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Abstract

Mind-blanking (MB) is the inability of reporting mental events during unconstraint thinking. Previous

work shows that MB is linked to decreased levels of cortical arousal, indicating dominance of cerebral

mechanisms when reporting mental states. What remains inconclusive is whether MB can also ensue

from autonomic arousal manipulations, pointing to the implication of peripheral physiology to mental

events.  Using  experience-sampling,  neural  and  physiological  measurements,  we  expect  that  MB

reports  will  be more  frequent  in  low and high autonomic  arousal  conditions,  respectively  elicited

through  sleep  deprivation  and intense  physical  exercise. Using classification  schemes,  we further

hypothesize that MB will be predicted by patterns combining brain and physiological markers. If our

hypotheses fail, it will imply that cortical and autonomic arousal are distinct pathways for mental state

reportability. If our hypotheses get confirmed, the results will indicate an embodied approach to mental

events in place of a solely neurocentric that currently prevails.  
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Introduction 

During ongoing mentation, our mind constantly shifts across different mental states. These mental

states  typically  bear  some content  (“what  we  think  about”)  and  indicate  a  relationship  towards  that

content (i.e.,  perceiving,  fearing,  hoping, remembering)  1.  As we move through the environment,  our

thoughts fluctuate between the external and internal milieu 2,3, resulting in a fluid stream of consciousness

4.  External  content  is  tightly  coupled to the processing of environmental  stimuli  and task-demanding

conditions.  Internal  content  is  more  associated  with self-referential  processing  and internal  dialogue,

widely known as Mind-Wandering  4.  Inclusive as this  external-internal  dipole may seem, it  does not

capture the full scope of the “aboutness” of mental content. Recent work has highlighted another mental

state,  where  people  report  that  they  are  “thinking  of  nothing”  or  “their  mind  just  went  away”,  a

phenomenological experience termed mind-blanking (MB) 5. As MB is relatively new in the landscape of

ongoing  cognition,  the  extent  of  MB  episodes  in  daily  and  clinical  settings  remains  widely

uncharacterized. For example, a recent study found the MB might be miscategorized as mind wandering

in ADHD symptom evaluation 6. Therefore, the experience of MB occurrences poses a challenge to our

everyday functioning and our understanding of the continuous nature of the stream of consciousness.

Currently, there is no clear answer as to how MB reports are generated. So far, behavioral studies

show that MB can arise after conscious mental effort to empty our mind 7–9, is usually unintentional 5,10,11

and  gets  reported  less  frequently  during  unconstrainted  thinking  compared  to  mind  wandering  and

sensory/perceptual mental states 5,11–13.  At the brain level, the inability to report mental events after the

prompt  to  “empty  the  mind”  has  been  associated  with  activation  of  the  anterior  cingulate/medial

prefrontal cortex, and deactivation of inferior frontal gyrus/Broca's areas and the hippocampus, which the

authors interpreted as the inability to verbalize internal mentation (inner speech)  8. Recently, we found

that the functional connectome of fMRI volumes around MB reports was similar to a unique brain pattern

of overall  positive inter-areal  connectivity  12 which was also characterized by increased amplitude of

fMRI global signal (i.e. averaged connectivity across all grey matter voxels), an implicit indicator of low
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arousal  14–16. For example, the amplitude of the global signal correlated negatively with EEG vigilance

markers  (alpha,  beta  oscillations),  while  increases  in  EEG  vigilance  due  to  caffeine  ingestion  were

associated with reduced global signal amplitude14. Our findings corroborate recent EEG-related evidence

supporting the possibility of “local sleeps” during MB reportability 10,17. “Local sleeps” refer to the scalp

distribution of EEG potentials during wakefulness, in the form of high intensity, slow oscillatory activity

in the theta/delta band, which could differentiate between MB and mind wandering, with more fronto-

central potentials tied to mind wandering and parietal to MB 10. Together, the presence of slow waves

preceding MB reports and the high fMRI global signal hint toward the role of arousal in mental content

reportability. Starting from this line of evidence, we generally infer that arousal fluctuations drive MB

reportability. 

Arousal is a multidimensional term generally referring to  the behavioral state of being awake and

alert, supporting  wakefulness,  responsiveness  to  environmental  stimuli,  and  attentiveness  18,19.

