
Supplemental Tables and Figures Chapter II

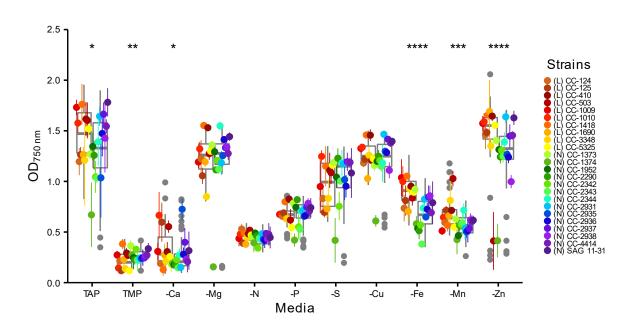
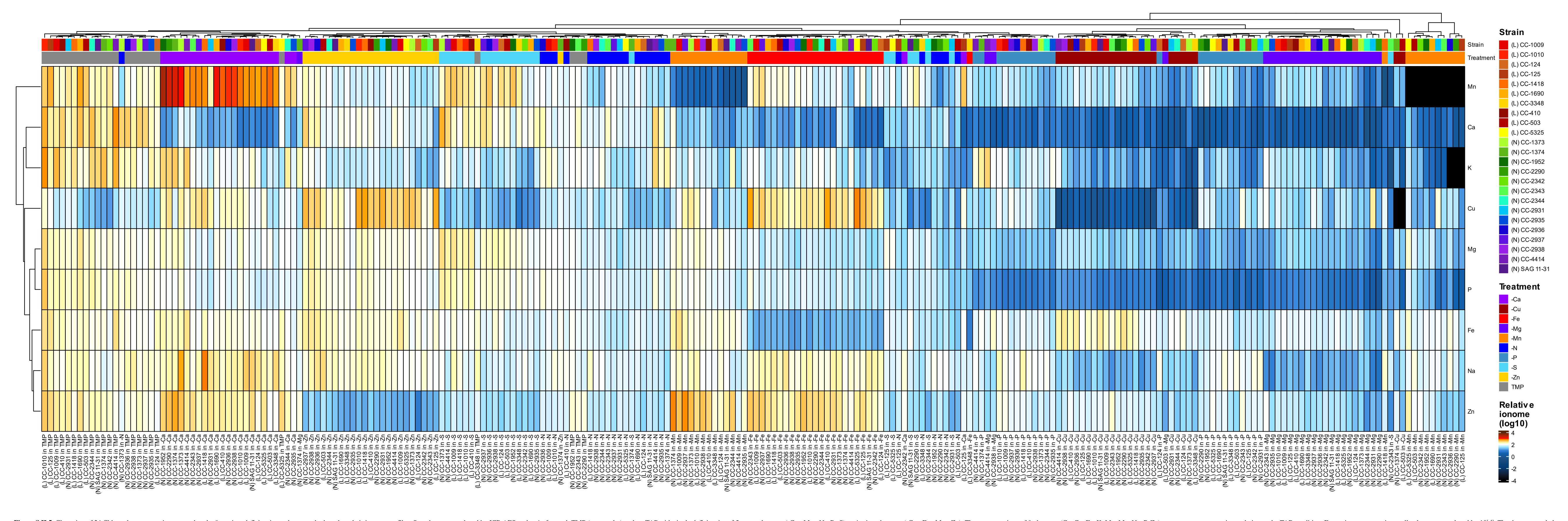
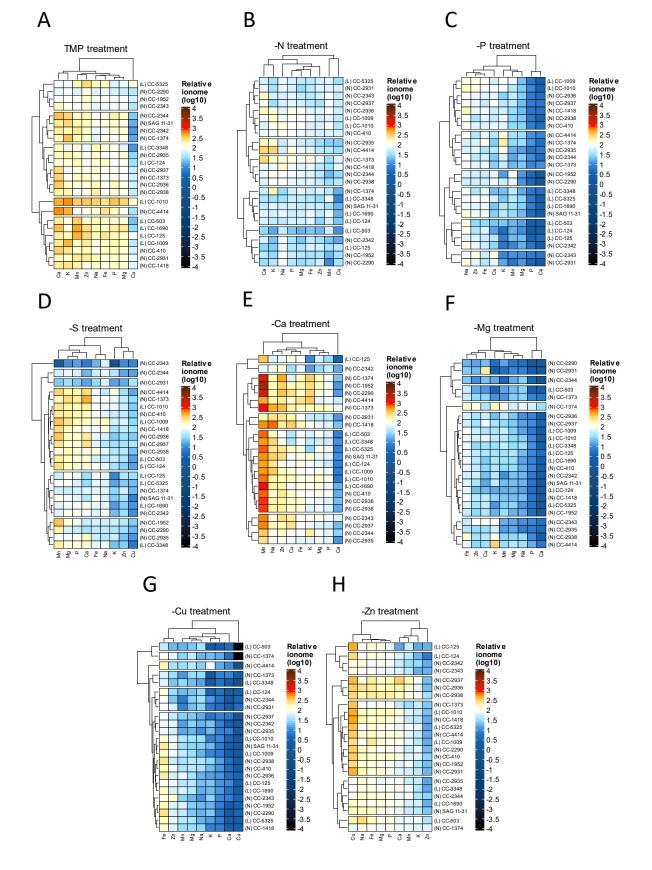
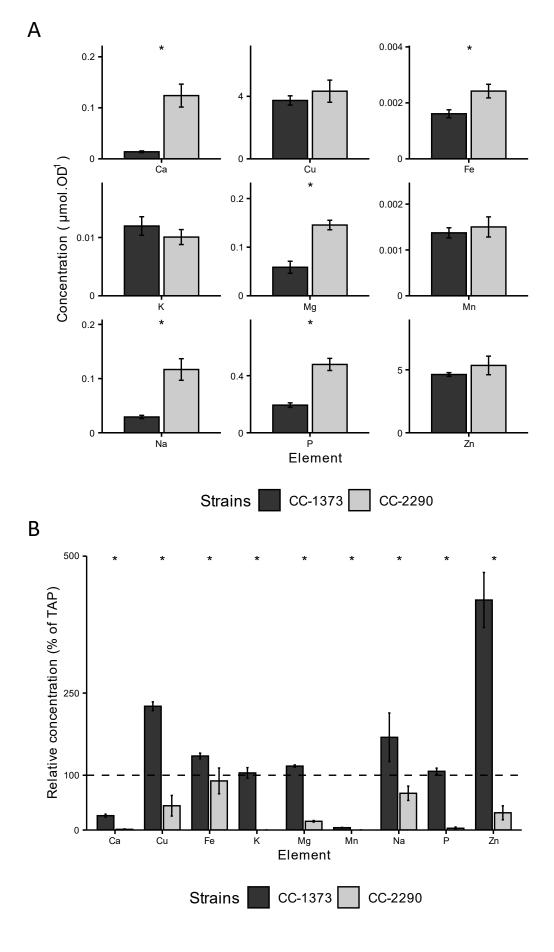
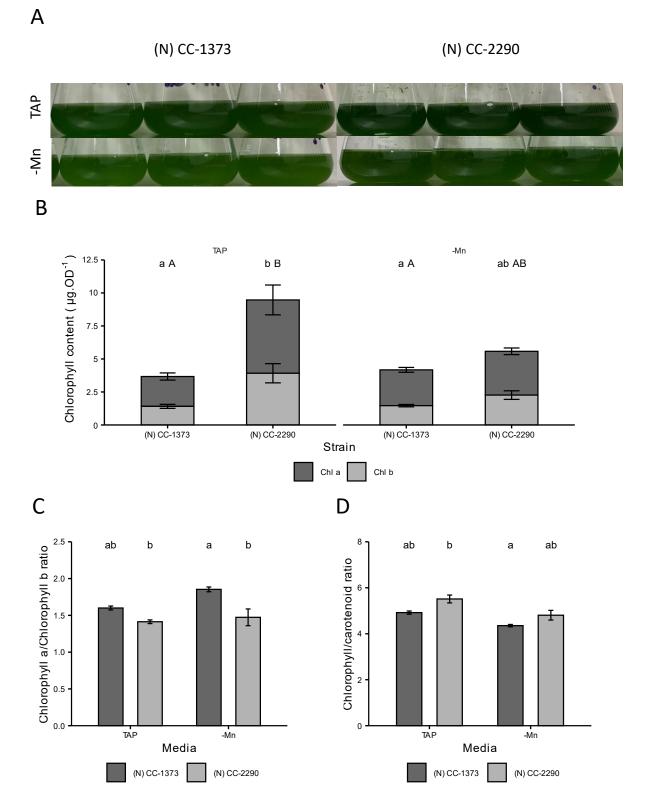

Figure S.II.1. Schematic representation of the experimental design. Two days before the experiment, precultures of the 24 strains were initiated. On the day of the experiment, the precultures were used to inoculate 2 replicates in flasks containing treatment media. Cell density (OD7_{50nm}) was measured once a day from day 3 to day 7, and at day 4 a sample was collected for ionome (ICP-AES), photosynthesis (SpeedZen) and marker gene expression (qRT-PCR) analyses. The experiment was performed twice (n = 4) independently in 35 mL of media, at 25°C, 24h photoperiod (100 μ mol m⁻² s⁻¹) with agitation (100 rpm).

