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|. Résumeé

Les procaryotes, organismes unicellulaires ne présentant pas de noyau, sont
actuellement divisés en deux domaines : Bactéries et Archées. L'une des différences
majeures entre les deux domaines réside dans leur paroi cellulaire. En effet, bien
que les bactéries ont majoritairement du peptidoglycane (aussi appelé muréine)
dans leur paroi, la plupart des archées ont une paroi composée d’'une couche
protéique assemblée en un réseau cristallin, que 'on nomme couche S. Cependant,
il existe deux ordres d’Euryarchaeota, les Methanopyrales et Methanobacteriales,
qui possédent dans leur paroi un polymeére structurellement analogue au

peptidoglycane. Par conséquent, ce polymére a été nommé pseudomuréine.

L'objectif de cette thése était d’étudier I'évolution de différentes familles de génes
impliquées dans la synthese du peptidoglycane et de la pseudomuréine, afin de

déterminer si les deux polyméres partagent des déterminants génétiques communs.

Pour conduire ces analyses, nous avons exploit¢é plus de 80 000 génomes
bactériens et plus de 800 génomes archéens provenant tous de la base de données
RefSeq du NCBI. Or, au début de notre travail, un faisceau d’indices laissait penser
que RefSeq, en dépit de sa curation extensive, présente des problémes de
contamination des génomes pouvant fausser [linterprétation des résultats
phylogénétiques. Dans un premier temps, nous avons donc développé un
programme de détection des contaminations baptisé Physeter. Celui-ci a ensuite été
utilisé pour détecter les potentielles contaminations génomiques présentes dans les
génomes procaryotes. Par cette étude, nous avons montré qu’environ 0.9% des

génomes bactériens de RefSeq ont un taux de contamination d’au moins 5%.

Par ailleurs, si RefSeq offre une bonne couverture de la diversité procaryotique, elle
souffre de biais d’échantillonnage. Dans le but de concevoir et tester des stratégies
bioinformatiques pour améliorer l'informativité des phylogénies en réduisant les
redondances dues a linclusion de nombreuses souches trés apparentées, nous
avons choisi de prototyper nos méthodes sur la famille des béta-lactamases de
classe D. Ces derniéres sont des enzymes produites par les bactéries pour lutter

contre les antibiotiques a noyau béta-lactame, une famille d'antibiotiques qui ciblent



la synthése du peptidoglycane et provoquent la lyse de la cellule. Nous avons
conduit une étude phylogénétique et bioinformatique compléte de cette famille. A la
suite de ces résultats, nous avons exprimé dans Escherichia coli dix séquences de
protéines nouvellement identifiées et montré que les bactéries environnementales
(méme non-exposées aux antibiotiques d’origine anthropique) constituent un grand

réservoir de génes de résistance contre les agents antimicrobiens.

Enfin, fort d’'une version décontaminée de RefSeq et des méthodes bioinformatiques
permettant d’en optimiser I'exploitation, nous avons identifié différentes familles de
genes potentiellement impliquées dans la synthése de la pseudomuréine archéenne.
Certains des génes identifiés sont homologues a ceux impliqués dans la synthése
du peptidoglycane, comme des Mur ligases ou la protéine transmembranaire Mray.
Nous avons montré que ces génes sont regroupés dans deux régions synténiques
dans les génomes de Methanopyrales et Methanobacteriales. De plus, nos analyses
phylogénétiques suggerent que les Mur ligases archéennes sont le résultat de
transferts de génes horizontaux depuis une ou plusieurs anciennes lignées

bactériennes.

En combinant tous les résultats obtenus, nous avons proposé I'hypothése a vérifier
que c'est l'acquisition de génes bactériens par un ancétre commun des
Methanopyrales et des Methanobacteriales qui a entrainé l'apparition de la

pseudomuréine archéenne.



[l. Abstract

Prokaryotes (i.e., single-celled organisms without a nucleus) are currently divided
into two domains: Bacteria and Archaea. One of the major differences between the
two domains lies in their cell wall. Indeed, although bacteria have mostly
peptidoglycan (also known as murein) in their cell wall, most archaea have a cell wall
composed of a protein layer assembled into a crystalline network named S-layer
(Surface layer). However, there exist two orders of Euryarchaeota, the
Methanopyrales and Methanobacteriales, which possess in their wall a polymer
structurally analogous to peptidoglycan. Therefore, this polymer was called

pseudomurein.

The objective of this thesis was to study the evolution of different gene families
involved in the biosynthesis of peptidoglycan and pseudomurein, in order to

determine if these two polymers share common genetic determinants.

To conduct our analyses, we exploited more than 80,000 bacterial genomes and
more than 800 archaeal genomes, all collected from the NCBI RefSeq database.
However, at the beginning of our work, there were indications that RefSeq, in spite of
its extensive curation, presents problems of genomic contamination that could bias
the interpretation of phylogenetic results. As a first step, we developed a
contamination detection software called Physeter. This software was then used to
detect potential genomic contamination in prokaryotic genomes from RefSeq.
Through this study, we have shown that about 0.9% of the bacterial genomes in

RefSeq have a contamination rate of at least 5%.

Although RefSeq provides a good coverage of prokaryotic diversity, it suffers from
sampling biases. In order to design and test bioinformatics strategies to improve the
informativeness of phylogenies by reducing redundancies due to the inclusion of
many closely related strains, we chose to prototype our methods on the class D
beta-lactamase protein family. These are enzymes produced by bacteria to resist
beta-lactam antibiotics, a family of antibiotics that target peptidoglycan synthesis and
lead to cell lysis. Here, we conducted a comprehensive phylogenetic and

bioinformatic study of this protein family. Following these results, we expressed in



Escherichia coli ten newly identified protein sequences and thus showed that
environmental bacteria (including those never exposed to human-made antibiotics)

constitute a large reservoir of resistance genes against antimicrobial agents.

Finally, using a decontaminated version of RefSeq and bioinformatics methods to
optimize its exploitation, we identified different gene families potentially involved in
archaeal pseudomurein biosynthesis, on which we applied a bioinformatic pipeline
similar to the one implemented with class D beta-lactamases. Some of the identified
genes are homologous to those involved in peptidoglycan biosynthesis, such as Mur
ligases or the transmembrane protein MraY. We have shown that these genes are
clustered in two syntenic regions in the genomes of Methanopyrales and
Methanobacteriales. Furthermore, our phylogenetic analyses suggest that the
archaeal Mur ligases result from horizontal gene transfers from one or more ancient

bacterial lineages.
Based on all these results, we proposed that the hypothesis that the acquisition of

bacterial genes in a common ancestor of the Methanopyrales and

Methanobacteriales has led to the origin of the archaeal pseudomurein.
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[1l. List of Abbreviations

AA = amino acid

AMR = antimicrobial resistance

ARMAN = archaeal Richmond Mine acidophilic nanoorganisms
ASTRAL = accurate species tree algorithm

BLDB = betalactamase database

CIIM = class Il methanogens
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CM = cytoplasmic membrane

CPS = carbamoyl phosphate synthetase

CTD = C-terminal domain

CTX-M = cefotaximase from Munich
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DD-TPases = DD-transpeptidases

DNA = deoxyribonucleic acid

EMBL-EBI = European Molecular Biology Laboratory-European Bioinformatics
Institute

ENA = European Nucleotide Archive

ESBLs = extended-spectrum beta-lactamases
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GTase = glycosyltransferases
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HGT = horizontal gene transfer
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LPS = lipopolysaccharide

LTA = lipoteichoic acid

LUCA = last universal common ancestor

MAGs = metagenome-assembled genomes
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NCBI = National Center for Biotechnology Information
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PGAP = Prokaryotic Genome Annotation Pipeline
PM = pseudomurein

RNA = ribonucleic acid

SBLs = serine-beta-lactamases

SHV = sulfhydryl variant

SRA = sequence read archive

SSU rRNA = small subunit ribosomal ribonucleic acid
TEM = Temoniera

TPase = transpeptidases

VIM = Verona imipenemase

VRSA = vancomycin-resistant S. aureus

WTA = wall teichoic acids
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1.1. From two to three... or maybe two... domains

of life

In 1925, the French zoologist Edouard P.L. Chatton was the first scientist to
introduce the concepts of prokaryote and eukaryote to classify living organisms
according to their cellular organization (Chatton 1925). The two terms derive from
Greek roots, which mean “before the nucleus” (pro- = ‘before’, -karyon = ‘kernel’) and
“true nucleus” (eu- = ‘good’, -karyon = ‘kernel’), respectively. Those terms were then
reintroduced in 1962 by Roger Stanier and Cornelis B. van Niel in their article
entitled “The Concept of a Bacterium”, where they separated all living organisms in
two domains: bacteria (prokaryotes) and the others (eukaryotes). “Prokaryote” was
defined as an unicellular organism without a nucleus or organelles (e.g.,
mitochondria or chloroplast), which mostly divides by binary fission. In contrast,
“‘Eukaryote” refers to uni- or multicellular organisms, where the genomic DNA is
enclosed within a membrane-bound nucleus, which do possess organelles and
divide by mitosis (Stanier and Van Niel 1962).

A decade later, Carl Woese and George Fox used the RNA of the small subunit of
the ribosome (SSU rRNA = rRNA 16S) to study phylogenetic relationships among
prokaryotes. Their analyses showed that methanogenic bacteria were clearly distinct
from the other bacteria. Consequently, they proposed to classify the methanogenic
bacteria as archaebacteria and the “typical” bacteria as eubacteria (Woese and Fox
1977). In the next few years, further phylogenetic analyses of the SSU rRNA tended
to confirm the dichotomy between eubacteria and archaebacteria (Fox et al. 1980).
In 1990, Woese, Otto Kandler and Mark Wheelis showed with molecular comparison
of SSU rRNA that all living organisms are actually divided into three domains (Fig.
1A): Archaea (formally archaebacteria), Bacteria (formally eubacteria) and Eucarya,
which will later be renamed to Eukaryota (Woese et al. 1990). Furthermore,
phylogenetic reconstructions taking advantage of universal paralogous genes
provided strong evidence that archaea and eukaryotes are sister groups
(Cavalier-Smith 1987; Gogarten et al. 1989; Iwabe et al. 1989; Woese et al. 1990).
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A Three domains

Eukaryotes
Bacteria Archaea
I Luca
B Two domains
Luca

C Symbiosis including mitochondria

LUCA

Figure 1. Schematic illustration of the different views for the relationships
among all living organisms (adapted from Weiss et al. 2018). (A) The
three-domain tree with Eukaryotes as a sister group of Archaea. (B) The two-domain
tree where Eukaryotes emerged from Archaea. (C) The two-domain tree including
the endosymbiosis between an Alphaproteobacteria-like bacteria and an archaeal

host cell. LUCA = Last Universal Common Ancestor.
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Since the 2000s, the cost of DNA sequencing has dramatically decreased, especially
following the introduction of highly parallel sequencing techniques (van Dijk et al.
2014; Heather and Chain 2016) . Subsequently, this has led to an exponential
growth of sequenced organisms (Sayers et al. 2022), which enables researchers to
better investigate the relationships between the three major branches of the tree of
life. With this huge amount of molecular data, it has been suggested that eukaryotes
are not the sister group of archaea but rather branch within the archaeal domain
(Guy and Ettema 2011; Kelly et al. 2011; Lasek-Nesselquist and Gogarten 2013;
Williams et al. 2013; Williams and Embley 2014; Raymann et al. 2015). In 2015,
archaeal organisms belonging to a new lineage (named Asgard) were isolated from
marine sediments near the Loki’'s castle (hydrothermal vents), located between
Greenland and Norway. Phylogenetic analyses revealed that eukaryotes are closely
related to this newly identified archaeal lineage (Spang et al. 2015;
Zaremba-Niedzwiedzka et al. 2017). Following this discovery, some scientists now
consider the tree of life as a two-domain system (Fig. 1B) instead of a
three-domain tree, with eukaryotes emerging from archaea (Raymann et al. 2015;
Eme et al. 2017; Williams et al. 2020; Nobs et al. 2022). Moreover, it is widely
accepted that the origin of eukaryotes results from an endosymbiosis between an
archaeal host cell and an Alphaproteobacteria-like bacteria (Fig. 1C), where the

latter has evolved into present-day mitochondria (Margulis 1970; Lang et al. 1999).

In this section, | have briefly presented the “recent” classification for all living
organisms (which do not include viruses) into Archaea, Bacteria and Eukaryotes.
However, although phylogenetically very distant, Archaea and Bacteria do present a
similar cellular organization. Archaeal and bacterial cells are even so similar that
they were both considered as members of the same domain before the development
of molecular phylogenetics. Despite this shared prokaryotic cellular organization, one

of the main structural differences between Archeae and Bacteria lies in their cell wall.

1.2. Prokaryotic cell walls

In Prokaryotes, the cell wall is a structure that surrounds the cell, right above the
cytoplasmic membrane (CM). It constitutes a protective layer against different types

of external aggression, which can be either biotic (e.g., viruses) or abiotic (e.g., heat
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or acidity). It also helps the cell to preserve its shape by maintaining internal turgor
pressure (Vollmer et al. 2008; Silhavy et al. 2010; Klingl et al. 2019; Pazos and
Peters 2019; Meyer and Albers 2020).

1.2.1. Bacterial cell walls

1.2.1.1. Monoderm vs Diderm

In 1884, Hans Christian Gram published a staining method to observe bacteria under
a microscope (Gram 1884). Following this method, bacteria were classified into
Gram positive or Gram negative on whether the cell is coloured by the crystal
violet stain or not. This coloration results from the properties of the bacterial cell wall.
Indeed, almost all bacteria do possess peptidoglycan (PG), also called murein, in
their cell wall, which is a mesh-like polymer consisting of sugars and amino acids
(AAs) (Vollmer et al. 2008). Typically, Gram positive bacteria possess a thick layer
of PG that is stained by the crystal violet, while Gram negative have a thin layer of
PG that does not retain the stain. In addition to the PG, Gram negative bacteria also
possess a second (outer) membrane (OM) outside the PG layer (Baurain et al. 2016;
Sperandeo et al. 2019). Many bacteriologists are still using those two terms to
classify bacteria because Gram staining is cheap and fast to set up. However, Gram
classification does not reflect the real diversity of bacterial cell walls. Thus, we now
privilege the more descriptive terms monoderm and diderm instead of Gram

positive and Gram negative (Gupta 1998).

1.2.1.2. Cell-wall architectures

A cell wall is defined as monoderm or diderm depending on whether there is one or
two membranes surrounding the cell. There exists a wide variation in the diderm
cell-wall architecture in bacteria. The archetype of monoderm bacteria is Bacillus
subtilis. 1ts cell wall is mostly composed of a PG layer about 30 nm thick (Matias and
Beveridge 2005; Beeby et al. 2013), and also contains anionic polymers, which are
anchored to the PG (wall teichoic acids; WTA) or to the CM (lipoteichoic acid; LTA)
(Angeles and Scheffers 2021). On the other hand, the archetype of diderm bacteria
is Escherichia coli, where the cell wall is composed of a thin layer of PG (between 3

and 6 nm) (Yao et al. 1999; Matias et al. 2003) and an asymmetric OM composed of
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lipopolysaccharide (LPS) in its outer leaflet (Sperandeo et al. 2019). In the
Thermotoga lineage, the LPS OM is replaced by a loose sheath-like structure named
foga (Rachel et al. 1988; Rachel et al. 1990; Ranijit and Noll 2016). The cell wall of
Cyanobacteria, which stains Gram negative, is indeed similar to typical diderms with
the exception of the PG layer, of which the thickness ranges between 10 and 35 nm,
and can even reach up to 700 nm in Oscillatoria princeps (Hoiczyk and Hansel
2000). The most complex diderm cell wall is found in Corynebacteriales, an order of
the Actinobacteria phylum. In this lineage, the PG is covalently linked to an
arabinogalactan layer, which is covalently linked to a mycolic acid-based outer
membrane (mycomembrane). The three latter layers are surrounded by a capsular
matrix composed of exopolysaccharide and various proteins (Burkovski 2013;
Rahlwes et al. 2019). In contrast, there exist some bacterial species that completely
lack a cell wall, like those from the Mollicutes lineage (e.g., Mycoplasma sp.)
(Trachtenberg 1998).

1.2.1.3. The peptidoglycan

1.2.1.3.1. Composition and structure

Despite their sometimes different architectures, almost all bacterial cell walls bear a
similar component, the PG, which is composed of long glycosidic chains linked by
short peptides, forming an overall net-like structure. In E. coli, the glycosidic chains
are made out of alternating N-acetylglucosamine (GIcNAc) and N-acetylmuramic
acid (MurNAc) subunits linked by a B-(1—4) bond. To the lactic acid residue in
position C3 of the MurNAc is attached a stem peptide composed of five AAs:
L-alanine (L-Ala), D-glutamic acid (D-Glu), meso-diaminopimelic acid (meso-DAP)
and two D-alanine (D-Ala). Cross-linking of two adjacent pentapeptides frequently
occurs between the carboxyl group of the D-Ala in position four of one stem peptide
and the e-amino group of the meso-DAP (in position 3) of the second one (4-3
cross-link). During cross-linking, the D-Ala in position five is released (Vollmer et al.
2008; Pazos and Peters 2019). Depending on the species, PG can show variation in
stem peptide composition, cross-links (Fig. 2) or modifications of the glycosidic

chain. Here, | will only describe the two first types of variation.
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GlcNAc — MurNAc GlcNAc — MurNAc GlcNAc — MurNAc GleNAc — MurNAc
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Figure 2. Examples of peptide and cross-linking variations in the
peptidoglycan of different species (from Pazos and Peters 2019). Amidation of
residues is shown in orange and interpeptide bridges are framed with a black

square.

1.2.1.3.2. Variation in peptide composition

The variation in the stem peptide can be due to the specificity of the enzymes that
synthesize the peptide or by post-synthesis modification (Vollmer et al. 2008). The
most common AA in the first position is L-Ala. However, it can be replaced by a
glycine (Gly) in Mycobacterium leprae (Mahapatra et al. 2000) or by a L-Ser in other
species (Hesse et al. 2003; Vollmer et al. 2008). The second AA to be added in the
stem peptide is always a D-Glu (Vollmer et al. 2008; Pazos and Peters 2019).
However, it has been described in Staphylococcus aureus, Streptococcus
pneumoniae and Mycobacterium tuberculosis that most of the D-Glu residues have
the a-carboxyl group amidated by the complex MurT/GadT to form D-glutamine
(D-GIn) (Minch et al. 2012; Morlot et al. 2018; Noldeke et al. 2018; Maitra et al.
2021). The third position of the stem peptide shows the greatest variation. However,
meso-DAP and L-lysine (L-Lys) are the two most commonly encountered AAs. The
first one is found in most of diderm bacteria with a LPS OM (diderm-LPS), in some
Bacilli (e.g., B. subtilis) and Mycobacteriales (e.g., M. tuberculosis) (Vollmer et al.
2008; Pazos and Peters 2019). In addition, the meso-DAP of B. subtilis and M.
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tuberculosis is amidated by the AsnB amidotransferase (Atrih et al. 1999; Dajkovic et
al. 2017; Ngadjeua et al. 2018). Spirochetes have L-ornithine (L-Orn) (Schleifer and
Kandler 1972; Yanagihara et al. 1984), while other species have diamino acids, such
as meso-lanthionine or L-2,4-Diaminobutyric acid (L-DABA), or monoamino acids
like L-homoserine (L-Hse), L-Ala or L-Glu (Vollmer et al. 2008; Pazos and Peters
2019). The dipeptide D-Ala-D-Ala in position 4 and 5 is found in almost all bacteria.
However, D-Ala in position 5 is replaced by a D-serine (D-Ser) or a D-lactate (D-Lac)
in species that have acquired the vanA, vanB or vanC genes, which confer a

resistance toward the vancomycin antibiotic (Healy et al. 2000).

1.2.1.3.3. Variation in cross-links

The most abundant cross-link found in PG is the 4-3 cross-link (Fig. 2), which
connects the D-Ala to the meso-DAP (or L-Lys). This linkage, performed by
DD-transpeptidases (DD-TPases) (Sauvage et al. 2008), can either be direct, like in
E. coli or B. subtilis, or through an interpeptide bridge composed of five Gly in S.
aureus or L-Ala-L-Ser in S. pneumoniae. There also exist minor 3-3 cross-links in E.
coli or M. tuberculosis for instance (Vollmer et al. 2008; Pazos and Peters 2019).
This kind of linkage is made by LD-TPases (Magnet et al. 2008). In Corynebacterium
pointsettiae, the third AA of the stem peptide is a L-Hse, which can not be involved in
cross-links. Therefore, the D-Ala in position 1 of a peptide is connected via a D-Orn
to the D-Glu in position 2 of the second peptide, forming a 4-2 cross-link (Schleifer
and Kandler 1972). In 2016, an unusual 1-3 cross-link has been described in
Acetobacteria, where the L-Ala is connected to an amidated meso-DAP (Espaillat et
al. 2016).

1.2.1.3.4. The dcw gene cluster

Many genes involved in PG biosynthesis lie in the division and cell-wall synthesis
(dcw) cluster. Even if some species lack specific genes (Pilhofer et al. 2008;
Martinez-Torré et al. 2021), the composition of this cluster and its gene order are well
conserved across bacterial lineages (Tamames 2001; Mingorance and Tamames
2004; Real and Henriques 2006). The most complete version of the cluster includes
17 genes (Fig. 3), among which six (ftsA, ftsl, ftsL, ftsQ, ftsW, ftsZ) are involved in

division, whereas nine (ddIB, murA, murB, murC, murD, murE, murF, murG, mrayY)
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are involved in synthesis of PG precursors. The last two genes (mraW, mraZ) are
neither involved in cell division nor PG biosynthesis. Instead, both genes code for
regulatory proteins (Kimura and Suzuki 2010; Eraso et al. 2014).
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Figure 3. Ancestral state of the dcw cluster in the last bacterial common
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ancestor (LBCA) and in the ancestors of various bacterial phyla (adapted from
Léonard et al. 2022). Full rectangle = gene present and in the main cluster; empty
circle in rectangle = gene present but in a sub-cluster; empty rectangle = gene

present but outside of any cluster.

1.2.1.3.5. Synthesis of the peptidoglycan

The synthesis of PG has been well characterized in E. coli and occurs in two main
stages, as reviewed in Pazos and Peters 2019 and Egan et al. 2020 (Fig. 4). First,
the PG precursor is synthesized in the cytoplasm. Then, the precursor is exported to
the periplasm (i.e., the space between the inner CM and the outer LPS membrane),
where it is assembled into the nascent PG molecule. The first steps start with the

formation of the two glycosidic units. Three enzymes (GImS, GImM, GImU)
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synthesize the UDP-GIcNAc from fructose 6-phosphate. A fraction of UDP-GIcNACc is
converted into UDP-MurNAc by the action of MurA and MurB. Then, L-Ala, D-Glu,
meso-DAP and the D-Ala-D-Ala dipeptide are sequentially added to the
UDP-MurNAc by four muramyl ligases: MurC, MurD, MurE and MurF. Prior to
addition to the UDP-MurNAc, racemases catalyze the formation of D-AAs from their
corresponding L- enantiomers, whereas the DdIA and DdIB ligases link two D-Ala to
form the D-Ala-D-Ala dipeptide. The variation in stem peptide, which we previously
discussed in this chapter, depends on the respective affinities of the four muramyl
ligases. MurD and MurF are the most specific enzymes and always add the D-Glu
and the dipeptide, respectively (Vollmer et al. 2008). It has been shown that MurC
enzymes of M. tuberculosis, M. leprae and Chlamydia trachomatis have the same in
vitro specificity toward L-Ala, Gly and L-Ser (only for C. frachomatis) (Mahapatra et
al. 2000; Hesse et al. 2003). Although MurE shows a high specificity toward
meso-DAP in E. coli and L-Lys in S. aureus (Vollmer et al. 2008), it shows a lower
specificity in other species, such as Thermotoga maritima, where in vitro it can add
L-Lys, D-Lys and meso-DAP with same efficiency (Boniface et al. 2006). The
UDP-MurNAc-pentapeptide is transferred to the lipid carrier undecaprenyl phosphate
by MraY, located in the inner leaflet of the CM, to form the lipid I. Then, MurG
transfers the UDP-GIcNAc to the lipid | to form lipid Il. The latter is flipped from the
inner leaflet of the CM to the outer leaflet in the periplasmic side by a flippase. The
identity of this flippase is controversial and RodA, FtsW and MurJ have all been
proposed as potential candidates (Holtje 1998; Ruiz 2008; Mohammadi et al. 2011;
Mohammadi et al. 2014). However, recent studies have shown that RodA and FtsW
are more likely to be glycosyltransferases (GTases) (Cho et al. 2016; Meeske et al.
2016; Taguchi et al. 2019). In the periplasmic space, glycan strands are polymerized
by GTases and linked to pre-existing strands by transpeptidases (TPases) that
cross-link two adjacent pentapeptides. These functions are performed by
penicillin-binding proteins (PBPs), which are divided into three groups: 1) the class A
PBPs, which are bifunctional enzymes with both GTase and TPase activity, 2) the
class B PBPs, which have only a TPase activity, and 3) the class C PBPs, which
have both TPase and carboxypeptidase activity. In E. coli, there exist twelve different
PBPs, of which three class A and two class B enzymes (Goffin and Ghuysen 1998;
Sauvage et al. 2008)].
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Figure 4. Schematic view of peptidoglycan biosynthesis in E. coli (from Pazos
and Peters 2019).