Anatomically, arousal is supported by the ascending arousal system, the autonomic nervous system, and

the endocrine system 18. Early on, Lacey viewed arousal in terms of behavioral arousal (indicated by a

responding organism, like restlessness and crying), cortical arousal (evidenced by desynchronized fast

oscillatory activity), and autonomic arousal (indicated by changes in bodily functions) 20. Cortical arousal

is self-generated through the reticulate  formation and propagated through dorsal thalamic and ventral

subthalamic pathways 21, and can be indexed by the alpha, theta, and delta EEG bands during wakefulness

22,23. Lower levels of cortical arousal in the form of slow waves have been associated with an increased

number of missed stimuli in behavioral tasks 11,23 and decreased thought intensity 24. Also, lower levels of

arousal indexed by pupil size have been correlated with a higher probability of MB reports in sustained

attention tasks 11,25,26.

Much as it may have been done in terms of cortical arousal, the present study will focus on how

autonomic arousal influences MB reportability, which is widely understudied. Our choice is justified by

the theoretical assumption that mental function is tightly linked to peripheral body functions, explicitly
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expressed by the embodied cognition stance  27. Briefly, embodiment holds that cognition is bound to a

living body interacting with a dynamic environment and conceptualizes cognition as the result of brain-

body interactions during dynamic contexts. From that perspective, modifications in autonomic arousal are

expected to lead to differential reportability of mental states. Autonomic arousal links the body and the

brain through spinal-cord projections from peripheral organs to the brainstem and can be indexed by

physiological signals reflecting sympathetic/parasympathetic balance, such as heart rate, galvanic skin

response,  and fluctuations  in  pupil  size  28. Converging evidence  suggests  that  afferent  physiological

signals and biological rhythms, such as the cardiac or the respiratory phase, play a modulatory role in

conscious perception 29,30, metacognition 31, affective salience of information32, and perceptual confidence

of  sensory  sampling  33,  both  during  task  performance  and  in-silico  simulations  34. Alterations  in

autonomic arousal were also found to influence brain activity in that fMRI volumes characterized by

lower arousal levels (indexed by decreased pupil size), showed reduced in-between network integration

and inter-subject  variability  in  comparison to  scans  characterized  by high arousal  levels  (indexed by

increased pupil size) 35.

Taken together, we here propose a direct link between autonomic arousal and content reportability.

Firstly, we will examine how MB report distribution shifts across different autonomic arousal stages. To

this  end,  we  will  use  experience-sampling  under  differently  elicited  arousal  conditions.  Experience-

sampling is a though-sampling methodology, where people are probed to report their mental content at

random intervals, probed by an external cue 4,36. We will employ this task at three distinct arousal levels:

baseline,  high  (post-workout),  and  low  (post-sleep  deprivation).  Our  operational  hypothesis  is  that

optimal  levels  of  arousal  (fixed  variable)  are  necessary  for  optimal  mental  content  reportability

(dependent variable). We expect that deviations from optimal levels, such as after sleep deprivation or

intense physical exercise, will alter our stream of consciousness, therefore promoting more frequent MB

reports (See Table 1 for the full scope of our hypothesis). Secondly, we will opt to identify specific brain-

body  interaction  patterns  that  promote  MB  reportability.  To  this  end,  we  will  utilize  multimodal
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neurophysiological  recordings  and  a  machine  learning  approach  to  decode  reports  from  arousal

measurements. If our hypotheses fail, it will suggest that cortical and autonomic excitability contribute

differentially to the reportability of mental absences. If our hypotheses get confirmed, a new path will

open toward an embodied approach of reporting content-less events, whereby bodily influences will be

among the key determinants of the MB phenomenology.

Methods

Ethics Information

      The experimental  procedure has been approved by the CHU Liège local  ethics  committee and

conforms  with  the  Declaration  of  Helsinki  and  the  European  General  Data  Protection  Regulation

(GDPR). Before the onset of the protocol, participants will provide informed consent of their participation

in the study. Participants will receive monetary compensation for their participation in the study.

Design

The  study  will  include  healthy  volunteers  recruited  after  campus  poster  advertisements,  intranet

electronic invitations, and through the ULiège “petites annonces” e-campus platform. Inclusion criteria

are:  a) right-handedness, b) age>18 years, c) minimal exercise background (<2h per week), d) good

subjective sleep quality (Pittsburgh Sleep Quality Index [PSQI] ≤ 5 37), e) habitual sleep duration of 8 ± 1

hours. Exclusion criteria are: a) history of developmental, psychiatric, or neurological illness resulting in

documented  functional  disability,  b)  severe  anomalies  in  pupil  shape  or  inability  to  open both  eyes

preventing pupil  measurement  38,  c)  analgesic  medication  which may affect  physiological  arousal,  d)

history  of  psychiatric  illness  pertaining  to  anxiety  disorders  or  scores  <  9  in  the  General  Anxiety

Disorder-7 (GAD-7 scale) 39 as anxious participants experience biased perceptions of their bodily states 40,

e) extreme chronotypes, f) shift work or traveling over time zones in the past 3 months.

