
Marine Pollution Bulletin 187 (2023) 114578

Available online 14 January 2023
0025-326X/© 2023 Elsevier Ltd. All rights reserved.

Baseline 

Active and passive biomonitoring of trace elements, polycyclic aromatic 
hydrocarbons, and polychlorinated biphenyls in small 
Mediterranean harbours 

Justine Castrec a,*, Marion Pillet a, Justine Receveur b, Quentin Fontaine a, Stéphane Le Floch b, 
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A B S T R A C T   

Pollution particularly affects coastal ecosystems due to their proximity to anthropic sources. Among those en-
vironments, harbours are subjected to marine traffic but also to accidental and chronic pollution. These areas are 
thus exposed to complex mixtures of contaminants such as trace elements and organic contaminants which can 
impact marine species, habitats, and ecosystem services. The monitoring of these compounds is thus a crucial 
issue for assessment of environmental health. In this context, the aim of the present work was to evaluate the 
chemical contamination of harbours in Corsica (NW Mediterranean) by measuring the bioaccumulation of trace 
elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in mussels, limpets, and sea cu-
cumbers. The human health risks associated with seafood consumption were also assessed. Results reveal a 
relatively low contamination in the Corsican harbours studied compared to larger Mediterranean ports and 
suggest that the potential health risk for consumers eating seafood is low.   

Harbours areas are receiving inputs of contaminants from the coast 
and are particularly subjected to contaminant accumulation due to 
reduced water exchange and low tidal currents (Merhaby et al. 2019), 
therefore representing hotspots for pollution (Lichtfouse et al. 2012; 
Paladino et al. 2017) and potential sources to the open ocean. These 
coastal ecosystems in many regions are exposed to complex mixtures of 
contaminants such as trace elements (TEs), polycyclic aromatic hydro-
carbons (PAHs), and polychlorinated biphenyls (PCBs). These com-
pounds can be harmful for marine organisms and persist in the 
environment, thereby posing environmental and health risks (Wil-
helmsson et al. 2013; Castro-Jiménez et al. 2021; Sun et al. 2022; Zaidi 
et al. 2022). 

The monitoring of these contaminants in coastal areas and their 
impacts on human health and ecosystems is a crucial issue. Native 
mussels Mytilus galloprovincialis have been extensively used for evalu-
ating contamination from TEs (Azizi et al. 2020; Conti and Cecchetti 

2003; Esposito et al. 2021; Guendouzi et al. 2018; Santos-Echeandía 
et al. 2021), PAHs, and PCBs (Benali et al. 2017; Campillo et al. 2019; 
Fernández et al. 2012; León et al. 2013). Nevertheless, the patchy dis-
tribution or absence of this sentinel species in some Mediterranean 
coastal areas is problematic (Andral et al. 2004). An alternative 
approach consists in using transplanted mussels which are deployed in 
cages in situ for coastal pollution studies (Andral et al. 2011; Benedicto 
et al. 2011; Bodin et al. 2004; Glad et al. 2017; Kucuksezgin et al. 2020; 
Richir and Gobert 2014). This active biomonitoring also provides 
improved control of confounding factors and enables to select mussels 
with homogenous size, age, and physiological state, in contrast to pas-
sive biomonitoring which relies on native individuals (Besse et al. 2012; 
Beyer et al. 2017). A complementary approach is the use of other bio-
indicator species. Limpets Patella spp. are gastropods widely distributed 
in Mediterranean rocky coastlines (Poppe and Goto 1991; Storelli and 
Marcotrigiano 2005) and have been used for monitoring trace metals 

Abbreviations: TE, Trace element; PAH, Polycyclic aromatic hydrocarbon; PCB, Polychlorinated biphenyl; TEPI, Trace element pollution index; EAC, Environ-
mental assessment criteria. 
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(Cabral-Oliveira et al. 2015; Conti et al. 2015; Reguera et al. 2018; 
Lozano-Bilbao et al. 2021; Sánchez-Marín et al. 2022; Zaidi et al. 2022) 
and organic pollutants (Bartolomé et al. 2011; Delgado et al. 1999; 
Gianguzza and Orecchio 2006; Peña-Méndez et al. 1996, 2001; Pérez 
et al. 2019; Viñas et al. 2018). Sea cucumbers Holothuria spp. have been 
identified as potential bioindicators of trace metals (Culha et al. 2016; 
Hosseini et al. 2022; Marrugo-Negrete et al. 2021; Mohammadizadeh 
et al. 2016; Parra-Luna et al. 2020; Warnau et al. 2006), however, 
knowledge on organic contaminant bioaccumulation in these echino-
derms is scarce. 

