arousal conditions. Experience sampling is a though-
sampling methodology, where people are probed to report their mental state at random intervals, probed by 
an external cue4. We employed this task at three distinct arousal conditions: Baseline, High (post-workout), and 
Low (post-sleep deprivation). Our operational hypothesis was that optimal levels of autonomic arousal (fixed 
variable) are necessary for optimal mental state reportability (dependent variable). We expected that deviations 
from optimal levels, such as after sleep deprivation or intense physical exercise, would alter our stream of thought 
and promote more frequent MB reports (Supplementary Table S1 for the full scope of our hypotheses). Secondly, 
we opted to identify specific brain-body interaction patterns that would promote MB reportability. To this end, 
we utilized multimodal neurophysiological recordings and a machine-learning approach to decode MB reports 
from arousal measurements.

Methods
Design
The study included healthy volunteers recruited after campus poster advertisements, intranet electronic 
invitations, and through the ULiège “petites annonces” e-campus platform. Inclusion criteria were: (a) right-
handedness, (b) age>18 years, (c) minimal exercise background (<2h per week), (d) good subjective sleep quality 
(Pittsburgh Sleep Quality Index [PSQI] ≤ 536), (e) habitual sleep duration of 8 ± 1 hours. Exclusion criteria 
were: (a) history of developmental, psychiatric, or neurological illness resulting in documented functional 
disability, (b) severe anomalies in pupil shape or inability to open both eyes preventing pupil measurement37, 
(c) analgesic medication which may affect physiological arousal, (d) history of psychiatric illness pertaining to 
anxiety disorders or scores < 9 in the General Anxiety Disorder-7 (GAD-7 scale)38 as anxious participants may 
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experience biased perceptions of their bodily states39, (e) extreme chronotypes, (f) shift work or traveling over 
time zones in the past 3 months.

Experience sampling was utilized in a within-participants repeated-measures design. During an experience 
sampling session, participants laid restfully and were directed to let their minds wander, without any specific 
instructions towards internal (daydreaming, memories, prospective events) or external thoughts (body 
sensations, sensory stimuli in their immediate environment). Auditory probes (total n=40, 500 Hz simple tones) 
invited participants to report what they were thinking at the moment just preceding the probe. The inter-probe 
interval was sampled from a uniform distribution between 110 and 120 seconds. Report times were monitored 
online to examine if participants missed the probe or fell asleep due to our experimental manipulation. In case of 
a report time > 6 s, participants were reminded to report their mental state as soon as they heard the probe and 
indicate they were awake via button press. In case of unresponsiveness, the experimenters manually awakened 
the participant. Depending on the probes’ trigger times and participants’ reaction times, a recording lasted on 
average 70-90 minutes. We chose to present 40 probes (overall length approximately 1 hour and 15 minutes) to 
avoid fatigue/drowsiness and the possibility of participants returning to baseline arousal after the experimental 
manipulations. Also, the relatively large experience sampling interval, compared to previous studies, was used 
to record enough samples to accurately estimate physiological markers from slow oscillatory signals, such as 
heart-rate variability. Upon the probe, participants had to choose among four distinct choices describing their 
mental state: mind blanking (MB), mind wandering (MW), perceptual sensations (SENS), or sleep (SLEEP). 
These response options were chosen to minimize assumptions about what the actual partition of mental states 
might be. For example, debates about what can be classified as MW40 refer to whether MW is a coherent cluster 
of events1,41 and how it is separated from awareness and processing of environmental stimuli40,42. We believe 
that our division respects the literature on internal/external thought-orientation brain networks3,43,44 while 
introducing minimum assumptions as to the actual content of each state. The introduction of the sleep option 
facilitated the identification of trials where participants fell asleep due to the reduced vigilance. Participants 
indicated their responses via button press from a response keyboard placed under their dominant hand. We 
repeated the experience sampling task on three distinct days, over the span of two weeks under three conditions: 
(a) experience sampling during spontaneous thinking without arousal modulations (Baseline), (b) experience 
sampling elicited through short, high-intensity interval training (High Arousal), (c) experience sampling after 
total sleep deprivation (Low Arousal) (Fig. 1). The goal of both arousal manipulations was to promote distinct 
changes in physiological and cortical markers associated with arousal mechanisms (Supplementary Table S2). 
Monitoring of arousal changes was done with physiological and cortical measurements. In case when participants 
did not show distinct cortical and physiological changes after our arousal manipulations, they were excluded 

Fig. 1.  Experimental protocol. Top The experience sampling task invited participants to sit idly and relax, 
letting their minds wander. Every 110–120 s, a  500 Hz auditory cue probed participants to report what 
they were thinking at that moment. Participants were able to choose from 4 presented responses: Mind 
blanking (MB), Mind wandering (MW), Perceptual Sensations (SENS), and Sleep (SLEEP). Bottom Repeated-
measures autonomic arousal recordings. To test how spontaneous thoughts unfold over time across different 
arousal conditions, we first invited people for baseline assessments on Day 1 (Baseline condition). On Day 
2 participants underwent a 15-minute high-intensity exercise  (High Arousal condition) and on Day 3 
they participated in a total sleep deprivation protocol (Low Arousal condition). The High and Low Arousal 
conditions were counter-balanced across participants. Multimodal physiological recordings were used to 
monitor arousal manipulations. The dataset was constituted of EEG, pupillometry, ECG, EDA, and respiratory 
data; the arrows indicate the hypothesized directions of the derived metrics.
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from further analysis. Effect monitoring was done by examining the heart rate in High Arousal as well as the EEG 
spectra in both High and Low Arousal.

In High Arousal, participants first performed high-intensity interval activity in the form of static cycling. 
They started with a warm-up training session of 3 minutes to avoid potential muscle trauma and then cycled for 
45 s as fast as possible. A resting period of 15 s followed. A total number of 10 workout cycles was administered. 
The choice of this timing protocol rested on previous studies indicating that similar exercise routines produce 
distinct and sustained sympathetic activity45,46 and cortical excitation46, which can last between 30 and 90 
minutes after exercise cessation47.

In Low Arousal, participants performed the experience sampling task after one night of total sleep deprivation. 
Sleep deprivation leads to an arousal state that is behaviourally distinct from typical wakefulness48,49, promotes 
specific neuronal signatures ("local sleeps” in the delta band)11, and has a distinct physiological expression. 
Critically, we do not wish to claim that sleep states are identical to “local sleeps”, nor do we suggest an overlap 
between low arousal due to sleep deprivation and unconsciousness during sleep. To acquire estimates of their 
mean sleep schedule, participants wore an actimeter for one week before the total sleep deprivation protocol 
(Supplementary Fig. S1; available for 24/26 subjects due to data corruption). The total sleep deprivation protocol 
was as follows: A week prior to sleep deprivation, participants were provided with an actimetry device to track 
wake-sleep schedule, and were instructed to follow a consistent 8  h sleep schedule. On the deprivation day, 
participants arrived at the lab one hour before their normal sleep time to extract their actimetry baseline data, 
estimate the optimal sleep deprivation window, and to provide baseline vigilance, drowsiness, and sleepiness 
measurements. After a total sleep deprivation of 26 h (16 h of typical wakefulness, 8 h of sleep deprivation, and 
a 2h post-sleep deprivation period) participants began the post-sleep deprivation, experience sampling session. 
As an example, a participant who typically slept at 12 am would arrive at the lab at 11 pm, start sleep deprivation 
at 12 am, finish sleep deprivation at 8 am, and perform the experience sampling task at 10 am. Should slow-wave 
activity during wakefulness follow the same circadian modulation it follows during sleep50, a potential confound 
that could have lowered the power of our analysis is the time window of the experience sampling task. However, 
as suggested in50, the relative time-window we selected did not fall under a critical point of large reductions in the 
amplitude of the slow-waves. The 2-hour, post-deprivation waiting window allowed us to match the time of the 
experience sampling across the 3 conditions, avoiding potential circadian confounds on experience sampling, 
as we could easier match sleep-wake cycles and the time of the experience sampling within each participant. We 
chose this sleep manipulation as similar manipulations have been previously used to examine the effects of sleep 
pressure51,52, and have been shown to elicit distinct low-arousal cortical profiles53,54, as well as changes in the 
sympathetic/parasympathetic balance55.