Experience-sampling will be utilized in a within-participants repeated-measures design. During the

experience-sampling session, participants will lay restfully and will be directed to let their minds wander,
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without  any  specific  instructions  towards  internal  (daydreaming,  memories,  prospective  events)  or

external thoughts (body sensations,  sensory stimuli  in their  immediate environment).  Auditory probes

(total n=40, 500Hz simple tones) will invite participants to report what they were thinking at the moment

just preceding the probe.  The inter-probe interval will be sampled from a uniform distribution between

110 and 120 seconds. Report times will be monitored online to examine if participants miss the probe or

fell  asleep due to  our  experimental  manipulation.  In case of a  report  time > 6s,  participants  will  be

reminded to report their mental state as soon as they hear the probe, and indicate they are awake via

button  press.  In  case  of  unresponsiveness,  the  experimenters  will  manually  awaken  the  participant.

Depending on the probes’ trigger times and participants' reaction times, we anticipate that each recording

session will vary between 70-90 minutes. We chose to present 40 probes, as to keep the overall length of

our  experience-sampling  paradigm  approximately  one  hour  and  fifteen  minutes,  avoiding

fatigue/drowsiness and participants returning to baseline conditions after our experimental manipulation.

The relatively large experience-sampling interval, compared to previous studies, is used to record enough

samples to accurately estimate physiological markers from slow oscillatory signals, such as the heart rate

variability.  Upon the  probe,  participants  will  have to  choose  among distinct  choices  describing  their

mental content: MB, mind wandering, and perceptual sensations or sleep. These response options were

chosen  to  minimize  assumptions  about  what  the  actual  partitions  of  mental  content  might  be.  For

example, debates about what can be classified as mind wandering41 refer to whether mind wandering is a

coherent cluster of events  1,42 and how it is separated from awareness and processing of environmental

stimuli 41,43. We believe that our divisions respect the literature on internal/external thinking networks 3,44,45

while introducing minimum assumptions as to the actual content of each state.  The introduction of the

sleep option facilities the identification of trials where participants fell asleep due to our experimental

manipulation. Participants will indicate their response via button press from a response keyboard placed

under their dominant hand. 
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We will repeat the experience-sampling task on three distinct days, over the span of two weeks under

three conditions:  a)  experience-sampling under  spontaneous thinking without  arousal  modulations,  b)

experience-sampling  elicited through short, high-intensity interval training (high autonomic arousal), c)

experience-sampling after total sleep deprivation (low autonomic arousal) (See Figure 1). The goal of

both arousal manipulations is to promote distinct changes in physiological and cortical markers associated

with arousal mechanisms (see Table 2). Monitoring of arousal changes will be done with physiological

and cortical measurements. In case participants do not show distinct changes in cortical and physiological

changes after our arousal manipulations, they will be excluded from further analysis. Effect monitoring

will be done by examining the heart rate in the high arousal condition and the pupil size in the low arousal

condition, as well as the EEG spectra in both conditions.

In the high autonomic arousal condition, participants will first perform high-intensity interval activity

in the form of cycling. They will start with a warm-up training session of 3 minutes to avoid potential

muscle trauma and then will cycle for 45 seconds as fast as possible. A resting period of 15 seconds will

follow. A total number of 10 workout cycles will be administered. The choice of this timing protocol rests

on previous studies indicating that similar exercise routines produce distinct and sustained sympathetic

activity 46,47 and cortical excitation 47, which can last between 30-90 minutes after exercise cessation48.

In the low autonomic arousal condition, participants will perform the experience-sampling task after

one night of total sleep deprivation. Sleep deprivation leads to an arousal state that is behaviorally distinct

from typical wakefulness49,50, promotes specific neuronal signatures ("local sleeps” in the delta bands)11,

and has a distinct physiological expression. Critically, we do wish to claim that sleep states are identical

to  “local  sleeps”,  nor  do  we  suggest  an  overlap between  low arousal  due  to  sleep  deprivation  and

unconsciousness during sleep.To acquire  estimates  of  their  mean sleep schedule,  participants  will  be

required to wear an actimeter for one week before the total sleep deprivation protocol. The total sleep

deprivation protocol will be as follows:  A week prior to sleep deprivation, participants will be provided

with an actimetry device, to track wake-sleep schedule, and will be instructed to follow a consistent 8-
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hour sleep schedule.  On the deprivation day, participants will  arrive at  the lab one hour before their

normal sleep time to extract their actimetry baseline data, estimate the optimal sleep deprivation window