In the Mediterranean Sea, Corsica island is often considered to be 
lightly impacted by contamination pressure due to its low density of 
population and the scarcity of industrial activities (Andral et al. 2004; 
Lafabrie et al. 2008). Nevertheless, high concentrations of heavy metals, 
PAHs, and PCBs have been reported in sediments of the main harbours 
(i.e., Ajaccio, Bastia, and Bonifacio) (Galgani et al. 2006; Mauffret et al. 
2018). To our knowledge, chemical contamination in smaller Corsican 
harbours remains poorly studied. 

The present study investigated chemical contamination in four har-
bours in the North coast of Corsica by assessing levels of TEs, PAHs, and 
PCBs in different benthic species. The biomonitoring was conducted 

using native limpets Patella spp., sea cucumbers H. tubulosa, and caged 
mussels M. galloprovincialis. Potential human health risks associated 
with consumption of these species were also evaluated. Although these 
edible species are not expected to be harvested from harbours, health 
risk assessment can provide additional information on contamination 
level for compounds with no environmental thresholds. Moreover, 
illegal fishing of sea cucumbers has been reported in Corsica and cor-
relates with a strong international market demand, sea cucumbers being 
mostly exported for oriental consumers (Sadoul et al. 2022). In 2019, a 
prefectural decree has prohibited sea cucumber harvesting in Corsican 
territorial waters for 5 years. Assessment of contaminant levels in 
H. tubulosa is thus needed for a food safety perspective before consid-
ering potential exploitation of sea cucumbers stocks in Corsica. This 
paper improves knowledge on chemical contamination in Mediterra-
nean coastal areas which is required to assess their environmental status. 

In the Western Mediterranean Sea basin, four French harbours 
(STARESO, Calvi, Ile Rousse, and Saint-Florent) of the Corsica Island 
were studied (Fig. 1). The private harbour of the Underwater and 
Oceanographic Research Station (STARESO; 42◦34′49.454′′N, 
8◦43′27.746′′E) is located on the Revellata peninsula which is included 
in the Natura 2000 network. We selected the small STARESO harbour (4 

Fig. 1. Sampling locations along the north-western coast of Corsica (France). The black dots represent the studied harbours: STARESO, Calvi, Ile Rousse, and 
Saint-Florent. 
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berths) as a reference site characterized by low anthropogenic pressures 
(Güreşen et al. 2020). The Calvi port (42◦33′51.07′′N, 8◦45′27.939′′E), 
in the bay of Calvi, is the main gateway for vessels from the French 
Mediterranean coastline and has a capacity of 500 berths. The port of Ile 
Rousse (42◦38′23.406′′N, 8◦56′7.778′′E) has a total capacity of 250 
berths and hosts a ferry terminal. The port of Saint-Florent 
(42◦40′50.362′′N, 9◦17′54.373′′E) receives freshwater inputs from 
Aliso river and is located within the perimeter of the Natura 2000 
network and the Marine Nature Park of Cap Corse and Agriate. Among 
the study sites, Saint-Florent is the port that has the largest reception 
capacity with 950 berths. 