1.2.1.4. Cell-wall targeting antibiotics

1.2.1.4.1. Antibiotics overview

After returning from his vacation in September 1928, the Scottish microbiologist
Alexander Fleming observed that one old Petri plate was contaminated by a
blue-green mold. Interestingly, this mold had created a halo zone around a
Staphylococcus colony, corresponding to a zone where bacterial cells had
undergone lysis. Actually, this mold named Penicillium notatum synthesizes a
molecule that kills bacteria, which was named penicillin (Fleming 1929; Bennett and
Chung 2001). Penicillin was isolated by Ernst Chain and Howard Florey in the early
1940s (Gaynes 2017) and widely used at the end of World War Il to heal wounded
soldiers (Ventola 2015). Since then, numerous bacteria and fungi that naturally
produce antimicrobial compounds have been identified, notably Actinomycetes
species, which are known to produce different classes of antibiotics with different

modes of action (Hutchings et al. 2019; De Simeis and Serra 2021). In addition to
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natural antibiotics, the pharmaceutical industry also develops synthetic and
semi-synthetic antibiotics (Hutchings et al. 2019; Leisner 2020; Miethke et al. 2021).
The release of these antibiotics has saved many lives. However, their intensive use
in both human health and industrial farming has led to antimicrobial resistance
(AMR) in bacteria, which makes the control of pathogenic bacteria more
complicated. These AMR genes are often found on plasmids, which is a major factor
of AMR dissemination between bacterial species through horizontal gene transfer
(HGT) (Feng et al. 2022).

1.2.1.4.2. Classes of antibiotics

The different antibiotics can be classified according to their mode of action.
Sulfonamides and derivatives (e.g., sulfamates and sulfamides) are synthetic
compounds, which were the first class of antibiotics used against pathogenic
bacteria, before the introduction of penicillin. They are structural analogues of the
para-aminobenzoic acid (PABA) and inhibit nucleic acid metabolism by interfering
with dihydropteroate synthase and dihydrofolate reductase enzymes of the folic acid
pathway (Bhattacharjee 2016a; Kapoor et al. 2017; Supuran 2017). Like
sulfonamides, most of the protein synthesis inhibitors are bacteriostatic (i.e., they
stop cell multiplication without killing), except for aminoglycosides, which are
bactericidal (i.e., they Kkill bacteria) (Bhattacharjee 2016b; Kapoor et al. 2017). Many
antibiotics can inhibit protein synthesis by targeting different elements of the
ribosome. Tetracyclines and aminoglycosides bind to the 30S subunit, while
chloramphenicol, macrolides, lincosamides, oxazolidinones and streptogramins bind
to the 50S subunit of the ribosome. Instead of binding to the ribosome, mupirocin
binds to isoleucyl tRNA synthetase. There also exist antibiotics that target different
stages of PG synthesis. At the cytoplasmic stage (see Synthesis of the
peptidoglycan), fosfomycin inhibits the MurA enzyme, while D-cycloserine is a
structural analogue of D-Ala and acts as a competitive inhibitor of racemases and
Ddl enzymes. Glycopeptides (e.g., vancomycin) and B-lactams (e.g., penicillin) block
the formation of the PG in the periplasm, by respectively inhibiting the GTase and the
TPase activity of the PBPs (see Synthesis of the peptidoglycan). Those kinds of
antibiotics are bactericidal. Indeed, inhibiting PG synthesis leads to cell lysis
(Bhattacharjee 2016¢; Kapoor et al. 2017).
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1.2.1.4.3. Beta-lactam antibiotics

The B-lactams are the most widely used class of antibiotics so far. It has been
estimated that 55% of the antibiotics in use belong to this class (Bhattacharjee
2016c). The core structure of these antibiotics is the B-lactam ring (Fig. 5), which is a
four-membered cyclic amide (Aoki and Okuhara 1980). This B-lactam ring is a
structural analogue of the D-Ala-D-Ala dipeptide from the PG precursor. Therefore,
B-lactam antibiotics bind to PBP and block the active site by suicide inhibition.
Indeed, during the acylation step, the antibiotic is covalently linked to the serine
found in the active site of all PBPs. However, the resulting acyl enzyme cannot be
hydrolyzed efficiently (Fig. 6). Consequently, the TPase activity of PBPs is inhibited,
which prevents cross-linking between glycosidic chains and leads to cell lysis (Bush
and Bradford 2016). From natural p-lactam antibiotics, the pharmaceutical industry
develops semi-synthetic antibiotics by chemical modification of substituents attached
to the B-lactam ring (Elander 2003). The B-lactam antibiotics are divided into four

families: penicillins, cephalosporins, carbapenems and monobactams.
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Figure 5. Beta-lactam ring.
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Figure 6. Chemical reaction between PBPs (DD-peptidases)/beta-lactamases
and beta-lactam antibiotics (from Matagne et al. 1999). E-OH represents
active-site serine enzymes (i.e., PBPs, class A, C and D beta-lactamases), while
E-Zn?* represents metallo-beta-lactamases. E-OH and beta-lactam antibiotics form a
covalent intermediate (acyl-enzyme). Beta-lactamases can hydrolyze the substrate,
whereas PBPs hydrolyze the substrate poorly or not at all, and remain stuck as an
inactive acyl-enzyme. E-Zn?" does not form a covalent intermediate and hydrolyzes
the beta-lactam ring directly by a water molecule activated by coordination to the

zinc ion(s).

Penicillins gather B-lactam antibiotics having a 6-aminopenicillanic acid (6-APA)
nucleus (Fig. 7) like in penicillin G (or benzylpenicillin), which was the first antibiotic
ever used at large-scale (Ball et al. 1978). Penicillins are further classified into four
generations (Fig. 8), according to their side-chain residues, which confer different
activity spectra to the antibiotic. Put simply, the activity spectrum of an antibiotic is
the range of microorganisms it can inhibit or kill. The first generation groups natural
penicillin, such as penicillin G and penicillin V, whereas the second (e.g., oxacillin,

methicillin), the third (e.g., amoxicillin, ampicillin) and the fourth generation (e.g.,
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carboxypenicillin, ureidopenicillin) are semi-synthetic B-lactams (Lobanovska and
Pilla 2017).
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Figure 8. Molecular structure of the four generations of penicillins (adapted
from Lobanovska and Pilla 2017). The B-lactam ring is framed in red and the
different side-chains follow a color code. Penicillin G (first generation) is shown in
blue, methicillin (second generation) in yellow, ampicillin (third generation) in green,

carbenicillin (fourth generation) in orange, and in purple azlocillin (fourth generation).
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The first cephalosporin, the cephalosporin C, was extracted from the fungi
Acremonium chrysogenum (previously Cephalosporium acremonium) in 1953 by
Newton and Abraham (Newton and Abraham 1955). In contrast to penicillins,
cephalosporins have a 7-aminocephalosporanic acid (7-ACA) nucleus (Fig. 9) (Jago
and Heatley 1961). They are classified into five generations, according to their

activity spectrum (Page 2012).
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Figure 9. 7-aminocephalosporanic acid (7-ACA).

Carbapenems are B-lactam antibiotics that were first isolated from Streptomyces
species. They have a similar structure to penicillin but differ in the double bond
between carbon C-2 and C-3, and the sulfur atom at position C-1 is replaced by a
carbon (Fig. 10). Carbapenems have high clinical relevance, as they are used as last

resort antibiotics against multidrug-resistant bacteria (Papp-Wallace et al. 2011).
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Figure 10. Carbapenem ring.

The fourth family of [-lactam antibiotics is the monobactams, which are
characterized by the monocycle B-lactam ring (Fig. 11). Aztreonam is a synthetic
antibiotic and the only monobactam used in human health (Page 2012; Fernandes et
al. 2013; Ramsey and MacGowan 2016).
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Figure 11. Aztreonam.

1.2.1.5. Antibiotic-resistant bacteria

The extensive use of antimicrobial therapy since the middle of the 20th century has
led to the rise of resistant bacteria. A bacterium is considered as resistant when

antibiotics can not inhibit growth efficiently (Zaman et al. 2017). The first resistance
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in bacteria was reported in the late 1930s, shortly after the introduction of
sulfonamides in 1937. Even before the therapeutic use of penicillin in the late 1940s,
Abraham and Chain described 1940 an enzyme able to hydrolyze penicillin (Davies
and Davies 2010; Zaman et al. 2017). Ever since, numerous new resistances have
been identified, which follow the deployment of specific antibiotics (Fig. 12) (Ventola
2015). AMR genes have the ability to spread out bacterial species via plasmidic
vectors and can lead to multi-resistant bacteria, such as the methicillin-resistant S.
aureus (MRSA), which is resistant to almost all classes of antibiotics, at the
exception of glycopeptides (including vancomycin) targeting PG synthesis.
Nonetheless, some vancomycin-resistant S. aureus (VRSA) have also been reported
(Haaber et al. 2017).

Antibiotic Resistance Antibiotic Introduced
Identified
penicillin-R Staphylococcus 1410 ——
—— =22 penicillin
—— 122 tetracycline
‘ —= 1222 erythromycin
-
tetracycline-R Shigella .-— —4 1660 methicllin
methicillin-R Staphylococcus 1:1:2 ——
penicillin-R pneumococcus 1G5 ——
erythromycin-R Staphylococcus -— T = gentamicn
—+ 1272 vancomydn

gentamicin-R Enterococcus

—_ imipenern and ceftazidime

ceftazidime-R Enterobacteriacese -7
vancomycin-R Enferococcus 1- G0

levofloxacin-R pneumococcus | —_— — 122 levofloxacin

imipenern-R Enterobacteriaceae | .-—
XDR tuberculosis “(100) — —+ 21.L linezolid

linezolid-R Staphylococcus =000 ——
vancomycin-R Staphylococcus ~11)2 ——

—+ 2= daptomycin
PDR-Acinetobacter and Pseudomonas "' U5 ——
ceftriaxone-R Nelsseria gonorrhoege =~ ——

—+ 211 ceftaroline

ceftaroline-R Staphylococcus ~1. ——

Figure 12. Timeline of key antibiotic resistance events (from

www.biomerieux-usa.com).
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1.2.1.5.1. Resistance to B-lactam antibiotics

Bacteria have developed different strategies In order to protect themselves against
B-lactam antibiotics. The two major strategies are the synthesis of PBPs exhibiting a
decreased affinity for B-lactam antibiotics or the production of specific hydrolytic
enzymes, named [(-lactamases (Frére 1995). Moreover, diderm-LPS bacteria have
the ability to decrease the concentration of antibiotics in their periplasmic space by
reducing membrane permeability and/or by activating efflux pumps to extrude
antibiotics (Munita and Arias 2016).

1.2.1.5.1.1. Beta-lactamases

B-lactamases are enzymes able to hydrolyze the amide bond of the B-lactam ring,
which makes the antibiotic inefficient (Fig. 6). There exist two systems to classify
those enzymes: the Bush—Jacoby—Medeiros system, based on the activity spectrum
(Bush et al. 1995), and the Ambler system, based on the AA sequence (Ambler
1980). The latter is the most widely used classification for B-lactamases (Hall and
Barlow 2005), and it is the one that will be used in this thesis. According to the
Ambler system, B-lactamases are divided into classes A, B, C and D. Classes A, C
and D group active-site serine B-lactamases (SBLs), while all metallo-B-lactamases
(MBLs) are included in class B (Babic et al. 2006; Palzkill 2013). B-lactamase genes
can be either chromosome- or plasmid-encoded. Owing to the structural and
mechanistic similarities between PBPs and SBLs, it was proposed that SBLs evolved
from PBPs, probably due to competition with B-lactam-producing microorganisms.
Therefore, the origin of B-lactamases dates back to before the selection pressure
generated by the extensive use of antibiotics (Poole 2004; Bush 2018). Acquisition of
point mutations in B-lactamase sequence can directly affect the activity spectrum of
the enzyme. Consequently, this phenomenon has generated extended-spectrum
beta-lactamases (ESBLs), which possess an activity against all penicillins, as well as
cephalosporins from the first to the third generation and monobactams. ESBLs are
mainly found in class A, while some class C and class D enzymes are also
characterized as ESBLs (Paterson and Bonomo 2005; Rawat and Nair 2010; Tooke
et al. 2019; Sawa et al. 2020; Castanheira et al. 2021). Moreover, carbapenemases
are [(-lactamases with a very broad spectrum of action that are able to hydrolyze
carbapenems, penicillins, cephalosporins and aztreonam. Due to their ability to

inactivate last resort antibiotics (i.e., carbapenems), the spread of carbapenemases
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during the last 20 years is a real burden for public health. The carbapenemase
activity has been reported in classes A,B and D enzymes (Queenan and Bush 2007;
Hammoudi Halat and Ayoub Moubareck 2020; Sawa et al. 2020). However, as
reviewed in (Philippon et al. 2022), class C enzymes exhibiting carbapenem
resistance are found only in association with porin impairment or efflux pump
overexpression. On the other hand, the action of some B-lactamases can be blocked
by [B-lactam-containing (e.g., clavulanic acid, sulbactam, tazobactam) or by
non-B-lactam (e.g., avibactam, relebactam, vaborbactam, zedibactam, nacubactam)
B-lactamase inhibitors (Fig. 13) (Bush and Bradford 2016; Tooke et al. 2019;
Carcione et al. 2021). As for August 2022, 7537 B-lactamases have been recorded in
the Beta-Lactamase DataBase (BLDB) (Naas et al. 2017).
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Figure 13. Chemical structures of beta-lactamase inhibitors (from

Eiamphungporn et al. 2018).

1.2.1.5.1.1.1. Class A

The class A is the most studied class of B-lactamases and contains the most diverse
set of enzymes in terms of number of families. TEM, SHV, CTX-M and KPC are the
four most widespread class A families. The TEM family contains plasmid-encoded
B-lactamases. The name is derived from Temoniera, the Greek patient infected by
an E. coli strain containing the TEM-1 gene, which was the first plasmid-borne
B-lactamase ever isolated, in 1963. Since then, numerous ESBL variants of TEM-1
have been described. They differ from TEM-1 by one to five substitutions in their AA
sequence (Salverda et al. 2010; Tooke et al. 2019; Sawa et al. 2020; Castanheira et
al. 2021). In the 1970s, the first plasmid-encoded SHV-1 (sulfhydryl variant)
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B-lactamase was isolated in E. coli (Liakopoulos et al. 2016). However, a study of
1997 revealed that the genome of Klebsiella pneumoniae encodes an SHV-1-like
gene. Thus, it was proposed that the latter gene reflects the ancestral state of SHV
enzymes (Haeggman et al. 1997). As for TEM, there exist numerous ESBL and
non-ESBL variants of SHV-1 (Liakopoulos et al. 2016; Tooke et al. 2019; Sawa et al.
2020; Castanheira et al. 2021). CTX-M (cefotaximase from Munich) B-lactamases
were first reported in the late 1980s. All CTX-M are plasmid-encoded and
characterized as ESBLs. In contrast to TEM and SHV families, the different CTX-M
enzymes have much more AA sequence diversity (Castanheira et al. 2021). Since
the early 2000s, we have been facing an important dissemination of CTX-M genes
among bacterial pathogens, which makes now the CTX-M family the most
widespread ESBL group (Cantdn et al. 2012; Tooke et al. 2019; Castanheira et al.
2021). Regarding the KPC (K. pneumoniae carbapenemase) family, it is the most
well known example of class-A carbapenemase. KPC genes are encoded on
plasmids, which are mainly found in Enterobacteriaceae (Queenan and Bush 2007;
Tooke et al. 2019; Sawa et al. 2020).

1.2.1.5.1.1.2. Class B

MBLs are structurally and mechanistically different from the three classes of SBLs.
Indeed, during B-lactam hydrolysis, MBLs do not form a covalent acyl enzyme
intermediate (Fig. 6). Instead, B-lactam antibiotics are directly hydrolyzed by
nucleophilic attack of the hydroxyde (OH-), which is stabilized by 1 or 2 Zn?* ion(s)
present in the active site (Palzkill 2013; Bonomo 2017). Actually, MBLs are not
related to SBLs and PBPs but instead are members of the metallohydrolase
superfamily (Tooke et al. 2019). MBLs are active against all families of B-lactam
antibiotics except monobactam (Bebrone 2007). Moreover, they are not inactivated
by B-lactamase inhibitors (Mojica et al. 2022). Based on the AA sequence, MBLs are
divided into three subclasses: B1, B2 and B3 (Galleni et al. 2001). The AA sequence
identity between the different subclasses is really low (<20%). Subclasses B1 and B3
have two Zn?* atoms in their active site while subclass B2 only has one Zn?*. The
subclass B1 includes enzymes with high clinical relevance, such as the
plasmid-encoded IMP (imipenemase), NDM (New Delhi metallo-B-lactamase) or VIM

(Verona imipenemase) families (Bebrone 2007; Palzkill 2013; Sawa et al. 2020).
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1.2.1.5.1.1.3.Class C

Class C B-lactamases (also known as AmpC) are inducible cephalosporinases that
are encoded by the chromosome of numerous bacteria, particularly Proteobacteria
(Philippon et al. 2022). AmpC enzymes also have a low ability to hydrolyze
monobactams and are poorly inhibited by B-lactamases inhibitors like clavulanic
acid, sulbactam and tazobactam (Jacoby 2009; Philippon et al. 2022). Furthermore,
some AmpC can exhibit a weak carbapenemase activity (Hammoudi Halat and
Ayoub Moubareck 2020; Philippon et al. 2022). It has been shown that an
overproduction of AmpC can increase the hydrolysis of B-lactam antibiotics for
enzymes exhibiting a poor substrate sensitivity (Lakaye et al. 1999). Although AmpC
are mainly chromosome-encoded, many plasmid-encoded enzymes have been
described in bacterial species without a chromosomal ampC gene (Beceiro and Bou
2004; Doi and Paterson 2007; Philippon et al. 2022).

1.2.1.5.1.1.4.Class D

Historically, class D B-lactamases were distinguished from the other SBLs by the
ability of the first two enzymes (i.e., OXA-1 and OXA-2) to hydrolyze oxacilline at a
higher rate than penicillin G. Consequently, the term OXA (for oxacillinase) was used
to designate class D enzymes. In addition, an increasing number is assigned to each
OXA sequence, which merely follows chronological order of identification (Poirel et
al. 2010; Leonard et al. 2013). Yet, class D is a very heterogeneous family, where
sequence identity can be as low as 17% (Antunes and Fisher 2014). The first
described OXA B-lactamases were part of a transposon and carried on plasmids of
diverse clinical pathogenic diderm-LPS bacteria (e.g., Enterobacteriaceae) (Poirel et
al. 2010; Antunes and Fisher 2014; Evans and Amyes 2014). In 1994, an OXA
B-lactamase, termed OXA-12, was described in Aeromonas sobria as the first
chromosomally encoded OXA (Rasmussen et al. 1994). Later, OXA genes were
identified in the chromosome of Enterobacteriaceae, and notably in numerous
Acinetobacter species (Bou et al. 2000; Bonnet et al. 2002; Poirel et al. 2010; Evans
and Amyes 2014; Yoon and Jeong 2021). Although OXAs have for long been
described in diderm-LPS bacteria, recent studies showed that the chromosome of
Bacilli (Toth et al. 2016) and Clostridioides difficile (formerly Clostridium difficile)
(Toth et al. 2018) also encodes OXAs. One of those chromosome-encoded OXAs,

BSD-1 (Toth et al. 2016), is actually the Ybxl protein, a class D enzyme exhibiting a
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low B-lactamases activity, which was identified in B. subtilis in the early 2000s
(Colombo et al. 2004). The first discovered OXAs exhibited a narrow spectrum of
hydrolysis toward B-lactam antibiotics, inactivating only penicillins and
first-generation cephalosporins (Poirel et al. 2010; Antunes and Fisher 2014).
However, point mutations in some OXAs have led to ESBL enzymes. For instance,
OXA-11, OXA-13, OXA-14, OXA-16, OXA-17, OXA-19 and OXA-28 are ESBL
variants of OXA-10, which have been first detected in isolates of Pseudomonas
aeruginosa (Evans and Amyes 2014; Castanheira et al. 2021). Furthermore, OXAs
with a carbapenemase activity have been reported, especially in Acinetobacter
species, where most OXAs are chromosome-encoded (Walther-Rasmussen and
Hgiby 2006; Evans and Amyes 2014).

Despite a low sequence identity, OXA sequences display highly conserved AA
residues that define three motifs (Fig. 14): SxxK, SxV and KTG (Szarecka et al.
2011; Leonard et al. 2013; Antunes and Fisher 2014). The 3-dimensional (3D)
structure of OXAs reveals that those motifs are located in the active site of the
enzyme. In OXA-10 sequence, the motif S'"°AV (Serine-Alanine-Valine) is located on
the loop between the a-helices a4 and a5, just in front of the motif K**°TG
(Lysine-Threonine-Glycine) present on the B-sheet 5. At the active site entry, the
a-helix a7 from the w loop contains a W'* (Tryptophane), which is also conserved in
all studied OXAs. The motif S®TFK (Serine-Threonine-Phenylalanine-Lysine) is
found at the N-terminal part of the a-helix a3. The latter S® is actually the active
serine (Leonard et al. 2013). In contrast to other SBLs, OXA B-lactamases uniquely
have the K carboxylated, which is essential for their activity (Golemi et al. 2001;
Leonard et al. 2013). Finally, an additional motif, Y'"GN
(Tyrosine-Glycine-Asparagine) at the end of the a-helix a6, is relatively well
conserved across OXA sequences, although this motif is outside the active site
(Afzal-Shah et al. 2001; Alfredson and Korolik 2005; Antonelli et al. 2015; Toth et al.
2016; Toth et al. 2018).
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Figure 14. Multiple alignment of a few OXA beta-lactamases (from F. Kerff,

personal communication). a-helices are framed in cyan, while B-sheets are framed

in magenta. Conserved AA residues located in the active site are shown in yellow.

Interestingly, OXA sequences exhibit an homology with the C-terminal domain (CTD)

of the membrane receptors BlaR found in B. licheniformis and S. aureus. This

homology is more obvious when comparing the 3D structures (Fig. 15) (Leonard et

al. 2013). In presence of B-lactam antibiotics, BlaR induces the production of the

BlaP (for B. licheniformis), or BlaZ (for S. aureus), class A B-lactamase (Hardt et al.
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1997; Golemi-Kotra et al. 2003). In B. licheniformis, BlaR is a 601-AA long
membrane protein that is composed of two domains (Fig. 16A): 1) the N-terminal
domain (NTD), which consists of four transmembrane segments and three loops (L1
to L3) and, 2) the CTD located outside the CM, which is devoid of B-lactamase
activity (Hardt et al. 1997; Joris and Dusart 2012). The BlaR-CTD plays a role of
sensor, which detects B-lactam antibiotics, while BlaR-NTD acts as a transducer. The
acylation of the active serine of BlaR-CTD by the B-lactam molecule leads to
conformational change in the receptor (Joris and Dusart 2012), which activates the
autolysis of the BlaR-NTP L3 Zn metallo-protease located in the cytoplasm (Fig.
16B) (Berzigotti et al. 2012; Lopez-Pelegrin et al. 2013). The lysis of the L3
eventually triggers the synthesis of the B-lactamase from the gene of the same
operon (Llarrull et al. 2011; Joris and Dusart 2012).

Figure 15. Comparison of 3D structures of OXA-10, OXA-24 and BlaR-CTD
(from Leonard et al. 2013). In cyan, OXA-10 forming an acyl-enzyme with
ampicillin. In green, OXA-24 forming an acyl-enzyme with a carbapenem. In

magenta, BlaR-CTD forming an acyl-enzyme with a cephalosporin.
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Figure 16. Schematic structure of BlaR from Bacillus licheniformis (from Joris
and Dusart 2012). (A) BlaR in absence of beta-lactam antibiotics. (B) BlaR in

presence of beta-lactam antibiotics.

1.2.2. Archaeal cell walls

The PG is a universal feature present in the cell wall of almost all bacterial species.
However, this polymer is completely absent from archaea. In contrast, the archaeal
domain is characterized by the large diversity of cell walls it harbors. The most
encountered cell wall is a paracrystalline protein surface layer (S-layer). Moreover,
the cell wall of some euryarchaeal species contains a rigid polymer mainly
composed of polysaccharides, like glutaminylglycan or methanochondroitin.
Interestingly, some methanogenic archaea do possess a polymer structurally similar
to PG, which was named pseudomurein (PM). Although archaea are mostly
monoderm (i.e., are surrounded by only one membrane), some species exhibit a
diderm (i.e., two membranes) cell wall (Albers and Meyer 2011; Klingl et al. 2019;
Meyer and Albers 2020).

1.2.2.1. Cell wall-less archaea

In prokaryotes, the cell wall acts as a protective layer against the external
environment. However, Thermoplasma, a class of Euryarchaeota, are
thermoacidophilic organisms that lack a cell wall (Golyshina and Timmis 2005). In

order to survive in extreme environments (i.e., 60°C, pH 1-2) without a cell wall,

43



those species have adapted their cytoplasmic membrane (Klingl et al. 2019; Meyer
and Albers 2020). Hence, in the cytoplasmic membrane of Thermoplasma
acidophilum are anchored glycoproteins and lipoglycan mainly built of mannose
residues. This protective coat is named glycocalyx (Langworthy et al. 1972; Yang
and Haug 1979; Klingl et al. 2019; Meyer and Albers 2020). In addition, it has been
reported that Ferroplasma acidarmanus has a monolayer CM formed by tetraether
lipids (Fig. 17b) instead of a bilayer. Hence, the high resistance to acid hydrolysis of
the monolayer CM enables Thermoplasma cells to live in acidic environments
(Macalady et al. 2004; Klingl et al. 2019).
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Figure 17. Phospholipids composing the cytoplasmic membrane (CM) of
Bacteria and Archaea (from Albers and Meyer 2011). The phospholipids
composing the CM of Bacteria and Archaea are fundamentally different. In Bacteria,
fatty acids are linked to the glycerol-3-phosphate via an ester bond, whereas in
Archaea, isoprenoids are linked to the glycerol-1-phosphate through an ether bond.
(@) The common bilayer-forming lipids in Bacteria are phosphatidylglycerol (upper
lipid) and phosphatidylethanolamine (lower lipid). (b) The monolayer-forming
tetraether lipids of T. acidophilum. (c) Representation of the bilayered-forming diether

lipids found in Archaea.