and provide baseline vigilance, drowsiness, and sleepiness measurements. After a total sleep deprivation

of 26h (16h of typical  wakefulness,  8h of sleep deprivation,  and a 2h post-sleep deprivation  period)

participants begin their post sleep-deprivation, experience-sampling session. As an example, a participant

who typically sleeps at 12 am will arrive at the lab at 11 am, start sleep deprivation at 12 am, finish sleep

deprivation at 8 am, and perform the experience-sampling task at 10 am.  Should slow-wave activity

during wakefulness follow the same circadian modulation it follows during sleep 51, a potential confound

that might lower the power of our analysis is the time-window of the experience-sampling task. However,

as suggested in 51, the relative time-window we have selected does not fall under a critical point of large

reductions in the amplitude of the slow-waves.  The 2-hour, post-deprivation waiting window will allow

us to match the time of the experience-sampling across the 3 conditions,  avoiding potential  circadian

confounds  on  experience-sampling,  as  we  can  easier  match  sleep-wake  cycles  and  the  time  of  the

experience-sampling  within  each  participant.  We  have  chosen  this  sleep  manipulation  as  similar

manipulations have been previously used to examine the effects of sleep pressure  52,53, and have been

shown  to  elicit  distinct  low-arousal  cortical  profiles  54,55,  as  well  as  changes  in  the

sympathetic/parasympathetic balance 56.

Sleep  deprivation  will  be  controlled  with  regard  to  light  influence  (illuminance  = 15 lux  during

wakefulness and 0 lux during sleep), caloric intake (standardized meals every 4 h), and body posture

(semirecumbent  position during scheduled wakefulness) to minimize potential  masking effects  on the

sleep-wake regulatory system. Participants will not be allowed to stand up except for regularly scheduled

bathroom  visits  and  will  not  have  any  indications  of  the  time  of  the  day.  The  experimenters  will

continually monitor participants to keep them awake. In case of a sleep event, the experimenters will first

try to awaken the participant through an intercom, and in case of failure, they will manually awaken the

participant. We will also be monitoring for sleep lapses through the experience-sampling tasks. In case
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participants close their eyes for time-period < 30 seconds, they will be probed by a tone to wake up. If

they do not, the experimenter in the room will awaken the participant.

A one-week interval  will  take place between sleep deprivation and further recordings in order to

minimize potential carry-over effects of sleep deprivation on our follow-up conditions. In that way, the

participants’  sleep schedules will  also reset to their  respective normal  cycles.  The order of the three

arousal conditions will also be randomized.

Sampling Plan

We used a Neyman-Pearson frequentist approach to balance false-negative and false-positive rates by

setting power to 95% and establishing a Type I error rate (alpha) of 5%. To estimate the desired sample

size, a simulation approach was utilized: data were generated consistent with a latent binomial regression

model, in which one categorical predictor with 3 levels (Base, High, Low) predicted a binary outcome Y

(presence of MB or not). An original probability pMB  = .1  was specified as the underlying generative

probability in the baseline model based on previous research 5,11,12. We allowed the random intercepts and

slopes to freely vary around a normal distribution with a standard deviation of s.d. = .1. Given that no

previous study to our knowledge has provided evidence for the distribution of the effect sizes of arousal

on mental reports, and to account for possible reverse effects (such as decreased MB report probability),

we reasoned that a meaningful yet conservative effect for the “Low” arousal condition would be an odds

ratio of 1.6, and an odds ratio of 0.55 for the “High” arousal condition. Since our initial hypothesized

distribution is expected to yield ~3-5 MB reports per session  11,12, this effectively translates to a small

effect size of interest of at least 3 more reports across conditions. 

Considering these parameters,  for each population  sample,  ranging from  5 to  50 participants,  we

sampled 500 datasets, and fit a binomial model with the participant ID as random factors, keeping the

regression coefficients for the levels of the predictor constant. Based on the simulation analysis, using a
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false positive threshold of .05, we calculated a sample size of 26 participants to achieve a power of .95

(See Figure 2).

Given our sample size, and the estimated 3-week recording period for each participant, we expect that

data collection will be completed within 4 months. Subsequent data analysis and discussion preparation

will take an additional 3-4 months. Therefore, we anticipate submitting our manuscript within 8 months.