Field work was conducted in January and September 2020. In 
January, native sea cucumbers (Holothuria tubulosa, n = 5–7 per site, 
length = 154 ± 44 mm) were collected in the four harbours, native 
limpets (Patella sp., n = 6–7 per site, shell length = 34 ± 5 mm) were 
sampled at all sites except Saint-Florent while native mussels (Mytilus 
galloprovincialis, n = 7, shell length = 78 ± 9 mm) were found only in 
Saint-Florent harbour. These animals were analysed individually for 
measurement of contaminant contents. Additional organisms were 
collected and treated as pool (1 pool for each site and species) for 
contaminant analysis: 6 mussels (length = 63 ± 9 mm) and 4 sea cu-
cumbers (length = 193 ± 35 mm) were collected at Saint-Florent, and 7 
limpets (length = 31 ± 3 mm) were sampled in Ile Rousse. 

In June, mussels (M. galloprovincialis, length 57 ± 4 mm) were ob-
tained from a local mussel farm outside harbour areas, kept on running 
sea water in STARESO's facilities for 2 weeks, then placed into poly-
propylene netting bags and transplanted to the 4 sites. The cages were 
deployed for a thirteen-week period, from mid-June to mid-September, 
a period assumed sufficiently long to ensure equilibration with envi-
ronmental conditions (Beyer et al. 2017). In September, limpets (Patella 
sp., n = 7–8 per site, length = 35 ± 7 mm), sea cucumbers (H. tubulosa, n 
= 4–7 per site, length = 173 ± 53 mm), and caged mussels (n = 8 per 
site, length = 64 ± 7 mm) were collected in the sites, except in Calvi 
where only 3 mussels survived. Animals sampled in September were 
pooled for contaminant analyses (1 pool for each site and species). After 
sampling, body walls of sea cucumbers and whole soft tissues of mussels 
and limpets were dissected, weighted, homogenized in a porcelain 
mortar and pestle, and stored at − 20 ◦C. Contaminant analyses were 
conducted on the body wall of sea cucumbers since it is the edible part of 
these animals (Xing et al. 2021) unlike mussels and limpets which are 
usually consumed whole. 

The content (μg g− 1 dry weight) of 18 TEs (Ag, Al, As, Ba, Cd, Co, Cr, 
Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, V, Zn) in tissues were performed with 
a Varian Vista-Pro ICP-OES and a Thermofisher Scientific XSeries 2 ICP- 
MS according to Breitwieser et al. (2017). Details on the methodology 
can be found in Appendix S1 and Table S2. To investigate overall TE 
contamination levels among the sites, the trace element pollution index 
(TEPI) was determined for each species sampled in September 2020. 
TEPI is the weighted product of mean normalized TE concentrations Cf 
of the n TE analysed (TEPI = (Cf1 × Cf2 × … × Cfn)1/n) (Richir and 
Gobert 2014). Mean normalization is useful to account for data with 
varying magnitude such as concentrations of various TE (Moreda- 
Piñeiro et al. 2001). A higher TEPI value for a given site indicates a 
higher overall TE contamination. 

22 PAHs (naphthalene (N), benzothiophene (BT), biphenyl (B), 
acenaphthylene (ANY), acenaphthene (ANA), fluorene (F), dibenzo-
thiophene (DBT), phenanthrene (P), anthracene (A), fluoranthene (FA), 
2-methylfluoranthene (mFA), pyrene (PY), benzo(a)anthracene (BaA), 
chrysene (CR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene 
(BkF), benzo(e)pyrene (BeP), benzo(a)pyrene (BaP), perylene (PE), 
indeno(1,2,3-cd)pyrene (IN), dibenzo(a,h)anthracene (DBA), and benzo 
(g,h,i)perylene (BPE)) and 14 PCBs (PCB 7, 28, 35, 52, 77, 101, 105, 118, 
135, 138, 153, 156, 169, and 180) were analysed (ng analytes g− 1 wet 
weight (ww)) in tissues by stir bar sorptive extraction-thermal desorp-
tion-gas chromatography-tandem mass spectrometry (SBSE-GC–MS/ 
MS) as described by Lacroix et al. (2014). Details on the methodology 

can be found in Appendix S1 and Tables S3 and S4. 
Health risks were estimated for chronic exposure; thus, the dietary 