1.2.2.2. Diderm archaea

In early 2000s, the crenarchaeon Ignicoccus hospitalis was the first archaea with a
second (i.e., outer) membrane to be discovered (Rachel et al. 2002). Since then,
many other diderm archaea have been identified in different phyla, such as ARMAN
archaea (archaeal Richmond Mine acidophilic nanoorganisms) (Baker et al. 2006;
Comolli et al. 2009) or Methanomassiliicoccus luminyensis, isolated from human
feces (Dridi et al. 2012). In I. hospitalis, the space between the two membranes is
called pseudo-periplasm, and can compose up to 40% of the cell volume. Moreover,
the distance between the two membranes can be up to 500 nm (Heimerl et al. 2017).
No cell wall polymer has been detected so far in double membraned archaea, in
contrast to diderm bacteria, in which a PG layer is sandwiched between the two
membranes (Klingl et al. 2019; Meyer and Albers 2020).

1.2.2.3. S-layer

The S-layer is the most simple and widespread type of archaeal cell wall (Albers and
Meyer 2011; Klingl et al. 2019; Meyer and Albers 2020). It is usually composed of
one or, sometimes two, (glyco-)proteins, which self-assemble into a 2-dimensional
paracrystalline layer. Depending on the species, the lattice unit can have an oblique
(p1 or p2), square (p4) or hexagonal (p3 or p6) symmetry. Therefore, these units are
composed of one to six identical proteins, which leave regularly spaced pores
identical in shape and size (Fig. 18). S-layer proteins can also undergo either
N-glycosylation or O-glycosylation, usually on Asp, Ser or Thr residues (Sleytr et al.

2014; Rodrigues-Oliveira et al. 2017). Interestingly, it has been shown that many
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Thermococcales species are surrounded by two S-layers (Rodrigues-Oliveira et al.
2017; Klingl et al. 2019; Meyer and Albers 2020). Although more patchily distributed,
S-layers have also been described and characterized in some bacterial species
(Fagan and Fairweather 2014).

Oblique Square Hexagonal

Figure 18. Schematic representation of different S-layer lattice units (from
Rodrigues-Oliveira et al. 2017). The oblique (p1, p2), square (p4) and hexagonal
(p3, p6) symmetries.

1.2.2.4. Halomucin

Haloquadratum walsbyi is an unusual square-shaped halophilic euryarchaeon, which
possesses a double S-layer cell wall. According to genomic data, it was proposed
that H. walsbyi cells are additionally surrounded by a poly-y-glutamate capsule.
Indeed, the genome of H. walsbyi codes for homologous proteins of the CapBCA
complex, which synthesizes the poly-y-glutamate capsule in some Bacilli species
(Hsueh et al. 2017). In addition, the cells are surrounded by a very large glycoprotein
(more than 1000 KDa) called halomucin, owing to its similarity to mammalian mucin.
It has been shown that halomucin does not entirely surround cells, but rather is
loosely associated with them (Zenke et al. 2015; Klingl et al. 2019; Meyer and Albers
2020).
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1.2.2.5. Cell-wall polymers

In contrast to bacteria, no known archaea does possess PG. Moreover, archaeal
species do not share a universal polymer in their cell wall, like PG for bacteria.
However, different cell-wall polymers, mainly composed of glycan and AAs, are
actually found in specific Euryarchaeota lineages. Hence, methanochondroitin is
found in Methanosarcina, glutaminylglycan and sulfated heteropolysaccharides are
found in Halobacteria, while PM is found in two different classes or Euryarchaeota,
Methanopyri and Methanobacteria. In some species, these polymers can be
additionally surrounded by an S-layer (Albers and Meyer 2011; Klingl et al. 2019;
Meyer and Albers 2020).

1.2.2.5.1. Methanochondroitin

Methanosarcina is a class of Euryarchaeota. Along with the Methanomicrobia, they
belong to a monophyletic group named class Il methanogens (CIlIM) (Bapteste et al.
2005). Methanosarcina cells often form a cubic aggregate of four cells named
sarcina. This aggregate is surrounded by a fibrillar polymer that maintains the
structure. This polymer was named methanochondroitin due to its similarity with
eukaryotic chondroitin sulfate. However, methanochondroitin lacks sulfate residues
(Klingl et al. 2019; Meyer and Albers 2020). The methanochondroitin is formed by
repeated trisaccharide units composed of one glucuronic acid and two
N-acetylgalactosamines (Kreisl and Kandler 1986). In addition, some
Methanosarcina species possess a S-layer between the CM and the

methanochondroitin layer (Francoleon et al. 2009; Arbing et al. 2012).

1.2.2.5.2. Glutaminylglycan

The glutaminylglycan polymer has been described from the cell wall of
Natronococcus occultus. It is similar to the poly-y-glutamate capsule found in some
Bacilli. In the archaeal version of this polymer, the poly-y-glutamate backbone
contains only L-Glu (instead of the mix of L- and D-Glu in bacteria), which are
moreover glycosylated. The glycosylation consists of two oligosaccharides
composed of about 60 monomers, which are linked via the y—carboxylic group of the

L-Glu residues. The first oligosaccharide is composed of GIcNAc and galacturonic
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acid, while the second is composed of N-acetyl-d-galactosamine and glucose
(Niemetz et al. 1997; Klingl et al. 2019; Meyer and Albers 2020).

1.2.2.5.3. Heteropolysaccharides

The cell wall of Halococcus morrhuae and Halococcus salifodinae contains highly
sulfated heteropolysaccharides composed of glucose, mannose, galactose,
glucuronic acid, galacturonic acid, glucosamine, and galosamunronic acid with
different molar ratios depending on the species. In addition, there are also
N-acetylated amino sugars (Klingl et al. 2019; Meyer and Albers 2020). Moreover, it
has been suggested that glucosamine units are linked to uronic residues through
glycine bridges (Steber and Schleifer 1979; Klingl et al. 2019; Meyer and Albers
2020).

1.2.2.5.4. Pseudomurein

Methanopyri and Methanobacteria are two other classes of methanogenic
euryarchaeota, which form with Methanococci the monophyletic group of class |
methanogens (CIM) (Bapteste et al. 2005; Williams et al. 2020). Cells of Methanopyri
and Methanobacteria are surrounded by a polymer that shows an architecture similar
to the bacterial PG (murein), hence its name of pseudomurein (PM) (Albers and
Meyer 2011; Klingl et al. 2019; Meyer and Albers 2020). In contrast to PG, the PM
disaccharide unit is composed of N-acetyl-L-talosaminuronic acid (NAT) linked to
GIcNAc through a B-(1—3) bond instead of the MurNAc-3-(1—3)-GIcNAc (Fig. 19A).
Furthermore, the archaeal stem peptide attached to the carboxyl group of NAT
contains only L-AAs. In most cases, this stem peptide is composed of two L-Glu, two
L-Ala and one L-Lys (Fig. 19B) (Formanek 1985).
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Figure 19. Structure of the archaeal pseudomurein. (A) Comparison of the
structures of the N-acetylmuramic acid (MurNAc) and N-acetyl-L-talosaminuronic
acid (NAT). (B) The glycosidic chain of pseudomurein is composed of alternating
NAT and N-acetylglucosamine (GIcNAc) units linked by a B-(1—3) bond. To NAT is
attached a pentapeptide composed of L-Glu, L-Ala and L-Lys rich in €- and y-peptide

bonds. In contrast to its bacterial counterpart, pseudomurein has only D-AAs.
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The different steps of PM synthesis are not completely resolved. In addition, the
genes involved in this synthesis have not been isolated. However, during the 1990s,
a pathway for PM biosynthesis (Fig. 20) was proposed by Evamarie Hartmann,
Helmut Konig and Uwe Karcher on the basis of precursors isolated from cell
extracts. The synthesis starts in the cytoplasm with a three-step reaction, which
converts the L-Glu into N®UDP-glutamyl-y-phosphate (N®-UDP-Glu¥-P). Then,
ATP-dependent successive reactions add to the N®-UDP-GIu'-P, L-Ala, L-Lys and a
second L-Ala, to yield N°-UDP-Glu'-Ala-*Lys-Ala. A second L-Glu is linked to the
L-Lys through a y bond. In parallel, the UDP-N-acetyl-D-galactosamine is converted
into NAT via epimerization and oxidation, and then linked to GIcNAc through a
B-(1—3) bond. Finally, the activated pentapeptide is linked to the disaccharide
(Hartmann and Konig 1990; Kodnig et al. 1993; Hartmann and Kdnig 1994). Similarly
to PG, some species show variation in PM composition. For instance, the presence
of Asp, Thr, Ser and Orn has been reported (Kandler and Konig 1993; Koénig et al.
1993). Although none of the genes involved in PM synthesis are yet characterized,
two PM endopeptidases (PeiW and PeiP) were isolated from a prophage. These two
enzymes cleave the € peptide bond between the L-Ala in position two and the L-Lys
in position three (Luo et al. 2001; Luo et al. 2002; Visweswaran et al. 2010; Schofield
et al. 2015).
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Figure 20. Pathway for pseudomurein biosynthesis proposed by Evamarie
Hartmann, Helmut Koénig and Uwe Karche (adapted from Klingl et al. 2019). In
this figure are depicted the three steps proposed for pseudomurein biosynthesis. The
disaccharide and the pentapeptide are synthesized in parallel. Then, the
pentapeptide is linked to the disaccharide unit. The last step corresponds to the
polymerisation of the polymer outside the cytoplasmic membrane. L-NAcTalNA =

N-acetyl-L-talosaminuronic acid, GIcNAc = N-acetylglucosamine.

Due to the difference between PG and PM biosynthesis pathways, it was concluded
that the origins of the two polymers were unrelated and that their similarity is only
due to convergent evolution (Konig et al. 1993; Scheffers and Pinho 2005; Albers
and Meyer 2011). However, recent genomic data have highlighted homologues of

genes involved in PG synthesis, such as muramyl ligases, in Methanopyri and
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Methanobacteria (Smith et al. 1997; Slesarev et al. 2002; Samuel et al. 2007; Leahy
et al. 2010). Therefore, some scientists now suggest that PM could have evolved
from HGT of PG genes from Bacteria (Graham and Huse 2008; Subedi et al. 2021;
Ithurbide et al. 2022).

1.3. Bioinformatic databases

Deciphering the evolution of prokaryotes, including how interdomain HGT has
impacted their evolution, requires tremendous amounts of genomic data. As
aforementioned, sequences have been accumulating at an exponential rate for
decades in public repositories. Owing to this trend, the sampling of prokaryotic
genomes is now so broad and deep that many important evolutionary questions can
be tackled by bioinformatic mining of genomic sequence data, especially those

making use of phylogenetic inference.

1.3.1. Open scientific data

Scientific data can be defined as a collection of information, e.g., observations, facts
or results, which are used as evidence of phenomena for the purposes of research
or scholarship (Leonelli 2015; Pasquetto et al. 2017). The term “open data” refers to
data that is freely accessible and that anyone can (re-)use, modify or share without
any restrictions from copyright or patents (Murray-Rust 2008). The ability to access
and use open data is particularly crucial for progress in science. Indeed, this allows
researchers to combine data from different sources to address new questions and
make new advancements that benefit mankind (Murray-Rust 2008; Y. Demchenko et
al. 2012; Leonelli 2015; Pasquetto et al. 2017). Moreover, the reuse of data is
essential to validate and confirm studies for the sake of reproducibility. To this end, it
is recommended that the format of released data meets standard requirements
established by the scientific community (Y. Demchenko et al. 2012; Pasquetto et al.
2017). In order to be accessible to the community, scientific data is stored in
databases from public repositories, which are often managed by national or

international entities.
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1.3.2. Multi-database infrastructures

The two major and well-known multi-database resources in life science are the
National Center for Biotechnology Information (NCBI) and the European
Bioinformatics Institute (EMBL-EBI). The purpose of these entities is to centralize
and store knowledge from medical, molecular biology, biochemistry, and genetics in
databases that are freely accessible to scientific communities and the general public.
They also provide bioinformatic services, such as the development and distribution
of software tools for analyzing molecular and genomic data
(https://www.ncbi.nim.nih.gov/home/about/mission/ Accessed 30 November 2022;

https://www.ebi.ac.uk/about Accessed 30 November 2022).

1.3.2.1. The NCBI

The NCBI is a division of the National Library of Medicine (NLM) at the U.S National
Institutes of Health (NIH), based in Bethesda, Maryland. The initiative to create the
NCBI began between 1984 and 1986, when groups of scientists convened meetings
with legislators at Capitol Hill, Washington, US, to advocate and promote the
financing of genomic research. The NCBI was finally created on November 4th,
1988. Since then, it has become one of the leading institutions for research in
computational biology. The NCBI is notably involved in the development of the
famous BLAST algorithm used for database search based on sequence (i.e., AA,
DNA, RNA) comparisons (Sayers et al. 2011). In September 2021, the NCBI
manages and maintains 35 databases (Table 1) containing a total of 3.6 billion
records, which are divided into six categories: literature, genomes, genes, clinical,

proteins and chemicals (Sayers et al. 2022).

Table 1. NCBI databases as of 4 September 2021 (from Sayers et al. 2022).
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Database Records Description

Literature

PubMed 33027 76l Scientific and medical abstracts/citations

PubMed Central 7325415 Full-text journal articles

NLM Catalog 1 629 799 Index of NLM collections

Bookshell 892 126 Books and reports

MeSH 348 370 Ontology used for PubMed indexing

Genomes

Nucleotide 476 054 019 DNA and RNA sequences from GenBank and RefSeq
BioSample 19 473 659 Descriptions of biological source materals

SRA 15919 320 High-throughput DNA/RNA sequence read archive
Taxonomy 2492 889 Taxonomic classification and nomenclature catalog
Assembly 1 083 900 Genome assembly information

BioProject 536242 Biological projects providing data to NCBI

Genome 64 815 Genome sequencing projects by organism
BioCollections 8 468 Museum, herbaria, and biorepository collections
Genes

GEO Profiles 128 414 055 Gene expression and molecular abundance profiles
Gene 33 664 932 Collected information about gene loci

GEO DataSets 4784 603 Functional genomics studies

PopSet 366935 Sequence sets from phylogenetic/population studies
HomoloGene 141 268 Homologous gene sets for selected organisms
Clinical

dbSNP 1 076 992 604 Short genetic variations

dbVar 7117914 Genome structural variation studies

ClinVar 1071071 Human variations of clinical significance
ChnicalTrals. gov 388717 Registry of clinical studies and results database
MedGen 335277 Medical genetics literature and links

GTR 77 498 Genetic testing registry

dbGaP 1405 Genotype/phenotype interaction studies

Proteins

Protein 968 236913 Protein sequences from GenBank and RefSeq
Identical Protein Groups 448 096 579 Protein sequences grouped by identity

Protein Clusters 1137329 Sequence similarity-based protein clusters

Structure 181772 Experimentally-determined biomolecular structures
Protein Family Models 179 133 Conserved domain architectures, HMMs, and BlastRules
Conserved Domains 62 852 Conserved protein domains

Chemicals

PubChem Substance 284 180 803 Deposited substance and chemical information
PubChem Compound 110 628 849 Chemical information with structures, information and links
PubChem BioAssay 1 391 308 Bioactivity screening studies

BioSystems 983 968 Molecular pathways with links to genes, proteins and chemicals

1.3.2.2. The EMBL-EBI

The EMBL-EBI is a part of the European Molecular Biology Laboratory (EMBL), a
non-profit  intergovernmental organization supported by 27  countries
(https://www.embl.org/about/history/ Accessed 30 November 2022). Historically, the
EMBL established (in 1980) the Nucleotide Sequence Data Library database (now
called the European Nucleotide Archive (ENA) (Harrison et al. 2021; Cummins et al.
2022) in Heidelberg, Germany, to centralize DNA sequences that were formerly only
submitted to scientific journals. The need to maintain and manage the exponentially
growing sequence database led to the creation of the EMBL-EBI in 1992, which was
established in Hinxton, UK. The ENA and the UniProt (The UniProt Consortium
2021) were the two first databases of EMBL-EBI (https://www.ebi.ac.uk/history
Accessed 30 November 2022). In 2020, the EMBL-EBI manages data from over 40

resources covering different branches of molecular biology (Fig. 21) (Cantelli et al.
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2021; Cantelli et al. 2022). The EMBL-EBI also offers web tools such as
InterProScan (Jones et al. 2014) or the HMMER web server (Potter et al. 2018) in
collaboration with the algorithm developers (Mistry et al. 2013). HMMER is a
software package written by Sean R. Eddy, which is used for sequence homology
searches based on hidden Markov models (Eddy 2009), whereas InterProScan is
the scanning algorithm of the InterPro database, which combines 13 protein
signature databases: CATH-Gene3D, the Conserved Domains Database (CDD),
HAMAP, PANTHER, Pfam, PIRSF, PRINTS, PROSITE Patterns, PROSITE Profiles,
SMART, the Structure—Function Linkage Database (SFLD), SUPERFAMILY and
TIGRFAMs (Paysan-Lafosse et al. 2022). InterProScan relies on multiple algorithms,
such as HMMER (Mistry et al. 2013) or BLAST (Camacho et al. 2009), to predict the
presence of functional domains and sites in an uncharacterized protein sequence
(Jones et al. 2014).

Literature

: E Genomes & & Protein Biology Discovery
BioStudies Variation Families e Don Taats
Europe PMC C

Ensembl Enzyme Portal ChEMBL Plpa?fom'n
ng‘eo'?n‘;ls GOA Metabolights
MGnify
HGNC SureChEMBL
InterPro
IGSR Pfam
VectorBase Rfam
ROUTEES RNAcentral
UniProt
\ 7 R £ N\ / \ z S
'y ra .
o 3 . | (oo RS [ e Q AL
by P / w0y ot ‘:\‘ W ":.“%’f‘; \ | . = \g’?‘; /|
A ll N A 2 7,// e \'\‘_‘T ,_,// NP \\\_ s - 3
Molecular Molecular Molecular Molecular
Archives Atlas & Cellular Systems
. Structure .
BioSamples ArrayExpress ) BioModels
EFO Expression Atlas 2:‘;;?&233 Complex Portal
EGA PRIDE EMDB IntAct
ENA EMPIAR OmicsDI
EVA PDBe Reactome
GWAS Catalog PDBe-KB

Mouse
resources

Genes,

Proteins

Chemical

Drug

Figure 21. Summary of all EMBL-EBI Data Resources as of September 2020
(from Cantelli et al. 2021).
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1.3.3. Data submission and collaboration

Primary biological data can be directly submitted by researchers through the

submission portal of NCBI (https://www.ncbi.nlm.nih.gov/home/submit.shtml) or

EMBL-EBI (https://www.ebi.ac.uk/submission/). To simplify the submission, both

entities have implemented submission wizards to help to select the right archive to
deposit new data. NCBI and EMBL-EBI servers can also receive data from national
and international collaborations or research consortia (Arita et al. 2021; Cantelli et al.
2022; Sayers et al. 2022).

Although NCBI and EMBL-EBI were initially founded for different purposes
(https://www.ncbi.nlm.nih.gov/books/NBK148949/ Accessed 30 November 2022;
https://www.ebi.ac.uk/history Accessed 30 November 2022), one of their common
objectives is to store and manage data, particularly nucleotide and protein
sequences. Actually, sequence data is the most abundant kind of data in NCBI and
EMBL-EBI repositories (Cantelli et al. 2022; Sayers et al. 2022). Different types of
nucleotide data can be submitted to these repositories, such as individual
sequences, batches of sequences, and even whole genomes, among which plasmid,
viral and organelle genomes (Benson et al. 2009; Choudhuri 2014). An ‘individual
sequence’ corresponds to, e.g., a coding region with its corresponding protein
translation, a pseudogene, a RNA molecule, whereas a ‘batch of sequences’ can
refer to, e.g., raw sequencing read data (Leinonen et al. 2011) or assembled
transcriptomic data (Transcriptome shotgun assembly (TSA)) or expressed
sequence tags (ESTs) (Benson et al. 2013; Benson et al. 2018). Submitted genomes
can be completely assembled and gapless
(https://www.ncbi.nlm.nih.gov/genbank/genomesubmit/ Accessed 30 November
2022), incomplete as sets of multiple contigs (Whole Genome Shotgun (WGS))
(https://www.ncbi.nim.nih.gov/genbank/wgs/ Accessed 30 November 2022) or be
so-called metagenome-assembled genomes (MAGS)
(https://www.ncbi.nlm.nih.gov/genbank/metagenome/ Accessed 30 November 2022).
During submission, submitters are encouraged to introduce metadata, including
feature annotations (https://submit.ncbi.nlm.nih.gov/about/bankit/ Accessed 30
November 2022) and cross-references to other types of records (e.g., BioSample,

BioProject) (Barrett et al. 2012; Gostev et al. 2012), along with their nucleotide
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sequences. At the EMBL-EBI repository, all nucleotide sequences and companion
metadata are stored in the ENA database (Arita et al. 2021; Harrison et al. 2021),
whereas most (but not all) of the nucleotide data today is also apparently included in
the NCBI GenBank database (Table 2) (Arita et al. 2021; Sayers et al. 2022).

Table 2. List of the databases from DDBJ, EMBL-EBI and NCBI that compose

the records of the INSDC (from www.insdc.org).

Data type DDBJ EMBL-EBI NCBI
Next Generation reads | Sequence Read Archive Sequence Read Archive
Assembled Sequences | DDBJ European GenBank
Nucleotide
Samples BioSample Archive BioSample
Studies BioProject BioProject

Databases are dynamic structures that change and complexify over the years in
response to the increasing amount of released data (Nadim 2016). Furthermore,
public repositories exhibit a lot of redundancy (Pruitt et al. 2005; Chen et al. 2017).
For instance, the genomes uploaded to the NCBI GenBank database are also
included in its Assembly database (Kitts et al. 2016). Consequently, it is not easy to
exactly determine which data is present in a specific database, notably for the NCBI
repository (Fig. 22). Historically, GenBank was created in 1979 at the Los Alamos
National Laboratory under the name of Los Alamos Sequence Database. In 1982,
the database became public and was renamed to GenBank. The GenBank database
has been under the responsibility of the NCBI since October 1992 (Benson et al.
1993; Choudhuri 2014). Therefore, the NCBI formerly contained only three nodes in
its system: individual nucleotide sequences and protein protein translations included
in GenBank, and the associated literature included in MEDLINE (now known as
PubMed) (Benson et al. 1990; Schuler et al. 1996; Mrozek et al. 2013). Since late
1980s, the GenBank and ENA databases, along with the DNA Data Bank of Japan
(DDBJ) from the National Institute of Genetics (NIG) (Okido et al. 2022), are part of
the International Nucleotide Sequence Database Collaboration (INSDC). This
collaboration has the purpose to share and standardize the format and the
annotation of nucleotide (and protein) sequence data and their subsidiary metadata.

Daily exchange between the three multi-database resource partners (i.e., NCBI,
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EMBL-EBI and NIG) warrants worldwide coverage of this infrastructure (Burks et al.
1985; Karsch-Mizrachi et al. 2012; Arita et al. 2021). To ensure the disponibility of
newly added sequences from submitters and from the INSDC, a new version of

GenBank is released every two months (https://www.ncbi.nlm.nih.gov/genbank/
Accessed 30 November 2022). In the mid 2000s, the INSDC established the
Sequence Read Archive (SRA) for storage of next-generation sequencing (NGS) raw
read data (Leinonen et al. 2011; Kodama et al. 2012; Katz et al. 2022). As suggested
by Table 2, SRA records are not included in GenBank, which further supports the

idea mentioned above that GenBank does not include all nucleotide data.
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(www.ncbi.nlm.nih.gov/Sitemap/index.html) showing the complexity of the

NCBI Entrez databases. Entrez is the text-based search and retrieval system used

by the NCBI.

This superposition of different types of nucleotide sequence data and the

collaboration over the years illustrates the dynamic and the complexity of public

repositories. For instance, GenBank was the former nucleotide database of the NCBI

(Benson et al. 1990; Schuler et al. 1996). Now, it is included in a higher structure,

commonly named ‘Nucleotide database’, which notably contains all sequences of
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GenBank, RefSeq (discussed in the next section), INSDC and SRA

(https://www.ncbi.nim.nih.gov/nucleotide/ Accessed 30 November 2022).

1.3.4. Standardization and curation

In April 1999, the NCBI launched the Reference Sequence (RefSeq) project, which
aims to provide users with a collection of non-redundant genomic DNA, transcript
and protein sequences (Maglott et al. 2000; Pruitt et al. 2005; Haft et al. 2018).
RefSeq records are based on sequences submitted to INSDC, which undergo a
quality assurance procedure to ensure sequence quality, completeness and the
absence of contamination (O’Leary, Wright, Brister, Ciufo, Pruitt, et al. 2016; Haft et
al. 2018; Li et al. 2021). To reduce redundancy, for bacterial and archaeal genomes,
the NCBI has implemented the Prokaryotic Genome Annotation Pipeline (PGAP),
which is used to generate structural and functional annotation of genome records
from the INSDC (O’Leary et al. 2016). This pipeline uses prediction methods to
identify protein-coding and RNA genes associated with sequence alignments (e.qg.,
HMM profiles) and manual curation to assign annotation. Furthermore, the pipeline is
frequently updated to improve annotation and standard quality of the genomes
(O’Leary, Wright, Brister, Ciufo, Pruitt, et al. 2016; Haft et al. 2018; Li et al. 2021).
Complete and WGS genomes uploaded on GenBank can be annotated with PGAP
during submission. Genomes that do not meet annotation and sequence quality
thresholds are not included in the RefSeq database (O’Leary, Wright, Brister, Ciufo,
Haddad, et al. 2016) The minimum standard annotations required for a prokaryotic
genome are: 1) at least one copy of each structural RNA (i.e., 5S, 16S, 23S), 2) at
least one copy of each tRNA, 3) a ratio of protein-coding genes to genome length
close to 1 and 4) no gene completely contained in another gene (Klimke et al. 2011).
All criteria that exclude a genome from RefSeq are summarized through this

following link:  https://www.ncbi.nim.nih.gov/assembly/help/anomnotrefseq/. As

previously explained, a genome uploaded on GenBank is also included in the
Assembly database. If this GenBank genome is further selectionned to be in the
RefSeq database, the RefSeq version of the genome is also copied in the Assembly
database. Both genomes have an identical ID number but a GenBank genome is
prefixed by ‘GCA ' while the RefSeq genome has ‘GCF_’ (Kitts et al. 2016).
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Consequently, this is another source of redundancy in the NCBI repository. In
contrast to GenBank, RefSeq records are regularly reannotated with PGAP, leading
to the suppression of some low-quality genomes or proteins (Tatusova et al. 2016; Li
et al. 2021).