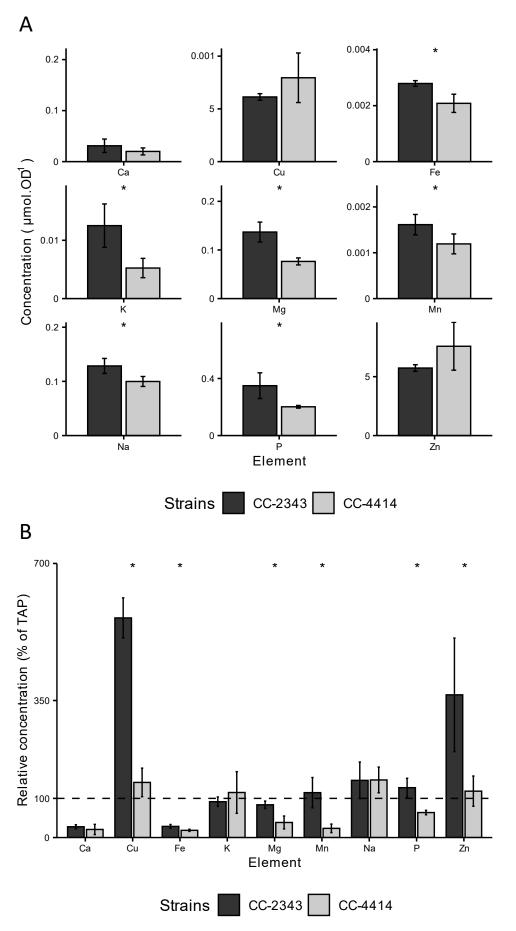
Figure S.II.2. Growth variation of 24 Chlamydomonas strains grown in TAP (A) and TMP (B). Growth was measured as optical density at 750 nm (OD_{750nm}) from day 3 to day 7. The boxes represent the 1st quantile, median and 3rd quartile of the data for all strains, and the whiskers extend from the median \pm 1.5 interquartile range whereas outliers are represented by black dots. Each coloured dot represents the mean \pm SD for each strain. Values are from 2 independent experiments, with 2 replicates each (n=4). The laboratory strains (L) are coloured in a yellow-dark red scale and the natural strains (N) are coloured in green-violet scale. The strains are ordered according to the colour key.

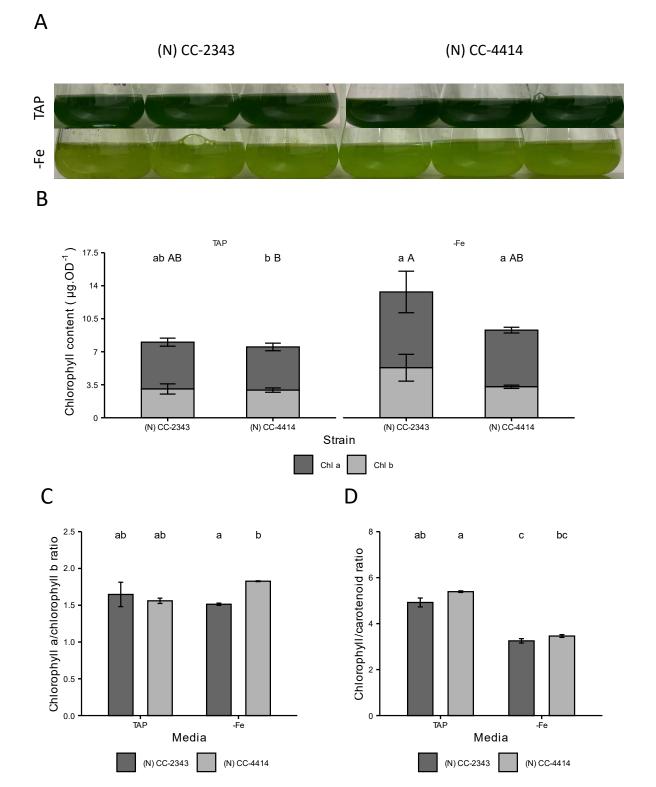
Figure S.II.3. Variation of the impact of mineral deficiencies on growth of 24 Chlamydomonas strains. Growth was measured as optical density at 750 nm (OD_{750nm}) from day 3 to day 7. The strains were cultured on TAP control medium (**A**) and on TAP with single deficiencies of 5 macroelements [-Ca (**B**), -Mg (**C**), -N (**D**), -P (**E**), -S (**F**)] and 4 microelements [-Cu (**G**), -Fe (**H**), -Mn (**I**), -Zn (**J**)]. The boxes represent the 1st quartile, median and 3rd quartile of the raw data, and the whiskers extend from the median \pm 1.5 interquartile range whereas outliers are represented by black dots. Each coloured dot represents the mean \pm SD for each strain. Values are from 2 independent experiments, with 2 replicates each (n=4). The laboratory strains (L) are coloured in a yellow-dark red scale and the natural strains (N) are coloured in green-violet scale. The strains are ordered according to the colour key.

Figure S.II.4. Variation of the impact of nutrient deficiencies on growth of laboratory vs natural Chlamydomonas strains. Growth was measured as optical density at 750 nm (OD_{750nm}), at day 4 of culture on TAP (mixotrophy, control), TMP and TAP with single deficiencies for 5 macroelements (-Ca, -Mg, -N, -P, -S) or 4 microelements (-Cu, -Fe, -Mn, -Zn). Each coloured dot represents the mean \pm SD for each strain. Values are from 2 independent experiments, with 2 replicates each (n=4). The laboratory strains (L) are coloured in a yellow-dark red scale and the natural strains (N) are coloured in green-violet. The strains are ordered according to the colour key. For each treatment, OD_{750nm} average values for N and L strains were compared using the Wilcoxon test, and significant differences are indicated with *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001 and ****: p <= 0.0001. The boxes represent the 1st quartile, median and 3rd quartile of the raw data, and the whiskers extend from the median \pm 1.5 interquartile range whereas outliers are represented by grey dots.


Figure S.II.5. Clustering of 24 Chlamydomonas strains exposed to the 9 nutrient deficiencies and autotrophy based on their ionome profiles. Samples were analysed by ICP-AES at day 4 of growth TMP (autotrophy) and on TAP with single deficiencies of 5 macroelements (-Cu, -Fe, -Mn, -Zn). The concentrations of 9 elements (-Cu, -Fe, -Mn, -Zn) are average concentrations relative to the TAP condition. For easier representation, null values were replaced by 10^[-4]. The data was scaled using a log10 transformation and the control value, represented as 2 (100% = 10^[2] %), is coloured in white. Dendrograms represent the Euclidean distance clustered by complete linkage. Strain origin is shown between brackets as well as on the outermost right column where the natural strains (N) are coloured in the second to the right column, with autotrophy in grey, macronutrient deficiency in violet- blue scale and micronutrient deficiency in red-yellow scale.


Figure S.II.6. Clustering of 24 Chlamydomonas strains based on their ionome profiles. The concentrations of 9 elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, Zn) were measured by ICP-AES in samples collected at day 4 of culture in TMP (**A**) and in TAP -N (**B**), -P (**C**), -S (**D**), -Ca (**E**), -Mg (**F**), -Cu (**G**) and -Zn (**H**). Concentration values are provided as mean values from 2 independent experiments, with 2 replicates each (n=4). For easier representation, null values were replaced by 10^{-4} . The data was scaled using a \log_{10} transformation and the control value, represented as 2 ($100\% = [10^2]$ %), is coloured white. Dendrograms represent the Euclidean distance clustered by complete linkage. Strain origin [natural (N) or laboratory (L)] is shown between brackets.


Figure S.II.7. Comparison of the nutrient concentrations in the CC-1373 and CC-2290 natural Chlamydomonas strains upon Mn deficiency. Samples were analyzed by ICP-AES at day 4 of culture (A) in TAP control media (μ mol. OD-1) and (B) in –Mn (% of TAP control media). Significant differences (p<0.05) are marked with a *.