Sleep deprivation was controlled with regard to light influence (illuminance = 15 lux), caloric intake 
(standardized meals every 4 h), and body posture (semi-recumbent position during scheduled wakefulness) 
to minimize potential masking effects on the sleep-wake regulatory system. Participants were not allowed to 
stand up except for regularly scheduled bathroom visits and did not have any indications of the time of the 
day. The experimenters continually monitored participants to keep them awake. In case of a sleep event, the 
experimenters first tried to awaken the participant through an intercom, and in case of failure, they manually 
awakened the participant. We also monitored for sleep lapses through the experience sampling tasks. In case 
participants closed their eyes for a time period of > 30 seconds, they were probed by a tone to wake up. If they 
did not, the experimenter in the room would awaken the participant.

An one-week interval took place between sleep deprivation and further recordings in order to minimize 
potential carry-over effects of sleep deprivation on our follow-up conditions. In that way, the participants’ 
sleep schedules would also reset to their respective normal cycles. The order of the three arousal conditions 
was randomized. As a post-registration note, we randomized only the order between sleep deprivation and 
post-exercise, to add a training session before the baseline that allowed participants to get acquainted with the 
protocol, without external task impositions, that might have confounded the protocol understanding.

Sampling plan
We used a Neyman-Pearson frequentist approach to balance false-negative and false-positive rates by setting 
power to 95% and establishing a Type I error rate (alpha) of 5%. To estimate the desired sample size, a simulation 
approach was utilized: data were generated consistent with a latent binomial regression model, in which one 
categorical predictor with 3 levels (Base, High, Low) predicted a binary outcome Y (occurence of MB or not). An 
original probability pMB = 0.1 was specified as the underlying generative probability in the baseline model based 
on previous research5,11,12. We allowed the random intercepts and slopes to vary freely vary around a normal 
distribution with a standard deviation of s.d. = 0.1. Given that no previous study to our knowledge has provided 
evidence for the distribution of the effect sizes of arousal on mental reports, and to account for possible reverse 
effects (such as decreased MB report probability), we reasoned that a meaningful yet conservative effect for the 
Low Arousal condition would be an odds ratio of 1.6 and an odds ratio of 0.55 for the High Arousal condition. 
Since our initial hypothesized distribution is expected to yield ~3–5 MB reports per session11,12, this effectively 
translates to a small effect size of interest of at least 3 more reports across conditions.

Considering these parameters, for each population sample, ranging from 5 to 50 participants, we sampled 500 
datasets, and fit a binomial model with the participant ID as a random factor, keeping the regression coefficients 
for the levels of the predictor constant. Based on the simulation analysis, using a false positive threshold of 0.05, 
we required a sample size of 26 participants to achieve a power of 0.95 (Supplementary Fig. S2).
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Data analysis
Behavioral data
Statistical analysis was performed using generalized linear mixed-effects models. To address whether arousal 
affects MB occurrence, we used a binomial, linear model with arousal as a categorical independent variable, 
and the proportion of mental reports across a sampling period (40 trials) as our dependent variable. Data 
were binary coded (occurence or not of MB report) and fit into the model using a “logit” link. Given that the 
underlying distribution was unknown, a Bernoulli distribution minimized the assumptions about the model. In 
order to examine whether the multinomial distribution of mental reports itself changes across different arousal 
conditions, we used the generalized estimating equations (GEE) approach, an extension of generalized mixed-
effects models that can account for correlated, repeated-measures count data from multinomial distributions56,57. 
Mental reports were aggregated as counts across participants and conditions, and we examined shifts in reaction 
time distribution using the three experimental arousal conditions as predictors. We considered as reaction times 
the intervals between the response probe and the participant’s report. To examine reaction times as a function of 
mental states, we specified a generalized linear mixed-effect model with mental reports and arousal conditions 
as categorical variables and used a gamma distribution with an “inverse” link function. As reaction times are 
usually an indicator of arousal effects on the task performance, an effect of arousal condition as a covariate 
might be informative about a potential shift of the overall slower mental report times distribution and about 
the arousal condition of the subject itself. This choice of distribution and link minimizes assumptions about 
the model, respects the positive, skewed distribution of reaction times, and was previously found to provide a 
better fit compared to other link functions58. To examine whether arousal shifts the dynamics of mental reports, 
i.e. one state might be more likely to be followed by MB in one of the arousal states compared to Baseline, 
we estimated dynamical transition probabilities across different mental states using Markov models. The 
transition probabilities of MB were then compared using a linear model with an identity link, with the transition 
probabilities as the dependent variable and the arousal condition as the categorical, independent variable.

All specified models were compared against null models using likelihood ratio tests. We introduced the 
participant’s ID as an a-priori random factor, i.e., we allowed the model’s intercept to vary. In case we contrasted 
multiple models, p-values were corrected using Bonferroni correction. In case of significance of a fixed predictor, 
we used corrected pairwise comparisons to examine the marginal means of the predictors.

Brain-based measures
Physiological and cortical timeseries were segmented based on the response probe time. We considered the 
110-second period before the response probe as a meaningful analysis epoch, representing the neuronal and 
physiological dynamics that result in a specific mental state. This period was used in subsequent analyses.

We recorded EEG with an EasyCap (64 active electrodes) connected to an actiCHamp system (Brain 
Products GmbH) using the 10–20 standard configuration. A ground electrode was placed frontally (Fpz in the 
10–20 system). Online, we referenced the electrodes to a frontal electrode. Impedance was kept below 20 kΩ. 
As a post-registration note, we originally registered to keep impedance below 10 kΩ. However, we decided to 
leverage the strength of active electrodes to follow the research standard of 20 kΩ. To minimize impedance, we 
used conductive gel. Data were sampled at a sampling frequency of 500 Hz. Preprocessing included band-pass 
filtering (0.1–45 Hz, FIR filter), notch filtering (50 Hz), and epoch definition (t_start = 110 s preceding the probe, 
t_max= probe). As a post-registration note, during EEG preprocessing we observed low-frequency (<1 Hz) 
artifacts, such as sweat during the post-exercise session, that contaminated the quality of the signal. Therefore, 
we decided to reanalyze our data using a 1 Hz high-pass filter to minimize the presence of those artifacts. By 
visual inspection, we checked and removed noisy electrodes and epochs. In case of discarding more than 50% of 
the total epochs for a single participant, that participant was discarded from future analysis. We then used ICA 
decomposition to remove non-neuronal components such as blinks, heartbeats, muscle artifacts, etc. Finally, 
channels removed due to rejection were interpolated using neighboring channels, and all channels were re-
referenced to the average.

Based on EEG recordings, we estimated three classes of measures: (1) measures estimating spectral power—
raw and normalized power spectra, median spectral frequency (MSF), spectral edge 90 (SEF90), and spectral 
edge 95 (SEF95), (2) measures estimating information content—spectral entropy, Kolmogorov-Chaitin 
complexity (K) and permutation entropy, and (3) measures estimating functional connectivity—symbolic 
mutualiInformation (SMI) and weighted symbolic mutual information (wSMI). Power spectrum density (PSD) 
was computed over the delta (1–4 Hz), theta (4–8 Hz) alpha (8–12 Hz), beta (12–30 Hz), gamma (30–45 Hz) 
spectral bands, using the Welch spectrum approximation (segments = 512 ms, overlap = 400ms). Segment 
rejections were windowed using a Hanning window and zero-padded to 4096 samples. Kolmogorov-Chaitin 
complexity was computed by compressing a discretization of the signal using a histogram approach with 32 bins. 
Permutation entropy was obtained by computing the entropy of a symbolic transformation of the signals, within 
the alpha, delta, and theta bands. SMI and wSMI were then computed from the same symbolic transformation, 
but data was first filtered using current source density estimates to diminish the volume conduction. SMI and 
wSMI were computed in theta, delta, and alpha bands59. From the available connectivity metrics, we chose to 
use only wSMI as it is the only one that can detect purely nonlinear interaction dynamics and can be computed 
for each epoch60.