Similar curation efforts have been implemented by EMBL-EBI with the Ensembl
project (Howe et al. 2021) and the Swiss-Prot section of the UniProt Knowledgebase
(UniProtkKB) (Poux et al. 2017). The Ensembl project was launched in 1999 to
automatically annotate the human genome (Butler 2000). Since then, it provides
high-quality annotated genomes from bacteria, protists, fungi, plant and metazoa
(Howe et al. 2021). Genomes of the Ensembl project are notably collected from the
INSDC and the ENA database (Zerbino et al. 2018; Howe et al. 2021). The
UniProtKB repository provides users with a set of functionally annotated protein
sequences (The UniProt Consortium 2021). It is divided into two sections: 1) the
reviewed Swiss-Prot entries, which contains manually curated and annotated protein
sequences, some of them tracing back to the historical Swiss-Prot database, and 2)
the unreviewed TrEMBL entries containing automatically annotated protein

sequences (Poux et al. 2017; The UniProt Consortium 2021).

1.3.5. The NCBI Taxonomy database

In bioinformatic studies, especially those involving phylogenetic analyses, it is crucial
to link sequence data to the source organisms through an appropriate taxonomy.
Although there exist various taxonomic databases (Wang et al. 2007; McDonald et
al. 2012; Yilmaz et al. 2014; Balvocitaté and Huson 2017; Parks et al. 2018; Rinke et
al. 2021), the NCBI Taxonomy database (Schoch et al. 2020) remains the main
source for taxonomic records (Sakamoto and Ortega 2021). In 1991, the NCBI
launched the first version of its Taxonomy project where GenBank nucleotide and
protein sequences were linked to the source organism. During this period, there was
no consensus for taxonomic classification, thus the three INSDC partners
independently maintained their own taxonomic nomenclature. For the sake of
consistency, INSDC partners agreed in 1997 to use the NCBI Taxonomy
nomenclature as the only source of classification (Federhen 2012). This taxonomic

database is manually curated by NCBI scientists following up-to-date primary
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literature. The NCBI nomenclature follows the rules of four principal codes: 1) the
International Code of Nomenclature for algae, fungi and plants (Turland et al. 2018),
2) the International Code of Nomenclature of Prokaryotes (ICNP) (ICNP 2019), 3)
the International Code of Zoological Nomenclature (Ride 1999), and 4) the
International Code of Virus Classification and Nomenclature (Walker et al. 2019).
Recently, the International Committee on Systematics of Prokaryotes (ICSP) added
some rules to the ICNP. The resulting new prokaryotic nomenclature was
implemented in the NCBI Taxonomy (Oren and Garrity 2021). Briefly, the NCBI
Taxonomy corresponds to a single list of taxa from across all domains of life, which
are hierarchically arranged. The lineage for a specific organism is usually
characterized by seven main taxonomic ranks: superkingdom (= domain), phylum,
class, order, family, genus and species. Besides, some additional expanded ranks
can be used, e.g., superfamily, subspecies. Perhaps surprisingly, in the NCBI
Taxonomy, the well-known ‘kingdom’ rank is only used for Metazoa (animals),
Viridiplantae (green plants), Fungi, and high-level groups of viruses (e.g.,
Pararnavirae, including HIV-1). Each node (taxon) of the taxonomic tree is referred to
by an unique Taxld (taxonomy identifier). If there is a duplicated taxon in a lineage
(i.e., an identical name used for two different, often successive, ranks), a different
Taxld is used (Schoch et al. 2020). An example of such ambiguity is the mosquito
genus Anopheles (Taxld 7164), a subgenus of which is also called Anopheles (Taxld
44482). In a related but somewhat worst case, totally unrelated organisms can share
the same genus name because they were described in two distinct codes
(hemihomonyms)(Starobogatov 1991). Hence, both Bacillus atticus atticus (insect)
and Bacillus subtilis (bacteria) have the same genus name. However, the Taxld for
Bacillus (insect) is ‘565087’ and ‘1386’ for Bacillus (bacteria). Even if Taxlds formally
allow researchers to distinguish duplicate taxa, such ambiguities are misleading and
even can be dangerous in practice. Consequently, the NCBI Taxonomy is regularly
updated, notably to reduce the occurrence of duplicate taxa, even if such changes
are disruptive for bioinformatic applications relying on a stable taxonomy, including

those seeking to identify contaminant sequences in public genomes.
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1.4. Genomic contamination in public databases

Despite the efforts to build clean and accurate reference databases, the exponential
release of public prokaryotic genomes often comes with contamination issues
(Mukherjee et al. 2015; Steinegger and Salzberg 2020; Orakov et al. 2021).
“Genome contamination” means the inclusion of foreign sequences along with the
sequences of the genuine organism. This presence of contaminant DNA can lead to
false interpretations in comparative genomics (Arakawa 2016; Koutsovoulos et al.
2016) or phylogenomic studies (Schierwater et al. 2009; Finet et al. 2010; Philippe et
al. 2011; Laurin-Lemay et al. 2012). Furthermore, these contaminated sequences
can spread through databases over time (Breitwieser et al. 2019; Steinegger and
Salzberg 2020). The problem of genomic contamination is discussed in detail in the
recent review of Luc Cornet and Denis Baurain published in Genome Biology
(Cornet and Baurain 2022).

1.4.1. Sources of genomic contamination

In this review, the authors have described the different causes that lead to the
introduction of foreign DNA sequences during the sequencing process (Fig. 23).
These issues can be either biological “[..] contamination of an axenic culture by
unwanted organism(s) [...] sequencing of chimeric organisms [...] or the presence of
plain taxonomic errors in reference databases”, experimental “[...] inclusion of
unwanted DNA either during DNA extraction or sequencing on shared platforms [...]",
or computational during in-silico processing of data “The risk of in-silico
contamination is higher when the data comes from metagenomic analyses [...] such
data can lead to chimeric sequences by merging similar genomic regions during
metagenomic assembly [...] metagenomic binning (i.e., the partition of sequences
from the constitutive organisms into individual Metagenome-Assembled Genomes —
MAGSs) also results in some degree of contamination by lumping in a single MAG
contigs reconstructed from different organisms”. The authors further state that
genomic contaminations induced by those causes can be classified into redundant
and non-redundant contaminations. A contamination is considered as redundant
when “a genomic segment is present multiple times in a genome assembly, due to

inclusion of homologous genomic regions from foreign organism(s)”, whereas it is
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called non-redundant when “an extra genomic segment is present in the assembly”.
The latter situation can be divided into two sub-cases “1) a genuine genomic
segment is lacking in the target organism (i.e., the completeness is not optimal) and
is replaced by a foreign genomic region harbouring (some of) the expected genes or
2) an extra genomic region, for which no homologous region exists in the target
organism, is present due to the inclusion of a taxonomically distinct organism (e.g.,

genomic regions from another kingdom)”.
Culture
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Figure 23. Sources of genomic contamination (from Cornet and Baurain 2022).
“Three types of issues lead to contamination of genomic sequence data: biological,
experimental and computational. The contamination of “pure” cultures can be due to
both experimental (e.g., accidental introduction of contaminating microorganisms)
and biological causes (e.g., the presence of an endosymbiont). Redundant
contamination occurs when a genomic segment is present multiple times in a
genome (e.g., multiple SSU rRNAs from different organisms). Non-redundant
contamination occurs when a genomic region of the main organism, the expected
one, is replaced by the corresponding region of a foreign organism (e.g., the SSU
rRNA of the main organism is replaced by the SSU rRNA from a foreign organism).
An extra DNA segment, not part of the main organism but belonging to a

contaminant, would also be considered as a non-redundant contamination (e.g.,
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eukaryotic DNA in a bacterial genome). A mixed scenario is also possible, as

represented in the redundant contamination part of the figure”.

1.4.2. Contamination detection algorithms

In order to efficiently detect genomic contamination in public repositories, at least 17
algorithms have been developed during the last years (Fig. 24). Cornet and Baurain
classified these tools into two main categories, depending on whether they use a
reference database or not. Besides, database-dependent methods can use a

genome-wide approach or instead rely on estimators based on gene markers .

1.4.2.1. Database-free algorithms

BlobTools, Anvi'o, ProDeGe and PhylOligo are the four database-free tools (Fig. 24).
Their algorithms rely on DNA content to partition sequences in order to detect
contamination. Indeed, BlobTools use Guanosine+Cytosine (GC) content for
partition, while the other three programs use k-mer (i.e., substrings of DNA sequence
between 4 and 9 nt long) frequencies. Furthermore, they (except for PhylOligo) also
rely on taxonomy for sequence labeling and program calibration. ProDeGe only
works on prokaryotic genomes, while BlobTools, Anvi’'o and PhylOligo work on both
prokaryotes and eukaryotes (Eren et al. 2015; Koutsovoulos et al. 2016; Tennessen
et al. 2016; Mallet et al. 2017; Challis et al. 2020). Cornet and Baurain assert that
“Database-free tools can detect both redundant and non-redundant contaminations”.
However, they claim that “the programs [...] require a case-by-case inspection by the

user and are thus difficult to use for large-scale projects”.

1.4.2.2. Reference database-dependent algorithms

Out of the 13 database-dependent tools, seven (SINA, ContEst16S, Forty-Two,
ConFindR, CheckM, EukCC and BUSCO) rely on highly conserved gene markers to
assess the level of redundant and non-redundant (only for Forty-Two) genomic
contamination (Fig. 24). Indeed, Cornet and Baurain explain in their review that
“These genes are present in a single copy in nearly all organisms and the presence
of multiple copies is thus indicative of such type of contamination”. SINA and

ContEst16S use single-locus SSU rRNA (small subunit ribosomal ribonucleic acid)
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genes. However, Cornet and Baurain say that “The use of this single locus is not
frequent because it entails a higher risk of missing contaminants”. In contrast, the
other five tools use multi-locus genes for contamination assessment. Forty-Two and
ConFindR use ribosomal proteins while CheckM, EukCC and BUSCO use
phylogenetic placement to select lineage-specific gene markers. The latter
algorithms, as well as Forty-Two (to some extent), offer the advantage to estimate
the completeness of the genomes. ContEst16S, CondFindR and CheckM work on
prokaryotes, SINA, Forty-Two and BUSCO on prokaryotes and eukaryotes, whereas
EukCC only works for eukaryotic genomes (Pruesse et al. 2012; Parks et al. 2015;
Lee et al. 2017; Simion et al. 2017; Low et al. 2019; Saary et al. 2020; Manni et al.
2021).

The last six database-dependent tools (Conterminator, Kraken, CLARK, CONSULT,
BASTA, GUNC) compare the entire genome against a reference database.
Conterminator, Kraken, CLARK and CONSULT align long k-mers (at least 21 nt)
against the database (Wood and Salzberg 2014; Ounit et al. 2015; Wood et al. 2019;
Steinegger and Salzberg 2020; Rachtman et al. 2021), while BASTA and GUNC use
BLAST (Camacho et al. 2009) or DIAMOND blast (Buchfink et al. 2015) to perform
gapped alignment against the database. Like the MEGAN algorithm (Huson et al.
2007), BASTA uses a LCA (Lowest Common Ancestor) labeling approach to classify
sequences. GUNC works on prokaryotic genomes, whereas BASTA can handle both

prokaryotic and eukaryotic genomes (Kahlke and Ralph 2019; Orakov et al. 2021).
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Figure 24. Overview of algorithms (from Cornet and Baurain 2022). “The

algorithms are clusterized based on their operating principles, as described in the
section “Contamination detection algorithms”. Squares on the top of the figure
represent specific features of the algorithms. Non-redundant means that the software
can detect contaminant genes without equivalent in the surveyed genome.
Intra-species means that the algorithm can detect contamination at the species level.
Inter-domain means that the algorithm can detect prokaryotic and eukaryotic
contamination simultaneously. Database features show that the algorithm can use
the GTDB Taxonomy and/or a moderately contaminated reference database.
Expected organism indicates whether the algorithm can detect the main organism by
itself and/or if the user can specify it. Additional functionalities list interesting peculiar
functions of the programs, such as outputting the completeness of a genome,
cleaning a genome from its contaminants, filtering reads based on their taxonomy
(positive filtering), or enriching Multiple Sequence Alignments (MSAs) in orthologous
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sequences while controlling the taxonomy”. (*) The Physeter algorithm is discussed

in detail at Chapter 1 of the Results section.
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1.5. Objectives and outline of the thesis

As introduced above, one of the dichotomies that distinct the two prokaryotic
domains, Bacteria and Archaea, lies in their cell-wall composition. Although they may
exhibit different architectures (e.g., monoderm, diderm), almost all bacterial cell walls
bear a mesh-like polymer called peptidoglycan (or murein). In contrast, the
paracrystalline S-layer is the most commonly encountered cell-wall in Archaea, even
if some lineages of Euryarchaeota do have a polymer in their cell wall. Among those,
Methanopyrales and Methanobacteriales feature the so-called pseudomurein, a

structural analogue of the peptidoglycan.

This thesis is a part of the research line initiated during the PhD work of Raphael
Léonard, entitled "Bacterial cell-wall architecture: from automated genome selection
to evolution of genes and traits”, of which | am a co-author of the article “Was the
Last Bacterial Common Ancestor a Monoderm after All?” (see Annexes) published
in Genes (Basel) on the 18th February 2022. In this article, we inferred the cell-wall
composition of the last bacterial common ancestor (LBCA) and proposed a scenario
for bacterial cell-wall evolution based on phylogenomics, phenotypic data and
single-gene phylogenies of the genes lying in the dcw cluster and those associated

with the formation of the outer membrane.

In the present thesis, we further investigate the evolution of prokaryotic cell walls.
More precisely, we aim to elucidate the genetic commonalities between Bacteria and
the pseudomurein-containing Archaea (i.e., Methanopyrales and
Methanobacteriales) that might have driven the evolution of the pseudomurein cell
wall in the latter. For this purpose, public genomic data from the NCBI RefSeq
database will be mined, in particular to study the phylogeny of different protein

families involved in cell-wall biosynthesis.

1.5.1. Chapter 1 - Contamination in Reference Sequence

Databases: Time for Divide-and-Rule Tactics

As only public data will be used during this work, it is fundamental that our

phylogenetic interpretation is not driven by potential genomic contamination.
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Although NCBI RefSeq was built as a non-redundant and high-quality sequence and
genome database, it has been suggested that it is not completely devoid of
contamination. In this chapter, we developed Physeter, a reference
database-dependent contamination detection algorithm and then applied it to
thousands of RefSeq genomes. On this occasion, we confirmed that about 0.9% of
the complete genomes in RefSeq are contaminated by foreign sequences. Since
Physeter relies on a reference database itself derived from public repositories, we
implemented a leave-one-out strategy, which allows us to reduce the impact of

potentially contaminated genomes in the reference database.

The manuscript corresponding to this chapter entitled “Contamination in Reference
Sequence Databases: Time for Divide-and-Rule Tactics” was published on the 22th

October 2021 in Frontiers in Microbiology.

The first version of Physeter was also used in the article of Javier Cordoba published
in Genes (Basel) on the 29th May 2021 (see Annexes, of which | am also a
co-author) to detect contamination in a transcriptome meta-assembly of the complex
green alga Euglena gracilis. A revised pipeline of Physeter was then integrated into
the Nextflow workflow CRACOT, which simulates contamination events to evaluate
the accuracy of different contamination detection tools (one of these being Physeter).
The bioRxiv version of the latter manuscript submitted to Genome Biology
(https://doi.org/10.1101/2022.11.14.516442), of which | am a co-author, is presented

in the Annexes of this thesis.

1.5.2. Chapter 2 - An Extended Reservoir of Class-D

Beta-Lactamases in Non-Clinical Bacterial Strains

The cell-wall peptidoglycan plays a crucial role in the survival of bacteria. Indeed, it
helps them to maintain their cell shape and protect them from internal turgor
pressure. Moreover, it mediates the interactions between the cell and its
environment. Therefore, peptidoglycan is one the main targets of antimicrobial drugs,
such as beta-lactam antibiotics. In response, bacteria have developed resistance to
beta-lactam antibiotics by synthesizing enzymes (i.e., beta-lactamases) that inhibit

the action of these antimicrobial agents. This chapter focuses on the study of the
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class-D beta-lactamases. Here, we have mined more that 80,000 RefSeq genomes
to assess the real distribution of the class-D beta-lactamases among the bacterial

domain and study the phylogenetic relationships within the class-D family.

The first purpose of this chapter was to perform a pilot phylogenetic study of a
protein family for which the nomenclature was doubtful, in order to set up analytical
guidelines to be applied to the different protein families discussed in Chapter 3, in
particular with respect to handling of sequence redundancy. The corresponding work

was published on the 21th March 2022 in Microbiology Spectrum.

1.5.3. Chapter 3 - Origin and Evolution of Pseudomurein

Biosynthetic Gene Clusters

The pseudomurein cell-wall is an oddity within the archaeal domain. Indeed,
although some Euryarchaeota also possess a cell-wall polymer, only the
pseudomurein is structurally similar to the bacterial peptidoglycan. Furthermore,
some genomic studies have shown that homologs of certain genes involved in
peptidoglycan biosynthesis are also found in the genomes of Methanopyrales and
Methanobacteriales. In this chapter, we try to address the main question of this
thesis: do peptidoglycan and pseudomurein have a common origin? More precisely,
are the genes involved in their biosynthesis genuinely similar and, if so, what events

have led to their current diversity and distribution?
This chapter corresponds to the bioRxiv version of a manuscript

(https://doi.org/10.1101/2022.11.30.518518) that has just been submitted to

Molecular Biology and Evolution.
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Contaminating sequences in public genome databases is a pervasive issue with
potentially far-reaching consequences. This problem has attracted much attention in
the recent literature and many different tools are now available to detect contaminants.
Although these methods are based on diverse algorithms that can sometimes produce
widely different estimates of the contamination level, the majority of genomic studies
rely on a single method of detection, which represents a risk of systematic error. In
this work, we used two orthogonal methods to assess the level of contamination
among National Center for Biotechnological Information Reference Sequence Database
(RefSeq) bacterial genomes. First, we applied the most popular solution, CheckM, which
is based on gene markers. We then complemented this approach by a genome-wide
method, termed Physeter, which now implements a k-folds algorithm to avoid inaccurate
detection due to potential contamination of the reference database. We demonstrate
that CheckM cannot currently be applied to all available genomes and bacterial groups.
While it performed well on the majority of RefSeq genomes, it produced dubicus results
for 12,326 organisms. Among those, Physeter identified 239 contaminated genomes
that had been missed by CheckM. In conclusion, we emphasize the importance of
using multiple methods of detection while providing an upgrade of our own detection
tool, Physeter, which minimizes incorrect contamination estimates in the context of
unavoidably contaminated reference databases.

NCBI RefSeq, phylogenomics

Keywords: sequencing, assembly,

ination, g

INTRODUCTION

Genome contamination, defined here as the accidental inclusion of sequences from other organisms
or the misclassification of sequences in public repositories, is a problem having attracted much
attention in the recent literature (see for instance, Kahlke and Ralph, 2018; Lu and Salzberg, 2018;
Breitwieser et al, 2019; Low et al, 2019). Hence, it is notoriously known that contamination
of genome-scale datasets can lead to false conclusions, and such cases have been reported in

Abbreviations: RefSeq, Reference Sequence Database; LCA, Last Common Ancestor; IMG, Integrated Microbial Genome;
NCBI, National Center for Biotechnological Information; GTDB, Genome Taxonomy Database.

Volume 12 | Article 755101

101



numerous publications (e.g., Laurin-Lemay et al., 2012; Merchant
et al, 2014; Koutsovoulos et al, 2016). Nowadays, many
algorithms are available to detect contaminants in complete
genomes, e.g., Kraken 2 (Wood et al, 2019), CheckM (Parks
etal, 2015), Physeter (Cornet et al., 2018), ConFindR (Low et al.,
2019), and BASTA (Kahlke and Ralph, 2018). By studying the
phenomenon in Cyanobacteria, we have shown that different
methods sometimes yield widely different estimates of the
contamination level (Cornet et al, 2018). As this result is
explained by differences between the respective algorithms ar
databases, we argued that the use of multiple methods is the best
way to detect contaminant sequences (Cornet et al,, 2018). In
contrast, relying on a single method of detection, even if very
well designed and popular, always bears a danger of systematic
error, which can eventually lead to the spread of sequences
of incorrect taxonomy into public databases. The objective
of this Perspective is to highlight the importance of using
multiple methods of detection when assessing contamination in
genomic studies,

To this end, we investigated the results of the most cited
tool (3,532 citations as of September 2021 according to Google
Scholar) in the field of contamination detection, CheckM
(Parks et al,, 2015). The latter is frequently the only method
used in genome-scale studies, for example in the Genome
Taxonomy Database (GTDB) project, in which specific genomes
are selected as type organisms for the community (Parks
et al, 2018). We chose to estimate the contamination level
of bacterial genomes from the reference sequence database of
the National Center for Biotechnological Information (NCEI),
Reference Sequence Database (RefSeq; O'Leary et al, 2016;
Haft et al., 2018), not only because this resource is frequently
used by many researchers (Nasko et al, 2018), but also
because it has been reported to be affected by sequence
contamination (Cornet et al., 2018; Breitwieser et al., 2019;
Pasolli et al., 2019; Zhu et al,, 2019). Here, we first evaluated
the contamination level of this database using CheckM, and
then compared these estimates, for 12,326 results that we
considered as potentially dubious, to those obtained with an
upgrade of Physeter, a decontamination tool introduced in
Cornet et al. (2018).

CHECKM YIELDS POTENTIALLY
DUBIOUS RESULTS FOR 12,326
GENOMES IN NCBI REFSEQ

CheckM estimates the contamination level in a given genome
by counting duplications of single-copy and taxon-specific gene
markers (Parks et al, 2015). This requires a phylogenetic
placement of the genome, based on ribosomal protein genes,
in order to determine its taxon and derive the appropriate
marker set (Parks et al., 2015). However, for 12,326 bacterial
genomes among the 111,088 of RefSeq (Haft et al, 2018),
this first step of the algorithm yields a dubious taxon,
which has the potential to affect the contamination estimate.
In detail, CheckM results were considered dubious for at
least one, frequently several, of the four following reasons

Frontiers in Microbiology | ww
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(Supplementary Table 1: https://doi.org/10.6084/m9.figshare.
13139810): (1) the CheckM taxon obtained by phylogenetic
placement is ambiguous when compared to the NCBI taxon,
even if closely related (e.g., same phylum; 9,257 cases), (2)
the CheckM taxon is of a too high level (e.g., “bacteria”) to
be useful in practice (2,967 cases), (3) the CheckM taxon is
“incorrect” (e.g., different phylum) with respect to the NCBI
taxon or both taxa are uninformative (77 cases), and (4) the
estimated contamination level is =20% (25 cases), which is the
upper tested limit of detection for CheckM (per documentation).
In the latter case, CheckM results can be erroneous because its
phylogenetic placement is affected by an array of supernumerous
ribosomal genes belonging to the contaminants. Owing to
these reasons, the current release of CheckM produces reliable
estimates for only 14 phyla whereas these are questionable
for 38 phyla (Figure 1). However, the accuracy of CheckM
on the remaining 98,801 genomes of RefSeq has not been
investigated here.