Analysis Plan

Behavioral data

Statistical  analysis  will  be  performed  using  generalized  linear  mixed-effects  models.  To  address

whether arousal affects MB occurrence, we will use a binomial, linear model with arousal as a categorical

independent variable, and the proportion of mental reports across a sampling period (40 trials) as our

dependent variable. The data will be binary coded (presence or not of MB report) and fit into the model

using a  logit  link.  Given that  the underlying distribution  is  unknown, a Bernoulli  generative process

minimizes the assumptions about the model. In order to examine whether the multinomial distribution of

mental reports itself changes across different arousal conditions, we will use the generalized estimating

equations (GEE) approach (Liang & Zeger, 1986), an extension of generalized mixed-effects models that

can account for correlated, repeated-measures count data from multinomial distributions 58. Mental reports

will be aggregated as counts across participants and conditions, and we will examine shifts in distribution

using the three experimental  arousal  conditions as predictors.  We will  consider as response time the

interval  between  the  response  probe  and  the  participant's  response.  To  examine  reaction  times  as  a

function of mental states, we will specify a generalized linear mixed effect model with mental reports and

arousal conditions as categorical variables and use a gamma distribution with an inverse link function. As

reaction-times are usually an indicator of arousal effects on the task-performance, an effect of arousal

state as a covariate might be informative about a potential shift of the overall slower mental report times

distribution and about the arousal state of the subject itself.  The choice of the distribution and the link
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minimizes assumptions about the model, respects the positive, skewed distribution of reaction times, and

was previously found to provide a better fit compared to other link functions  59. To examine whether

arousal shifts the dynamics of mental reports, i.e one state might be more likely to be followed by MB in

one of the arousal states compared to baseline, we will estimate dynamical transition probabilities across

different mental states using Markov models. The transition probabilities for MB will be then compared

using a linear model with an identity link, with the transition probabilities as the dependent variable and

the arousal condition as the categorical, independent variable.

All  specified  models  will  be  compared  against  null  models  using  likelihood  ratio  tests.  We will

introduce the participant’s ID as a priori random factor, i.e., we will allow the model's intercept to vary.

In case of multiple models compared, p values will be corrected using Bonferroni correction. In case of

significance of a fixed predictor, we will use corrected pairwise comparisons to examine the marginal

means of the predictors. 

Brain-based measures

Physiological and cortical timeseries will be segmented based on the response probe time. We will

consider the  120-second period before the response probe as a meaningful analysis epoch, representing

the neuronal and physiological dynamics that result in a specific mental state. This period will be used in

subsequent analysis. 

We plan to record EEG with an EasyCap (64 active electrodes) connected to a BrainAmp system

(Brain  Products  GmbH)  using  the  10-20  standard  configuration.  A ground  electrode  will  be  placed

frontally  (Fpz in  the  10–20 system).  Online,  we will  reference  the  electrodes  to  a  frontal  electrode.

Impedance will be kept below 10 kOhm. To minimize impedance, we will use conductive gel. Data will

be sampled at a sampling frequency of 500 Hz. Preprocessing will encompass band-pass filtering (>.1Hz,

<45Hz), notch filtering (50Hz), and epoch definition (t_start = 120s preceding the probe, t_max= probe).

By visual inspection, we will check and remove noisy electrodes and epochs. Should we discard more
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than  50% of  the  total  epochs for  a  single  participant,  that  participant  will  be  discarded from future

analysis. We will use ICA decomposition to remove non-neuronal components such as blinks, heartbeats,

muscle artifacts, etc. Finally, channels removed due to rejection will be interpolated using neighboring

channels, and all channels will be re-referenced to the average.

Based on EEG recordings, we will estimate three classes of measures: 1) measures estimating spectral

power - raw and normalized power spectra, Median Spectral Frequency (MSF), spectral edge 90 (SEF90),

and  spectral  edge  95  (SEF95),  2)  measures  estimating  information  content  –  spectral  entropy,

Kolmogorov-Chaitin complexity (K) and Permutation Entropy, and 3) measures estimating functional

connectivity  –  Symbolic  Mutual  Information  and  weighted  Symbolic  Mutual  Information.  Power

spectrum density (PSD) will be computed over the delta (1-4 Hz), theta (4-8Hz) alpha (8-12Hz), beta (12-

30Hz), gamma (30-60Hz) spectral bands, using the Welch spectrum approximation (segments = 512 ms,

overlap  =  400ms).  Segments  will  be  windowed  using  a  Hanning  window and  zero-padded  to  4096

samples. Kolmogorov-Chaitin complexity will be computed by compressing a discretization of the signal

using a histogram approach with 32 bins. Permutation Entropy will be obtained by computing the entropy

of a symbolic transformation of the signals, within the alpha, delta, and theta bands. SMI and wSMI are

then computed from the same symbolic transformation, but data was first filtered using Current Source

Density estimates to diminish the volume conduction. SMI and wSMI will be computed in theta, delta,

and alpha bands 60. From the available connectivity metrics, we chose to use only wSMI as it is the only

one that can detect purely nonlinear interaction dynamics and can be computed for each epoch 61.