Physiological measures
Electrocardiogram (ECG) data were acquired using the BIOPAC MP160 system (BIOPAC SYSTEMS Inc.) and 
the BIOPAC ECG100C amplifier. The data were sampled at a sampling frequency of 2 kHz and recorded using 
the AcqKnowledge v4.4 software. ECG disposable adhesive skin electrodes were used in a bipolar arrangement 
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of two electrodes and ground. The positive electrode was at the non-dominant wrist of the participant and the 
negative was on the contralateral ankle. The ground electrode was placed on the ipsilateral ankle.

ECG data were filtered with a notch filter (0.05 Hz) to remove baseline wander artifacts. A Butterworth high-
pass filter was applied (0.5 Hz) to attenuate linear drifts and physiological artifacts. Powerline interference was 
attenuated with a notch filter (50 Hz). Finally, the data were smoothed with a 3rd-order polynomial Savitzky-
Golay filter. Peaks were detected using the native Neurokit2 algorithm. Finally, data were epoched based on the 
partition scheme in the EEG preprocessing section.

ECG metrics were grouped into three domains: time, spectral power, and information content. Time-domain 
metrics were (a)  heart rate (HR), (b) standard deviation of the RR intervals (SDNN), and (c) root mean square 
of successive differences (RMSSD). Spectral power features were (a) low frequency of the heart rate variability 
(LF-HRV), (b) high frequency of the heart rate variability (HF-HRV), and (c) LF/HF HRV ratio. Information 
content metrics were (a) approximate entropy (AE), (b) sample entropy (SE), and (c) multiscale entropy (MSE). 
Initially, we used the native Neurokit2 algorithm to extract the peaks of the QRS complex. RR intervals were 
estimated as the sequential difference of the peak times. We estimated the time domain features based on the RR 
timeseries. For the spectral power metrics, the RR was evenly resampled at 4 Hz. Power spectra were computed 
over the LF-HRV (0.04–0.15 Hz) and the HF-HRV (0.15–0.4 Hz) frequency bands. The power spectrums were 
estimated using the Welch procedure.

Respiration. Respiratory data was acquired using a respiratory belt and amplified through the BIOPAC 
DA100C amplifier. Data were sampled at a sampling frequency of 2 kHz and recorded using the AcqKnowledge 
v4.4 software.

Respiratory metrics were grouped in the time and information content domain. Time-domain metrics were 
(a) respiration rate and (b) respiration rate variability. Information content was estimated based on multiscale 
entropy.

Pupillometry. Eye movements and pupil size in both eyes were recorded using oculometric glasses 
(Drowsimeter R100; Phasya, S.A) with a sampling frequency of 120 Hz. The eye tracker was calibrated at the 
start of each recording. Data was epoched based on the epoching scheme in the EEG preprocessing section. We 
identified 100 ms blink periods around blinks and removed the whole segment, as pre- and post-blink periods 
can introduce pupil dilation artifacts while the eye is recovering to its standard size. We interpolated segments 
using 3rd-degree cubic interpolation. Dilation speed outliers were calculated by estimating the median absolute 
deviation (MAD) of each value. Samples exceeding the deviation threshold were removed. Pupil dilation was 
smoothed using a moving average filter and baseline-corrected with a 100 ms period 2 s after the probe.

Pupil metrics were grouped in the same three domains: time, spectral power, and information content. Time-
domain metrics were: (1) blink rate, (2) pupil size, and (3) pupil size variability. Spectral power metrics were: (1) 
low frequency pupil component (LFC), (2) high-frequency pupil component (HFC). The information content 
metric is multiscale entropy. The power spectra were estimated using the Welch procedure. As a post-registration 
note, we encountered issues extracting pupil metrics at the Low Arousal condition, as participants tended to have 
their eyes closed or partially closed for most of the trials. As our device was not sensitive to capture dilation in 
this setting, we additionally estimated (a) blink rate, (b) blink duration, (c) blink rate variability, (d) mean eye 
openness, (e) eye openness variability, (f) percentage of 70% eye closure and (g) percentage of 80% eye closure. 
As stated below, our registered plan was to reliably estimate all time, frequency, and complexity metrics that can 
be of use to our classifiers. Therefore, while we do not deviate from our original registered protocol, it is of note 
that these features could not be estimated reliably.

Electrodermal activity (EDA) data was acquired through skin electrodes on the index and middle finger and 
amplified through the BIOPAC EDA100C amplifier. Data was sampled at a sampling frequency of 2k Hz and 
recorded using the AcqKnowledge v4.4 software. All EDA metrics originated from the time domain: (a) galvanic 
skin response (GSR), (b) tonic EDA, and (c) phasic EDA. Extraction of the phasic and tonic components of 
the EDA was conducted with deconvolution of the EDA signal with a biologically plausible impulse response 
function with initially fixed parameters that are iteratively optimized per participant61.

Pattern recognition
To examine the physiological counterpart of the behavioral shifts in MB reports, we employed a supervised 
decoding approach. Using the multimodal neurophysiological measurements during the three experience 
sampling sessions, we trained multiple classifiers to discriminate across MB, MW, and SENS reports and identify 
whether MB is supported by a unique brain-body interaction pattern. This approach allowed us to extract 
meaningful brain-body interactions from the proposed arousal metrics without being conservative about the 
nature of the multiple comparisons between the various brain and body metrics.

As features, we opted to collect meaningful data in the time, frequency, information, and connectivity 
domain, unless such measurements could not be reliably estimated within our selected time window. The goal of 
the multiple selected metrics was to capture potential diverse spatiotemporal relationships (low-high frequency 
interactions, phase-amplitude interactions) that might extend across different recording modalities. Overall, we 
computed 57 features.

As targets, we used the participants’ mental states (MB, MW, and SENS). Since this creates a multiclass 
classification problem, we focused on the binary classification of MB vs other reports. We expected to acquire 40 
samples per participant and condition (i.e. baseline and arousal states), giving a total of 1040 (26*40) samples per 
condition. We expected that 5% of the samples to correspond to the target report (MB), yielding an imbalanced 
problem with only 52 target samples per condition.

As learning algorithms, we tested parametric and non-parametric models, such as Support Vector 
Machines  (SVM), Random Forests  (RF), and Extremely Randomized Trees  (ET). SVM is a classification 
technique that aims to separate labeled inputs by creating a hyperplane that maximizes the distance of their 
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features. Given a set of n-labeled inputs, SVM provides a hyperplane in an n-dimensional space that maximally 
separates the differently labeled groups. An RF classifier is a meta-estimator. Various classifiers (“decision trees”) 
are trained in different parts of the input dataset, and each classifier uses only that part of the dataset to predict the 
label of the input. Then, the predictions of each classifier are pooled (“bagged”) together, and an optimal decision 
is chosen based on the label with the most predictions (“votes”). Finally, an ET classifier is a meta-estimator that 
employs a similar voting scheme. However, in the case of the ET classifier, trees are trained on all the features 
and the cutoff point of the trees (how the various metric nodes are arranged to reach a decision) is randomized. 
Since our problem is highly imbalanced, we also tested outlier detection algorithms (i.e. one-class classifiers), 
aiming to isolate MB from the other reports by considering MB as either an inlier or outlier. Therefore, we tested 
the one-class counterparts of the SVM (One-class SVM) and RF (Isolation Forests) algorithms.