PHYSETER AS A SECOND ESTIMATOR
OF THE CONTAMINATION LEVEL

We then used Physeter to estimate the contamination level
of the 12,326 dubious genomes. Physeter features a MEGAN-
like (Huson et al, 2007) Last Common Ancestor (LCA)
algorithm that uses DIAMOND blastx (Buchfink et al,
2015) results to compute its estimates. Here, we upgraded
its heuristics to overcome the unavoidable presence of
contaminated genomes in reference databases. In practice,
a sliding window splits the reference database into 10 partitions,
and Physeter returns the median contamination level of
10 independent estimations, each one based on 90% of
the database. This k-fold approach allowed us to identify
false positive results only driven by a few contaminated
genomes in the reference database (Figure 2A). For instance,
GCF_003612345.1 and GCF_003611835.1
have a low median level of contamination, even if some
independent estimations (Figure 2A) show a higher level.
The opposite is also observed (Figure 2A), with some
contaminated genomes leading to false negative results (see
Supplementary Additional File 1). Overall, Physeter minimizes
the estimation biases due to overlooked contamination
while maintaining the diversity of the reference database
(Supplementary Figure 1).

the assemblies

TAXONOMIC ERRORS AND RARE
GENOMES

According to Physeter, 107 RefSeq genomes (among the 12,326)
presented very low levels of the organism expected from the
associated NCBI taxon. First, these “taxonomic errors” may
correspond to genomes that are misclassified by the NCBI
(e.g., GCF_900453015.1). Such misclassifications should also be
considered as contamination because misclassified genomes are
susceptible to be incorporated in downstream studies under a
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FIGURE 1 | Taxonomic tree of the bacterial domain showing the fraction of contaminated genomes in each phylum with each methed. Taxon identifiers of the
111,088 RefSeq bacterial genomes were passed to NCBI Common Tree tools to construct the tree [parameters: (1) include unranked taxa, (2) expand all]. Tree
visualization was performed with iTOL and branches were collapsed at the taxonomic levels reported in the tree. Triangles are proportional to taxonomic depth.
Proteobacteria are colored in orange, FCB group in green, Terrabacteria in red, PVC group in blue and the other phyla in dark gray. Green barplots are for genomes
evaluated with CheckM and blue barplots are for Physeter. The fraction of genomes with a contamination level <5% is shown in a light color whereas those >56% are
shown in a dark color. The number of genomes evaluated with each method is indicated by the height of the barplot on a ceiled logarithmic scale. For simplicity, the
estimates for Ca. Saccharibacteria (2 contaminated and 12 uncontaminated genomes), candidate division NC10 (2 contaminated genomes), Ca. Atribacteria (2
contaminated genomes), and Ca. Bipolaricaulota (1 contaminated genome) are included in unclassified Bacteria. Completely contaminated phyla (e.g., Caldiserica,
Nitrospinae, and Kiritimatiellaeota) are generally represented by very few genomes (i.e., one to three genomes). Among the more extensively studied phyla (11 to
37,487 genomes), some appear to be extremely contaminated, such as Balneolaeota, Synergistetes, and Chloroflexi, with, respectively, 54.5, 33.3, 16.9% of
contaminated genomes, whereas other phyla are characterized by a very low contamination level, including Cyanobacteria (2.8%), Gammaproteobacteria (0.6%), or
Chlamydiae (0.3%).

wrong taxonomy, which could be very damaging to biological
conclusions (Laurin-Lemay et al, 2012). Second, taxonomic
errors can also stem from genomes that are so contaminated
that the sequences of the expected organism are overwhelmed
by the foreign sequences (e.g., GCF_003264215.1). Third, some
genomes belong to a taxon that is so rare in genome databases

Frontiers in Microbiology | www.frontiersin.org

that they only match themselves, which is not allowed by the
Physeter algorithm and thus leads to low levels of the expected
organism (e.g., GCF_000226295.1), including 45 genomes tagged
as “unclassified Bacteria” by the NCBI. In practice, distinguishing
between the three cases is very difficult. Among the 107 genomes,
65 were left unclassified by CheckM (i.e., identified as “bacteria”
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FIGURE 2 | Overview of Physeter properties. (A) Distribution of contamination levels assessed by Physeter in k-fold mode. Genomes are ranked from the lowest to
highest median level of contamination. Median levels are shown in a solid orange line, while minimal and maximal levels are represented as yellow and brown dots,

respectively. GCF_003612345.1 and GCF_003611835.1 are examples of genocmes having a low median level of centamination with some independent estimations
showing a higher contamination level. The opposite case is ilustrated with GCF_000241265.1. (B) Taxonomic distribution of contaminating sequences within each
phylum. The relative contributions of each contaminating phylum were first averaged by genome over all 10 k-folds, then these genome-wise averaged values were
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or “root”) with a low level of contamination (median 1.1%),
whereas Physeter found high contamination levels (median
14.6%) for these 65 cases. To deal with those 107 problematic
genomes, we re-ran Physeter using the GTDB taxonomy (Parks
et al, 2018) as an alternative and let the tool determine
the main organism itself, just like CheckM usually does (see
Supplementary Table 1). In theory, the use of GTDB should help
us to discriminate between taxonomic errors and rare genomes,
though in practice it does not. This is so because 76 genomes
(among the 107) are representative genomes in GTDB, which
have been decontaminated based on CheckM results alone. On
the other hand, Physeter’s auto-detection mode is not compatible
with its self-match skipping feature. Therefore we cannot make a
decision on these 107 complex cases. The take-home message of
this section is that estimating the contamination level in the case
of rare genomes or taxonomic errors is very difficult, especially
when interconnected tools are used.

THE CASE FOR CORROBORATED
ESTIMATES

Based on the recommendations established by the Genomic
Standards Consortium (Bowers et al., 2017), we used a threshold
of 5% to decide if a genome is contaminated. CheckM and
Physeter results can only be compared in the context of this
specific cutoff, since the two algorithms are very different
and hardly comparable in terms of contaminant percentage.
Moreover, while CheckM is based on taxon-specific marker sets,
Physeter probes the whole genomes. Nevertheless, the results
can be divided into four categories based on the maximum
contamination threshold of 5%: (1) both methods identify
<5% of contaminants (11,759 genomes), (2) CheckM alone
identifies >5% of contaminants (384 genomes), (3) Physeter
alone identifies >5% of contaminants (133 genomes), and (4)
both methods identify >5% of contaminants (46 genomes). The
two methods are thus in agreement for 95.77% of the 12,326
dubious genomes. The discrepancies were expected based on
our previous results on Cyanobacteria, where we compared
six different detection methods (Cornet et al, 2018). Even
if numerically minor, they confirm the importance of using
multiple methods of detection when estimating contamination
levels. Schematically, the intersection of the methods (ie.,
corroboration) increases the certainty that a given genome
is contaminated, hence reducing false positives, whereas the
union maximizes the power of detection, hence reducing false
negatives. The choice of the intersection or of the union is
dependent on the goal of study, as both options have their
drawbacks, either more false negatives or more false positives,
respectively. At this stage, it is difficult to decide “which method
is right” between CheckM and Physeter. One way would be to
perform a metagenomic binning on the genomes for which they
disagree. However, sequencing reads are not publicly available
for more than half of these genomes (only 41.3 and 45.1% for
category 2 and 3, respectively), and these genomes being lowly
contaminated, the foreign bins are too small to be accurately
classified by any tool.
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Physeter presents the advantage of labeling the individual
sequences and thus offers the possibility to explore the taxonomy
of the contaminants. These are very diversified, with a median
of 45 different contaminant phyla per phylum (over the 10
k-fold replicates). Firmicutes appear to be the major contaminant
of various phyla (Figure 2B), such as Tenericutes (75.1% of
the contaminant sequences), Fusobacteria (73.3%), Synergistetes
(70.9%), or Thermotogae (68.9%). Reciprocally, the major
contaminant of Firmicutes genomes are Actinobacteria (60.1%).
Biological traits like sheath thickness or the abundance of co-
living organisms can explain the nature of the contaminants
and the fact that some taxa have a higher propensity for
contamination, the latter being also affected by uneven sampling
of lifestyles in RefSeq (e.g., lots of clinical samples).

DISCUSSION

In this study, we have only looked at bacterial genomes
contaminated by other bacterial sequences. However, the
situation can be more complex, for instance in metagenomic
samples including small eukaryotes where contaminations can
remain unnoticed by most algorithms to the exception of
Kraken (Wood et al., 2019), BlobToolKit (Challis et al., 2020), a
workflow developed for eukaryotes, and Physeter (Cornet et al,
2018). As a case in point, we provide a protocol to construct
a database containing representative genomes from the three
domains of life and study contamination in complex samples
with Physeter (see Supplementary Additional File 2). Based on
the results of the present study, even the most curated database
publicly available, RefSeq, includes 1,395 significantly (=5%)
contaminated genomes (considering the union of CheckM and
Physeter results), which translates to 1.25% of the genomes. This
low percentage should not be considered as a comforting result
because even a single contaminated genome can lead to false
interpretations (Bemm et al., 2016). Perhaps more critical, since
nearly all contamination detection tools use databases derived
from public repositories as references [RefSeq (Haft et al., 2018)
for Kraken (Wood et al, 2019), Integrated Microbial Genomes
(IMG; Markowitz et al,, 2012) for CheckM (Parks et al,, 2015),
Ensembl (Hubbard et al,, 2002) for the first version of Physeter
(Cornet et al., 2018), RefSeq (Haft et al., 2018) for ConFindR
(Low et al.,, 2019), RefSeq (Haft et al., 2018) for BASTA (Kahlke
and Ralph, 2018)], the reliability of the detection hinges on the
quality of these public databases. To our knowledge, Physeter
is the only software able to robustly detect contaminations at
a genome-wide scale when using a moderately contaminated
database as a reference.

Considering the low level of contaminated genomes in RefSeq,
one could conclude that the risk to include contaminants in
a study, due to reliance on a single method of detection,
is also low. Nevertheless, researchers are by essence more
interested in particularities than by generalities, and even small
amounts of contaminants have the potential to lead to exciting
but false conclusions. That is why we argue that a “second
opinion” should be considered when searching for contaminating
sequences, especially as long as genome reference databases are
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not completely devoid of contamination (Pasolli et al., 2019;
Zhu et al,, 2019).

METHODS

111,088 genomes were downloaded from RefSeq on the
9th of March 2019, regardless of their sequencing status.
These genomes were analyzed with CheckM using the
typical automatic workflow option lineag wf. CheckM
automatically places the queried genomes in a reference
tree through the concatenation of predicted ribosomal
proteins. The completeness and contamination levels are
then estimated by searching for lineage specific marker genes
provided with the software. CheckM uses 5,656 genomes
from a decontaminated version of IMG dating from 2015
(Parks et al., 2015).

For Physeter analyses, we first built a DIAMOND blastx
database corresponding to the 177,288 genomes of the Kraken2
database (Wood et al., 2019; Supplementary Table 2: https://doi.
org/10.6084/m9.figshare.13139819). This very comprehensive
database is composed for a large part of RefSeq genomes,
after curation by the authors (Wood et al, 2019). Yet it only
includes bacterial genomes, which prevents us from analyzing
archaeal genomes here. Moreover, CheckM indicated that 685
genomes of this database are contaminated, which motivated
our choice of a leave-one-out approach. The queried genomes
were then split into pseudo-reads of 250 nt, BLASTed against
the protein database, and labeled by computing the LCA
of each pseudo-read based on its best hits (excluding self-
matches), provided that they yielded a bit-score > 80 and within
95% of the bit-score of the first hit (MEGAN-like algorithm;
Huson et al, 2007). As in Cornet et al. (2018), we chose
to set the minimal number of best hits to 1 for computing
LCAs. For the 107 misclassified genomes on the NCBI, we
ran Physeter using a local mirror of the GTDB taxonomy
(Parks et al., 2018; release 202) instead of the NCBI Taxonomy.
Taxa were attributed through the “auto-detect” option and
the “labeller” was constructed using all available GTDB phyla,
except for Proteobacteria, which were split into their constituting
classes instead.
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2.1.2. Supplementary Material

Supplementary Figures

#of genome

Fig S1. Taxonomic diversity of 10 equal-sized partitions randomly generated by
Physeter in an examplative k-fold analysis. Each of these subsets is left out in
turn so as to estimate the sensitivity of the results towards database composition.
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Fig S2. Relative distribution of the four classification categories for each
phylum. Percentages are the average of the respective median values computed in
k-fold mode for each genome within the phylum. The average median value of the
average number of hits used to compute a LCA is represented with a solid black line,
which is further used to rank the phyla. The dashed black line shows the fraction of
genomes represented by each phylum in the database. Such a fraction computed on
cumulative lengths (in amino acids) rather than numbers of genomes (counts) would

have yielded a very similar curve.
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Additional file 1: Technical explanation
of Physeter algorithm

Background

Physeter is a command-line tool that uses DIAMOND blastx (Buchfink et al., 2015)
reports to assess the level of contamination of a genome assembly (see manual). To
ensure maximum sensitivity, it is advised to split the genome to analyze into pseudo-
reads of 250-250 nt (Cornet et al., 2018). Like BASTA (Kahlke & Ralph, 2018), it is
based on a Last Common Ancestor (LCA) algorithm to assign a taxonomy to each
pseudo-read of the genome. Its algorithm consists in accumulating the hits for each
query, (2) assigning a lineage to these hits (based on NCBI Taxonomy), (3)
computing a LCA that is then used to taxonomically annotate the pseudo-read and
(4) classifying the pseudo-read to compute the ratio of contaminated pseudo-reads
in the genome. Our LCA algorithm was also inspired by MEGAN (Huson et al., 2007)
for hit accumulation, using a bit score threshold expressed as a percentage of the

highest bit score of the current pseudo-read.

Algorithm description

Classic mode
The first step of the Physeter algorithm is to parse the DIAMOND blastx report

(where queries are pseudo-reads). For each query, Physeter evaluates whether the
first hit passes all the specified thresholds (i.e., length, percent of identity, bit scare).
If so, it starts accumulating hits according to the --tax-min-hits and --tax-max-hits
(see manual) thresholds, i.e., minimum and maximum numbers of hits to accumulate
in order to compute the LCA. If --tax-min-hits and --tax-max-hits are both set to 1,
then Physeter only uses the best hit to assign taxonomy (BEST HIT MODE). The
highest bit score among the hits is used to initialize the bit score threshold. This bit
score threshold itself is computed by multiplying the highest bit score by the --tax-
score-mul (MEGAN-LIKE MODE). During hit accumulation, if the genome has a
NCBI GCA/GCF accession (see manual), the hits corresponding to the organism are

ignored. In contrast, this is not possible when using either the --exp-tax or --auto-
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detect option (designed for custom genome assemblies; see below). Hit
accumulation can stop for different reasons: 1) minimum of hit is not reached, thus
no LCA is computed and Physeter goes to the next query, 2) maximum of hit is
reached, if minimum of hit is reached too, therefor LCA is computed, if not, no LCA is
computed, 3) the bit score of a hit is lower than the bit score threshold and like point
2) LCA is compute or not either if minimum of hit is reached or not. Then, Physeter
uses a local mirror of the NCBI Taxonomy to fetch the lineages of all accumulated
hits in order to compute the LCA. The optional --tax-min-lca-freq threshold can be
applied to discard minor lineages incongruent with those encountered in majority.
This threshold works at any taxonomic level, which makes it very efficient at
determining the most precise LCA. For diagnostic purposes, Physeter keeps track of
the LCA assigned to each query (or lack of) and the number of hits used in the

taxonomical computation.

The second step is to determine if the assigned taxonomy (LCAs) of the pseudo-
reads corresponds or not to the organism taxonomy. The organism taxonomy can be
determined in three ways: 1) based on its NCBI GCA/GCF accession in the case of
public genome assemblies, 2) user-specified using the --exp-tax option for custom
genomes for which one approximately knows the taxonomy, 3) through auto-
detection (--auto-detect option) based on the most abundant LCA identified during
the first step. In contrast to CheckM (Parks et al., 2015), which uses ribosomal
phylogenetic placement followed by the detection of clade-specific sets of about
hundreds marker genes to evaluate its contamination level, Physeter considers the
entire set of pseudo-reads of the genome under analysis. To this end, the organism
taxonomy and the pseudo-read LCAs are remapped at a higher taxonomic level,
using a taxonomic labeller defined as a list of high-ranking NCBI taxa. For some
ambiguous taxa with the same Ilabel at different taxonomic levels (e.g.,
Actinobacteria), the --greedy-taxa option can be used to decide which level to use
when remapping pseudo-reads (see manual). After labelling, pseudo-reads are
classified into one of four categories: 1) ‘self' if the labels are identical between the
organism and the pseudo-read, 2) ‘contaminated’ if the labels are different, 3)
‘unknown’ if no label could be assigned to the pseudo-read (e.g., if the LCA is too
high-ranking, such as ‘cellular organisms’, 4) ‘unclassified’ if no LCA could be
computed due to a lack of hits to the reference DIAMOND database. Interestingly,
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the sensitivity of Physeter is not affected by the number of hits used to compute
LCAs. Indeed, while the unclassified fraction increases with the number of hits, some
groups with very high fractions of classified sequences are also among those with
the highest numbers of hits (Fig. S1, e.g., Firmicutes). The eight taxonomic groups
with no genome fraction identified as “self’ (Fig. S1, e.g., Nitrospinae) are rare phyla
represented by a maximum of two genomes (five with one and three with two
genomes). Since our approach does not take into account self hits, zero to one
reference genomes are available for classification of these organisms, which leads to
the observed lack of “self’. As expected, the abundance of genomes from a given
phylum positively influences the number of hits, but only moderately. Hence, even if
highly represented phyla attract more hits, some less represented phyla (e.g.,

Spirochaetes) are also characterized by high numbers of hits (Fig. S1).

k-fold mode
The k-fold mode allows users to systematically ignore subsets of the DIAMOND

database, so as to identify the reference genomes leading to false detection. The list
of NCBI GCA/GCF accessions used to construct the database is passed to Physeter
using --kfold option. Then, accessions are shuffled and split into 10 equal-sized
subsets. The functioning of the algorithm described in Classic mode stays the same
except that Physeter runs 10 times and, for each run, hits that belong to the subset
to be ignored are skipped during hit accumulation. Finally, non-parametric statistics

are computed for each sequence category.

Dataset

The DIAMOND reference database used in this study is based on the Kraken2
database (Wood et al., 2019) and contains 177,288 genomes. The 111,907 tested
genomes were downloaded from RefSeq on the 9th of March 2019.

To download and run Physeter, see https://metacpan.org/dist/Bio-MUST-Apps-

Physeter.
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Additional file 2: Running Physeter on
complex samples

Installation

For installation and dependencies, see manual at: https:/metacpan.org/dist/Bio-
MUST-Apps-Physeter.

Input files

Install a local mirror of the NCBI Taxonomy or the GTDB Taxonomy.

$ setup-taxdir.pl --taxdir=ncbi-taxdump/

$ setup-taxdir.pl --taxdir=gtdb-taxdump/ --source=gtdb

Building the DIAMOND database

Get prokaryote proteome download links at:
https://figshare.com/articles/dataset/Datasets_for L_onard_et_al ToRQuEMaDA_Tool_for
Retrieving_Queried_Eubacteria_Metadata_and_Dereplicating_Assemblies/13238936/2.

Decompress the prokaryote archive file.
$ tar -xf tgmd datasets.tar.gz

Download and decompress bacterial and archaeal proteomes.

S for £ in “cut -f4
tamd datasets/tables/bacteria-151l-tax-links.tsv \
tgmd datasets/tables/archaea-86-tax-links.tsv'; do wget \
${f}/*protein.faa.gz ; done

$ gunzip *.faa.gz

Rename sequence identifiers.

$ 1ls *.faa | perl -nle '($gcf) = m/(GC[AF]I\ \d{9}\.\d{1})/ ;
print "$ \tégcf"' > file.idm

$ inst-abbr-ids.pl --id-prefix-mapper=file.idm \
--id-regex=:DEF *.faa

Concatenate prokaryote files.
$ cat *-abbr.faa > prokaryote.faa

S rm —-f GCF*.faa

Download eukaryote proteomes at: https:/doi.org/10.6084/m89 figshare.13573424.

Decompress eukaryote proteome files.
$ tar -xf Data_set 2.tar.gz
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Rename sequence identifiers.
$ cd Data_set 2/
$ perl -i.bak -nle 's/>.* (\d+)@(.*)$/>\1|\2/; print' *.faa

Concatenate prokaryote and eukaryote files.
$ cat Data_set 2/*.faa prokaryote.faa > database.faa

Build the DTAMOND database.
$ diamond makedb --in database.faa -d database

Running DIAMOND BLASTX

Before running DIAMOND, you have to transform the prokaryotic genome files you
want to assess into pseudo-read FASTE files. Use inst-split-fas.pl from the
Bio::MUST::Core distribution to do so. In the example below, the genome will be split
into 250-base long pseudo-read sequences without overlap. If your genome has a
NCBI GCA/GCF accession, name your outfile assembly accession.fasta
(e.g., GCF_000006605.1.fasta).

$ inst-split-seqg.pl genome.fasta --out=-split

Then run DIAMOND as follows. Like the FASTA file, name your BLASTX report as
assembly accession.blastx (e.g., GCF_000006605.1.blastx). If your
genome file does not have a NCBI GCA/GCF accession, both the FASTA file and the
BLASTX report must have the same basename. The -f tab option of DIAMOND
will generate a tab-separated file corresponding to the -outfmt & of regular NBCI-
BLAST+. You can adapt the -p 10 option (number of CPU threads) to suit your
system.

$ diamond blastx -d database -gq split-genome.fasta -o \
split-genome.blastx -t ./temp -k 50 -e 1le-10 -f tab -p 10

Taxonomic labeller

A taxonomic labeler is used by physeter.pl to determine at which taxonomic level
you consider a pseudo-read sequence as a contaminant. Note that you have to
adjust your labeler depending on the used taxonomy. See examples below:

$ head phylum-taxa.idl
unclassified Bacteria

unclassified Archaea
Abditibacteriota

115



Acidithiobacillia
Acidobacteria
Actinobacteria
Alphaproteobacteria
Agquificae
Armatimonadetes
Bactercidetes

Command-line options of physeter.pl

Classic mode
Once all input files are correctly prepared, you can simply run physeter.pl like
this:

$ physeter.pl *.blastx --outfile=contam.report \
--taxdir=nchi-taxdump/ --taxon-list=phylum-taxa.idl

Or using GTDB taxonomy.

$ physeter.pl *.blastx --outfile=contam.report \
-—-taxdir=gtdb-taxdump/ --taxon-list=phylum-taxa.idl

The standard output file of physeter.pl is a tab-separated file containing the
following sections: (1) organism accession or file name, (2) assigned taxon, (3) %
self sequences, (4) % contaminated sequences, (5) % unknown taxon sequences,
(6) % unclassified sequences, (7) detail of contaminants, (8) mean number of hits
used to classify the pseudo-read sequences.

In addition to the Physeter output file, you can generate for each assayed genome a
Kraken-like file, an Anvio-like file, a Krona-compatible file or a LCA (Last Common
Ancestor) file, the latter providing the taxonomic affiliation of each pseudo-read.

$ physeter.pl *.blastx --outfile=contam.report \
--taxdir=gtdb-taxdump/ --taxon-list=phylum-taxa.idl \
-—kraken --anvio --krona --lca

When your pseudo-read FASTA files are not in the working directory, you can
specify their localization using the --fasta-dir option.

$ physeter.pl *.blastx --outfile=contam.report \
--fasta-dir=split-fasta/ --taxdir=gtdb-taxdump/ \
-—-taxon-list=phylum-taxa.idl
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If your organism does not have a NCBI GCA/GCF accession but you know
approximately its taxonomy, you can specify it with the —-exp-tax option. Note that
the specified taxon must be listed in the file provided through the --taxon-1ist
option.

$ physeter.pl organism.blastx --exp-tax=Firmicutes \
--outfile=contam.report --taxdir=gtdb-taxdump/ \
-—taxon-list=phylum-taxa.idl

Otherwise, use the -—auto-detect option.

$ physeter.pl organism.blastx --auto-detect \
--outfile=contam.report --taxdir=gtdb-taxdump/ \
-—taxon-list=phylum-taxa.idl

In the basic configuration, physeter.pl will assess the contamination status of a
pseudo-read sequence using only 1 hit (i.e., best-hit mode). If you want to use more
than 1 hit (i.e., MEGAN-like mode), you can use the --tax-min-hits and --tax-
max-hits options. In the MEGAN-like mode, a LCA will be inferred for each
pseudo-read sequence.

$ physeter.pl *.blastx --outfile=contam.report \
--taxdir=gtdb-taxdump/ --taxon-list=phylum-taxa.idl \
-—tax-min-hits=2 --tax-max-hits=50

You can use —-tax-score-mul and --tax-min-lca-freq options to fine tune
LCA inference.

$ physeter.pl *.blastx --outfile=contam.report \
-—taxdir=gtdb-taxdump/ --taxon-list=phylum-taxa.idl \
--tax-min-hits=2 --tax-max-hits=50 \
-—tax-score-mul=0.7 --tax-min-lca-freg=0.85

Other options can be applied to filter the BLASTX hits used for contamination
assessment. Those are --tax-min-ident, --tax-min-len and --tax-min-

score.

K-fold mode

The last functionality of physeter.pl is the k-fold mode. In this mode, the
DIAMOND database is randomly split into 10 subsets. Then, physeter.pl runs 10
times and, for each run, hits from one of the subsets are ignored. The results of the
10 analyses are written in the standard output file. None of the Kraken-like file,
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Anvio-like file, Krona-coompatible file and LCA file are available when running in k-
fold mode.

$ physeter.pl *.blastx --outfile=contam.report \
-—taxdir=taxdump/ --taxon-list=phylum-taxa.idl \
-—tax-min-hits=2 --tax-max-hits=50 --k-fold=database.gca

The database.gca file is the list of all NCBI GCA/GCF accessions of the genomes
used to build the DIAMOND database.

$ grep \> database.faa | cut -f1 -d'|' | cut \
-c2- | sort -u > database.gca
$ head database.gca

1169474
1169539
1169540
1202447
1255295
127563
130081
1321669
13642
1389228

$ tail database.gca

GCF_900095815.
GCF_900095855.
GCF 900105895.
GCF 900120375,
GCF_900128725.
GCF_900128965.
GCF 900129645,
GCF_900143135.
GCF 900155405.
GCF 900155645.

e I R I L T I R S )
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An Extended Reservoir of Class-D Beta-Lactamases in Non-Clinical
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ABSTRACT Bacterial genes coding for antibiotic resistance represent a major issue in
the fight against bacterial pathogens. Amang those, genes encoding beta-lactamases tar-
get penicillin and related compounds such as carbapenems, which are critical for human
health. Beta-lactamases are classified into classes A, B, C, and D, based on their amino
acid sequence. Class D enzymes are also known as OXA beta-lactamases, due to the abil-
ity of the first enzymes described in this class to hydrolyze oxacillin. While hundreds of
class D beta-lactamases with different activity profiles have been isolated from clinical
strains, their nomenclature remains very uninformative. In this work, we have carried out
a comprehensive survey of a reference database of 80,490 genomes and identified
24,916 OXA-domain containing proteins. These were deduplicated and their representa-
tive sequences clustered into 45 non-singleton groups derived from a phylogenetic tree
of 1,413 OXA-domain sequences, including five clusters that include the C-terminal do-
main of the BlaR membrane receptors. Interestingly, 801 known class D beta-lactamases
fell into only 18 clusters. To probe the unknown diversity of the class, we selected 10
protein sequences in 10 uncharacterized clusters and studied the activity profile of the
corresponding enzymes. A beta-lactamase activity could be detected for seven of them.
Three enzymes (OXA-1089, OXA-1090 and OXA-1091) were active against oxacillin and
two against imipenem. These results indicate that, as already reported, environmental
bacteria constitute a large reservoir of resistance genes that can be transferred to clinical
strains, whether through plasmid exchange or hitchhiking with the help of transposase
genes.

IMPORTANCE The transmission of genes coding for resistance factors from environ-
mental to nosocomial strains is a major component in the development of bacterial
resistance toward antibiotics. Our survey of class D beta-lactamase genes in genomic
databases highlighted the high sequence diversity of the enzymes that are able to
recognize and/or hydrolyze beta-lactam antibiotics. Among those, we could also
identify new beta-lactamases that are able to hydrolyze carbapenems, one of the
last resort antibiotic families used in human antimicrobial chemotherapy. Therefore,
it can be expected that the use of this antibiotic family will fuel the emergence of
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Diversity of Class-D Beta-Lactamases

their primary structures. Classes A, C, and D are active-serine enzymes (4) while class B con-
sists of metallo-proteins whose active site usually contains 1 or 2Zn* " ions (5, 6).