Physiological measures 

Electrocardiogram  (ECG) data  will  be  acquired  using  the  BIOPAC  MP160  system  (BIOPAC

SYSTEMS inc.),  amplified through the BIOPAC ECG100C amplifier.  The data will be sampled at  a

sampling  frequency of  2kHz and recorded using  the  AcqKnowledge  v4.4 software.  ECG disposable

adhesive skin electrodes will be used in a bipolar arrangement of two electrodes and ground. The positive
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electrode will be at the non-dominant wrist of the participant and the negative on the contralateral ankle.

The ground electrode will be placed on the ipsilateral ankle. 

ECG  data  will  be  filtered  with  a  notch  filter  (.05Hz)  to  remove  baseline  wander  artifacts.  A

Butterworth high-pass filter will be applied (<.5Hz) to attenuate linear drifts and physiological artifacts.

Powerline interference will be attenuated with a notch filter (50Hz). Finally, the data will be smooth with

a 3rd-order polynomial Savitzky-Golay filter. Peaks will be detected using the Pan-Tompkins algorithm 62.

Finally, data will be epoched based on the partition scheme in the EEG preprocessing section.

ECG metrics can be grouped into three domains: time, spectral power, and information content. Time-

domain metrics are a) the Heart Rate (HR), b) the standard deviation of the RR-intervals (SDNN), and c)

the  Root  Mean  Square  of  Successive  Differences  (RMSSD).  Spectral  power  features  are  a)  Low

Frequency of the Heart Rate Variability (LF-HRV), b) High Frequency of the Heart Rate Variability (HF-

HRV) and c) the LF/HF HRV ratio. Information content metrics are : a) Approximate Entropy (AE), b)

Sample Entropy (SE), c) Multiscale Entropy (MSE). Initially, we will use the Pan-Tompkins algorithm 62

to extract the peaks of the QRS complex. RR intervals will be estimated as the sequential difference of the

peak times. We will estimate the time domain features based on the RR timeseries. For the spectral power

metrics, the RR will be evenly resampled at 4 Hz. Power spectra will be computed over the  LF-HRV

(0.04–0.15 Hz)  and the HF-HRV (0.15-0.4) bands.  The power spectrums will  be estimated  using the

Welch procedure.

Respiration  .   Respiratory  data  will  be acquired  using a  respiratory  belt  and amplified  through the

BIOPAC amplifier.  Data will  be sampled at  a sampling frequency of  50 Hz and recorded using the

AcqKnowledge v4.4 software. 

Respiratory metrics can be grouped in the time and information content domain. Time-domain metrics

are the: a) respiration rate and b) respiration rate variability. Information content will be estimated based

on multiscale entropy.
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Pupillometry. Eye movements and pupil size in both eyes will be recorded using oculometric glasses

(Phasya recording system) with a sampling frequency of 1000 Hz. The eye tracker will be calibrated at

the start of each recording. Data will be epoched based on the epoching scheme in the EEG preprocessing

section. Initially, pupil data will be downsampled to 120Hz. We will identify 100ms blink periods around

blinks and remove the whole segment, as pre- and post-blink periods can introduce pupil dilation artifacts

while  the eye is  recovering  to its  standard size.  We will  interpolate  segments  using 3rd-degree cubic

interpolation.  Dilation  speed outliers  will  be  calculated  by  estimating  the  median  absolute  deviation

(MAD) of each value. Samples exceeding the deviation threshold will be removed. Pupil dilation will be

smoothed using a moving average filter and baseline corrected with a 100ms period 2s after the probe.

Pupil  metrics  can  be  grouped  in  the  same three  domains:  time,  spectral  power,  and information

content. Time-domain metrics are: 1) Blink rate, 2) Pupil size, 3) Pupil size variability. Spectral power

metrics are: 1) Low Frequency Pupil Component (LFC), 2) High Frequency Pupil Component (HFC).

The  information  content  metric  is  MSE.  The  power  spectrums  will  be  estimated  using  the  Welch

procedure.

Electrodermal activity (EDA) data will be acquired through skin electrodes on the index and middle

finger and amplified through the BIOPAC amplifier. Data will be sampled at a sampling frequency of 250

Hz and recorded using the AcqKnowledge v4.4 software. All EDA metrics will originate from the time

domain: a) Galvanic Skin Response (GSR), b) tonic GSR, and c) phasic GSR. Extraction of the phasic

and tonic  components  of  the  GSR will  be  conducted  with  deconvolution  of  the  GSR signal  with  a

biologically  plausibly  impulse  response  function  with  initially  fixed  parameters  that  are  iteratively

optimized per participant 63.