exposure was calculated by using mean annual contaminant concen-
trations (mean of January and September 2020 concentrations) for each 
site and species (i.e., limpet and sea cucumber). Heath risks related to 
mussel consumption was estimated separately for native and caged 
mussels. A medium bound approach was used for estimating contami-
nant concentrations: results below the limit of detection (LD) were 
replaced by the numerical values of LD/2 and those below the limit of 
quantification (LQ) were reported as LQ/2 (Conte et al. 2016; Kiani et al. 
2021; Pastorino et al. 2021; Sirot et al. 2012; Veyrand et al. 2013). 
Ingestion rate (IR) used to estimate dietary exposure in the present study 
is the mean consumption of molluscs and crustaceans of French adult 
population (21.47 g day− 1), estimated from the INCA3 data (ANSES 
et al. 2017). We considered a mean human body weight (BW) of 70 kg. 

To evaluate potential harmful exposure to TEs or PAHs from seafood 
consumption, the hazard quotients (HQ) were calculated to assess non- 
carcinogenic risks for each compound using the following formula 
(Marengo et al. 2018; Pastorino et al. 2021; Traina et al. 2019): 

HQi =
(
Ci × IR× 10− 3)/(BW×RfDi)

where Ci is the mean annual concentration (μg g− 1 ww) of a compound i 
in the seafood (mussel, limpet, or sea cucumber), 10− 3 is the unit con-
version factor and RfDi is the chronic oral reference dose (mg kg− 1 

day− 1) of the compound i. The HQ were calculated only for compounds 
with available RfD value (Tables S2, S3). Hazard quotient indicates the 
ratio between exposure and the reference dose; when HQ is above 1, 
systemic effects may occur. 

The cancer risk due to exposure to PAHs via consumption of seafood 
was evaluated by estimating the margin of exposure (MOE) for 

∑
PAH4 

(sum of BaA, CR, BbF, and BaP concentrations). The 
∑

PAH4 was 
assessed in this study based on the review by the Contaminants in the 
Food Chain (CONTAM) Panel, relating to occurrence and toxicity of 
PAHs in food, which concluded that 

∑
PAH4 is a more suitable indicator 

of PAHs in food than BaP concentration (EFSA 2008). The MOE was 
evaluated as an acceptable method of cancer risk assessment (EFSA 
2008; Veyrand et al. 2013), as followed: 

MOE = (BMDL10 ×BW)
/(∑

PAH4× IR
)

where BMDL10 is the benchmark dose lower limit of 3.4 × 105 ng kg− 1 

day− 1 for PAH4 (EFSA 2008), 
∑

PAH4 (ng g− 1 ww) is the mean sum of 
the concentrations of BaA, C, BbF, and BaP in seafood (mussels, sea 
cucumbers or limpets). An MOE of 104 or higher is considered of low 
concern from a public health point of view with respect to the carci-
nogenic effect (EFSA 2008). 

Analysis of the 6 indicator PCBs (i.e., iPCBs: PCB 28, 52, 101, 138, 
153, and 180) were used for predicting the total PCB content, since the 
sum of iPCBs represents approximately 50 % of all PCB congeners in 
food of animal origin (AFSSA 2007). Their selection is also based on 
their dominant presence in technical mixtures, environment, and animal 
tissues (EFSA 2010). The average daily dose (ADD; ng kg− 1 day− 1) 
represents dietary intake of iPCBs through seafood consumption and is 
calculated as follows: 

ADDiPCB =

∑
iPCB × IR

BW  

where 
∑

iPCB is the mean annual sum of the iPCB concentrations in 
seafood. The ADDiPCB values were then compared to the “guidance 
value” of 10 ng kg− 1 day− 1 (Arnich et al. 2009; Baars et al. 2001). 

The mean TE concentrations measured in limpets, sea cucumbers, 
and mussels are presented in Table 1 and were compared with levels 
reported in other Mediterranean geographical areas (Table S5). 