Beta-lactamases of classes A and D exhibit a very high diversity of amino acid (AA)
sequences, with only a very little number of conserved residues within each class (e.g.,
29 residues are conserved within class-A beta-lactamases) (7). It is nearly impossible to
establish clear relationships between AA sequences and the ability to hydrolyze spe-
cific classes of beta-lactam antibiotics. Indeed, it is well known that a single mutation
can alter this activity profile in a significant manner (8, 9). Moreover, the literature con-
tains numerous disagreements and errors concerning the kinetic parameters of various
enzymes (10). This is probably in part because these parameters are often determined
under different experimental conditions and the studied enzymes are not always pure.
In consequence, even though clinicians are more interested in specificity profiles, the
AA sequences remain the primary tool for proposing a classification of beta-lacta-
mases, as in the case of the Beta-Lactamase Database (BLDB; http://www.bldb.eu/)
(11). Concerning class D beta-lactamases, the situation is complicated by the fact that
these enzymes can dimerize, which sometimes modifies the activity (12) and that car-
boxylation of the first conserved motif lysine also increases the activity in most cases
(13). Inversely, loss of CO, during turn-over of the substrate results in “substrate-
induced inactivation,” a phenomenon already observed by Ledent et al. (14).

The first two identified class D beta-lactamases exhibited a number of features that
differed from those of nearly all beta-lactamases known at the time, notably the ability
to efficiently hydrolyze oxacillin and other isoxazolyl penicillins. For this reason, they
were named OXA-1 and OXA-2. Unfortunately, it was then decided to name the further
class D beta-lactamases homologs “OXA” plus sequence (i.e., increasing) number that
follows the chronological order of identification (15). This was sometimes done in spite
of a sequence identity below 30% and/or (10) more similarity with the BlaR receptor
than with other class D beta-lactamases (16). Class D beta-lactamases were first identi-
fied as plasmid-encoded proteins but the corresponding genes were later found to re-
side on the bacterial chromosome too (10).

Similarity searches using the OXA-2 AA sequence as a query revealed homologous
primary structures of unknown function or without true beta-lactamase activity, such
as YbxI/BSD-1 in Bacillus subtilis (17, 18), or even devoid of any beta-lactamase activity,
such as the C-terminal domain (CTD) of the BlaR penicillin-receptor involved in the
induction of a class A beta-lactamase in Bacillus licheniformis and Staphylococcus aureus
(19). In the present study, proteins containing a class-D beta-lactamase domain will be
further referred to as the “OXA-domain family.” Among those, “DBL" will be reserved to
demonstrably active class-D beta-lactamases, while characterized class-D beta-lacta-
mase homologs of low activity or with a different function will be termed “pseudo-
DBL" proteins. Finally, “DBL-homolog" proteins will define the union of DBL, pseudo-
DBL proteins, and other homologs not yet characterized.

It is clear that our present knowledge of the OXA-domain family is biased toward
clinically relevant DBLs. The analysis of whole genome sequences of isolated bacteria
and metagenome-assembled genomes highlighted that non-pathogenic and environ-
mental bacteria can also harbor beta-lactamase-encoding genes, and thus may behave
as reservoirs of emerging new resistance genes identified in nosocomial strains (20,
21). It is likely that these bacteria, which, in many cases, were never exposed to syn-
thetic or semi-synthetic beta-lactams used in human health care or animal husbandry,
can encounter other beta-lactam-producing microorganisms in their natural environ-
ment and, over the ages, have acquired beta-lactamase genes in their “struggle for
life” (22). A significant example could be the carbapenems that can be produced by
some Streptomyces species (23), probably resulting in the appearance of the carbape-
nemases that were later transferred to clinical strains (24, 25). The large heterogeneity
of the resistance gene repertoire present in bacteria challenges the efficiency of antimi-
crobial chemotherapy. It also underlines the need to develop new analytical methods
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Diversity of Class-D Beta-Lactamases

allowing a clear and rapid identification of potential new resistance pathways includ-
ing enzymes that can inactivate both old and new antibiotics.

The goals of the present article were to explore genomic databases to discover how
widespread the class D beta-lactamase gene and its homologs were throughout the
microbial world and to propose a sequence-based classification of the members of the
OXA-domain family derived from their phylogenetic relationships. Starting from 80,490
genomes, we identified a total of 24,916 DBLs and DBL-homolog sequences, which we
classified into 64 clusters of proteins. Furthermore, we synthesized and expressed 10
gene sequences sampled from 10 clusters devoid of characterized members and con-
ducted a survey of their activity. This revealed that three of them had an oxacillinase
activity, including two able to hydrolyze imipenem, reminding us how environmental
bacteria represent an enormous reservoir of resistance factors that can be transferred
to clinical strains.

RESULTS

Enlarging the OXA-domain family taxonomic distribution. According to the
BLDB (as of July 2019), the 810 described DBL-homelogs (including both DBL and
pseudo-DBL proteins) have been isolated from bacteria belonging to five different
phyla: Proteobacteria (583 Sequences), Spirochaetes (14), Firmicutes (9), Bacteroidetes
(1), Fusobacteria (1) and also from some marine metagenomes (2). Two-hundred
sequences have no source organism and are all plasmid-encoded. Most of these DBL-
homologs are found in Proteobacteria, essentially in the genera Acinetobacter (411
sequences) and Campylobacter (91), which are part of the Gammaproteobacteria and
Epsilonproteobacteria, respectively. Some are also found in Betaproteobacteria (41)
but not in the other Protecbacteria classes.

A HMM profile constructed from an alignment of 470 DBL from NCBI Pathogen
Detection server allowed us to identify 24,916 OXA-domain family AA sequences dis-
tributed across 20,342 organisms (on a total of 80,490 screened genome assemblies
found in NCBI RefSeq). Nearly all those organisms (99.4%) belonged to the aforemen-
tioned five phyla, whereas the small remaining fraction (0.6%) came from eight addi-
tional bacterial phyla: Cyanobacteria (65 Sequences), Actinobacteria (36), Chlorobi (10),
Chlamydiae (6), Verrucomicrobia (6), Chloroflexi (2), Balneolaeota (1), and planctomy-
cetes (1). Moreover, some sequences were identified in additional classes of proteobac-
teria: Alphaproteobacteria (Holosporales) and Deltaproteobacteria (Desulfavibrionales).
In contrast, no sequences of the OXA-domain family were found in Archaea. In this
work, we wanted to characterize the protein sequences themselves and, to do so, we
deduplicated the 24,916 sequences and observed that they represented only 3,510
unique sequences (i.e., 100% identical at the AA level), indicating that many of them
were multispecies enzymes. Indeed, it is known that the NCBI RefSeq database is
unevenly biased toward clinical strains (26). Hence, 3459 of the unique sequences
(98.5%) were found in several species of the same genus (e.g, WP_001046004.1 was
found in 952 Acinetobacter species) while 51 unique sequences (1.5%) were found in
more than one genus. These results show that the redundancy is mostly due to the
number of species in NCBI RefSeq belonging to the same genus. In a second step,
these 3,510 unique sequences were deduplicated at a global identity level of 95%, and
the 1,413 resulting sequences (hereafter termed “representative” sequences) were
used to infer a phylogenetic tree (see Materials and Methods).

OXA-domain family proteins include BlaR homologs. A distribution of sequence
length showed that the 24,916 OXA-domain family sequences formed three popula-
tions, one shorter than 350 AAs with an average size of 271 AAs (typical DBL length),
one longer than 550 AAs with an average size of 587 AAs (typical BlaR membrane re-
ceptor length) and one intermediate-length population with an average size of 449
AAs (Fig. 1a). Mapping sequence length onto the tree revealed that representative
sequences of intermediate length are scarce (five sequences) and not clustered,
whereas long sequences do cluster in two distinct groups (Fig. 1b). A sequence similar-
ity analysis showed that three of the five intermediate-length sequences are actually

Month YYYY Volume XX Issue XX

Microbiology Spectrum

10.1128/spectrum.00315-22

3

.asm.org/journal/spectrum on 23 March 2022 by 139.165.112.51.

Downloaded from https://journz

123



Diversity of Class-D Beta-Lactamases Microbiology Spectrum

a Sequence categary } :
Long ' | .
Intermediate 1 : : j
Sy ; : 1
7500- : : : §
5000- : i P
z : : P
2 ' ' i '
Q ' " H .
S J ! L
2500- : : P
0- : . ; P
200 300 400 500 800 P
Length (AA) : '
(o DBL-homolog BlaR-homolog ' 3
10000- 1
i =
: o
1000- P =
! ] <
: : &
: ' =
P )
-] 3
E L | 8
3 100- — g
S |
: ' o
i ] o
: 1 5
: : E
: ! =
: ! 3
10- P &
; ] <
] N H ]
1 . ; ) E
| : H ! 2
: : - ' 5
T T T T 1 T I 5
0 100 200 300 400 500 600 E
1-

Length (AA)
1 2 3 4 i 2 3 4
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Diversity of Class-D Beta-Lactamases

DBL-homologs while two are BlaR homologs. Regarding the two groups of long
sequences, the larger one is formed of sequences found in Firmicutes, with a majority
in Staphylococcus, Clostridioides, and Bacillus. According to the annotation results, these
sequences are actually BlaR homologs. The second group contains sequences found
in Oxalobacteraceae (Betaproteobacteria) and annotation results at first showed no
close similarity with DBL nor BlaR. However, detailed in silico functional analysis
(InterProScan and pepwindowall; Data set 51) eventually revealed that 14 of these rep-
resentative sequences indeed have a class D active site and the BlaR1 peptidase M56
domain, whereas three have both a class D active site and a class C beta-lactamase
active site, like in the LRA-13 fusion enzyme (20), but these exhibit a low sequence
identity to the latter (around 60%). To facilitate subsequent discussion, the three inter-
mediate-length DBL homologues and the three OXA-class C fusion proteins were con-
sidered as DBL-homologs, whereas the two intermediate-length sequences more simi-
lar to BlaR and the two groups of long sequences were considered as BlaR-homologs.

In Firmicutes, beside the 10,496 BlaR-homologs, we also found 1,383 DBL-homo-
logs. According to the annotation results, 374 are homologous to low-activity pseudo-
DBL proteins found in Bacillus (17, 18) and 956 are homologous to the two intrinsic
pseudo-DBL (CDD) of Clostridium difficile (27).

In general, surveyed bacteria possess only either one DBL-homolog protein (9,964
strains) or one BlaR-homolog protein (5,874 strains). In 1,665 and 1,813 strains, we
found two DBL-homologs or two BlaR-homologs, respectively, and rarely more than
two DBL-homologs (27) or BlaR-homolags (5). In addition, 963 strains simultaneously
possess one DBL-homolog and one BlaR-homolog, while 10 strains show more than
one DBL-homolog and one BlaR-homolog or the oppaosite (Fig. 1¢). Interestingly, strains
that harbor more than one DBL-homolog (ignoring BlaR homologs) mostly belong to
Pseudomonadales, and more specifically the genera Acinetobacter and Pseudomonas.

Gene genetic context. Among the 24,916 DBL-homelog and BlaR-homolog protein
sequences initially identified, only 23,833 corresponding genes (found on 23,093 contigs)
could actually be fetched from complete genomes. Three reasons explain the 1,083 miss-
ing sequences: (i) the genome has been suppressed during the study, (ii) the sequence
has been suppressed or removed at the submitter's request and could not be found in
the genome annotation (gff) file, and (iii) no link between the protein and any gene
exists in the NCBI. According to the NCBI annotation pipeline, the contigs are classified
"chromosome” in 960 cases, "plasmid” in 273 cases and "genomic” in 21,860 cases. This
rather uninformative “genomic” classification led us to predict the genetic context of
each OXA-domain family protein sequence using the dedicated PlasFlow pipeline. With
this strategy, 15,515 contigs were classified as “chromosome” (67.2%), 5,660 as “plasmid”
(24.5%), whereas 1,918 remained unclassified. These unclassified contigs correspond to
9.20% of the DBL-homolog genes (1,327 cases) and 5.79% of the BlaR-homelog genes
(608 cases). In addition, 1,177 contigs were congruently classified (either as chromosome
or plasmid) by both pipelines, and only four had different labels, thereby confirming the
accuracy of PlasFlow for contig classification. DBL-homolog and BlaR-homolog genes are
mostly chromosome-encoded (Fig. 2a), with 10,078 (69.89% of DBL-homolog genes) and
6,153 (58.62% of BlaR-homolog genes) cases, respectively, whereas the genes are plas-
mid-encoded in 2,159 and 3,508 cases, respectively. Thus, 14.97% of DBL-homolog genes
and 33.42% of BlaR-homolog genes lie on a plasmid.

The majority of bacteria carrying a DBL-homolog gene on a plasmid belong to six gen-
era of Gammaproteobacteria: Acinetobacter (724), Klebsiella (590), Escherichia (212),
Shigella (200), Enterobacter (196), and Pseudomonas (85). The remaining plasmid-encoded
sequences are distributed across the other classes of Proteobacteria (Alpha- [35], Beta-
[46], and Gammaproteobacteria [61]), while a few can also be found in Firmicutes (6),
Cyanobacteria (3), and Bacteroidetes (1).

To assess the transfer potential of DBL-homolog and BlaR-homolog genes, and there-
fore the propensity of emergence of a new resistance, we looked for transposase genes in
the vicinity of these genes (Fig. 2b). We noticed that DBL-homolog and BlaR-homolog
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genes are either close to transposase genes (distance from one to five genes) or very dis-
tant (more than 15 genes) in each genetic context. Concerning BlaR-homologs, 63.4% of
the genes are close to at least one transposase gene when chromosome-encoded and
67% when plasmid-encoded. Regarding DBL-homolog genes, only 5.6% and 44.7% are
close to transposase genes on chromosomes and plasmids, respectively. The majority of
DBL-homolog genes encoded on chromosomes near a transposase gene (568) are found
in Acinetobacter (395), which is also the genus in which we identified most DBL-homologs
(see section OXA-domain family proteins include BlaR homologs). However, when the
genes are plasmid-encoded, those close to a transposase gene (965) are mainly found in
Klebsiella (345), then Acinetobacter (189), Shigella (177), and Escherichia (112). Furthermore,
three DBL-homolog genes in Cyanobacteria (two on a chromosome and one on plasmid)
and one chromosome-encoded gene in Balnealaoeta are close to a transposase gene,
which suggests that they might have been acquired by gene transfer. In contigs not classi-
fied by PlasFlow, we observed a higher prevalence of DBL-homolog genes than BlaR-homo-
log genes, and these DBL-homologs are very distant from transposase genes. As this pattern
is similar to the pattern observed for chromosomes (Fig. 2b), it indicates that unclassified
contigs likely correspond to chromosomes.

Signal peptide and transmembrane segment prediction. Most DBL-homolog
sequences are characterized by a signal peptide (SP), as predicted by SignalP (Table 1).
The Sec, Lipo, and Tat SPs were identified in 65%, 22%, and 3% of DBL-homolog unique
sequences, respectively (see “Enlarging the OXA-domain family taxonomic distribution”).
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TABLE 1 Distribution of predicted signal peptides in DBL-homolog and BlaR-homolog
unique sequences further broken down by the number of predicted transmembrane (TM)
domains (0, cytoplasmic, 1, monotopic, = 1, polytopic)

DBL-homologs BlaR-homologs

Signal peptide (SP) No P Signal peptide (SP) No SP
#TM Sec Lipo Tat Other Sec Lipo Tat Other
0 1,660 587 83 195 Q 0 Q ]
1 70 4 2 49 0 0 0 1
=1 0 0 0 11 2 1 0 845

The rest of the sequences (OTHER-SP, 9%) are either transmembrane proteins or have no
SP. DBL-homolog sequences with a Sec-SP are mainly found in the genera Pseudomonas,
Burkholderia, Campylobacter, Klebsiella, and Legionella, while DBL-homolog sequences with a
Lipo-SP were mostly identified in Acinetobacter and Leptospira. DBL-homologs with a Tat-
SP seem to be more specific to Alphaproteobacteria (Bradyrhizobium) whereas the
"OTHER-5P" prediction is mainly associated with intrinsic pseudo-DBLs (CDD-1 and CDD-2
enzymes) of Clostridioides (27).

Beside signal peptide prediction of SignalP, the transmembrane segment (TM) pre-
diction was used to distinguish between membrane proteins and cytoplasmic proteins.
Whenever a SP is predicted in DBL-homolog sequences, the TM prediction indicates no
TM or, rarely, one TM domain (monotopic) (Table 1). When no TM domain is detected,
it may indicate that the corresponding DBL-homolog is excreted outside the cell or
into the periplasmic space (for diderm bacteria). In contrast, when one TM domain is
predicted, the protein is more likely to be anchored in the cytoplasmic membrane. In
the majority of DBL-homologs with no SP predicted, no TM domain is detected, and
these are possibly cytoplasmic proteins. Nevertheless, some exceptions exist, with 60
unique sequences (on 255 unique DBL-homolog proteins with no SP) presenting one
or more TM domains (polytopic), a configuration which remains to be explained.

Almost all the BlaR-homolog proteins have no SP predicted and have, as expected,
more than one TM domain (Table 1). However, only three polytopic proteins were pre-
dicted with Sec-SP or Lipo-SP instead of OTHER-SP. This can be explained by a wrong
attribution by SignalP. Indeed, SignalP gives a probability for each possible SP and
then chooses the highest value for the prediction but, for those sequences, the proba-
bilities for OTHER-SP and Sec-SP/Lipo-SP are both close to 0.5.

Prevalence of DBL-homolog genes in clinical strains. Acquired resistance in clini-
cal bacterial strains is a very important concern, but determining the clinical origin of a
given bacterial isolate only based on the metadata of the corresponding genome as-
sembly is still challenging to automate at a large scale. Indeed, BioSample reports from
the NCBI can contain such information but these remain difficult to analyze due to the
lack of a controlled vocabulary. To overcome this difficulty, we used a script that stand-
ardizes all the words of a BioSample report. Thus, 20,317 BioSample accessions were
associated with the 20,342 bacterial assemblies containing DBL-homolog or BlaR-hom-
olog genes for a total of 223 unique standardized words. Note that 4,658 BioSample
reports did not contain any word. BioSamples with a positive clinical score (see
Materials and Methods for details) were considered as clinical strains while those with
negative scares were not. Furthermore, we decided to not classify BioSamples with a
null score (essentially due to the aforementioned lack of words). Using this strategy,
3,192 bacteria were classified as clinical, 2,810 as non-clinical, and 14,340 could not be
classified. Around 28% of gene sequences belong to classified strains, of which 55%
clinical strains and, among those “clinical genes,” 73% are DBL-homolog sequences
(Table 2). Clinical DBL-homoleg genes encoded on a plasmid are exclusively present in
Gammaproteobacteria, mostly in Acinetobacter (176), Klebsiella (135), and Enterobacter
(93), while DBL-homolog genes encoded on chromosomes are mostly found in Protecbacteria
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TABLE 2 Distribution of DBL- and BlaR-homolog sequences in clinical, non-clinical and unclassified strains, further broken by type of encoding

molecule (chromosome, plasmid, or unclassified)

Microbiology Spectrum

S Clinical Non-clinical Unclassified
Encoding
molecule DBL-homologs BlaR-homologs DBL-homologs BlaR-homologs DBL-homologs BlaR-homologs
Chromosome 2,080 459 1,716 696 6,282 4,998
Plasmid 512 515 150 305 1497 2,688
Unclassified 234 67 222 36 871 505

(2,016) and some in Firmicutes (43), Bacteroidetes (10), Spirochaetes (8), Actinobacteria (2), and
Verrucomicrobia (1).

Clustering and DBL-homolog selection. Over 600 combinations of clustering pa-
rameters were tested on the OXA-domain family phylogenetic tree (see SQL database)
and the clustering with the highest entropy and the lowest number of singletons (i.e.,
clusters of size one) was retained (x set at 0.20 and inflation at 1.5; see Materials and
Methods). This specific clustering solution has a computed entropy of 0.762 and a score
of 0.52. It contains 64 clusters, including 19 singletons, with the larger cluster having 207
representative putative sequences (cluster 15) among 1,413 (Table 51). In general, there
is little taxonomic diversity within each cluster. Indeed, the majority of these clusters (28)
contain sequences from organisms belonging to the same phylum or class.

Annotating the unique sequences using BDLB reference sequences at an identity
threshold set ta 100% (see Materials and Methods) allowed us to tag 340 unique
sequences, corresponding to 307 reference sequences (304 DBL/pseudo-DBL and three
BlaRs) among 813 BLDB sequences. When decreasing the identity threshold to 99%,
623 unique sequences were tagged with 653 reference sequences (650 DBL/pseudo-
DBL and three BlaRs), while at 90%, 1,269 unique sequences were tagged with 801 ref-
erence sequences. All those tagged sequences are distributed across 18 clusters,
regardless of the identity threshold. Interestingly, up to half of the reference sequences
tag cluster 60 (i.e., 168 sequences at 100%; 363 at 99%; 452 at 90%). The main genus of
this cluster composed of 66 representative sequences (standing for a total of 3,472
sequences) is Acinetobacter, which is the host organism for 99.7% of the sequences.
Irrespective of the high-redundancy of cluster 60, the latter genus is known to harbor
various chromosome-encoded DBL (10).

Assessment of the beta-lactamase activity in uncharacterized clusters. To test
the beta-lactamase activity of some of the 46 non-annotated clusters, 10 DBL-homolog
sequences were selected for expression and production. Clusters were sorted from the
largest to the smallest (considering all and not only representative sequences), then one
sequence from the first 10 clusters with no DBL found in the BLDB, a sequence length
between 250 and 350 AAs and no mutation in the three conserved motifs defining the
class D active site. Thus, the 10 DBL-homolog (termed OXAVLO1 to 10) were selected
from clusters 14, 22, 23, 28, 30, 39, 41, 42, 44, and 57 (Table 52). OXAVLO1 has the two
lysines of its active site mutated but these mutations are shared by all the sequences in
cluster 14. According to the clinical score (see Prevalence of DBL-homolog genes in clini-
cal strains), none of those DBL-homologs belong to a clinical strain (six classified as non-
clinical and four as unclassified). Seven of those sequences are chromosome-encoded
while no localization could be associated to OXAVLO5, OXAVL09, and OXAVL10.

The OXAVLO1-10 genes were cloned in the pET24a(+) plasmid under the control of
the strong T7 promoter and introduced in Escherichia coli. The production of OXAVLO1-
10 was induced by IPTG and evaluated by SDS-PAGE and beta-lactam hydrolysis. No
apparent over-expression of OXAVLO1, OXAVLO3, OXAVLO5, OXAVLO7, and OXAVL0O9
(OXA-1091) was observed in the soluble or insoluble fractions of E. coli (DE3) grown at
18°C and 37°C. For OXAVL04, OXAVLO08, and OXAVL10, a large production of the beta-
lactamases was found only in the insoluble fractions at both culture temperatures,
likely indicating the formation of inclusion bodies. Only OXAVL02 (OXA-1089) and
OXAVLO6 (OXA-1090) were overproduced as soluble enzymes at 18°C.
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TABLE 3 Beta-lactamase activity of crude extract (CE) for cells expressing active DBL-
homologs®

V, (nmol.min '.mgP ')

CE Nitrocefin Ampicillin Oxacillin Imipenem
OXAVLO2 95 70 18 4
OXAVLO3 1 1 NH NH
OXAVLO4 0.7 NH NH NH
QOXAVLOS 2. NH NH NH
OXAVLO6 5] 85 100 7
OXAVLO9 4 7 4 NH
OXAVL10 0.5 NH NH NH

“The measurements were performed in 25 mM HEPES buffer (pH 7) at 30°C. NH, no hydrolysis.

The evaluation of the beta-lactamase activity on crude cell extracts (Table 3) showed that
only OXAVLO02 and OXAVLO6 were able to hydrolyze all beta-lactams tested, including imipe-
nem. OXAVLO9 was active versus nitrocefin, ampicillin, and oxacillin but not imipenem.
OXAVLO3 was able to hydrolyze nitrocefin and ampicillin. Cell extracts of OXAVL04, OXAVLOS,
and OXAVL10 were active only against nitrocefin. These results may only be indicative of
the true spectrum of activity because of the low fraction of soluble enzymes present in
some cases. The DBL-homolog enzymes were not produced in an active form in the strains
bearing the plasmid pOXAVLO1, pOXAVLO7, or pOXAVLOS.

OXAVL02 and OXAVL06 have carbapenemase activity. Because crude extracts of
OXAVLO2 and OXAVLO6 were the only ones able to hydrolyze all tested beta-lactams
and had the highest level of expression in the soluble fraction, we focused our work on
those two hydrolases. The purification of the two enzymes included three chromato-
graphic steps, namely, an anion exchanger, an IMAC affinity chromatography, and a
molecular sieve. For OXAVL02, the purification consists in an IMAC column followed by
a strong anion exchanger high resolution SOURCE 15Q column. The last step is a size
exclusion chromatography (SEC). At the end of the process, we obtained more than
100 mg of pure protein per liter of culture. The three steps of the OXAVLO06 purification
are a Q Sepharose HP ion exchanger, an IMAC column, and finally a SEC. For OXAVLOS,
we obtained 10 mg of pure protein per liter of culture.

SEC experiments revealed that the OXAVLO2 elutes in three major peaks (Fig. 3a),
with one at an elution volume typical of a monomeric DBL (~260 mL). The two addi-
tional peaks elute at about 230 mL and 180 mL, which is similar to the elution velume
of the dimer and multimer, respectively. The three peaks displayed an oxacillinase ac-
tivity. Due to the low precision of oligomeric states of the proteins determined by SEC,
we further characterized these three peaks using size exclusion chromatography
coupled to multi-angle light scattering (SEC-MALS) (Fig. 3b).