Pattern recognition

To examine the physiological counterpart of the behavioral shifts in MB reports, we will employ a

supervised decoding approach. Using the multimodal neurophysiological measurements during the three
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experience-sampling sessions, we will train classifiers to discriminate across MB, mind wandering and

Perceptual Sensations, to identify whether MB is supported by a unique brain-body interaction pattern.

This approach will  allow us to extract  meaningful  brain-body interactions from the proposed arousal

metrics without being conservative about the nature of the multiple comparisons between the various

body metrics. 

As  features,  we  will  use  every  measurement  we  opted  to  collect  meaningful  data  in  the  time,

frequency,  information,  and  connectivity  domain,  unless  such  measurements  could  not  be  reliably

estimated  within  our  selected  time  window.  The  goal  of  the  multiple  selected  metrics  is  to  capture

potential  diverse  spatiotemporal  relationships  (low-high  frequency  interactions,  phase-amplitude

interactions)  that  might  extend  across  different  recording  modalities.  Overall,  we  will  compute  47

features.

 As targets, we will use the participants’ reports (MB, mind wandering, and perceptual sensations).

Since this creates a multiclass classification problem, we will focus on the binary classification of MB vs

other reports. We expect to acquire 40 samples per participant and condition (i.e. baseline and arousal

states),  giving  a  total  of  1040  (26*40)  samples  per  condition.  We  expect  that  5%  of  the  samples

correspond to the target report (MB), yielding an imbalanced problem with only 52 target samples.

As learning algorithms,  we will  first  test  parametric  and non-parametric  models  such as Support

Vector Machines, Random Forests, and  Extremely Randomized Trees. Support vector machines are a

nonlinear  classification  technique  that  aims  to  separate  labeled  inputs  by  creating  a  hyperplane  that

maximizes the distance of their features. Given a set of n-labeled inputs, SVM will provide a hyperplane

in  an  n-dimensional  space  that  maximally  separates  the  differently  labeled  groups.  A random forest

classifier is a meta-estimator. Various classifiers (“decision trees”) are trained in different parts of the

input dataset, and each classifier uses only that part of the dataset to predict the label of the input. Then,

the predictions of each classifier are pooled (“bagged”) together, and an optimal decision is chosen based

on the label with the most predictions (“votes”). Finally, an extremely randomized tree classifier  is a
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meta-estimator that employs a similar voting scheme. However,  in the case of extremely randomized

trees, trees are trained on all the features and the cutoff point of the trees (how the various metric nodes

are arranged to reach a decision) is randomized. Since our problem is highly imbalanced, we will also test

outlier detection algorithms (i.e. one-class classifiers), aiming to isolate MB from the other reports by

considering MB as either an inlier or outlier. We will test the one-class counterparts of the SVM (One-

class SVM) and Random Forests (i.e. isolation forests) algorithms.

For model selection and performance estimation, we will employ two different cross-validation

approaches. First, we will use a 5-fold stratified cross-validation scheme trained with all the samples. This

will provide us with performance estimates of classifiers aimed at obtaining patterns of brain and body

function that can predict the report of MB in known participants. As a second approach, we will use a 5-

fold  group  stratified  cross-validation  scheme,  using  participants  as  groups.  In  this  scenario,  each

participant can be either on the train or the test set. Thus, it aims to learn general patterns of brain and

body function that can predict the report of MB in unseen participants. In other terms, the first approach

aims to learn patterns that can discriminate MB from other reports while accounting for each participant’s

variance, while the second strengthens the claim, aiming to learn general patterns that can be found in

unseen participants.

As performance metrics, we will report a) recall, b) precision, c) F1-score,  d) area under the ROC

curve (AUC), and e) balanced accuracy. Recall is the ratio of how often an item was classified correctly

as a positive (True Positive / True Positive + False Negative). Similarly, precision is the ratio of actual

correct positive classifications among positive classifications (True Positive / True Positive + Positive).

F1-score is the harmonic mean of precision and recall. The AUC curve is another evaluation metric that

summarizes how well the classifier predicts a class based on different thresholds of true positive and false

positive ratios. Finally, balanced accuracy is an evaluation metric suitable for imbalanced datasets, where

one  class  appears  at  significantly  different  frequencies  than  the  others.  Balanced  accuracy  is  useful

because it is estimated as the average of precision and recall, simultaneously controlling for very high

17

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397



precision  due  to  classifying  nothing  as  the  infrequent  class  and  very  high  recall  due  to  classifying

everything as the infrequent class.