For model selection and performance estimation, we employed two different cross-validation approaches. 
First, we used a 5-fold stratified cross-validation scheme trained with all the samples. This provided us with 
performance estimates of classifiers aimed at obtaining patterns of brain and body function that can predict MB 
reports in known participants. As a second approach, we used a 5-fold group stratified cross-validation scheme, 
using participants as groups. In this scenario, each participant was either on the train or on the test set. Thus, 
it aimed at learning general patterns of brain and body function that could predict the report of MB in unseen 
participants. In other terms, the first approach aimed at learning patterns that could discriminate MB from other 
reports while accounting for each participant’s variance, while the second strengthened the claim, aiming to 
learn general patterns that could be found in unseen participants.

As performance metrics, we report a) recall, b) precision, c) F1-score, d) area under the ROC curve (AUC), 
and e) balanced accuracy. Recall is the ratio of how often an item was classified correctly as a positive outcome 
(True Positive / True Positive + False Negative). Similarly, precision is the ability of the model to return only the 
data points in the relevant class  (True Positive / True Positive + False Positive). F1-score is the harmonic mean of 
precision and recall. The AUC curve is another evaluation metric that summarizes how well the classifier predicts 
a class based on different thresholds of true positive and false positive ratios. Finally, balanced accuracy is an 
evaluation metric suitable for imbalanced datasets, where one class appears at significantly different frequencies 
than the others. Balanced accuracy is useful because it is estimated as the average of specificity and sensitivity, 
simultaneously controlling for very high precision due to classifying nothing as the infrequent class and very 
high recall due to classifying everything as the infrequent class.

We selected each model’s hyperparameters using nested cross-validation (same scheme as the outer cross-
validation), using the F1-score as our optimization metric.

To evaluate the variance in the classifier performance and compare it to chance level, we performed repeated 
cross-validation (10 times), while training also a “dummy” classifier to obtain the empirical chance level of the 
training samples distribution. This type of classifier generates predictions based on the distribution of training 
samples for each class without accounting for the features.

The decoding analysis was implemented in Python using Julearn62 and Scikit-Learn63. Metrics were estimated 
from existing Python libraries: MNE64, NICE65 , Neurokit66, and custom in-lab Python functions.

Results
Participants
To achieve a power of 0.95 at an alpha threshold of 0.05, we acquired 3 sessions of 40 trials per session from 26 
participants (mean age= 26.38, sd= 4.53, min= 20, max= 40; female= 11). As a post-registration note, in case 
participants could not adhere to the strict 3-week protocol (30% total sessions), they were rescheduled to a later 
date that respected their sleep schedules to avoid time windows with potential extreme slow-wave activity50. Due 
to data corruption, one participant had 30 trials in one of the three sessions, and one participant had 33 trials in 
one of the three sessions. The remaining two sessions were completed for both participants.

Behavioral data
Occurrences of mental state reports alter across arousal conditions
We found a main effect for mental states, with MB being reported at significantly lower rates (Mean 
proportions±SD: MW=0.56±0.21, SENS=0.2±.14, MB= 0.12±0.13; Kruskal H= 124.07, p= 1.2e-27, eta2= 0.53) 
compared to MW (Dunn’s test=  -10.75, pFDR = 1.8e-26) and to SENS (Dunn’s test=  -2.85, pFDR= 4.3e-03). 
Additionally, MW was reported significantly more frequently compared to SENS (Dunn’s test= 7.9, pFDR= 4.3e-
15; Fig. 2). As the study was focused on wakeful mental states, “SLEEP” reports were not included in the analysis 
(Mean proportions ±SD: Baseline= 0.03±.05, High Arousal= 0.05±.07, Low Arousal= 0.26±.21, Total= 0.1±.17). 

We found that a model including all conditions outperformed a null model with only an intercept (FullLogLik= 
−1021, NullLogLik= −1046.83, χ2= 51.57, df= 2, pBonf= 6.1e-12): MB was reported significantly more frequently 
in Low Arousal compared to Baseline (Marginal Mean= −0.79, SE= 0.14, CL= [−1.16, −0.43], pFDR= 1.8e-08) 
and to High Arousal (Marginal Mean= −0.97, SE= 0.15, CL= [−1.35, −0.59], pFDR= 7.9e-11) (Fig. 3a). However, 
MB reports during Baseline and High Arousal were comparable (Marginal Mean= 0.17, SE= 0.15, CL= [−0.21, 
0.56], pFDR= 2.4e-01). A visual inspection of the individual marginal means showed that this effect was mostly 
consistent across participants and was not driven by extreme cases (Fig. 3b–d).

Additionally, generalized estimating equations (GEE) showed a significant interaction for MW between 
Low Arousal—Baseline (beta= 6, SE= 1.5, CL= [3.06, 8.94], pFDR= 6.4e-05) and Low—High Arousal (beta= 8.23, 
SE=1.6, CL= [5.1, 11.36], pFDR= 2.6e-07). We also found significant interactions in SENS reports, such that 
SENS tended to be higher in Baseline compared to High (SENS Baseline—SENS High: beta= 2.54, SE= 0.81, CL= 
[ 0.96, 4.12], pFDR= 1.7e-3) and Low Arousal (SENS Baseline—SENS Low: beta= 2.46, SE= 0.77, CL= [0.96, 3.97], 
pFDR= 1.3e-3). It is of note that this analysis yielded no significant results for MB, but the overall trend of the beta 
estimates was consistent with our positive results of the logit model above (Supplementary Fig. S3).
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MB was characterized by higher reaction times
There was a main effect of arousal conditions, with reports during Baseline being reported the fastest and 
during Low Arousal the slowest (Fig. 4a). Also, there was a main effect of mental states, with MW reports being 
reported the fastest and MB reports the slowest (Fig. 4b). A significant interaction between MW and arousal 
showed that MW was reported the slowest in Low Arousal (Fig. 4c). A significant interaction between MB and 
arousal condition showed that MB was reported the slowest in High Arousal and Low Arousal (Fig. 4e). A model 
including both arousal and reaction times outperformed simplified models including only null or main effect 
terms (FullLogLik= 2889.76, χ2= 47.1, df= 4, pBonf= 1.5e-09; Fig. 4c). For a detailed overview of main effects and 
interactions, see Supplementary Table S3.

Transition probabilities showed reduced probability to transition to MW in Low arousal
Markov transition probabilities indicated significant differences only between High and Low Arousal conditions 
(Fig. 5), such that MW was more likely to be followed by MB (t= 3.26, CI= [0.03,.15], pFDR= 9.7e-03, Cohen’s D= 
0.74). Also in Low Arousal, both MW (t= −3.79, CI= [−0.31, −0.9], pFDR= 7.6e-03, Cohen’s D= −0.86) and SENS 

Fig. 3.  The frequency of mind blanking (MB) reports altered across the three arousal conditions. (a) MB 
report probability increased in Low Arousal (after sleep deprivation) compared to High Arousal (after intense 
exercise) and Baseline. Density kernels indicate overall data dispersion and clustering trends. Point plots 
represent participants’ MB report probabilities. Box plots indicate medians and interquartile ranges, whiskers 
indicate extreme values, and diamonds indicate data outliers. (b–d) Bar plots denote single-subject marginal 
means, comparing MB reports across arousal conditions. Compared to Baseline, there was no significant 
change during High Arousal (b). However, there was a visible trend favoring an increased probability of MB 
reports in the Low Arousal condition compared to baseline and High Arousal, signifying that the effect was 
present in most participants (c–d).