The elution was monitored by a UV detector, a MALS detector, and a differential re-
fractometer in line with the SEC column, allowing for the deconvolution of the protein
molar masses (MM) of eluting protein complexes. The major peak in the OXAVL02 sample
was confirmed to result from an equilibrium between a major monomeric form with an
apparent protein MM of 32,000 * 1,000 Da (theoretical MM [tMM)] 31,298 Da) and a dimer
at 62,000 * 2,000 Da (tMM 62,596 Da). Of the two other peaks, the lower elution velume
peak (at 180 mL) contained large aggregates (apparent MM > 3 = 10° Da), while the
higher elution volume peak (230 mL) corresponded to the approximate MM of a dimer at
62,000 = 2,000 Da (tMM 62,596 Da) in equilibrium with protein aggregates. Similar data
were recorded for OXAVLO6 (Fig. S2).

A kinetic profile of the two purified DBL-homologs was performed in the presence
of 50 mM NaHCO, (Table 4). Indeed, in the absence of hydrogenocarbonate, their activity
generally showed an initial burst, followed by a pronounced slowdown, even when the sub-
strate conversion and product accumulation were quite low. Our data indicates that OXAVL02
displays a lower catalytic efficiency compared to OXAVL06. We observed that both enzymes
were not able to hydrolyze amoxicillin, temocillin, cefazolin, and cefotaxime. In addition,
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FIG 3 SEC and SEC-MALS analysis performed on the purified OXAVLO0Z2. (a) SEC analysis of the purified
OXAVLO2. (b) Determination of the multimeric state of OXAVL02 (peaks 2 and 3) by SEC-MALS analysis.
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TABLE 4 Kinetic parameters of OXAVL02 and OXAVLO6 beta-lactamases in 25 mM HEPES pH 7.5 + 50 mM NaCarbonate?

OXAVL02 OXAVLO6
Antibiotics Ko (s ") Km (uzM) K, /Km (uM's") Koy [577) Km (uM) K, /Km (uM 's ")
Ampicillin 20*2 380 =10 0.055 = 0,007 530 = 30 270 =20 203
Carbenicillin 22+1 400 + 20 0.055 * 0.005 380 = 20 1400 * 200 0.25 + 0.05
Piperacillin 3 =002 850 = 30 0.0055 = 0.0003 NH NH NH
Oxacillin 1+0.05 690 * 40 0.0015 = 0.0002 90+ 5 160 *+ 20 0.56 + 0.10
Cephaloridine =125 =400 0.030 = 0.005 24 +3 90 =10 0.26 + 0.06
Nitrocefin Product Inhibition 350 £ 30 2005 175+2
Imipenem 9=1 550 + 50 0.016 = 0.002 09 * 0.05 0.4 + 0.05 2.5*003
Meropenem 0.3 £ 0.05 6+0.2 0.05 * 0.01 NH NH NH

2NH, no hydrolysis. Each kinetic value is the mean and standard deviation of three different measurements.

OXAVLO6 was not active against piperacillin and meropenem. We confirmed also that
the two beta-lactamases displayed a carbapenemase activity. Imipenem was among the
best substrates (k.,/K,, = 0016 and 2.5 uM 's~T for OXAVLO2 and OXAVLO6, respec-
tively). In comparison to values obtained for oxacillin, the k_,/K,, ratios of OXAVLO02 for
meropenem and imipenem were 30- and 10-fold higher, respectively.

DISCUSSION

No OXA-domain family protein detected in Archaea. The focus of this study was
to explore the occurrence of class D beta-lactamases in the prokaryotic world. The
24,916 identified OXA-domain family sequences correspond to 3,510 unique sequen-
ces distributed across 20,343 bacterial strains. This highlighted a well-known redun-
dancy in the NCBI RefSeq database toward clinical strains (26) (Fig. $3). The fact that
none of these OXA-domain family proteins was detected in Archaea could be expected
because Archaea are naturally resistant to beta-lactam antibiotics. Indeed, even when
a pseudomurein is present, the cross-linking of the glycan chains does not involve d-
Ala-d-Ala and thus does not hinge on the activity of penicillin binding proteins.
However, two recent studies identified class A, B, and C beta-lactamase homologues in
archaeal genomes and revealed that archaeal class B and C homologues do show a
weak beta-lactamase activity (21, 28). Therefore, although we did not detect OXA-do-
main family proteins in Archaea, it is possible that archaeal OXA-domain family pro-
teins will be identified in further studies, like for the other classes of beta-lactamases.

Contaminated genomes from local NCBI RefSeq database. |dentification of new
beta-lactamases in some unexpected organisms like Archaea or non-clinical bacterial
strains might seem an exciting finding but could also be artifacts. In 2021, Lupo et al.
assessed the contamination level of 111,088 bacterial genomes in the NCBI RefSeq data-
base and found that 1% of the genomes were contaminated at a minimal threshold of 5%
(26). For the 20,343 genome assemblies used in the current study, 20,200 results were
available, indicating that 143 genomes had been suppressed since then. Among these
20,200 bacterial genomes, 114 showed a contamination level =5%. Those 114 genomes
are distributed across seven phyla: Proteobacteria (78), Firmicutes (29), Verrucomicrobia
(2), Cyanobacteria (2), Chloroflexi (1), Chlorobi (1), and Balneclaeota (1). Obviously, conclu-
sions for contaminated genomes should be taken with caution. For example, the only ge-
nome containing a DBL-homolog sequence in the Balneolaeota phylum is contaminated.
From our data, it is however difficult to identify if this DBL-homolog is part of the contami-
nation or if it is genuinely part of the genome, possibly acquired from an unknown orga-
nism by horizontal gene transfer.

OXA-domain family phylogeny and classification. We inferred the phylogenetic
tree using a matrix of the 188 most conserved AAs (around two thirds of typical DBL
length) from the 1,413 representative OXA-domain family sequences. Those representa-
tive sequences resulted from the deduplication of the 3,510 unique sequences at a
global identity threshold of 95%, which means that, considering their full length, they
are similar to at least 95% of observed identity with member sequences of their dedupli-
cation clusters, Then, a phylogenetic clustering of the representative OXA-domain family
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proteins was computed using the patristic distances taken from the tree (i.e., the sum of
the branch lengths between two leaves). This patristic distance quantifies the number of
AA substitutions computed by the statistical model of sequence evolution. To select the
best clustering parameters, we decided to exclude the clustering solutions with less than
15 clusters. In fact, we noticed that at least half of the OXA-domain family protein
sequences regroup into one single large cluster when fewer than 15 clusters are pro-
duced. The retained parameters yielded 64 clusters, including 19 of size one (singletons).
Despite a larger number of clusters, BLDB reference DBL and pseudo-DBL sequences are
distributed in only 16 clusters, while BlaR from Clostridium difficile and Bacillus lichenifor-
mis are found in cluster 15, and BlaR from Staphylococcus aureus in cluster 18,

Another objective of this study was to suggest a meaningful classification of OXA-
domain family proteins based on their phylogeny. However, the majority of bacterial
strains have only one OXA-domain family protein, indicating that these genes are
essentially orthologous. Moreover, 50 clusters out of 64 contain sequences from organ-
isms belonging to a single phylum or class, which means that sequence diversity
within the OXA-domain family is mostly due to speciation. While it is possible to gener-
ate a classification of class D beta-lactamases based on the clustering obtained in this
study, our results indicate that a more practical classification should rather include a
reference to the species of origin.

Analysis of the BlaR clusters. Because some class D beta-lactamases display more
sequence identity with the C-terminal beta-lactam sensing domain of BlaR than with
other class D beta-lactamases, it was impossible to avoid retrieving types of proteins in
our homology searches. BlaR is also characterized by a N-terminal domain containing
four transmembrane helices and a zinc protease module in loop 2 that is activated
upon acylation of the C-terminal domain catalytic serine by a beta-lactam antibiotic.
This triggers a cascade that eventually leads to the increased expression of either a
beta-lactamase or a resistant PBP (19). As a consequence, BlaR has a total length of
about 600 AAs. The size was therefore used to discriminate between BlaR-homologs
(=550 AAs) and the DBL-homologs (<2350 AAs). Clusters 16 and 17 exclusively contain
BlaR-homologs, while clusters 8, 15, and 18 contain both BlaR- and DBL-homologs
(Table S1). Most BlaR-homologs harbor a polar residue as the third residue of the sec-
ond conserved motif (Table S1) and contain a N-terminal peptidase domain, two spe-
cific features of the BlaR receptor. The only exceptions are a few shorter sequences
found in cluster 18; which have been removed from the database since we down-
loaded them, possibly indicating sequencing errors. Two sequences shorter than 550
AAs and labeled as BlaR-homologs are found in cluster 15. They have the typical con-
served motifs of BlaR but their N-terminal domain is truncated and likely not func-
tional. In this study we noticed that BlaR-homolog genes are more frequent on a plas-
mid nearby a transposase gene. A recent study has shown that Staphylococcus species
have Tn552-like elements carrying the bla operon often located on a plasmid (29). The
authors hypothesized that the Tn552 transposon can mediate the transfer of the bia
operon from a plasmid to the chromosome. This hypothesis would also fit our results
showing a high prevalence of BlaR-homolog genes on plasmids and their proximity
with transposase genes.

Analysis of all the 62 DBL-homolog clusters. The size of the DBL-homolog pro-
teins is very homogenous and the only sequences longer than 350 AAs are three
fusions between a class D and a class C beta-lactamase (cluster 8), possibly homolo-
gous to LRA-13 (20), three sequences with an N-terminal extension (up to 423 AAs in
total) in cluster 21, and a fusion with a crotonase domain (one sequence in cluster 40)
of unknown function. The analysis of the active site motifs (Table S1) shows an almost
perfect conservation of the three motifs characteristic of the catalytic site (SxxK, SxV,
and KTG), as well as of the tryptophan in the omega loop, which is important for the
stabilization of the carboxylated lysine of the first motif. The most variable position is
the second motif valine, which is often substituted by another hydrophaobic AA. Some
clusters do however diverge from this consensus. Indeed, clusters 13, 29, 35, 36, 45,
and 54 contain only one or two sequences and have significantly impaired motifs,
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which are likely not compatible with a beta-lactamase activity. Cluster 12 (eight repre-
sentative sequences), which also has poorly conserved motifs, with an absence of cata-
lytic serine in most cases, is very unlikely to display beta-lactamase activity. In contrast,
cluster 14 (11 representative sequences) has the following conserved motifs: SxxH,
SxH/Q, AS/TG. A sequence from this cluster (OXAVLO1) was selected for in vitro charac-
terization. No beta-lactamase activity was measured on a crude extract, but no over-
expression was detected in our assays, preventing us from drawing any definitive con-
clusion. The conserved motifs are, however, not sufficient to warrant a beta-lactamase
activity, as demonstrated by cluster 19 (Table 51), which regroups so far only pseudo-
DBL sequences like Ybxl or BAC-1 (17, 18).

Probing clusters without class D beta-lactamase representative. Beyond OXAVLO1,
we have selected nine DBL-homologs among the 45 clusters devoid of reference OXA-
domain family proteins to probe their activity. Overall, for seven of the 10 sequences
selected for evaluation, a beta-lactamase activity was detected at least on crude extracts
(Table 3), including two hydrolases active on imipenem (OXAVL02 and OXAVLO6). The
enzymatic studies of these two DBL-homolog enzymes confirmed that they both display
a beta-lactamase activity and hydrolyze efficiently imipenem but that meropenem is
only inactivated by OXAVL02. We also showed that the presence of hydrogenocarbonate
enhances their catalytic activity, a sign of the necessary carboxylation of the first motif ly-
sine for optimal activity. As already shown for numerous other class D beta-lactamases,
the monomeric form OXAVLO2 is in equilibrium with the dimeric form, the monomer
being the predominant form of the enzyme at the concentration tested. These results,
obtained with randomly selected enzymes, confirm that the environmental strains pro-
vide a large reservoir of new resistance genes, which include high potential for resistance
to carbapenems, a family of last resort antibacterials. The acquisition of such genes by
multi-resistant nosocomial strains therefore represents an important threat for the treat-
ment of the related infections. This phenomenon has already been observed with the
chromosome-encoded class A CTX-M-3 from Kluyvera spp., which is at the origin of the
plasmid-borne CTX-M-1-derived cefotaximases produced by clinical isolates (30). This is a
reminder of the importance of an adequate use of the available antibiotics to postpone
as much as possible the emergence of new resistance factors.

Predicting activity profiles from amino acid sequences. The most clinically rele-
vant result would be to deduce the activity profile of an enzyme from its AA sequence.
However, determining the activity of only one representative DBL-homolog per cluster
would not be informative of the specific activity profile of the cluster. In fact, it has
been shown that only one mutated AA can alter the activity profile of a DBL (8, 9).
Although the sequence similarity between the 1,413 representative sequences and
their respective member sequences is high (i.e, at least 95% identity), the identity
between the sequences within one of the 45 non-singleton phylogenetic cluster is low
(i.e, down to 50%) (Table S3). Furthermore, this similarity is certainly undervalued
because it is computed from only 188 unambiguously aligned AAs. Altogether, those
arguments support that, for now, the activity profile of a DBL-homolog cannot be pre-
dicted only based on its AA sequence. This problem is also true for the other classes of
beta-lactamases. Solving this would require a major effert for the high throughput bio-
chemical characterization of the enzymes and the determination of their three-dimen-
sional structure, which is more likely correlated with the substrate specificity than the
AA sequence. While biochemical characterization still represents a significant bottle-
neck, the recent development of the AlphaFold prediction software (31) has put struc-
ture determination within reach. Coensequently, the use of artificial intelligence to pre-
dict the activity profile of enzymes is not as far-fetched as it used to be.

MATERIALS AND METHODS

SQL database. Bioinformatic data generated in this study were stored into a sqlite3 database
(Fig. 51). This database was exploited using SQL queries in order to generate additional results and
statistics.

Reference class D beta-lactamase sequences and identification of OXA-domain family proteins.
A total of 1,617 unique beta-lactamase amino-acid sequences were downloaded from the NCBI

Month YYYY Volume XX Issue XX

Microbiology Spectrum

10.1128/spectrum.00315-22

13

Downloaded from https://journals.asm.org/journal/spectrum on 23 March 2022 by 139.165.112.51.

133



Diversity of Class-D Beta-Lactamases

Pathogen Detection server (ftp://ftp.ncbi.nlm.nih.gov/pathogen/) on December 1, 2017. Among those,
470 DBL were retrieved based on metadata and accession numbers, DBL protein sequences were dedu-
plicated using CD-HIT v4.6 (32) with a global sequence identity threshold of 0.98 and then aligned using
MAFFT v7.273 (33). An HMM profile was constructed from the DBL alignment using the HMMER package
v3.1b2 (34) to identify OXA-domain family proteins in a local prokaryotic protein sequence database.
This local database was built on December 7, 2017 using the protein sequences of 80,490 prokaryotic
genome assemblies stored in the NCBI RefSeq database. OXA-domain family proteins were graphically
selected using the ompa-papl interactive software package (A. Bertrand and D. Baurain; https://
metacpan.org/dist/Bio-MUST-Apps-OmpaPa) and taxonomically annotated using the NCBI Taxonomy.

Annotation of OXA-domain family proteins. OXA-domain family proteins were tagged using a
BLAST-based annotation script (part of Bio-MUST-Drivers) with an identity threshold from 90% to 100%
and an e-value threshold of 1e-20. DBL-homolog sequences used for the annotation were downloaded
from the BLDB (http://www.bldb.eu/BLDB.php?prot=D) (11) on July 22, 2019, to which were added three
sequences of the membrane receptor BlaR from Clostridium difficile (CDT53463.1), Staphylococcus aureus
(P18357), and Bacillus licheniformis (P12287), the bifunctional class C/class D beta-lactamase LRA13-1
(ACH58991.1) (20) and the two intrinsic pseude-DBLs of Clostridium difficile CDD-1 (CZR76508.1) and
CDD-2 (5JQ22628.1) (27).

Domain characterization of OXA-d in family proteins. The potential presence of a signal pep-
tide was predicted using local SignalP-5.0b (35). The organism option was set to “Gram+" for sequences
belonging to Firmicutes and Actinobacteria and “Gram-" for the other phyla. To improve the prediction
of transmembrane helices with local TMHMM v2.0 (36), the signal peptide (if any) was first removed
from the original sequences when the cleavage site prediction probability was greater than or equal to
0.6. For sequences of intermediary length (i.e., between 350 and 550 AAs) and some long sequences
(i.e., greater than 550 AAs), InterProScan v5.37-76.0 with default parameters and disabled use of the pre-
calculated match lookup (37), along with pepwindowall with default parameters from the EMBOSS web
portal (38) were used to distinguish between transmembrane segments and other extensions.

Localization and genetic i 1t of OXA-di in family proteins. A genetic environment
database was built from the bacterial genomes featuring at least one OXA-domain family sequence
using GeneSpy "3 in 1" module, as described in the manual (39). Contig accessions were retrieved from
the database and the corresponding FASTA files were downloaded using the command-line version of
the “efetch” tool from the NCBI Entrez Programming Utilities (E-utilities). PlasFlow v1.1 was used to pre-
dict potential plasmid sequences in the contig FASTA files (40).

Clinical strain determination. BioSample reports associated with bacterial organisms were also
downloaded using efetch (see above). All words of a report were collected and fed to a script that
renamed and standardized them using an OBO (Open Biomedical Ontologies) dictionary. A score was
attributed to each standardized word: +1 for a “clinical” word, 0 for an uninformative word and -1 for a
non-clinical word. At last, a final score was computed for each BioSample according to its collection of
standardized words (see figshare). A bacterial strain was considered as “clinical” when its metadata were
associated with a positive score, “non-clinical” for a negative score and not classified for a null score.

Ali 1t and phyl analysis. After deduplication using CD-HIT v4.6 (32) with a global
sequence identity threshold of 0.95, OXA-domain family protein sequences were aligned using MAFFT
v7.273 (33). Alignments were then carefully optimized by hand using the program “ed” and alignment
columns were manually selected using the program “net,” both part of the MUST software package (41).
The resulting matrix of 1,413 sequences x 188 unambiguously aligned AAs was used to infer a phyloge-
netic tree with RAxML v8.1.17 (42) under the LG+F+G4 model. Support values were initially estimated
through 100 fast bootstrap pseudo-replicates with RAXML then transformed into transfer bootstrap ex-
pectation (TBE) values using the booster algorithm (43).

Phylogenetic clustering. To produce clusters of related OXA-domain family sequences, the phylo-
genetic tree was first converted to a phylo4 object using the readNewick function of the phylobase
R package (44). Then, a patristic distance matrix (dist.mat) was computed using the distTip function
from the adephyloe R package (45) and an adjacency matrix (adj.mat) was computed as follows:
ajd.mat = “’,’,:,:’,‘f’ < 1 with lim.p = max(dist.mat) = x and x varying from 0.10 to 0.50. Clustering was
performed by passing the adjacency matrix to the mcl function of the MCL R package (46) with the
addLoops option set to FALSE, allow1 set to TRUE and the inflation parameter varying from 1.0 to 3.0 by
increments of 0.5. The best parameter combination was chosen by maximizing a score composed of the
normalized entropy and the fraction of monophyletic clusters, following the method of Califice et al.
(47). However, combinations yielding less than 15 clusters were discarded, regardless of their score, in
order to avoid the grouping of most OXA-domain family sequences into a single cluster and retain the
potential to provide a meaningful classification.

DBL-homolog genes selection for lab validation. Based on the phylogenetic clustering of OXA-do-
main family proteins, 10 representative protein sequences (hereafter referred to as OXAVLO1 to
OXAVL10) spread among different clusters corresponding to DBL-homologs were selected as probes for
the functional diversity. The criteria of selection were: (i) the sequence must belong to a cluster with
more than five DBL-homologs and no DBL found in the BLDB; (ii) the length of the sequence must lie
between 250 and 350 AAs and the sequence must have no mutation in the three conserved motifs
defining the class D active site (SxxK, SxV, KT/SG) (except if a mutation is shared by all the sequences of
the cluster); (iii) the sequence must be present in a bacterial species where no DBL is described accord-
ing to the BLDB.

Gene synthesis and expression plasmids. Signal peptides of the 10 selected sequences were
removed and replaced by the PelB leader sequence (48). Then, the corresponding genes were
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synthesized after codon optimization for expression in E. coli. Expression plasmids of OXAVLO1 to
OXAVL10 were purchased from Twist Bioscience (San Francisco, CA, USA). Briefly, the synthesized genes
were cloned into pET24a(+) (Novagen-Merck KGaA, Darmstadt, DE) and inserted between BamHI (at the
5" end of the gene) and Xhol (at 3" end of the gene) restriction sites. All the enzymes were produced by
E. coli BL21(DE3) (Fisher Scientific SAS Illkirch Cedex, FR) carrying pOXAVLO1-pOXAVL10 plasmids in LB
medium supplemented with kanamycin 50 pg/mL (LB-kanamycin).

Antibiotics. Kanamycin was purchased from MP Biomedicals; cefotaxime, cephaloridine, and oxacillin
from Sigma-Aldrich; cefazolin from Pharmacia & Upjohn SpA; imipenem from MSD; meropenem from
Fresenius Kabi NV/SA; ampicillin from Fisher Scientific; amoxicillin from PanPharma; carbenicillin from Pfizer
Italy; piperacillin from Lederle/AHP Pharma; temocillin from Eumedica N.V/S.A; and nitrocefin from Abcam.

A of soluble enzymes exp levels. Six mL of LB-kanamycin was inoculated with
single colonies of E. coli BL21(DE3) carrying the plasmids pOXAVLO1 to pOXAVL10. The precultures were
incubated overnight (O/N) at 37°C with orbital shaking at 250 rpm. Next, 2.5 mL of the different precul-
tures were added to 100 mL of fresh LB-kanamycin. The bacteria were grown to an A, of 0.7 and IPTG
was added at a final concentration of 0.5 mM. The different cultures were divided in two, one incubated
at 37°C and the other one at 18°C. Aliquots (1 mL) of the different cultures at 37°C were taken 0 h, 2 h,
and 4 h after induction. In the case of the cultures incubated at 18°C, two aliquots (0 h and 24 h after
induction) were analyzed. The different aliquots were centrifuged at 5,000 g for 10 min, the bacterial pel-
lets were resuspended in 25 mM HEPES buffer (pH 7.0) and sonicated (three times for 30 seconds each
time at 12 watts [W]). Cell debris was eliminated by centrifugation at 13,000 g for 30 min. 20 uL of the
soluble fractions and pellets were loaded onto a sodium dodecy! sulfate polyacrylamide gel (SDS-PAGE)
(4-20%). The run was performed at a constant voltage (120 V). The beta-lactamase activity of the differ-
ent fractions was determined by measuring the initial rate of hydrolysis of 100 uM Nitrocefin, 1 mM oxa-
cillin, 1 mM ampicillin, and 100 M imipenem.

Production and purification of OXAVL02 and OXAVL06. One hundred mL of LB-kanamycin was
inoculated with a single colony of £. coli BL21(DE3) pOXAVLO2 or E. coli BL21(DE3) pOXAVLO6. The precul-
ture was incubated O/N at 37°C under agitation. Then, 40 mL of the preculture was added to 1 L of fresh
LB-kanamycin. IPTG (100 M final concentration) was added when the culture reached an A, of 0.7. The
cultures were incubated O/N at 18°C. Cells were harvested by centrifugation at 5,000 g for 10 min at 4°C.
The pellets were resuspended in 15 mL 50 mM Sodium Phosphate, 0.5 M NaCl, 20 mM Imidazole pH 8.0
(buffer A) for pOXAVLOZ, and in 25 mM HEPES pH 7.0 (buffer B) for pOXAVLO6. The bacteria were disrupted
with a cell disrupter (Emulsiflex C3 Avestin GmbH, DE), which allows cell lysis at a pressure of 5,500 kPa.
The lysates were isolated by centrifugation at 45,000 g for 30 min. The two supernatants were dialyzed O/
N at 4°C against buffers A and B, respectively. The dialyzes samples were then filtered through a 0.45 um
filter.

For OXAVL02, the supernatant was loaded onto Ni Sepharose (24 mL) (GE Healthcare Europe GmbH,
Freiburg) previously equilibrated with buffer A. The enzymes were eluted with a gradient using 50 mM
Sodium Phosphate pH 8.0, 0.5 M NacCl, 0.5 M imidazole (buffer C). The fractions displaying a beta-lacta-
mase activity were pooled, and then dialyzed O/N against buffer B and loaded onto a Source 15 Q col-
umn 20 mL (Pharmacia Biotech/BioSurplus Inc.,, San Diego, CA, USA) equilibrated with the same buffer.
The enzyme was eluted with a salt gradient using buffer B with 1 M NaCl (buffer D). The fractions were
pooled and loaded on a molecular sieve Superdex 75 GL 500 mL column (GE Healthcare Europe GmbH,
Freiburg, DE) equilibrated in buffer B.

Because the production level of OXAVLO6 was much lower, the first two purification steps were
inverted compared with OXAVLO2. This strategy avoided a poor efficiency of the Ni Sepharose column
caused by an unspecific binding of the crude protein extract that saturates the matrix. Hence, the
cleared supernatant was loaded onto a 10 mL Q Sepharose HP column (GE Healthcare Europe GmbH,
Freiburg) equilibrated in buffer B. The enzyme was eluted with a salt gradient using buffer D. The frac-
tions with a beta-lactamase activity were pooled, and dialyzed O/N in 50 mM Sodium Phosphate pH 7.5,
0.5 M NaCl, 20 mM imidazole (buffer E). The dialyzes sample was loaded onto Ni Sepharose (24 mL) (GE
Healthcare Europe GmbH, Freiburg) previously equilibrated with buffer E. The enzymes were eluted with
a gradient using 50 mM Sodium Phosphate pH 7.5, 0.5M NaCl, 0.5 M imidazole pH 7.5 . The active frac-
tions were collected and concentrated by ultrafiltration on a YM-10 membrane (Amicon) to a final vol-
ume of 2 mL, then loaded onto a molecular sieve Superdex 75 GL (10/300) column (GE Healthcare
Europe GmbH, Freiburg) equilibrated in buffer B.