We will also select each model’s hyperparameters using nested cross-validation (same scheme as the

outer cross-validation), using the F1-score as our optimization metric. 

To evaluate the variance in the classifier performance and compare it to chance level,  we will do

repeated cross-validation (10 times), while training also a “dummy” classifier  to obtain the empirical

chance level of the training samples distribution. This type of classifier generates predictions based on the

distribution of training samples for each class without accounting for the features. 

The decoding analysis will be implemented in Python using Julearn and Scikit-Learn64. Metrics will

be estimated  from existing Python libraries:  MNE65,  NICE66,  Systole67,  Neurokit68,  and custom in-lab

Python functions.

Code Availability

    All codes to replicate the power analysis, and the experience-sampling paradigm can be found at

https://gitlab.uliege.be/Paradeisios.Boulakis/mind_blanking_arousal.  The  data  and  the  preprint  will  be

made available at https://osf.io/wm29x/. 
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Table 1. Design Table

Question Hypothesis Sampling Plan Analysis Plan Alternative Explanation

Is automimic 
arousal implicated 
in mental state 
reportability?

Low and high 
arousal promote 
more frequent MB 
reports.

500 Simulations for 
datasets ranging from 5 
to 50 participants.

For each dataset, we fit a 
binomial model with an 
odds ratio of .1 for MB 
occurrence

N=26 participants

MB ~ Arousal

Mental Report ~ Arousal

RT ~ Mental Report

Transitions ~ Mental Report

Low arousal manipulation 
was not effective in 
modifying autonomic signals.

High arousal manipulation 
did not last throughout the 
experience-sampling 
procedure.

Higher arousal levels might 
facilitate monitoring, 
reducing MB reports.

Can mental 
absences be 
attributed to 
cerebral 
mechanisms only, 
or to brain-body 
interactions?

We can decode MB
from other mental 
reports based on a 
brain-body profile 
characterized by 
lower overall 
complexity.

NA Train 4 classifiers:

1.Support Vector Machine
2.One class SVM
3.Random Forest 
4. Random Trees

Optimize for F1-score

Nested CV hyperparameter 
tuning

Given the unbalanced nature 
of our dataset, our classifiers 
might not converge properly 
to accurate prediction 
parameters.

Physiological timeseries 
might be too slow (few 
oscillations) to contribute to 
short events, such as a mental
state.
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Table 2.  A brief overview of the effects of sleep deprivation and exercise on arousal metrics

Modality Metric Previous Studies

Electrocardiogram

(EEG)

Alpha oscillations

Delta oscillations

Theta oscillations

Borbély et al , (1981).

Gutmann, B. et al. (2015).

Posada-Quintero, et al (2019).

Electroencephalogram

(ECG)
Heart Rate

Heart Rate Variability

Gourine, et al (2019).

Glos et al. (2013)

Pupillometry Pupil Size
Ishikagi (1991)

Franzen et al (2009)

Electrodermal activity

(EDA)
Galvanic Skin response (GSR)

Posada-Quintero, Het al (2018).

Posada-Quintero, et al (2017).
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Figure 1. Experimental protocol. Top The experience-sampling task will invite participants to sit idly

and relax, letting their minds wander. Every 110-120s, a 500 Hz auditory cue will probe participants to

report what they were thinking at that moment. Participants will be able to choose from 3 presented

responses: Mind Blanking, Mind-wandering, Perceptual Sensations and Sleep. Bottom Repeated

measures autonomic arousal recordings. To test how spontaneous thoughts unfoldμθ over time across

different arousal profiles, we will invite people for a follow-up experience-sampling session, following

a 15-minute high-intensity exercise routine and total sleep deprivation. To monitor whether arousal

manipulations affected the participants, we will examine their current arousal levels using multimodal

physiological recordings. The dataset will be constituted of EEG, pupillometry, ECG, EDA, and

respiratory data.
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Figure 2. Simulation analysis for sample size calculation. A) We ran 500 simulations for sample sizes

ranging from 5 to 50 participants to estimate the optimal sample size to achieve 95% power. Using a base

odds ratio of .11 to report MB during free thinking, an odds ratio of 1.6 when arousal decreases (low

arousal condition, dotted line), and .55 when arousal increases (high arousal condition, solid line), we

estimated that a sample of 26 participants is sufficient to achieve significant power in both arousal

conditions. B) To validate whether our model can recover the true parameters, we ran additional 500

simulations using a sample size of 26 participants. Our results show that our model can indeed estimate

the true parameters. Notes: dashed line = true parameters.
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