 

Fig. 2.  Mind blanking (MB) was reported significantly less frequently compared to mind wandering (MW) 
and perceptual sensations (SENS) across all arousal conditions, validating what is generally reported in the 
literature. Density kernels show overall data dispersion and clustering trends. Point plots are individual subject 
estimates. Box plots show medians and interquartile ranges, while whiskers indicate extreme values and 
diamonds indicate outliers.
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(t= −3.43, CI= [0.37, −.0 09], pFDR= 9.5e-03, Cohen’s D= −0.77) were less likely to be followed by MW (Fig. 5; 
Supplementary Fig. S4).

Exploratory analysis 1: MB frequency did not correlate with SLEEP frequency
As we wanted to avoid participants confounding MB and SLEEP reports, we opted for a paradigm that allowed 
participants to report both. Spearman correlations on each condition examined whether these two states were 
correlated. We did not find any significant correlation between MB and SLEEP report probabilities across any 
arousal condition.   (Baseline: r= 0.13, p= 5.3e-01, High Arousal: r= 0.31, p= 1.3e-01, Low Arousal: r=  −0.05, 
p= 8.2e-01) (Supplementary Fig. S5). To strengthen the claim that MB and SLEEP reports do not covary, we 
additionally ran separate equivalence tests on each correlation. No test was able to reject an equivalence claim 
(Baseline: z= −0.34, p= 3.7e-01, High Arousal: z= 0.54, p= 7e-01, Low Arousal: z= 0.72, p = 2.3e-01). Therefore, 
these results remain indeterminate.

Exploratory analysis 2: High arousal: MB reports increased at the start, but not the end, of the experience 
sampling session
.

While we found that MB reports were more frequently in Low Arousal, we did not find any significant effect 
of High Arousal. In our original hypothesis (Supplementary Table S1), we registered a potential alternative 
explanation for the absence of an effect of high arousal in mental state report frequency. High arousal, as elicited 

Fig. 4.  Mental states had different reaction times depending on arousal conditions. (a) Reaction times at 
Baseline arousal were reported the fastestlowest, followed by High (after exercise) and Low Arousal (after 
sleep deprivation), collapsed across all arousal levels. Point plots show individual subject estimates. Box plots 
show medians and interquartile ranges, while whiskers show extreme values. (b) Mind wandering (MW) was 
reported the fastest, followed by Sensations (SENS) and mind blanking (MB), collapsed across all mental states. 
Point plots show individual subject estimates. Boxplots show medians and interquartile ranges, while whiskers 
show extreme values. (c–e) Interaction between arousal condition and mental state reaction times: MW was 
reported the slowest in Low Arousal compared to Baseline and High Arousal, while MB was reported the 
slowest in the Low Arousal and High Arousal conditions compared to Baseline.
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by high-intensity exercise, might not last for the full session, and our session would represent a gradual return 
to Baseline Arousal. To test for potential effects of more frequent MB reports only at the start of the experience 
sampling we split the High Arousal session in two parts and compared the count of MB reports across the start 
and the end of the experiment. Using a chi-squared test we found a significant effect, with MB reports being 
more frequent (divergence= 4.08, p= 3.2e-02) during the first half of the High Arousal condition compared to 
the second half (MBstart= 93, MBend= 66). We additionally attempted to validate this hypothesis by splitting 
the session into 4 and 6 discrete segments of 10 and 7 trials each and replicated the same analysis. However, 
this analysis did not reach significance. Finally, to provide further evidence for reduced occurrences of MB 
across time, we considered only the first and last 10 trials. We found a significant effect of more frequent MB 
occurrences (divergence= 7.39, p= 6.6e-03), with the first 10 trials of the High Arousal condition inducing more 
MB compared to the second half (MBstart= 51, MBend= 27).

Classification of MB reports was outperformed by classification containing both BRAIN-BODY markers
We trained a cohort of different classification algorithms and evaluated their capacity to classify MB reports from 
mental states with content (MW, SENS) based on 26 BRAIN (EEG) and 31 BODY features (12 ECG, 4 EDA, 8 
RSP, 7 EYE), spanning time, frequency, information, and connectivity domains for each mental state report. In 
our original report, we registered that these features would be estimated across the 110 s pre-probe window, with 
bad epochs being dropped. However, across an 110 s epoch, even a nonlinearity of 1 s would result in epoch 
removal, leaving a total clean sample of 25 / 78 sessions (29.4%), and a total of 1060/3120 (33.3%) clean epochs. 
Therefore, to preserve datapoints and data quality and minimize data discarding due to brief non-linearities, we 
opted for an extra step in bad epoch removal. After the initial epoch definition of 110 s, we followed it up by 
partitioning that epoch into 5 s sub-epochs, resulting in 22 sub-epochs per epoch. We then proceeded to do bad 
epoch removal and EEG marker estimation on those sub-epochs. If an epoch consisted of more than 50% bad 
sub-epochs, it was discarded. Then, we averaged across within each epoch, resulting in no lost sessions, and a 
total of 2734 / 3120 (87.6%) total sample size.

Having a final 2734 reports x 57 features matrix per report, we trained multiple classifiers on the total dataset, 
to examine whether a specific brain-body profile would outperform chance level classification of MB reports 
(Table 1).

Due to the unbalanced nature of our dataset, we evaluated classifier performance based on balanced 
accuracy, as it avoids inflated performance estimates on unbalanced datasets. Overall, we found that a balanced 
random forest (a random forest that undersamples the majority class in each bootstrap to equate class count) had 
above-chance performance and outperformed all other examined classifiers (Fig. 6a). We additionally examined 
whether we could predict unknown subjects, by leaving a subset of subjects out on each iteration. Due to the 
high degree of per-fold variance, we do not consider any classifier as meaningfully performing above chance 
level (Fig. 6b). Importantly, these results were replicated when we trained the classifiers in the 1 Hz filtered data 
(Supplementary Fig. S6a,b; Supplementary Table S4).

Having established that MB reports can be predicted from known subjects, we then examined whether a 
brain-body data pattern would outperform classifiers trained solely on either BRAIN or BODY features. To this 
end, we fit and optimized a separate balanced random forest classifier on discrete feature combinations of our 
dataset. For a full report of the performance on different features, see Table 2 and Supplementary Table S5.

Overall, we found that a classifier trained on both BRAIN and BODY markers numerically outperformed 
classifiers trained solely on BRAIN or BODY features across all our performance metrics (Fig. 7a,c; Supplementary 
Fig. S7a,c; Table 2; Supplementary Table S5). To evaluate the impact of the number of features on the capacity of 

Fig. 5.  After sleep deprivation (Low Arousal), participants were more likely to transition from mind wandering 
(MW) to mind blanking (MB) compared to the condition of physical exercise (High Arousal). Additionally, 
participants were less likely to transition to MW, either when departing from reports about sensory perception 
(SENS) or from MW itself. Arrows indicate the direction of the mental state transition. Bold font indicates 
statistical significance (FDR corrected).
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the learning algorithm to extract relevant information, we also trained the balanced random forest model using 
randomly shuffled bodily features. EEG features were not altered. The model with the shuffled values showed a 
decline in classification performance, providing evidence that, when classifying mental states, a model trained 
on both brain and body data learns unique information from both domains (Fig. 7d; Supplementary Fig. 7d). 
For feature importance, we calculated Shapley Additive Explanations  (SHAP) values for each feature in our 
dataset. SHAP values estimate the marginal contribution of each feature, averaged across every potential feature 
combination. In this manner, each value represents how much this feature contributes to the classification, after 
controlling for the impact of other features on this feature’s importance. We found that the model relied mostly 
on EEG and EYE openness features to discriminate MB reports when pooling MB occurrences across all three 
conditions. (Fig. 7b; For an extensive list of all SHAP values, see Supplementary Fig. S8). Importantly, feature 
importance did not substantially change when filtering the data with a 1 Hz filter (Supplementary Fig. S7b; For 
an extensive list of all SHAP values, see Supplementary Fig. S9). Overall, the comparable performance of the 

Fig. 6.  Classification performance was above chance level when mind blanking (MB) reports were pooled 
across subjects, but not after training on a subset of participants and classifying the remaining subset. (a) 
A balanced random forest classifier provided the highest classification performance across all examined 
classifiers including known subjects. (b) A balanced random forest classifier provided the highest classification 
performance across all examined classifiers on unknown samples. However, due to the high variance, we 
could not consider it meaningful. Individual points indicate performance on the folds of the repeated cross-
validation. Results are ordered based on descending order of performance. Chance-level performance is 
indicated by the Dummy classifier. RF = random forest; SVM = support vector machine; ET = extreme trees; IF 
= isolation forest; OC SVM = one-class support vector machine.