Mean Cu concentrations in mussels from Ile Rousse, Saint-Florent, 
and Calvi (Table 1) were higher than the background levels in North- 
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western Mediterranean mussels (Marchand et al. 2009; Santos-Echean-
día et al. 2021) and the concentrations in mussels caged along Corsican 
coastline (Mauffret et al. 2018). Similarly, Cu concentrations in limpets 
and sea cucumbers from Ile Rousse, Saint-Florent, and Calvi exceeded 
levels reported in previous studies (Campanella et al. 2001; Conti et al. 
2015, 2017; Montero et al. 2021; Türkmen et al. 2005; Warnau et al. 
2006). Sediments could be a potential source for Cu bioaccumulation in 
molluscs since high Cu concentrations in sediments from Calvi bay have 
been reported (Mauffret et al. 2018). In the present study, the high Cu 
concentrations could be related to shipping since anti-fouling paints and 
ship scrubbers have been described as substantial anthropogenic sources 
of Cu in coastal environments (Richir et al. 2021; Warnken et al. 2004). 
These results are in agreement with port areas being hotspots of Cu 
contamination (Santos-Echeandía et al. 2021). 

The mean concentrations of several TEs (i.e., Ag, As, Co, Cd, Cr, Ni, 
Pb, Se, Sb and Zn) in mussels from Corsican harbours (Table 1) were in 
the range of concentrations reported in caged mussels placed in offshore 
stations close to our study sites (Mauffret et al. 2018) and in a previous 
study in Corsica (Richir and Gobert 2014). In the present study, the 
mean concentrations of Cd and Pb in mussels and sea cucumbers were 
below the levels reported in previous work (González-Wangüemert et al. 
2018; Santos-Echeandía et al. 2021; Warnau et al. 2006), thus suggest-
ing a low contamination of these TE in the harbours. This result is in 
accordance with the Cd concentrations in limpets which were below the 
lower limit of the Cd baseline range defined for P. caerulea in the Tyr-
rhenian Sea (Conti et al. 2017). In the present study, Pb levels in limpets 
were, however, higher than baseline for P. caerulea along Italian coast-
line (Conti et al. 2017) but were comparable to Pb levels in P. caerulea 
from Iskenderum harbour area in Turkey (Türkmen et al. 2005). Lead 
contamination in harbours is mostly archived in sediment, often origi-
nating from older sources such as leaded gasoline, battery factories, and 
coal combustion (Layglon et al. 2020). Moreover, Pb can be remobilized 
into the water column and transferred to aquatic resources consumed by 
humans (Kalnejais et al. 2010). Higher Zn levels in limpets and sea cu-
cumbers were observed in the Corsican harbours (except for STARESO; 
Table 1) compared to previous studies (Table S5). This high Zn bio-
accumulation could be related to antifouling paints and aluminium- 
based galvanic anodes which have been highlighted as a source of Zn 
enrichment in harbour sediments (Caplat et al. 2020; Richir et al. 2021). 

The TEPI was calculated to compare the overall TE contamination 
between the study sites (Fig. 2). 

This index has been mostly applied to the seagrass Posidonia oce-
anica, the sea urchin Paracentrotus lividus, and the mussel 
M. galloprovincialis (El Idrissi et al. 2020; Richir and Gobert 2014; Ter-
nengo et al. 2018). For the first time, the TEPI have been applied to 
concentrations determined in Patella sp. and H. tubulosa. When each 
species was considered separately, the TEPI values were lower in 
STARESO harbour than in Calvi, Ile Rousse, and Saint-Florent, indi-
cating a higher global TE contamination in these latter sites (Fig. 2). 

There was no quantifiable level of PAHs in samples from STARESO, 
confirming the low PAH contamination pressure on this reference site 
(Table 2). Conversely, the very potent BaP was quantified in sea cu-
cumbers from Ile Rousse and mussels from Saint-Florent. Moreover, the 
potent DBA was detected in sea cucumbers and mussels from Saint- 
Florent. The concentrations of PAH congeners (i.e., N, FA, P, A, PY, 
BaA, BkF, BaP, and BPE) in mussels (Table 2) did not exceed their 
respective Environmental Assessment Criteria (EAC) values set by 
OSPAR (OSPAR 2009), thus suggesting a good environmental status of 
the study sites regarding PAH contamination. The PAH concentrations 
in caged mussels from Corsican harbours (Table 2) were in the range of 
concentrations reported in caged mussels placed in offshore stations 
close to our study sites (Mauffret et al. 2018). Caged mussels from Saint- 
Florent exhibited relatively high concentrations of high molecular 
weight PAHs (Table 2) which are mainly derived from the incomplete 
combustion of organic matter and traffic exhaust (Yu et al. 2021). This 
PAH contamination might be partly due to a boat fire which occurred in Ta
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Saint-Florent harbour in September 2020 (i.e., 5 days before sampling). 
The 