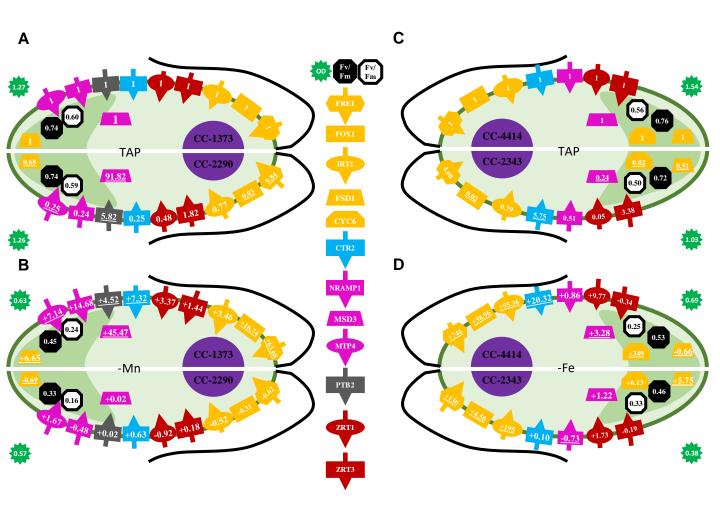

Figure S.II.8Variation of the pigment composition in response to Mn deficiency between the CC-1373 and CC-2290 Chlamydomonas natural strains. (A) Natural strains CC-1373 (left) and CC-2290 (right) at day 4 of growth in TAP (top) and TAP -Mn (bottom). (B) Content in chlorophylls a (dark grey) and b (light grey). (C) Ratio between chlorophyll a and chlorophyll b. (D) Ratio between chlorophylls (a and b) and carotenoids. (B-D). Values are means ± SD (n=3). Non-parametric pairwise multiple comparisons were performed using Dunn's test and the different grouping letter were attributed when statistical differences were found. Small letter in (B) refer to the initial Fv/Fm while the capital letters refer to the recovery.

Figure S.II.9. Comparison of the nutrient concentrations in the CC-2343 and CC-4414 natural Chlamydomonas strains upon Fe deficiency. Samples were analyzed by ICP-AES at day 4 of culture (A) in TAP control media (μ mol. OD-1) and (B) in –Fe (% of TAP control media). Significant differences (p<0.05) are marked with a *.

Figure S.II.10. Variation of the pigment composition in response to Fe deficiency between the CC-2343 and CC-4414 Chlamydomonas natural strains. (A) Natural strains CC-2343 (left) and CC-4414 (right) at day 4 of growth in TAP (top) and TAP-Fe (bottom). (B) Content in chlorophylls a (dark grey) and b (light grey). (C) Ratio between chlorophyll a and chlorophyll b. (D) Ratio between chlorophylls (a and b) and carotenoids. (B-D). Values are means ± SD (n=3). Non-parametric pairwise multiple comparisons were performed using Dunn's test and the different grouping letter were attributed when statistical differences were found. Small letter in (B) refer to the initial Fv/Fm while the capital letters refer to the recovery.

Figure S.II.11. Summary scheme of marker gene expression and photosynthesis variations among selected pairs of natural strains. (A-B) Strains CC-1373 and CC-2290 in control condition (A) and under -Mn (B). (C-D) Strains CC-4414 and CC-2343 in control condition (C) and under -Fe (D). The colored shapes indicate different gene markers (metal transporters represented with an arrow), color-coded according to the associated metal (yellow: iron, blue: copper, pink: manganese, grey: phosphate, red: zinc. Hexagons represent the Fv/Fm after dark adaptation (black) and after 23 minutes of saturating light (white). Stars represent the average OD750nm at day 4 of culture.

 Table S.II.1. Description of the 24 Chlamydomonas strain panel.

Identifier	Additional information	Source		
CC-124	agg1 allele, wild type mt- [137c]	https://www.chlamycollection.org/product/cc-		
<u>CC-124</u>	agg1 ancie, who type int-[1376]	124-wild-type-mt-137c/		
CC-125	agg1+ allele, wild type mt+ [137c]	https://www.chlamycollection.org/product/cc-		
<u>ee 125</u>	aggir ancie, wha type mer [1376]	125-wild-type-mt-137c/		
	wild type mt- [SAG 11-32c, Lewin	https://www.chlamycollection.org/product/cc-		
<u>CC-410</u>	Caroline Islands strain; really 137c	410-wild-type-mt-sag-11-32c-lewin-caroline-		
	curonino isimias suami, rouni, ro	islands-strain-really-137c/		
CC-503	Wall deficient, cw92 mt+	https://www.chlamycollection.org/product/cc-		
	·	503-cw92-mt/		
CC-1009	Can grow on nitrate, wild type mt-	https://www.chlamycollection.org/product/cc-		
	[UTEX 89]	1009-wild-type-mt-utex-89 /		
CC-1010	Can grow on nitrate, wild type mt+	https://www.chlamycollection.org/product/cc-		
	[UTEX 90]	1010-wild-type-mt-utex-90/		
CC-1373	C. smithii mt+ [SAG 54.72]	https://www.chlamycollection.org/product/cc-		
	-	1373-c-smithii-mt-sag-54-72/		
CC-1374	mt+ [SAG 77.81]	https://www.chlamycollection.org/product/cc-		
		1374-c-reinhardtii-sag-77-81/		
CC-1418	mt- [SAG 18.79]	https://www.chlamycollection.org/product/cc-		
		1418-c-reinhardtii-mt-sag-18-79/		
CC-1690	wild type mt+ [Sager 21 gr]	https://www.chlamycollection.org/product/cc-		
	Can grow on nitrate, S1 C5 mt-	1690-wild-type-mt-sager-21-gr/		
CC-1952		https://www.chlamycollection.org/product/cc-		
		1952-c-reinhardtii-mt-s-1-c-5/		
CC-2290	Can grow on nitrate, S1 D2 mt-	https://www.chlamycollection.org/product/cc-		
	Con anary on nitrate wild type met	2290-s1-d2-mt/		
CC-2342	Can grow on nitrate, wild type mt-	https://www.chlamycollection.org/product/cc-		
	[Jarvik #6, Pittsburgh, PA] Can grow on nitrate, wild type mt+	2342-wild-type-mt-jarvik-6-pittsburgh-pa/ https://www.chlamycollection.org/product/cc-		
CC-2343	[Jarvik #224, Melbourne, FL]	2343-wild-type-mt-jarvik-224-melbourne-fl/		
	Can grow on nitrate, wild type mt+	https://www.chlamycollection.org/product/cc-		
CC-2344	[Jarvik #356, Ralston, PA]	2344-wild-type-mt-jarvik-356-ralston-pa/		
	lack the Gulliver transposon, wild	https://www.chlamycollection.org/product/cc-		
CC-2931	type mt- [North Carolina]	2931-wild-type-mt-north-carolina/		
	Bell's isolate LEE-1, wild type mt-	https://www.chlamycollection.org/product/cc-		
CC-2935	[Quebec]	2935-wild-type-mt-quebec/		
	Bell's isolate LEE-2, wild type mt-	https://www.chlamycollection.org/product/cc-		
CC-2936	[Quebec]	2936-wild-type-mt-quebec/		
	Bell's isolate LEE-3, wild type	https://www.chlamycollection.org/product/cc-		
CC-2937	mt+ [Quebec]	2937-wild-type-mt-quebec/		
	Bell's isolate LEE-4, wild type	https://www.chlamycollection.org/product/cc-		
CC-2938	mt+ [Quebec]	2938-wild-type-mt-quebec/		
		https://www.chlamycollection.org/product/cc-		
<u>CC-3348</u>	wild type mt+ [SAG 73.72 , = C8]	3348-wild-type-mt-sag-73-72-c8/		
~~	can grow at low temperatures, wild	https://www.chlamycollection.org/product/cc-		
CC-4414	type mt+ DN2	4414-wild-type-mt-dn2/		
	thawed from cryogenic storage,	https://www.chlamycollection.org/product/cc-		
<u>CC-5325</u>	cw15 mt-	5325-cw15-mt-jonikas-cmj030-jr397/		
		https://sagdb.uni-		
SAG 11-31	Good survival to cryopreservation,	goettingen.de/detailedList.php?str_number=11-		
5.15 11 51	mt+	31		
		<u></u>		

Table S.II.2. Composition of the single element deficiency TAP media.