 

Examined Classifier Recall Precision F1 ROC AUC Balanced accuracy

Known subjects

Balanced RF 0.62, [0.6, 0.64] 0.26, [0.26, 0.27] 0.37, [0.36, 0.37] 0.71, [0.7, 0.72] 0.66, [0.65, 0.67]

SVM 0.29, [0.28, 0.31] 0.28, [0.27, 0.29] 0.29, [0.27, 0.3] 0.62, [0.61, 0.63] 0.58, [0.58, 0.59]

ET 0.16, [0.15, 0.17] 0.61, [0.58, 0.64] 0.25, [0.23, 0.26] 0.73, [0.72, 0.74] 0.57, [0.56, 0.58]

RF 0.14, [0.13, 0.15] 0.57, [0.53, 0.6] 0.22, [0.21, 0.23] 0.71, [0.7, 0.72] 0.56, [0.56, 0.56]

IF 0.14, [0.13, 0.16] 0.2, [0.19, 0.22] 0.17, [0.15, 0.18] 0.52, [0.52, 0.53] 0.52, [0.52, 0.53]

OC SVM 0.89, [0.86, 0.92] 0.15, [0.14, 0.15] 0.25, [0.25, 0.25] 0.51, [0.5, 0.51] 0.51, [0.5, 0.51]

DUMMY 0.14, [0.13, 0.15] 0.14, [0.13, 0.15] 0.14, [0.13, 0.15] 0.5, [0.49, 0.5] 0.5, [0.49, 0.5]

Unknown Subjects

Balanced RF 0.46, [0.41, 0.51] 0.18, [0.16, 0.2] 0.25, [0.23, 0.27] 0.55, [0.53, 0.57] 0.54, [0.53, 0.56]

IF 0.23, [0.19, 0.27] 0.18, [0.16, 0.2] 0.19, [0.17, 0.22] 0.53, [0.51, 0.54] 0.53, [0.51, 0.54]

RF 0.05, [0.04, 0.06] 0.36, [0.29, 0.44] 0.08, [0.06, 0.09] 0.54, [0.52, 0.55] 0.51, [0.51, 0.52]

OC SVM 0.87, [0.82, 0.92] 0.14, [0.13, 0.15] 0.24, [0.22, 0.26] 0.51, [0.5, 0.52] 0.51, [0.5, 0.52]

ET 0.03, [0.02, 0.03] 0.36, [0.26, 0.45] 0.05, [0.04, 0.06] 0.53, [0.52, 0.55] 0.51, [0.5, 0.51]

DUMMY 0.15, [0.14, 0.16] 0.15, [0.13, 0.17] 0.14, [0.13, 0.16] 0.5, [0.49, 0.51] 0.5, [0.5, 0.51]

SVM 0.2, [0.17, 0.22] 0.16, [0.14, 0.17] 0.16, [0.15, 0.17] 0.49, [0.47, 0.5] 0.5, [0.49, 0.51]

Table 1.  A balanced random forest classifier outperformed all classifiers when compared across balanced 
accuracy. Cells indicate mean and 95% CI. RF = Random Forest; SVM = Support Vector Machine; ET = 
Extreme Trees; IF = Isolation Forest; OC SVM = One-Class Support Vector Machine
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models, and the high degree of overlap in the ranking of the feature importance point to the robustness of the 
models.

Exploratory analysis 3: Feature importance altered across arousal conditions.
The decoding analysis in known samples showed that we can predict MB instances from the combination of brain-
body markers with adequate accuracy when MB instances were aggregated across different arousal conditions. 

Fig. 7.  Classification of MB improves when considering both BRAIN and BODY. (a) Balanced random forest 
classifier trained on a combination of BRAIN and BODY features outperformed classifiers trained solely on 
BRAIN or BODY features when evaluated with balanced accuracy. Individual points indicate performance on 
the folds of the repeated cross-validation. (b) Subset of the 10 features with the highest mean of the absolute 
SHAP values obtained from the balanced random forest classifier. (c) The per-fold differences between the 
classifier trained on both BRAIN and BODY features and the one trained only on BRAIN data suggest that 
incorporating both feature domains provides a slight performance improvement over using BRAIN data alone. 
The shaded region indicates better performance for the classifier trained on both feature domains. The star 
indicates the mean difference. The solid, horizontal line represents the 95% highest-density intervals of the 
distribution. Red dots indicate per-fold differences. (d) The per-fold differences between the classifier trained 
on both BRAIN and BODY features and the one trained on BRAIN and shuffled BODY data suggest that the 
model with both BRAIN and BODY data does not consider the body markers as noise.

 

Classifier Recall Precision F1 ROC AUC Balanced Accuracy

BRAIN + BODY 0.62, [0.6, 0.64] 0.26, [0.26, 0.27] 0.37, [0.36, 0.37] 0.71, [0.7, 0.72] 0.66, [0.65, 0.67]

BRAIN 0.61, [0.59, 0.62] 0.24, [0.24, 0.25] 0.35, [0.34, 0.36] 0.7, [0.69, 0.71] 0.65, [0.64, 0.65]

BODY 0.59, [0.58, 0.6] 0.22, [0.21, 0.22] 0.32, [0.31, 0.32] 0.66, [0.66, 0.67] 0.61, [0.61, 0.62]

EYE 0.57, [0.55, 0.59] 0.21, [0.21, 0.22] 0.31, [0.3, 0.32] 0.64, [0.63, 0.65] 0.61, [0.6, 0.62]

ECG 0.55, [0.54, 0.57] 0.18, [0.17, 0.18] 0.27, [0.26, 0.27] 0.58, [0.57, 0.59] 0.56, [0.55, 0.57]

EDA 0.6, [0.57, 0.63] 0.17, [0.17, 0.17] 0.26, [0.26, 0.27] 0.57, [0.56, 0.58] 0.55, [0.54, 0.56]

RSP 0.52, [0.5, 0.54] 0.15, [0.15, 0.16] 0.24, [0.23, 0.24] 0.53, [0.52, 0.54] 0.52, [0.51, 0.53]

Table 2.  A classifier trained on a combination of BRAIN and BODY features outperformed classifiers trained 
solely on BRAIN or BODY features, when evaluated with balanced accuracy. Cells indicate mean and 95% CI.
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We were further interested in whether this classification was achieved based on a universal mechanism, or 
whether we could detect arousal-dependent brain-body configurations that predict MB. To this end, we trained 
a balanced random forest classifier solely on data acquired from Baseline, from High, and from Low Arousal. We 
found that Baseline had the best performance (0.67, [0.65, 0.68]), followed by Low Arousal (0.64, [0.63, 0.65]), 
and finally High Arousal (0.61, [0.6, 0.63]). We retained comparable performance when examining the arousal 
partitions of the 1 Hz filtered dataset (Supplementary Table S6-7). Examining the SHAP values for each arousal 
state, we saw that the models relied on distinct feature domains. During Baseline, the model relied on markers 
from the frequency domain of EEG (Fig. 8a). During Low Arousal, MB classification was obtained using the delta 
band power, by far the most dominant marker (Fig. 8b). Finally, in High Arousal, the model did not rely on a 
single feature, rather in a combination of eye openness, GSR, and the frequency domain of EEG (Fig. 8c). Similar 
feature importances were observed in the 1 Hz filtered dataset (Supplementary Fig. S10). However, in the 1 Hz 
filtered dataset, we observed that ECG features tended to rank higher (Supplementary Fig. S11–16).