∑
PAH4 measured in the present study (Table 2) were in the 

range of concentrations reported in molluscs representative of French 
and European diets (Chiesa et al. 2018; Conte et al. 2016; EFSA 2008; 
Martorell et al. 2010; Veyrand et al. 2013). 

In the present study, the sum of the 16 EPA priority PAHs (Andersson 
and Achten, 2015) measured in limpets was also lower compared to 
P. vulgata sampled in different Sicilian harbours (Gianguzza and Orec-
chio 2006). Moreover, we observed similar PAH levels in sea cucumbers 
H. tubuosa from Corsican harbours than in H. polii sampled in Mediter-
ranean coasts of Spain (León et al. 2021) and Southern Italy (Biandolino 
et al. 2022). 

The mean concentrations of ΣiPCB in mussels from the four harbours 
in Northern Corsica (Table 3) were in line with the mean levels 
measured in molluscs and crustaceans consumed by French population 
(Sirot et al. 2012), mussels sampled at Milan market (Chiesa et al. 2018), 
and mussels from the River Ebro mouth (Campillo et al. 2019). The 
ΣiPCB concentrations in mussels from Corsican harbours were similar to 
levels found in caged mussels placed in areas close to our study sites 
(Mauffret et al. 2018). Moreover, the concentrations of PCB congeners 

Fig. 2. Trace element contamination of Corsican harbours (STARESO, Calvi, Ile 
Rousse, and Saint-Florent) using trace element pollution index (TEPI) for each 
bioindicator species, i.e., limpets (A), sea cucumbers (B), and caged mussels (C), 
sampled in September 2020. 
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(PCB 28, 52, 101, 118, 138, 153, and 180) in mussels were all below 
their respective Environmental Assessment Criteria (EAC) values (Beyer 
et al. 2017; Mauffret et al. 2018), thus demonstrating a low PCB 
contamination in the study sites. Few studies investigated PCB content 
in Patella spp. and mainly focused on Atlantic coastal areas (Peña- 
Méndez et al. 1996; Pérez et al. 2019; Tena and Montelongo 1999; Viñas 
et al. 2018). Nevertheless, the PCB concentrations in limpets observed in 
the present study were in line with a previous study conducted along the 
Mediterranean coast of Israel (Herut et al. 1999) and suggest a low PCB 
contamination. In the present study, the PCB congeners mainly 
contributing to ΣiPCB were PCB 138 and PCB 153 (Table 3). These 
highly chlorinated congeners are generally predominant in marine 
molluscs (Benali et al. 2017; EFSA 2010; Giandomenico et al. 2016; 
Herceg-Romanić et al. 2014; Kožul et al. 2009; Perugini et al. 2004; 
Scarpato et al. 2010) due to their molecular structure and high lip-
ophilicity, which facilitate their accumulation in aquatic food web (Naso 
et al. 2005) and make them resistant to metabolic degradation by mol-
luscs (Vidal-Liñán et al. 2016). 