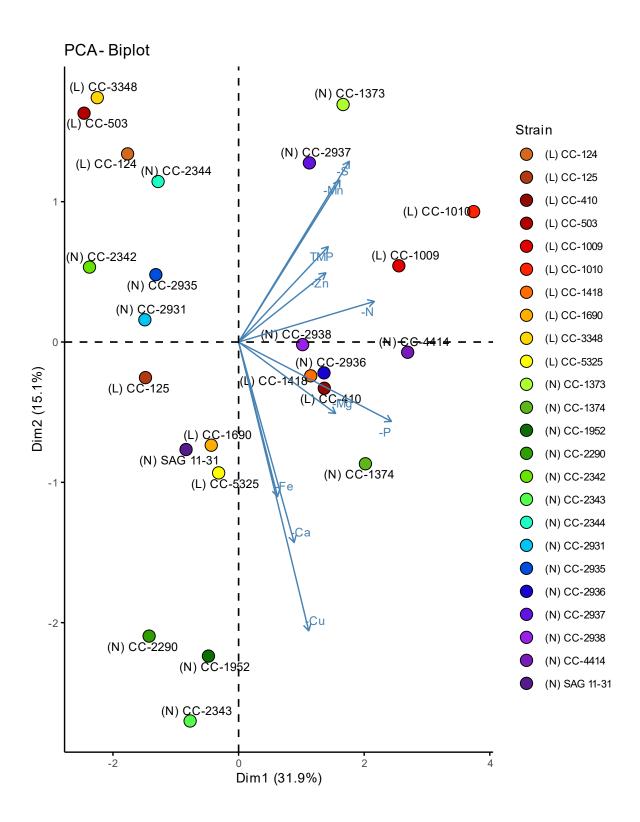
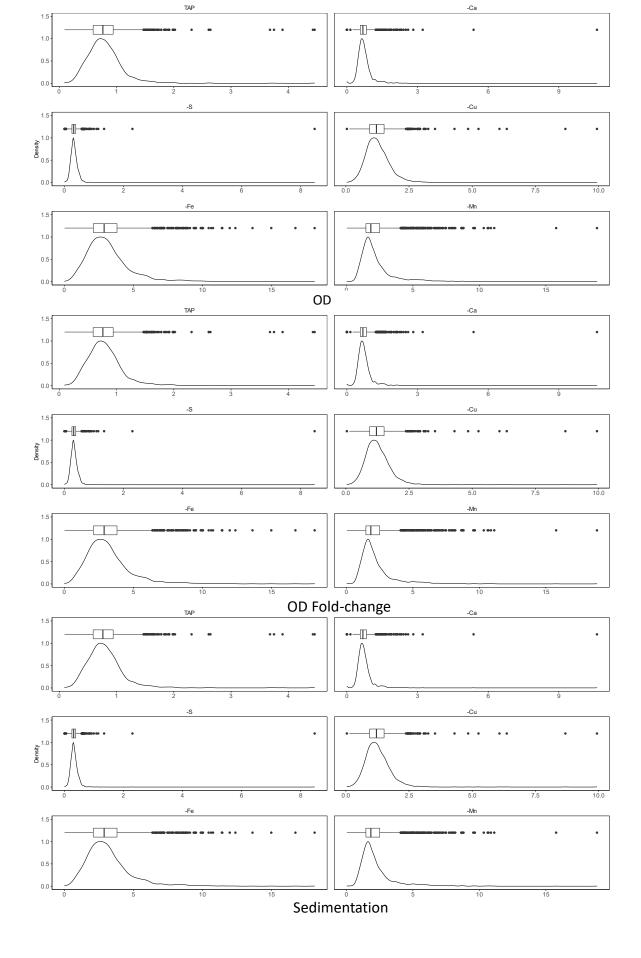
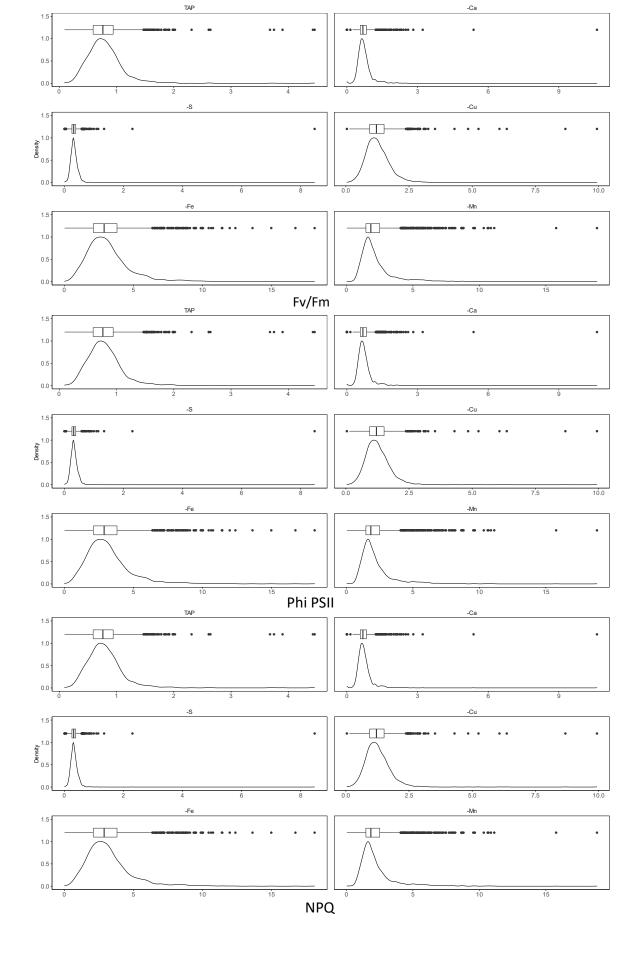
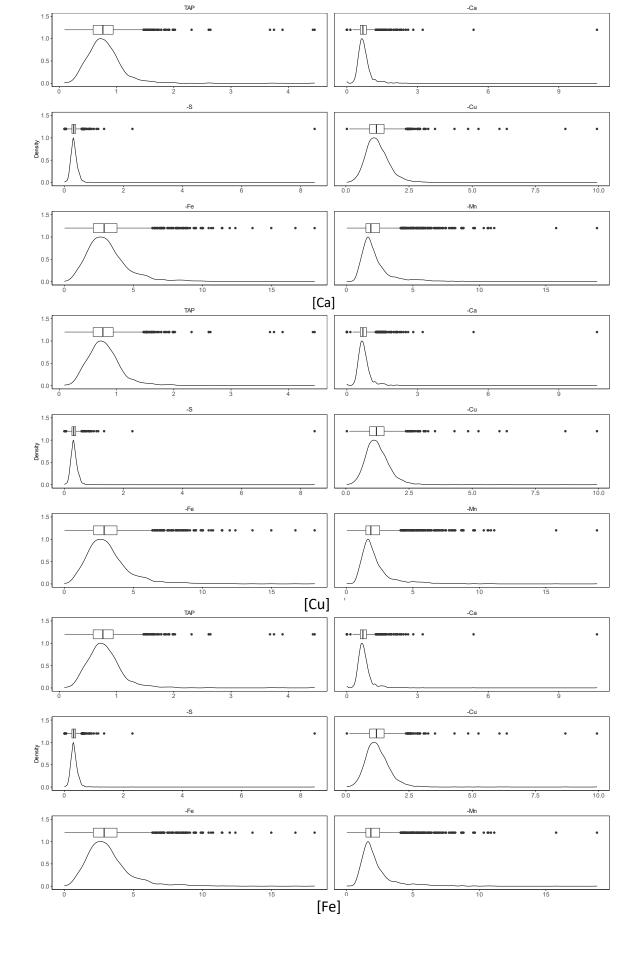

Nutrient	Condition	TAP Control (μM)	Deficiency (μ M)	Ratio		
Macronutrients						
Acetate (CH ₃ COOH)	TMP	17,416	0	0		
Calcium	-Ca	387.6	0	0		
Magnesium	-Mg	405.7	5.4	¹ / ₇₅		
Nitrogen	-N	7478	747.9	1/10		
Sulphur	-S	506.5	56.6	1/9		
Phosphate	-P	1000	100	1/10		
Micronutrients						
Iron	-Fe	17.95	1.8	1/10		
Copper	-Cu	6.29	0.006	¹ / ₁₀₀₀		
Manganese	-Mn	25.6	0	0		
Zinc	-Zn	76.5	0	0		