Exploratory analysis 4: Feature importance altered based on the pre-probe analysis window
A potential caveat of utilizing the full pre-probe period of 110  s before a report is that we might capture 
multiple mental states, and the actual statistical regularities might be weakened when averaged across. With this 
consideration, we examined whether we could improve classification performance when classifying MB from 
the last 10 s before a report. We defined a secondary brain-body data matrix, with BODY features that could be 
estimated from 10 s of body activity. Across both 0.1 and 1 Hz filters we retained comparable performance in 
the classifiers trained on both EEG and bodily markers, as well as solely EEG or BODY markers (Supplementary 
Fig. S17–20; Supplementary Table S8 and 9). However, we observed decreased performance in the classifier 
trained solely in the eye openness data (Supplementary Table S8 and 9). An examination of feature importance 
showed that the beta, delta, and theta bands of the EEG frequency domains remained the most important EEG 
features, but there was a reduction in the importance of the EYE features and an increase in the importance of 
EDA (Supplementary Fig. S17b, 18, 19b, 20). Importantly, our results were not affected by the choice of filtering 
parameters, indicating robustness of our results to preprocessing parameters.

Discussion
We used experience sampling combined with EEG and peripheral physiological recordings under different 
autonomic arousal conditions to determine whether MB reports in neurotypical individuals were supported by 
distinct brain-body configurations compared to mental states with reportable content. Overall, our results show 
that MB is a mental state that becomes more prevalent in low and partially in high arousal states, and that MB is 
driven by both brain and body processes, providing evidence for an embodied account of MB.

Behaviorally, we found that MB was reported at significantly lower rates compared to sensory experiences 
or MW, irrespective of the arousal condition. This finding is in line with past research showing that MB rates 
vary between 5 and 10% of total probe instances, across both uninterrupted thinking12 and task engagement11. 
We also show that sleep deprivation significantly increased the frequency of MB occurrences. Sleep deprivation 

Fig. 8.  Ranking of features by mean absolute SHAP value extracted from the balanced random forest classifier 
varied across different arousal conditions. (a) Magnitude of SHAP values for a balanced random forest 
classifier trained on MB reports collected during the Baseline Arousal condition. The model relied mostly 
on features from the EEG frequency domain. (b) Magnitude for SHAP values for a classifier trained on MB 
reports collected during the Low Arousal condition (after sleep deprivation). The model mostly used spectral 
power in the EEG delta band. (c) Magnitude for SHAP values for a classifier trained on MB reports collected 
during the High Arousal condition (after intense exercise). The model relied mostly on features from eye 
openness, EDA, and the EEG frequency domain
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has been shown to induce a low arousal state during which cognitive performance declines67, metabolic and 
physiological processes change68, and unique neuronal markers, such as slow-wave activity, emerge69. After sleep 
deprivation, participants also tend to perform worse in sustained attention tasks70, with results suggesting a true 
effect of sleep deprivation on more “misses” (no response when necessary) compared to “false alarms” (response 
when unnecessary)71, a finding that was recently shown as a behavioral correlate of MB11. Additionally, sleep 
deprivation and mounting sleep pressure have been positively correlated with more MW instances72,73, suggesting 
an overall mode shift from task engagement to MW74. Our results challenge these past findings by showing that 
participants were more likely to experience an MB event rather than MW after sleep deprivation. We also found 
that MW was in fact more likely to decrease after sleep deprivation. This is further supported by the results of 
the transition analysis, where MW reports were less likely to be followed by another MW report, and more likely 
to be followed by MB. Such discrepancies in the reportability of MW after sleep deprivation could be possibly 
explained by the explicit inclusion of MB as a reportable mental state in the experience sampling that our design 
opted for. In other words, it might be that the observed MW occurrence increases after sleep deprivation can 
be accounted for by MB reports, once participants have the chance to opt between these two mental states in a 
more fine-grained way.

In terms of high arousal induced by high-intensity exercise, our analysis did not reveal any significant effects 
on MB occurrences. As per the provided registered protocol alternative explanation (Supplementary Table 1), we 
hypothesized that this arousal manipulation might not have been overall effective as it could not have produced 
effects that would last across the whole experience sampling session. To test whether MB frequency reports 
would differ between the beginning and at the end of the session, we split the dataset into two parts. When 
split, we indeed found a significant difference between the frequency of MB reports. This result was replicated 
when considering only the first and last 10 trials per subject, which maximized the distance between initial and 
final physiological arousal within the session. However, we were not able to find any differences when the data 
were split into smaller bins. Together, we consider that these results provide partial evidence for our registered 
hypothesis, showing that residual high arousal effects after intense exercise can increase the frequency of MB 
reports.

In addition to the frequency of mental states across arousal conditions, we also examined whether rreaction 
times differ across arousal conditions and mental states. In general, reports in low arousal tended to be the slowest, 
consistent with a wide range of attention tasks that show slower reaction times in sleep deprivation compared to 
baseline arousal75. We consider these findings as additional evidence that the arousal manipulation was effective 
in that it lowered overall vigilance levels of the . We also observed a main effect of mental states, such that MB 
tended to be reported significantly slower compared to MW and sensations. Contrary to our current results, 
we recently found that MB was reported faster when compared to other mental states when content had to be 
evaluated12. This apparent mismatch in results can be explained when considering that MB can be a state devoid 
of content, and therefore, there is the binary consideration of “yes/no” when evaluating thought content, which 
might be a relatively fast decision. This can be different, for example, from the evaluation of content-full mental 
states, which demand a sequential evaluation of both content presence (“yes/no”) and content evaluation (“what 
is the content about?”). This way, the difference in results can be explained by the imposition of an additional 
cognitive evaluation. Overall, we suggest that these results might reflect a gradient of vigilance, with participants 
being the most alert at baseline arousal, and progressively declining during high and low arousal conditions, 
as well as more vigilant when reporting mental states with content compared to MB. Of note, we observed two 
interesting interactions between mental states and arousal conditions. MW tended to be reported slower in low 
arousal compared to baseline and high, which is consistent with our interpretation of reaction times as marking 
vigilant states. However, as we also observed that MB reports tended to be reported slower in both high and low 
arousal conditions, we speculate that this might be preliminary evidence that arousal modulates how engaged 
participants are with their current mental states. In this sense, exercise fatigue can lead to an MB state that takes 
longer to recover from when probed for a report.

A final explanatory analysis revolved around the relationship between sleep and MB. We recently posited that 
MB is a distinct mental state characterized by a unique phenomenological profile of no content76, and unique 
neuronal markers, characterized by high cortical integration and low cortical segregation12. This neuronal 
configuration is atypical of wakefulness77, and is more closely reminiscent of brain configurations during deep 
sleep78. In conjunction with the presence of slow wave intrusions during wakefulness as a marker of MB reports11, 
a classic marker of NREM sleep, an emerging issue is whether MB is a misrepresented instance of sleep. This 
issue is further complicated by the postulation that in MB there is no content76, and thus does not functionally 
represent a wakeful state where people can report content. To avoid this pitfall, we introduced sleep as a potential 
report during experience sampling. We found that people discretely reported MB and sleep, providing evidence 
that when provided with such options, people can differentiate between these two experiences. Additionally, 
we did not find that MB and sleep tended to covary. To strengthen this claim, we ran equivalence tests for each 
correlation across arousal conditions. However, no test showed a positive result for equivalence. Therefore, these 
results remain indeterminate, with a trend for no relationship between MB and sleep.