Contaminant levels in soft tissues of molluscs are influenced by 
abiotic parameters (e.g., contaminant concentration in the water) 
(Pérez-López et al. 2003) and biotic factors such as age, size, and 
reproductive status (Boyden 1977; Cabral-Oliveira et al. 2015; Fattorini 
et al. 2008; González-Fernández et al. 2016; Pedro et al. 2021). The 
origin of the organisms can also affect contaminant bioaccumulation 
since sampled populations may exhibit adaptative responses to a chronic 
contamination or environmental conditions, and distinct initial physi-
ological status (Lacroix et al. 2015; Mersch et al. 1996; Silva et al. 2018). 
Relationship between contaminant levels in soft tissues and body size 
have been investigated on species of the genus Patella, notably for metal 
contamination (Bebianno et al. 2003; Collado et al. 2006; Cravo et al. 
2004; Cubadda et al. 2001; Nakhlé et al. 2006; Ramelow 1985). The 
results obtained by these studies differed according to the metal and the 
species studied and no clear pattern was observed in the variations in 
body levels of metals with body size (Reguera et al. 2018). 

Consequently, passive monitoring of contaminants using native or-
ganisms has one major drawback: variation of these biotic factors in 
sampled organisms may hamper accurate interpretation of the results 
(Besse et al. 2012). Active approaches, based on transplanted organisms, 
have been developed with the aim of minimizing these cofounding 
factors. The results of the present study regarding contaminant levels in 
native limpets and sea cucumbers (passive biomonitoring) and trans-
planted mussels (active biomonitoring) should therefore be interpreted 
with caution. Moreover, the Patella organisms sampled were not iden-
tified to the species level, although according to their distribution and 
abundance in the intertidal areas sampled, they can be expected to 
comprise mainly P. caerulea, P. ulyssiponensis, and P. rustica (Bouzaza 
and Mezali 2018). Future studies should identify the sampled limpet 
species by using molecular techniques as proposed by Zaidi et al. (2022), 
to ensure the relevance of conclusions regarding contaminant levels. 

The health risk associated with seafood consumption was evaluated 
by comparing measured contaminant concentrations with available 
legal limits set by the European Commission (European Commission 
2006). Cadmium and lead concentrations in mussels (Table S6) were 
compliant with the maximum levels. Moreover, all hazard quotients 
(HQ) for TEs were lower than 1 (Table S7). These results suggest that the 
health risks associated with Al, Ba, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, 
and Zn exposure for average seafood consumers were insignificant. The 
present study analysed total As, Cr, and V concentrations, however, 
refence doses have been established only for inorganic As, CrIII, CrVI, 
organic Sn, and V pentoxide. There is a lack in literature data on As, Cr, 
Sn, and V speciation in seafood (Copat et al. 2018), thus HQ for these 
elements were not determined in the present study. 

Regarding regulated PAHs, B(a)P and 
∑

PAH4 (sum of BaA, CR, BbF, 
and BaP) concentrations in limpets, sea cucumbers, and mussels from 
Corsican harbours (Table S6) were lower than the European maximum 
levels (European Commission 2011a). All the HQ values for PAH Ta
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congeners were lower than 1 (Table S8), suggesting that seafood con-
sumption would not cause non-carcinogenic effects in humans. 
Regarding carcinogenic effects, the MOE values for PAH4 ranged from 
6.1 × 104 to 2.1 × 106 (Table S8), thus far exceeding 104 which is the 
value recommended by EFSA. Both HQ and MOE approaches suggest 
that exposure to PAHs through seafood consumption is not a major 
health problem. The MOE approach, however, disregards many PAH 
congeners for which toxicological data are lacking. In addition to the 16 
USEPA priority PAHs (Andersson and Achten 2015) which are often 
monitored, we also detected the presence of benzothiophene, 2-methyl-
fluoranthene, benzo(e)pyrene, and perylene in the studied species. In-
vestigations on the toxicity of these congeners are needed to fully assess 
environmental and health risks related to PAH. 