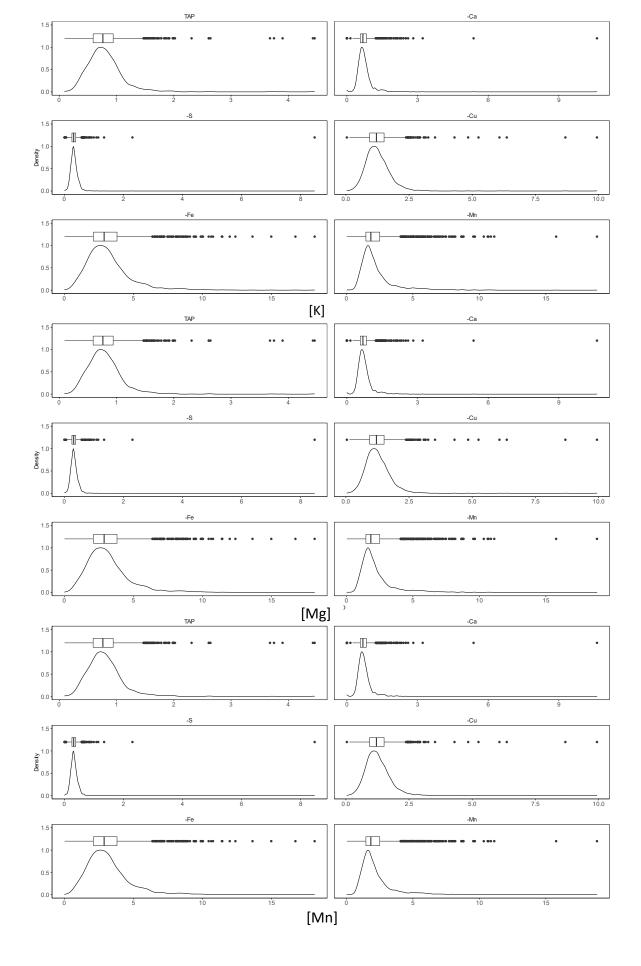
 Table S.II.3. Deficiency marker gene description and RT-qPCR primers.

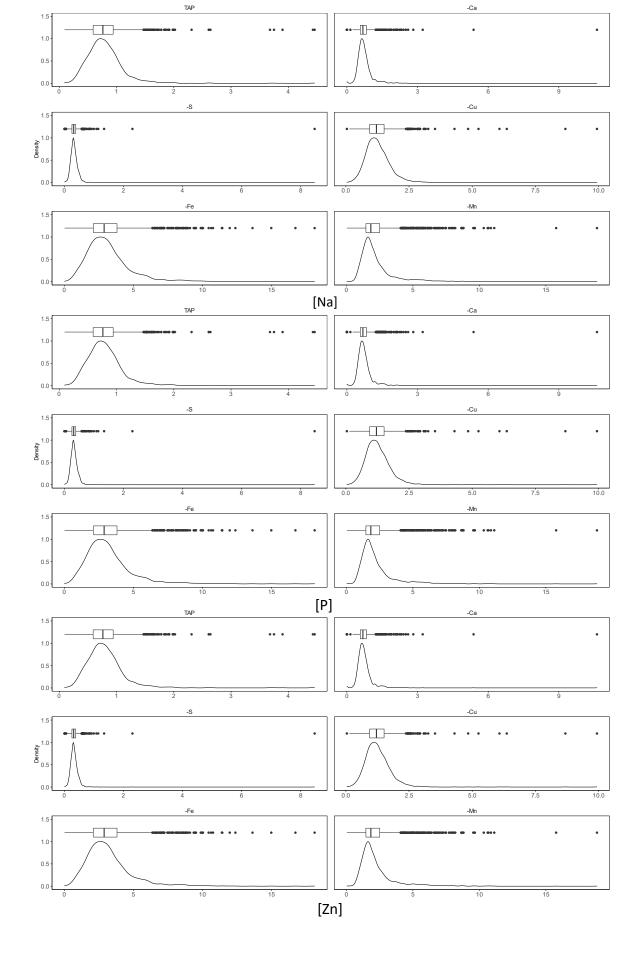

Gene	Gene ID (v5)	Name & Description	Primer sequences (5' - 3')	Length	Product length	Efficiency	Reference	Condition
00/12/01	Cre14.g630100	Ribosomal protein L13, component of cytosolic 80S	TCAGCGTCTGAAGGCTTACC	20	88	1.01	Duranta et al. 2010	TAP
KPL13 (K)	Cre14.g650100	ribosome and 60S large subunit	CTCGGCCAGAGGGGTCTCGA	20	00	1.91	Durante et al., 2019	-Mn, -Fe
CDLD (D)	Cre06.g278222	Receptor of activated protein kinase C	GTGTCGTGCGTGCGCTTCT	19	117	1.93	Durante et al., 2019	TAP
CBLP (N)	C1e00.g278222	Receptor of activated protein kinase C	CACCAGGTTGTTCTTCAGCTTGC	23	117	1.55	Durante et al., 2019	-Mn, -Fe
CTR2		CTR type copper ion transporter	CACCAACAGCCTTTCCACAAG	21	94	1.92	Allen et al., 2007b	TAP
CINZ	Cre10.g434350	CTR type copper for transporter	GACGCTGAACTGCGTAACCT	20	34	1.52	Alleli et al., 20070	-Mn, -Fe
CYC6	Cre16.g651050	Cytochrome C oxidase, cbb3-type, subunit III.	AGGCTTGGGCCAGTACATTA	20	150	1.92	Quinn & Merchant	TAP
CICO	C1E10.g031030	Cytochrome c6	GTGCAAAACCCGGTTGAAGC	GTGCAAAACCCGGTTGAAGC 20 1.92	1.32	1995	-Fe	
IRT1		Iron Regulated Transporter1. Iron-nutrition responsive	CACAGTAGGGGCATGAGAGC	20	81	1.90	Allen et al., 2007a Allen et al., 2007b	TAP
mi	Cre12.g530400	ZIP family transporter	CCCAATCCCAGTCCGTTAGG	20	01	1.50		-Mn, -Fe
FOX1	Cre09.g393150	Ferroxidase 1. Multicopper ferroxidase	TTGCGCTGCATGCAATAAGG	20	141	1.93	Allen et al., 2007a	TAP
TOXI	C1603.g333130	remoxidase 1. Walticopper lemoxidase	GTTCGCGGCTCAACACAAAA	20	141	1.55		-Mn, -Fe
FRE1		Ferric-chelate reductase/ oxidoreductase.	CACTTCGCCAAGGACTCCAG	20	124	1.915	Allen et al., 2007a	TAP
INLI	Cre04.g227400	Ferrireductase	GGGTCCAGGCATTGTACTTCT	21	124	1.313	Alien et al., 2007a	-Mn, -Fe
FSD1	Cre10.g436050	Fe superoxide dismutase	CATGAACAAGCAGGTCGCTG	20	150	1.91	Allen et al., 2007b	TAP
1301	C/C10.6+30030	Te superoxide districtuse	GGCTTCATGCTCTCCCAGAA	20	150			-Mn, -Fe
MSD3	Cre16.g676150	Mn superoxide dismutase	GGACGCAATGCTGTGCTAAG	20	115	1.93	Allen et al., 2007b	TAP
WISDS	C/C10.g0/0130	Will superoxide districtuse	TCTTGTCCGCAAAGCCTCAT	20	113			-Mn, -Fe
MTP4	Cre03.g160550	Metal Transport Protein (CDF transporter). Cation	CGTGATGAAGCCACTGCCTA	20	108	1.92	Allen et al., 2007b	TAP
	ū	efflux transporter, membrane protein	CGATCTTGTCCCCCTCCTTT	20	100			-Mn
ΝΡΔΙΛΙΡ1	Cre17 g707700	Natural Resistance Associated Macrophage-like Protein	GCGGGTAATCCAGGGCTTTT	20	92	1.90	Allen et al., 2007b	TAP
WILMING CIETY. 8707700	1. Manganese/metal transporter, NRAMP homolog	GGAACCACCAGAGTGCAAGT	20	32	1.50	raicii et al., 20076	-Mn, -Fe	
PTB2	DTD2 Cro07 #22E741	g325741 Phosphate transporter. Sodium/phosphate symporter	CTGCCCATGACCTTCAACCA	20	145	1.90	Allen et al., 2007b	TAP
7752 CIEO7.g32.	C1C07.g323741		GAAGTCAGCAACGCTTTCCC	20				-Mn
ZRT1	Cre07.g351950	Zn Regulator Transporter 1. Zinc-nutrition responsive	CATTCTCAGTGCTCGCGTTG	20	88	1.91	Allen et al., 2007b	TAP
2/1/12	c. cc / .gJJ1JJ0	transporter	GAGCGCCACCTCTTCCTTAG	20	30	2.52		-Mn, -Fe
ZRT3	Cre13.g573950	Zinc-nutrition responsive transporter	GCGGCATTAATAGCGCTGAA	20	86	1.96	Allen et al., 2007b	TAP
ZR13 CFE13.g5/3950	CIE13.g3/3530	2/10/200 Zinc-nutrition responsive transporter	CCGCCTACTTCCTGGTTTCT	20	ου	1.50	Alich et al., 2007b	-Mn, -Fe