Having established that MB occurrence varied across different physiological arousal conditions, we then 
examined whether MB could be decoded by brain and body markers. With the aim of showing single trial 
prediction, we trained different models on EEG and physiological markers, spanning time, spectral, complexity, 
and connectivity domains. Overall, we were able to achieve above-chance-level classification, showing that there 
exist unique brain-body patterns that can discriminate MB reports from mental states with content. However, 
we were not able to show above-chance-level classification when training classifiers on unknown subjects. 
Therefore, our results are not generalizable to novel populations due to the high amount of variance between 
subjects. Of importance is the result that a combination of EEG and physiological markers marginally, but 
consistently, outperformed both EEG and physiological markers. Overall, we observed an improvement of 2–5 
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% in classification performance in balanced accuracy. This improvement can be attributed to unique information 
inherent in body signals, as evidenced by the comparison of the classifier trained on both brain and body data 
compared to classifiers trained solely on brain data or brain and shuffled body data. The classifier trained on 
both brain and body data does not consider body features as noise or redundant. Overall, while our results 
suggest a high degree of overlap between brain and body information in MB, they indicate that information 
about MB extracted from the body is partially independent of the EEG features. Feature importance ranking 
derived from the classification model indicates that the low and mid frequencies of the EEG power spectrum and 
metrics of eye openness are useful predictors of MB. This finding was consistent across analysis windows and 
preprocessing parameters. Importantly, all classifiers trained on body markers had above chance performance 
with variant degrees of variability, with the highest performing being the EYE (eye openness) and the ECG 
(heart-rate variability), providing evidence that MB can be decoded solely from bodily signals.

To further validate our protocol, we ran two exploratory analyses, with the aim to examine whether 
classification performance varies based on the analyzed pre-probe window and whether feature importance alters 
across arousal conditions (For a full Discussion, see the Supplementary Discussion on Methodology). Overall, 
when examining a classifier trained on a brief 10 s window before MB reports, we found similar performance 
compared to the full 110 s classifier. What was interesting was that, while EEG performance remained the same, 
performance on classifiers trained solely on body features decreased. As brain-physiology coupling occurs at 
varying time delays across cardiac79 and respiratory domains80, we interpret these results as evidence that bodily 
contributions on MB are based on slow, oscillatory processes that might not be captured from examining short 
pre-probe periods. At the same time, our classification analysis on separate arousal conditions showed distinct 
brain-body configurations that can predict MB reports. As our decoding approach did not permit any inference 
of the directionality effect, or decomposing interactions within and across physiology modalities, at this stage we 
claim that our results point to discrete physiological pathways that elicit MB reports. Overall, we show that our 
enhanced classification is retained across different analysis windows and different arousal conditions.

Similarly, enhanced classification when considering a brain-heart matrix compared to solely brain markers 
was also shown for patients with disorders of consciousness, where the inclusion of cardiac features outperformed 
classification based solely on EEG markers81. To our knowledge, our results are the first to extend multivariate 
decoding past the brain-heart axis and consider the inclusion of multiple unique bodily afferent sources in 
classifying mental states. The overall success of the brain-body decoding paradigm in classifying consciousness 
levels and mental states provides evidence that bodily information is not redundant and is not necessarily fully 
represented within brain dynamics. Instead, an embodied approach, stressing bidirectional information routes 
between brain and body can provide better predictive power and assist in more comprehensive, generative 
models of experience34,82.

A neurobiological explanation of our results comes from an integrative model of content, task engagement, 
and arousal which suggests that the relationship between thought and arousal can be conceptualized as an 
inverted u-curve. This means that an optimal arousal level modeled by the locus coerulius-norepinephrine 
(LC-NE) release is necessary to actively engage and control our thoughts, either during task engagement 
or MW83. This stance treats thought as an active task, where engagement is necessary for clear content and 
control of thought dynamics. As arousal tapers off to non-optimal levels of the inverted U-curve, we experience 
concurrent, opposing thoughts that serve exploratory purposes for optimal performance, such as exploring 
different strategies. This necessitates flexibility and malleability of content. We here suggest that our results 
supplement this model by providing an account of the extremities of the optimal U-curve. As the model suggests 
degradation of thought clarity when we move closer to arousal extremities, we consider MB reports as instances 
where no content can be clear or present, extending this unifying framework to the entire arousal U-curve. 
Neurophysiologically, this model has translated to investigations of pupil dilation as a function of mental state 
and task engagement with pupil size yielding both positive26,84 and null results11 in discriminating on-task 
vs off-task mental states, as well as contrasting MB and MW. Part of the ascending arousal network, the LC 
modulates cardiac, galvanic, respiratory, and pupillary activity28,85. In addition, the LC innervates projections 
responsible for eyelid openness86. The combinatorial high performance of different body markers in classifying 
MB reports, and the evidence that altered levels of arousal increase MB occurrences provide further support for 
the modulatory role of the ascending arousal system in mental states and thought reportability.

From a theoretic perspective, our study challenges the conception that brain information is uniquely suitable 
to understand thought reportability and provides support for an embodied account of the mind. Embodiment 
moves the seat of mental events away from the brain and reformulates cognition as resulting from brain-body 
interactions. An extensive literature has shown how cataloged cardiac, respiratory, gut, and pupillary effects 
on perception30, action87, metacognition31 and consciousness81, while the collective interplay of peripheral 
systems has discriminatory power for clinical88 and consciousness classification89. We show here that within 
embodiment, the body is not only facilitatory, but also might impede access to our mental lives. Under specific 
brain-body configurations, we are not able to clearly formulate mental content.

Some limitations pertain to our study. First, the nature of experience sampling discretizes the continuous 
nature of ongoing thinking. As there is no consensus on how long a mental state might last, or whether all mental 
states last the same length, results might average across different mental states. While we attempted to circumvent 
this problem by analyzing different pre-probe windows, it remains unclear whether all mental states last the 
same, and what is their actual duration. Secondly, the post-exercise setup might be suboptimal in examining the 
effects of high arousal on ongoing cognition. Neuronal and electrophysiological recordings have shown that the 
duration of the effects of exercise on ongoing brain and physiological activity45–47 is highly variant. In addition, it 
is unclear whether brain and body recover to baseline states at the same rates, potentially confounding the post-
exercise importance of cortical and physiological markers in cognition. Experience sampling with online probes 
during exercise could overcome this challenge.
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In conclusion, our study suggests that MB is an arousal-modulated mental state, with a unique cortical and 
physiological profile. We think that our results pave a new paradigm for an embodied account of mental states, 
where the phenomenology of our mental lives is expressed based on both our body and our brain state. At the 
same time, our results challenge the neurocentric approach to mental state research, putting emphasis on the 
constant brain-body interactions that shape our cognition. As MB research continues to evolve, we consider our 
findings elaborative for clinical and experimental accounts of spontaneous thinking, where we move towards a 
complex and dynamic conception of our mind.

Data availability
The aggregated raw data in a BIDS format, the trained machine-learning models, experimental and analysis logs, 
and result dataframes can be found at https://doi.​org/ht​tps://doi.or​g/10.58119/​ULG/174Q6G.

Code availability
All codes to replicate the power analysis, the experience sampling paradigm, and the present analysis can be 
found at ​h​t​t​p​s​:​​/​/​g​i​t​l​​a​b​.​u​l​i​​e​g​e​.​b​e​​/​P​a​r​a​​d​e​i​s​i​o​​s​.​B​o​u​l​​a​k​i​s​/​m​​i​n​d​_​b​l​a​n​k​i​n​g​_​a​r​o​u​s​a​l. An archived version of the code 
at the time of submission can be found at https:​​​//d​oi.​org/h​​​ttp​s:/​/d​oi.or​g/​1​0.58119/ULG/174Q6G.
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