In the present study, the sum concentrations of the six indicator PCBs 
(
∑

iPCB) in marine organisms (Table S6) were below the maximum level 
established in the European Union (European Commission 2011b). 
Mean dietary intakes of iPCBs (ADDiPCB) were 0.4–4.3 ng kg− 1 day− 1 for 
consumption of limpets, 0.4–2 ng kg− 1 day− 1 for sea cucumbers, and 
0.4–0.6 ng kg− 1 day− 1 for mussels (Table 3). Ingestion of food represents 
more than 90 % of the iPCB exposure in the general population (EFSA 
2005). In France, mean exposure to iPCBs through food ingestion was 
estimated at 2.78 ng kg− 1 day− 1 in adults, crustaceans and molluscs 
contributing to 4 % (mean exposure of 0.1 ng kg− 1 day− 1) of the total 
exposure to iPCBs (Sirot et al. 2012). The ADDiPCB in the present study 
were in line with estimated exposure of French population, except for 
ingestion of limpets (4.3 ng kg− 1 day− 1) and sea cucumbers (2 ng kg− 1 

day− 1) from STARESO which represented 43 % and 20 % of the total 
tolerable daily intake for iPCBs of 10 ng kg− 1 day− 1 (AFSSA 2007; Baars 
et al. 2001), respectively. 

The contaminant intakes estimated in the present study for TE, PAH, 
and PCB should be considered as a lower estimate of their total exposure, 
since their intake through other food items were not considered. 
Moreover, the ingestion rate used to estimate dietary exposure in the 
present study was extracted from the French total diet study data 
(ANSES et al. 2017) and might not be representative of the local popu-
lation since Corsica was not surveyed in the latter study (Dubuisson et al. 
2019). It should be noticed that permissible levels for mercury, dioxin- 
like-PCBs and polychlorinated dibenzo-p-dioxins and dibenzofurans 
have been set in fish and seafood in the EU (European Commission 
2011b), however, these contaminants were not measured in the present 
study. Moreover, the present work was partly conducted during the 
COVID-19 lockdown which restricted travel, fishing, tourism, and in-
dustrial activities worldwide, and thus affected contaminant levels in 
marine environments and ecosystem health (Cecchi 2021; Loh et al. 
2021; Patterson Edward et al. 2021; Yang et al. 2022; Yoon et al. 2022). 
A long-term biomonitoring of Corsican harbours for organic and inor-
ganic contaminants is thus needed to detect an eventual increase in 
contaminant levels. 

In summary, this study demonstrates a relatively low contamination 
in the Corsican harbours studied compared to other Mediterranean 
coastal areas, however, results reveal relatively high concentrations of 
some trace metals (i.e., Cu, Pb, Zn). To our knowledge, this is the first 
study biomonitoring TE, PAH, and PCB in Corsican harbours. Contam-
inant levels in mussels, limpets, and sea cucumbers sampled in the 
harbours were compliant with European regulatory limits. Regarding 
potential human health risks associated with seafood consumption, re-
sults suggested no adverse effects for human health. However, there are 
substantial data gaps with respect to exposure as well as toxicity of many 
chemical contaminants detected in seafood in the present study. Further 
research is necessary to determine sanitary and environmental thresh-
olds of these contaminants to enable ecological assessment. 
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León, V.M., Moreno-González, R., Besada, V., Martínez, F., Ceruso, C., García, V., 
Schultze, F., Campillo, J.A., 2021. Sea snail (Hexaplex trunculus) and sea cucumber 
(Holothuria polii) as potential sentinel species for organic pollutants and trace 
metals in coastal ecosystems. Mar. Pollut. Bull. 168, 112407 https://doi.org/ 
10.1016/j.marpolbul.2021.112407. 

Lichtfouse, E., Schwarzbauer, J., Robert, D. (Eds.), 2012. Environmental Chemistry for a 
Sustainable World: Volume 2: Remediation of Air and Water Pollution, 
Environmental Chemistry for a Sustainable World. Springer, Netherlands, Dordrecht. 
https://doi.org/10.1007/978-94-007-2439-6.  

Loh, H.C., Looi, I., Ch’ng, A.S.H., Goh, K.W., Ming, L.C., Ang, K.H., 2021. Positive global 
environmental impacts of the COVID-19 pandemic lockdown: a review. GeoJournal. 
https://doi.org/10.1007/s10708-021-10475-6. 
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Díez, S., 2021. Sea cucumber as bioindicator of trace metal pollution in coastal 

sediments. Biol. Trace Elem. Res. 199, 2022–2030. https://doi.org/10.1007/s12011- 
020-02308-3. 
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