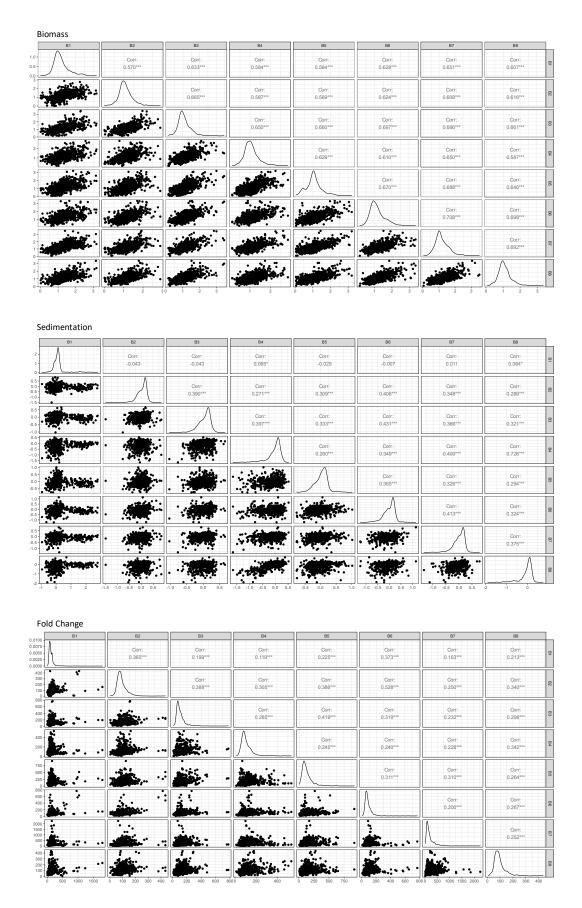
v5: JGI v5 annotation of the genome (https://phytozome-next.jgi.doe.gov/info/Creinhardtii v5_6#:~:text=Overview.different%20environments%20throughout%20thr%20world.)

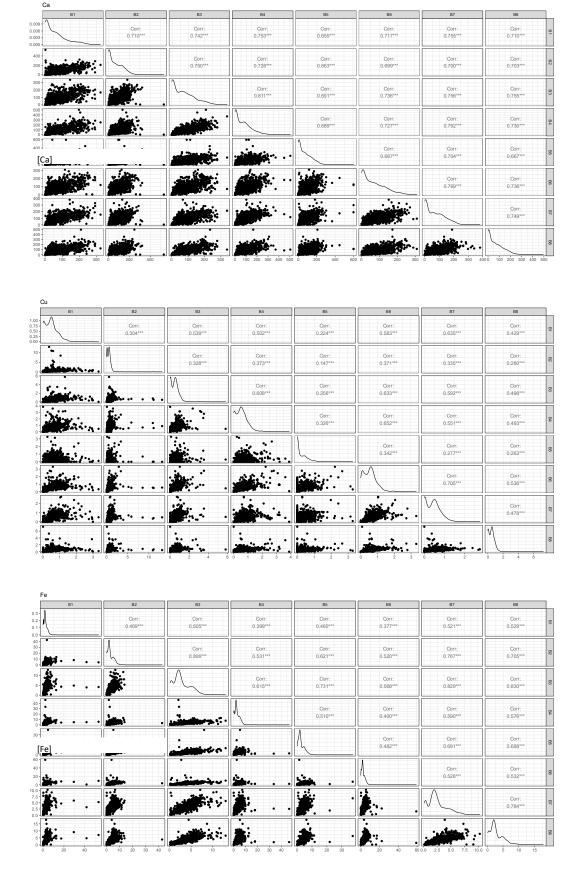

Supplemental Tables and Figures Chapter III

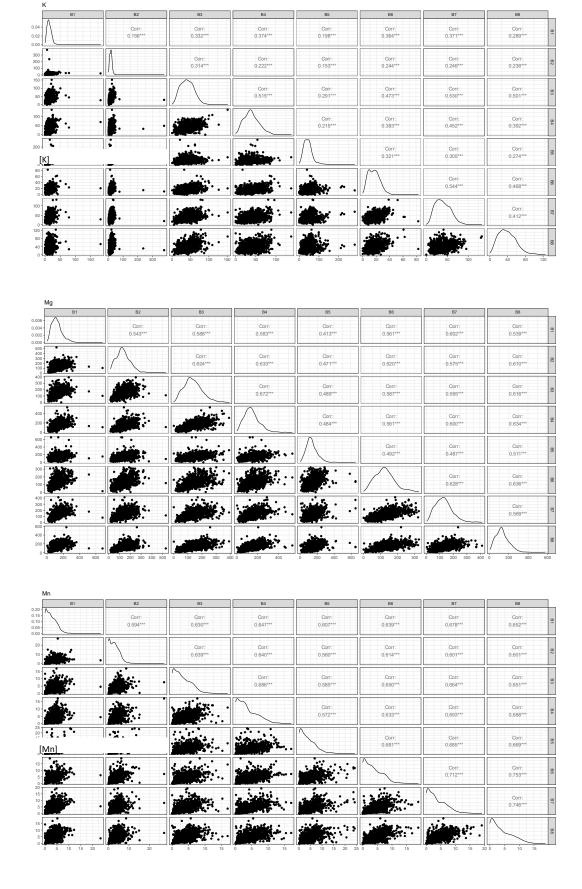

Figure S.III.1 Principal component analysis of the ionomic data of the 24 Chlamydomonas strains in response to nutrient deficiency. The strains were grown in $0 \mu M$ acetate (TMP), $0 \mu M$ Ca, $5.4 \mu M$ Mg, $2748 \mu M$ N, $56.6 \mu M$ S, $100 \mu M$ P, $1.8 \mu M$ Fe, $0.006 \mu M$ Cu, $0 \mu M$ Mn or $0 \mu M$ Zn. The 2 first dimensions explained 47% of the variation observed, and separated -S, -Mn, TMP and -Zn treatments (*top right*) from -P, -Mg, -Ca, -Fe and -Cu (*bottom right*).

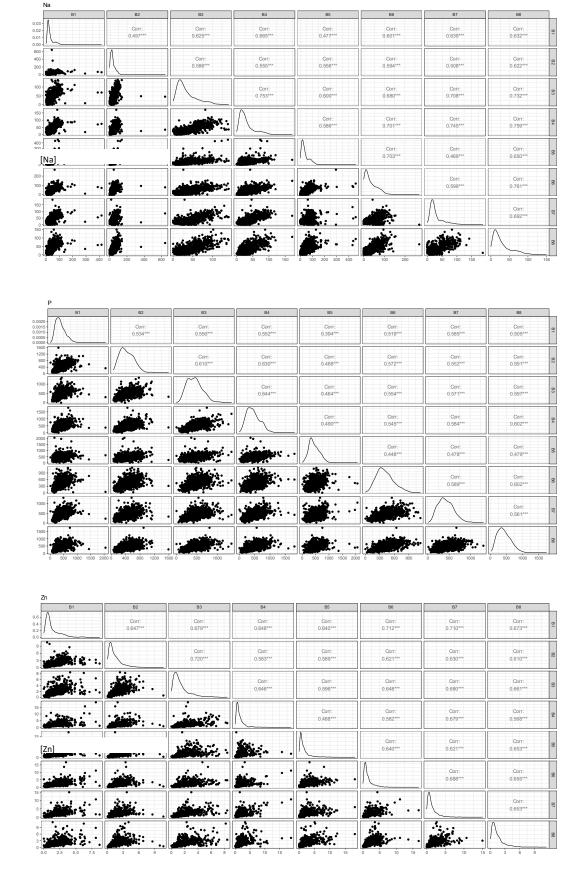

Figure S.III.2 Distribution of the biomass-related phenotypes of the MAGIC progeny in different media (TAP, TAP-Ca, -S, -Cu, -Fe and -Mn).


Figure S.III.3 Distribution of the photosynthesis-related phenotypes of the MAGIC progeny in different media (TAP, TAP-Ca, -S, -Cu, -Fe and -Mn).


Figure S.III.4 Distribution of the Ca, Cu and Fe accumulation phenotypes of the MAGIC progeny in different media (TAP, TAP-Ca, -S, -Cu, -Fe and -Mn).


Figure S.III.5 Distribution of the K, Mg and Mn accumulation phenotypes of the MAGIC progeny in different media (TAP, TAP-Ca, -S, -Cu, -Fe and -Mn).


Figure S.III.6 Distribution of the Na, P and Zn accumulation phenotypes of the MAGIC progeny in different media (TAP, TAP-Ca, -S, -Cu, -Fe and -Mn).


Figure S.III.7 Pairwise scatter plot matrix, histogram, and Pearson correlation coefficients between the 8 batches used to phenotype the MAGIC progeny (biomass-related traits). *** if the p-value is < 0.001; ** if the p-value is < 0.05; . if the p-value is < 0.10

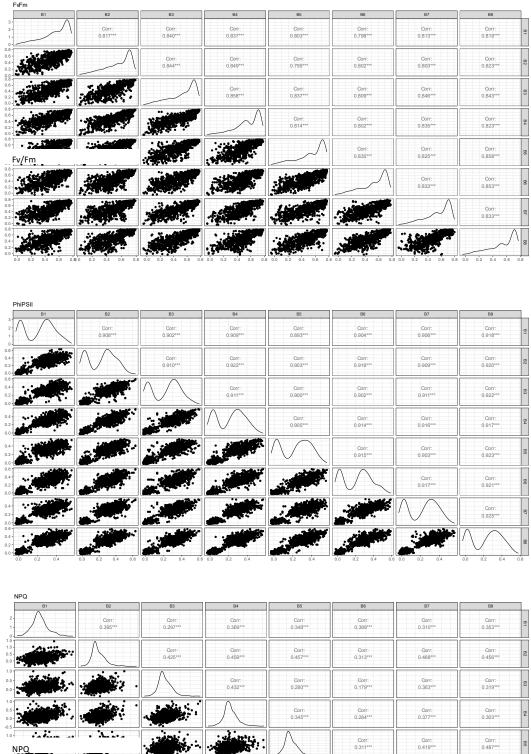

Figure S.III.8 Pairwise scatter plot matrix, histogram, and Pearson correlation coefficients between the 8 batches used to phenotype the MAGIC progeny ([Ca], [Cu], [Fe]). *** if the p-value is < 0.001; ** if the p-value is < 0.05; . if the p-value is < 0.10

Figure S.III.9 Pairwise scatter plot matrix, histogram, and Pearson correlation coefficients between the 8 batches used to phenotype the MAGIC progeny ([K], [Mg], [Mn]). *** if the p-value is < 0.001; ** if the p-value is < 0.05; . if the p-value is < 0.10

Figure S.III.10 Pairwise scatter plot matrix, histogram, and Pearson correlation coefficients between the 8 batches used to phenotype the MAGIC progeny ([Na], [P], [Zn]). *** if the p-value is < 0.001; ** if the p-value is < 0.05; . if the p-value is < 0.10

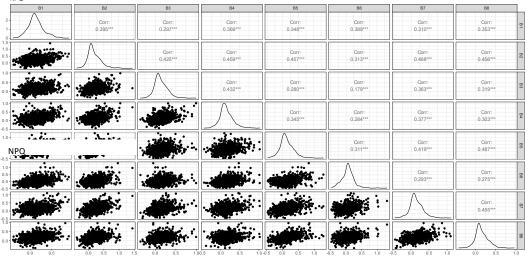
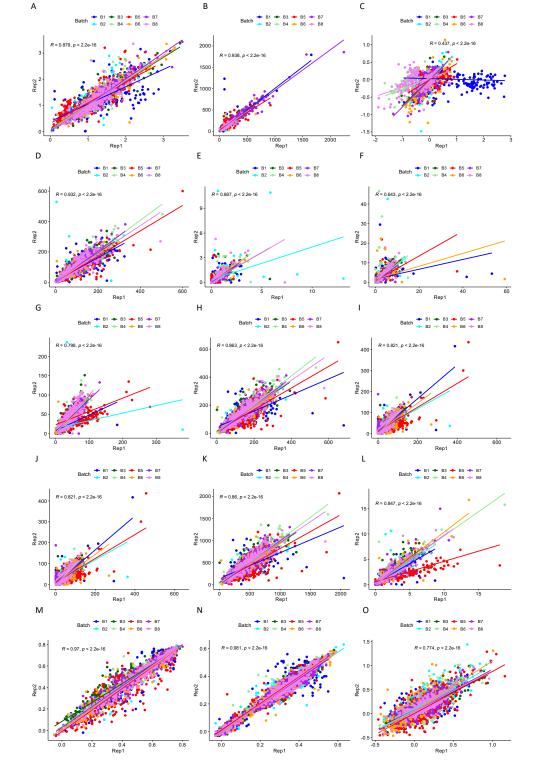
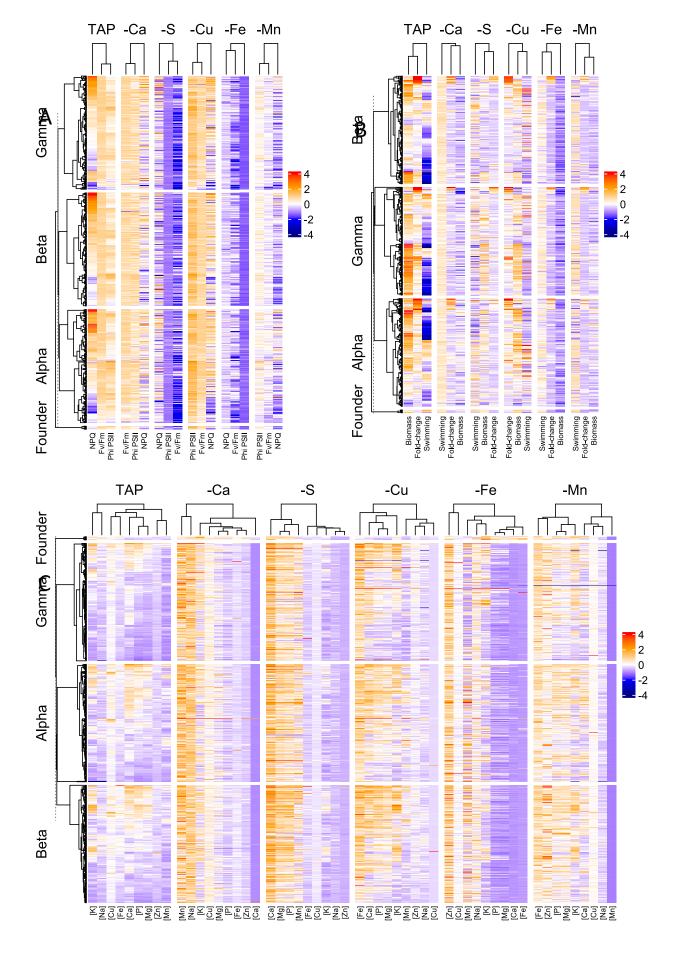




Figure S.III.11 Pairwise scatter plot matrix, histogram, and Pearson correlation coefficients between the 8 batches used to phenotype the MAGIC progeny (photosynthesis-related). *** if the p-value is < 0.001; ** if the p-value is < 0.01; * if the p-value is < 0.05; . if the p-value is < 0.10

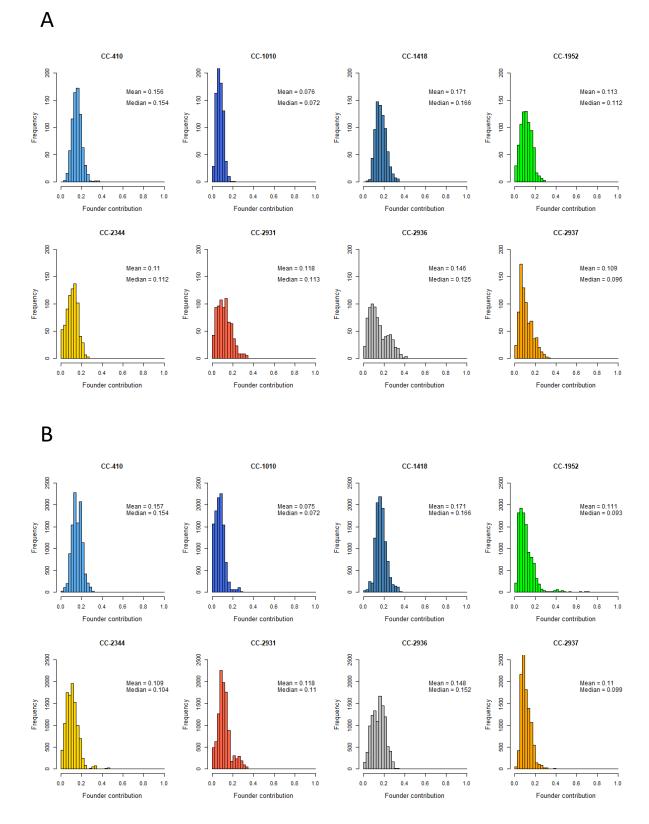
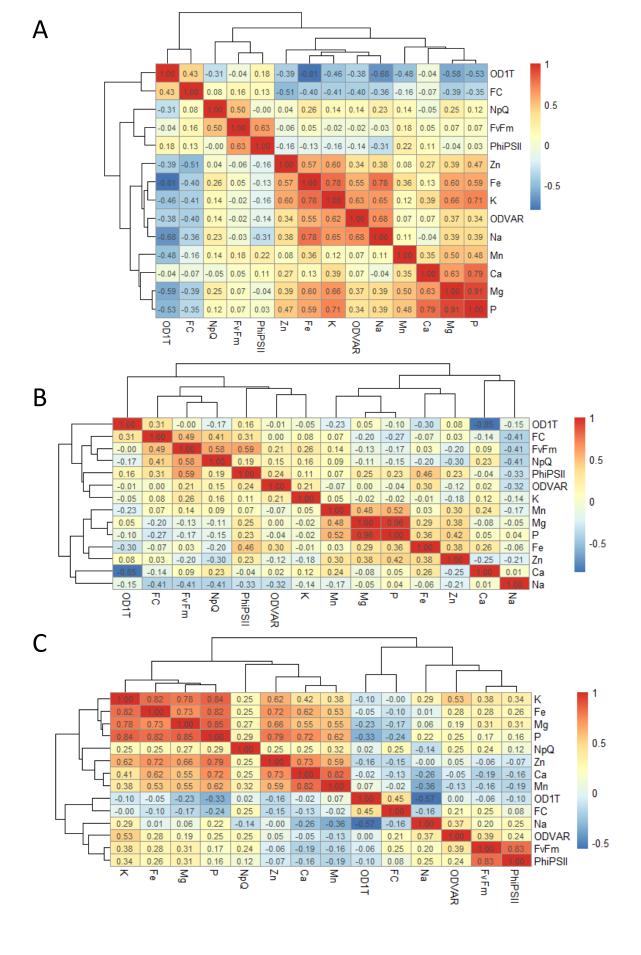


Figure S.III.12 Pearson correlation between the 2 replicates used to phenotype the MAGIC progeny, colour-coded by batch.
(A) Biomass, (B) OD fold-change, (C) Sedimentation, (D) [Ca], (E) [Cu], (F) [Fe], (G) [K],

(A) Biomass, (B) OD fold-change, (C) Sedimentation, (D) [Ca], (E) [Cu], (F) [Fe], (G) [K], (H) [Mg], (I) [Mn], (J) [Na], (K) [P], (L) [Zn], (M) Fv/Fm, (N) ΦPSII, (O) NPQ


Figure S.III.13 Heatmap of the scaled phenotypic data, clustered by design. (A) Photosynthesis-related traits, (B) biomass-related traits, (C) ionome traits

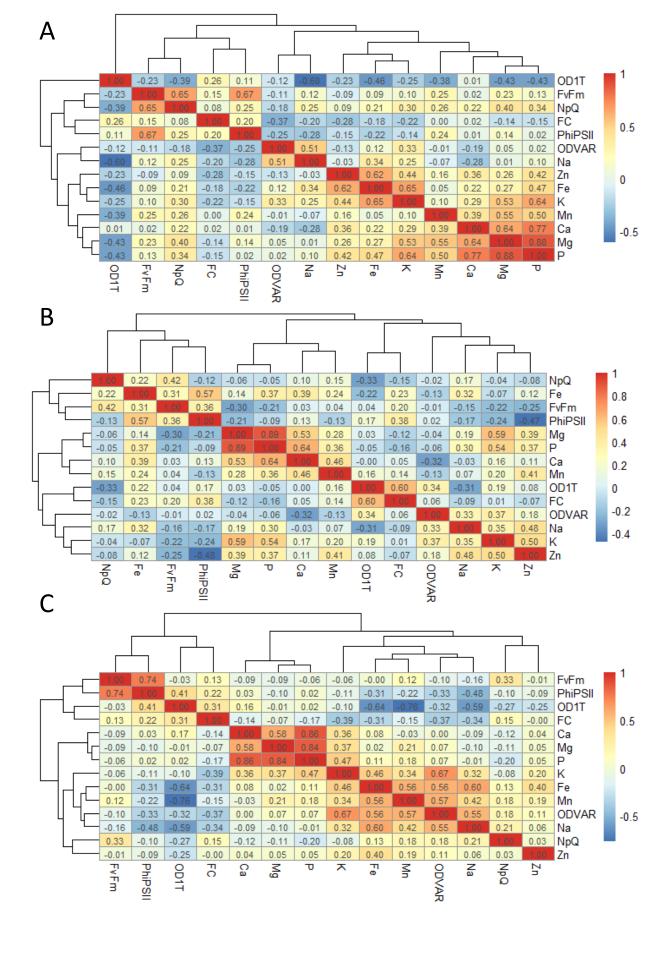

Figure S.III.14 Distribution of each founder's contribution (A) to each F8 line and (B) at each genomic position

Figure S.III.15 Genetic correlations within each of the 14 phenotypes measured in each of the 6 different media.

(A) Biomass, (B) OD fold-change, (C) Sedimentation, (D) Fv/Fm, (E) ΦPSII, (F) NPQ, (G) [Ca], (H) [Fe], (I) [K], (J) [Mg], (K) [Mn], (L) [Na], (M) [P], (N) [Zn]

Figure S.III.16 Genetic correlations within each of the 6 media used to measure each of the 14 phenotypes. (A) TAP, (B) -Ca, (C) -S

Figure S.III.17 Genetic correlations within each of the 6 media used to measure each of the 14 phenotypes (A) -Cu, (B) -Fe, (C)-Mn

Table S.III.1. Summary statistics of length of IBD segments shared between founder strains (length is expressed in kb).

G. 1	g. : 2	Fraction	Length			
Strain 1	Strain 2	IBD sites	Median	Average	Max	
CC-1952	CC-2931	0.097	0.70	1.42	63.91	
CC-1952	CC-2344	0.072	0.82	1.94	181.33	
CC-2344	CC-2931	0.103	0.93	2.03	174.99	
CC-2937	CC-2344	0.035	1.32	2.77	104.38	
CC-2936	CC-2344	0.031	1.54	3.15	118.42	
CC-1952	CC-2937	0.023	1.22	3.17	85.81	
CC-2936	CC-2931	0.023	1.40	3.20	132.86	
CC-1952	CC-2936	0.021	1.54	3.27	104.03	
CC-2937	CC-2931	0.030	1.24	3.40	281.80	
CC-410	CC-1952	0.007	2.46	3.67	27.57	
CC-1952	CC-1418	0.007	2.47	3.69	27.57	
CC-410	CC-2931	0.007	2.17	4.04	31.19	
CC-1418	CC-2931	0.007	2.17	4.04	31.19	
CC-1010	CC-2344	0.019	2.25	4.30	139.75	
CC-410	CC-2344	0.016	2.53	4.37	33.93	
CC-1418	CC-2344	0.016	2.56	4.38	33.93	
CC-1952	CC-1010	0.009	2.54	4.68	70.99	
CC-1010	CC-2931	0.010	2.23	4.76	132.86	
CC-1418	CC-2937	0.192	2.88	6.86	770.63	
CC-410	CC-2937	0.191	2.88	6.86	770.63	
CC-1010	CC-2937	0.202	2.70	6.89	770.63	
CC-2936	CC-2937	0.236	2.30	7.05	831.59	
CC-410	CC-2936	0.331	3.52	15.30	1067.92	
CC-1418	CC-2936	0.331	3.52	15.30	1067.92	
CC-1010	CC-2936	0.358	3.51	16.68	1790.81	
CC-410	CC-1010	0.796	4.42	147.06	8596.03	
CC-1010	CC-1418	0.796	4.42	147.06	8596.03	
CC-410	CC-1418	1.000	6759.54	6552.93	9925.62	