Conformational characterization of OXAVLO2 and OXAVL06. The oligomeric states of the DBL-
homolog enzymes were analyzed by SEC-MALS (Treos I, WYATT Technology France) (49). The experiments
were performed using a HPLC Bio-inert Shimadzu Prominence LC-20Ai (SHIMADZU Benelux B.V) coupled to
a SPD-20A UVAVIS detector and a RID-20 refractive index detector. The different active fractions isolated by
size exclusion chromatography were dialyzed against a “SECMALS-PBS buffer” (Na,HPO, 10 mM, KH,PO,
1.8 mM, NaCl 137 mM, KCl 2.7 mM pH 7.4). Samples (100 pL OXAVLOZ or OXAVLO6 at 0.5 to 1 mg/mL) were
loaded onto a Superdex 200 Increase 10/300 G column (GE Healthcare Bio-Sciences AB Uppsala) pre-equili-
brated with the “SECMALS-PBS buffer.” The column was calibrated by using bovine serum albumin (BSA)
(MM = 66,430 Da) as reference standard. The data acquisition of melecular mass, distribution of Monomer-
Dimer equilibrium, and percentage of aggregates were estimated using the ASTRA software (49).

Kinetic constants determination. Steady-state kinetic constants (K, and k_,) were determined by
measuring substrate hydrolysis under initial rate conditions and using the Hanes-Woolf linearization of
the Michaelis-Menten equation (50). Kinetic experiments were performed by following the hydrolysis of
each substrate at 30°C in 50 mM HEPES buffer pH 7.5, 50 mM Na,CO,. The reactions were performed in a
total volume of 500 uL at 30°C. BSA (20 pg/mL) was added to diluted solutions of beta-lactamase in
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order to prevent enzyme denaturation. The data were collected with a Specord 50 PLUS spectrophotom-
eter (Analytik Jena). Each kinetic value is the mean of three different measurements.

Data availability. Publicly available data sets analyzed in this study and the companion SQL data-
base can be found here: https://doi.org/10.6084/m9.figshare.18544955.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.4 MB.
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Table S3. Quantile values of the patristic distances within each cluster. The
patristic distance is the sum of the branch lengths connecting two leaves in the

phylogenetic tree. Here all intra-cluster pairwise combinations are considered.

Cluster # seqs Min P25 Median P75 Max

cluster1 4 0.00969 | 0.2059525 | 0.676575 | 0.7019525 | 0.71252
cluster2 16 0 0.415955 0.5568 |[0.7226125| 1.0108
cluster3 46 0.01466 | 0.361375 | 0.81088 | 1.026605 | 1.67419
clusterb 2 0.27086 0.27086 0.27086 0.27086 0.27086
cluster6 16 0.01953 0.15301 0.21419 0.31377 0.54345
cluster? 98 0.01905 0.69301 0.86071 1.03713 1.92185
cluster8 195 0 0.770885 | 0.93889 | 1.110865 | 1.97655
cluster11 4 0.08396 0.30977 0.56715 | 0.6112075| 0.69586
cluster12 8 0.04397 |0.6758725 | 0.839215 | 0.95245 1.48239
cluster14 1 0.044 0.19852 0.24713 | 0.294545 | 0.41045
cluster1s 207 0 0.92162 1.06751 1.22639 2.13709
cluster16 4 0.03267 |0.2215675 | 0.40052 0.59001 0.60036
cluster18 11 0.00888 | 0.086785 | 0.90216 | 0.959735 | 1.07516
cluster19 83 0.00917 | 0.545395 | 0.72186 | 0.847135 | 1.48553
cluster20 9 0.04945 | 0.398155 | 0.715475 | 0.8981125| 1.11107
cluster21 38 0.02332 0.77539 0.95729 | 1.162505 | 1.50658
cluster22 24 0.04456 0.67553 | 1.034565 | 1.400815 | 1.71683
cluster23 23 0.04849 0.5105 0.62438 0.78451 1.37281
cluster26 6 0.15873 0.49242 0.72263 0.83551 1.06572
cluster27 44 0.02671 | 0.5849225 | 0.738465 | 0.9223375| 1.36627
cluster28 55 0.03899 0.62546 0.82497 1.00318 1.7674
cluster30 53 0.02332 | 0.4809275 | 0.62634 1.00227 1.61624
cluster31 3 0.30642 | 0.616195 | 0.92597 0.98358 1.04119
cluster32 4 0.25138 0.26632 0.30462 | 0.405275 0.441

cluster33 4 0.22863 |0.6938975| 0.77468 |1.0105775| 1.06262
cluster34 26 0.07511 0.80561 0.96124 1.10099 1.44135
cluster36 2 0.05568 0.05568 0.05568 0.05568 0.05568
cluster37 29 0.03376 | 0.6354725 | 0.80797 | 0.9243375| 1.29984
cluster38 2 0.31643 0.31643 0.31643 0.31643 0.31643
cluster39 16 0.05838 | 0.419635 | 0.53467 | 0.958935 | 1.13721
cluster40 43 0.02916 | 0.463685 | 0.58767 | 0.694815 | 1.00944
cluster41 6 0.08239 | 0.678715 | 0.81042 0.91188 1.02917
cluster42 11 0.06239 | 0.267915 | 0.39539 0.66776 0.75012
cluster43 19 0.02369 0.57327 0.70553 | 0.865345 | 1.32908
cluster44 55 0.0192 0.20912 0.31989 0.40854 0.96414
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cluster47 3 0.22092 | 0.556305 | 0.89169 0.93107 0.97045
clusterb0 2 0.29347 0.29347 0.29347 0.29347 0.29347
cluster51 2 0.58105 0.58105 0.58105 0.58105 0.58105
cluster54 2 0.58559 0.58559 0.58559 0.58559 0.58559
cluster56 5 0.07076 0.40092 | 0.722035 0.7739 0.82261
cluster57 9 0.02085 |0.0984025 | 0.298545 | 0.443115 | 0.53549
cluster58 12 0.01854 | 0.105465 | 0.14054 0.17294 0.23443
cluster60 66 0.01423 0.52437 0.61548 0.78495 1.57714
cluster61 93 0.0097 0.85578 | 1.085395 | 1.3369775| 2.30433
cluster64 23 0 0.33179 0.56669 0.93299 1.25124
2
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Figure S2. SEC and SEC-MALS analysis performed on the purified OXAVL06.
(A) Size Exclusion Chromatography (SEC) analysis of the purified OXAVL06. (B-D)
Determination of the multimeric state of OXAVLO6 (peaks 1, 2 and 3) by SEC-MALS
(Multi-Angle Light Scattering) analysis.
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Figure S3. Krona chart of the taxonomic diversity of the local NCBI RefSeq
database.
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Abstract

The peptidoglycan (PG; or murein) is a mesh-like structure, which is made of glycan
polymers connected by short peptides and surrounds the cell membrane of nearly all
bacterial species. In contrast, there is no PG counterpart that would be universally
found in Archaea, but rather various polymers that are specific to some lineages.
Methanopyrales and Methanobacteriales are two orders of Euryarchaeota that
harbor pseudomurein (PM) in their cell-wall, a structural analogue of the bacterial
PG. Owing to the differences between PG and PM biosynthesis, some have argued
that the origin of both polymers is not connected. However, recents studies have
revealed that the genomes of PM-containing Archaea encode homologues of the
bacterial genes involved in PG biosynthesis, even though neither their specific
functions nor the relationships within the corresponding inter-domain phylogenies
have been investigated so far. In this work, we devised a bioinformatic pipeline to
identify all potential proteins for PM biosynthesis in Archaea without relying on a

candidate gene approach. After an in silico characterization of their functional

179



domains, the taxonomic distribution and evolutionary relationships of the collected
proteins were studied in detail in Archaea and Bacteria through HMM similarity
searches and phylogenetic inference of the Mur domain-containing family, the
ATP-grasp superfamily and the MraY-like family. Our results notably show that the
extant archaeal muramyl ligases are ultimately of bacterial origin, but likely
diversified through a mixture of horizontal gene transfer and gene duplication.
Moreover, structural modeling of these enzymes allowed us to propose a tentative
function for each of them in pentapeptide elongation. While our work clarifies the
genetic determinants behind PM biosynthesis in Archaea, it also raises the question

of the architecture of the cell wall in the last universal common ancestor.

Introduction

The cell wall is a complex structure that surrounds most prokaryotic cells, protects
them against the environment and maintains their internal turgor pressure (Pazos
and Peters 2019; Meyer and Albers 2020). It also constitutes one of the striking
phenotypic differences between Archaea and Bacteria. Indeed, while most archaeal
species possess a paracrystalline protein surface layer (S-layer; Rodrigues-Oliveira
et al. 2017), other species harbor a large variety of cell-wall polymers (e.g., sulfated
heteropolysaccharides, glutaminylglycan, methanochondroitin) (Albers and Meyer
2011; Meyer and Albers 2020), whereas nearly all bacterial cell walls contain a single
common polymer termed peptidoglycan (PG; also known as murein) (Vollmer et al.
2008; Pazos and Peters 2019). PG is a net-like polymer (Fig. 1) formed by long
glycosidic chains of alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic
acid (MurNAc) units linked by a B-(1—4) bond. To MurNAc is attached a short
peptide, from three to five amino acids (AA) long, usually composed of L-alanine
(L-Ala), D-glutamic acid (D-Glu), meso-diaminopimelic acid (meso-DAP) or L-lysine
(L-Lys), and two D-alanines (D-Ala). This short peptide serves as a bridge between
two glycosidic chains and is built at the final stage of PG biosynthesis (Vollmer et al.
2008; Pazos and Peters 2019). Interestingly, there exists an archaeal cell wall
polymer that shows a three-dimensional structure similar to PG, hence named
pseudopeptidoglycan or pseudomurein (PM). Compared to PG, PM (Fig. 1) contains
N-acetyl-L-talosaminuronic acid (NAT) units linked to GlcNAc through a B-(1—3)

bond, instead of MurNAc, and only has L-amino acids attached to NAT (Konig et al.
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1982; Konig et al. 1993; Meyer and Albers 2020). Depending on the species, both
PG and PM can show variation in their amino acids and glucidic compaosition (Konig
et al. 1982; Vollmer et al. 2008; Pazos and Peters 2019; Meyer and Albers 2020). In
the early 1990s, a PM biosynthesis pathway was proposed (Hartmann and Konig
1990; Kdnig et al. 1993; Hartmann and Konig 1994) and, due to differences between
PG and PM biosynthesis, it was concluded that both polymers had evolved
independently (Kandler and Konig 1993; Scheffers and Pinho 2005; Albers and
Meyer 2011). In contrast to the ubiquity of PG, PM is found only in two orders of
Euryarchaeota: Methanopyrales and Methanobacteriales. In recent phylogenomic
reconstructions, Methanopyrales and Methanobacteriales are both monophyletic and
further form a clade with Methanococcales as an outgroup, all three orders being
collectively termed class | methanogens (CIM) (Bapteste et al. 2005; Williams et al.
2020). Unlike Methanopyrales and Methanobacteriales, the cell wall of
Methanococcales is composed of an S-layer and does not contain PM. This
restricted taxonomic distribution suggests that PM has appeared in the last common
ancestor (LCA) of these two orders of methanogens, after their separation from the
Methanococcales lineage, and thus that PM was not a feature of a more ancient
archaeal ancestor. In other studies, Methanopyrales are basal to the whole clade of
CIM (Williams et al. 2020; Aouad et al. 2022), which would point to a loss of PM in
Methanococcales. However, it has been proposed that the latter topology might be
caused by a long-branch attraction (LBA) artifact (Gribaldo et al. 2006; Da Cunha et
al. 2018).
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Figure 1. Structure comparison of the bacterial peptidoglycan (PG) and the
archaeal pseudomurein (PM). (A) The glycosidic chain of PG is composed of
alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) units
linked by a B-(1—4) bond. In most bacterial species, the pentapeptide attached to
MurNAc is composed of L-alanine (L-Ala), D-glutamic acid (D-Glu),
meso-diaminopimelic acid (meso-DAP; in Escherichia coli) or L-lysine (L-Lys; in
Staphylococcus aureus), and two D-alanines (D-Ala). Interchain cross-linking usually
occurs between the third amino acid (AA) of the first chain and the fourth AA of the
second chain, accompanied by the loss of the D-Ala in position five. This
cross-linking is either (1) indirect, through a pentaglycine bridge in S. aureus, or (2)

direct in E. coli. (B) Instead of MurNAc, PM contains N-acetyl-L-talosaminuronic acid
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(NAT) units linked through B-(1—3) bonds to GIcNAc units. To NAT is attached a
pentapeptide composed of L-Glu, L-Ala and L-Lys. Beyond the lack of D-AA, the
archaeal pentapeptide bears more &- and y-peptide bonds than its bacterial

counterpart.

Regarding PG, it is so crucial for cell survival and growth that even bacteria once
thought to lack PG, like Planctomycetes or Chlamydiae, were actually shown to
synthesize a thin layer of PG, notably during septal division (Liechti et al. 2014;
Jeske et al. 2015; Packiam et al. 2015; van Teeseling et al. 2015; Liechti et al. 2016).
Therefore, the proteins involved in PG biosynthesis have been extensively studied
over the last years, in particular as potential targets for antimicrobial agents
(Bhattacharjee 2016). Usually, many genes involved in PG biosynthesis lie in the
dew (division and cell-wall synthesis) gene cluster. The order of the genes within this
cluster is relatively well conserved across the different bacterial lineages (Tamames
2001; Mingorance and Tamames 2004; Real and Henriqgues 2006), even if some
species lack one or more PG biosynthesis genes in their genome (Pilhofer et al.
2008; Martinez-Torré et al. 2021). A recent reconstruction of the ancestral state of
the dcw cluster showed that the last bacterial common ancestor (LBCA) had a

complete dew cluster, composed of 17 genes (Léonard et al. 2022).

Among the proteins encoded by dcw cluster genes, the four muramyl ligase
enzymes, MurC, MurD, MurkE, MurF, and the D-alanine--D-alanine ligase, Ddl, are
critical for PG biosynthesis. The four muramyl ligase add, respectively and
successively, L-Ala, D-Glu, meso-DAP (or L-Lys) and D-Ala-D-Ala to UDP-MurNAc,
while Ddl binds two D-Ala to yield the D-Ala-D-Ala dipeptide (Pazos and Peters
2019; Egan et al. 2020). Inhibiting one of those genes leads to lysis of the bacterial
cell (Zawadzke et al. 2008; Kouidmi et al. 2014). The muramyl ligases belong to the
ATP-dependent Mur domain-containing family, which further includes four other
enzymes: 1) MurT, which forms a complex with GatD to catalyze the amidation of
D-Glu to D-glutamine (D-Gin) in Staphylococcus species (Minch et al. 2012;
Noldeke et al. 2018), 2) CapB, which plays a role in the formation of the
poly-y-glutamic acid capsule in Bacillus (Makino et al. 1989; Ashiuchi 2013; Hsueh et
al. 2017), 3) cyanophycin synthetase (CphA), which catalyzes the polymerisation of
L-arginine (L-Arg) and L-aspartate (L-Asp) into cyanophycin, a polymer that
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constitutes a nitrogen reserve in Cyanobacteria (Aboulmagd et al. 2001; Sharon et
al. 2021), 4) folylpolyglutamate synthase (FPGS), which is responsible for the
addition of polyglutamate to folate. The FPGS enzyme is found in the three domains
of life: Archaea, Bacteria and Eukarya, but not in methanogenic archaea (Levin et al.
2004; Gorelova et al. 2019; Kordus and Baughn 2019; Kordus and Baughn 2019).
Ddl is part of the ATP-grasp superfamily, including at least 21 groups of enzymes
(Fawaz et al. 2011). Among those, the synthetase domain of carbamoylphosphate
synthetase (CPS; Shi et al. 2018), CarB, is a well-studied enzyme that has been
used to root the tree of life because it results from an internal gene duplication that
occurred before the Last Universal Common Ancestor (LUCA) (Lawson et al. 1996;

Philippe and Forterre 1999; Cammarano et al. 2002).

With the advances in genome sequencing, homologues of genes involved in PG
biosynthesis, including muramyl ligases, have been identified in Methanopyrales and
Methanobacteriales (Smith et al. 1997; Slesarev et al. 2002; Samuel et al. 2007;
Leahy et al. 2010). Consequently, it was suggested that, despite the difference
between the two biosynthetic pathways, the evolution of PG and PM are connected.
More precisely, archaeal PM could have arisen from horizontal transfers (HGTs) of
PG genes from Bacteria (Graham and Huse 2008; Subedi et al. 2021; Ithurbide et al.
2022). Last year, Subedi et al. 2021 re-investigated the PM biosynthetic pathway
proposed by (Leahy et al. 2010) and resolved the first structure of an archaeal
muramyl ligase, which they named pMurC, after its supposed homology with
bacterial MurC. These recent studies have thus led to an increase in the number of
candidate genes for PM biosynthesis. However, their function and exact role in the

different steps of PM biosynthesis have still to be experimentally validated.

In the present work, we used a de novo in-silico approach to identify candidate
genes for PM biosynthesis, characterized their functional domains using various
prediction software and assessed the taxonomic distribution of their homologs in
both bacterial and archaeal domains. We also investigated the evolutionary origins of
PM by performing phylogenetic analyses of the Mur domain-containing family, the
ATP-grasp superfamily and the MraY-like family using multiple variations of the taxon
sampling and different AA substitution models. Our results reveal a bacterial origin of

the four main archaeal muramyl ligases, which probably traces back to two HGT
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events in an ancestor of Methanopyrales and Methanobacteriales, followed by one
or two rounds of gene duplication, depending on the considered gene. Moreover, in
silico structural characterization of the muramyl ligases from two model archaea

allowed us to tease apart their potential functions in PM biosynthesis.

Results

Collection of potential proteins for pseudomurein biosynthesis

For the identification of candidate genes for pseudomurein (PM) biosynthesis
following an approach independent of already identified genes, we used the whole
proteomes of ten archaeal organisms, corresponding to five PM-containing archaea
(i.e., four Methanobacteriales and one Methanopyrales) and five non-PM
Euryarchaeota (i.e., one Methanococcales, two representatives from different orders
of Methanomicrobia, one Archaeoglobales and one Thermoplasmatales). The
protein sequences of the ten archaeal assemblies were first clustered into 6,321
orthologous groups (OGs; clusters named from OGO0000001 to OG0006321). A
taxonomic filter allowed us to select 82 OGs specific to the PM-containing archaea,
among which 26 OGs contained sequences of all five PM-containing archaea,
whereas 56 OGs contained sequences of the only Methanopyrales and three
Methanobacteriales (retained to maximize the sensitivity of our search). No OG was
specific to the four Methanobacteriales. The paralogue-targeting approach (see
Material and Methods) allowed us to identify 20 additional OGs. In parallel, eight
OGs were selected using three pseudomurein-related HMM profiles downloaded
from the NCBI CDD (Conserved Domain Database) (see Material and Methods). In
total, 110 OGs were thus identified as candidates for PM biosynthesis (Fig. S1).

Genetic environment of candidate proteins

Synteny analysis revealed that 22 out of 110 OGs are encoded by genes clustered in
five regions of the genomes of PM-containing archaea, which we termed clusters A
to E (Fig. S2). In silico functional analysis indicates (Table S1; sheet 1 to 3) that
proteins of cluster A and B may be involved in PM biosynthesis while proteins of

clusters C, D and E are probably not. Cluster C is a bidirectional cluster, where
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annotated proteins belong to different pathways. Indeed, OGO0001177 and
OG0001178 proteins are associated with pilus assembly proteins and/or surface
proteins, while OG0001176 and OG0000094 can be associated with cell shape or
gene regulation (the latter is not identified in our pipeline but its gene is always
located downstream of the OG0001176 gene). Cluster D is related to nucleic acid
metabolism or cellular signal transduction (Braun et al. 2021), whereas cluster E
code for the four proteins that compose the methyl-coenzyme M reductase, which is
implied in methane formation (Chen et al. 2020). Very recently, two potential clusters
for PM biosynthesis were identified using bacterial proteins from PG biosynthesis as
BLAST queries (Subedi et al. 2021). Those clusters correspond to our clusters A and
B. Cluster A is composed of five genes: 1) OG0001014, which was experimentally
characterized as the smallest CPS (Popa et al. 2012), 2) OG0001163, a type 4
glycosyltransferase homologue to MraY, 3) OG0001473, a Mur domain-containing
protein, 4) OG0001162 and 5) OG0001472, two hypothetical proteins. Regarding
cluster B, it is composed of three genes: 1) OG0001150, a Mur domain-containing
protein, 2) OG0001147, a hypaothetical protein and 3) OG0001146, a MobA-like NTP
transferase domain-containing protein. In addition, two genes of Mur
domain-containing proteins (i.e., OG0001148 and OG0001149) can be located either
in cluster A or cluster B, and even outside any cluster, depending on the
PM-containing species considered. Furthermore, another PM-specific gene
(OG0000796, coding for a hypothetical protein) is located just downstream of the
0G0001472 gene in the genome of Methanopyrus sp. KOL6, while a second one
(OG0000169, coding for a Zn peptidase) is only three genes away from the
0OG0001146 gene in Methanothermobacter thermautotrophicus str. Delta. Based on
the genetic environment of clusters A and B, we attempted to identify a conserved
regulon for PM biosynthesis by phylogenetic footprinting (Cristianini and Hahn 2006;
Anderssen et al. 2022). However, unlike in Bacteria (Anderssen et al. 2022), such

analyses were unsuccessful on our archaeal dataset (Supplementary data).

Taking into account OGO0000094, identified by its conserved localisation within
cluster C, our pipeline recovered 23 syntenic genes (out of 111 OGs), of which half
are likely to be involved in PM biosynthesis (Table 1). For clarity, in the following, the
four Mur domain-containing proteins OG0001148, OG0001148, OG0001150 and
0G0001473 will be arbitrary called Mura, Murf3, Mury and Murd, respectively, without
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considering any specific homology with bacterial MurCDEF. Most of the proteins
encoded in clusters A and B have no predicted signal peptide (SP) and are either
cytoplasmic or transmembrane (TM) proteins. TM segment prediction was used as a
complement to SP prediction. It allowed us to distinguish between cytoplasmic and
transmembrane proteins, and revealed that only OG0000796, OG0001163 and
0OG0001472 are TM proteins. OG0000169 and OG0001162 feature a Sec SP and
are thus the only exported proteins of these gene clusters. In PM-containing
archaea, the synteny of the two genes of 0G0001472 and murd is highly conserved.
However, in Methanothermobacter thermautotrophicus str. Delta, both genes were

annotated as pseudogenes and thus not predicted as proteins.

Table 1. Overview of the proteins identified in our search for genes involved in
PM biosynthesis. Orthologous Groups (OGs) composing the identified gene
clusters, named clusters A to E are listed. For each OG, there is the functional

prediction of InterProScan (if any), the predicted signal peptide type (SP) and the

number of predicted transmembrane (TM) segments (0 = cytoplasmic, 1 =
monotopic, >1 = polytopic).
Cluster Orthologous Groups InterProScan Prediction Signal #TM
peptide
A 0G0001014 CPS Other 0
0G0001163 MraY-like Other >1
0G0001473 Muramyl ligase (= Murd) Other 0
0G0001162 ! Sec 0
060001472 / Other 1
0G0000796 / Other >1
B 0G0001150 Muramyl ligase (= Mury) Other 0
0G0001147 / Other 0
0G0001146 MobA-like NTP transferase domain Other 0
0G0000169 Zn peptidase Sec 0
A-B 0G0001148 Muramyl ligase (= Mura) Other 0
0G0001149 Muramyl ligase (= Murf3) Other 0
c 0G0001210 Aminotransferases class-| Other 0
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pyridoxal-phosphate attachment site
0G000009%4 MreB/DnaK-like Other 0
0G0001176 Coiled coil protein Other 0
0G0001177 Flp pilus assembly protein Other 1
RecpC/CpaB
0G0001178 Sortase E Other >1
D 0G0001213 Zc3h12a-like Ribonuclease NYN Other 0
domain
0G0001214 Nucleotide cyclase Other >1
E 0G0000266 Methyl-coenzyme M reductase, beta | Other 0
subunit
0G0000231 Methyl-coenzyme M reductase Other 0
operon protein D
0G0000230 Methyl-coenzyme M reductase, Other 0
gamma subunit
0G0000229 Methyl-coenzyme M reductase, Other 0
alpha subunit

Taxonomic distribution of candidate proteins and their

homologues

To ensure the completeness of the selected OGs, we looked for corresponding
pseudogenes or mispredicted proteins in the genomes of the five PM-containing
archaea (see Material and Methods). After completing the OGs, we retained only
those containing protein sequences from all five PM-containing archaea, decreasing
the number of OGs from 111 to 49. Interestingly, no OG from the five syntenic
regions was discarded. Similarity searches in three local databases showed that 15
OGs are widespread (though not universal) among Bacteria and Archaea, 9 OGs
have homologues only in bacteria, while 25 OGs are exclusive to archaea, among
which 15 to PM-containing archaea (Fig. 2; for details see Table S2). In clusters A
and B, which likely encode proteins involved in PM biosynthesis, 6 OGs are
exclusive to Methanopyrales and Methanobacteriales whereas 7 OGs share
homology with bacterial proteins. We also noticed that our HMM profiles of the four

muramy! ligases (i.e., Mura, Murf3, Mury and Murd) recovered a common set of
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sequences, indicating that Muralyd are specifically related. According to this
taxonomic distribution, we further investigated the origin of CPS, the MraY-like and
the four muramyl ligases Muraftyd. The MobA-like NTP transferase, OG0001146,
was not considered for phylogenetic analysis because, compared to the
aforementioned proteins, no homologous protein was identified in the representative
bacterial database (nor for 0G0001215 and OG0000138). However, some bacterial
homologues were identified when we determined the taxonomic distribution of the 49
OGs using the (much larger) prokaryotic database.
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Figure 2. Taxonomic distribution patterns of the 49 retained orthologous
groups (OGs). The four OGs 0G0001148, OG0001149, OGO0001150 and
0OG0001473 are considered together and referred to as Murafllyd, OG0O001014 is
referred to as CPS and OG0001163 as MraY-like. Black lines delineate gene clusters
in the genomes of PM-containing archaea (clusters A to E). Full circle = gene

present in the taxonomic group; empty circle = gene absent from the taxonomic

group.
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Phylogenetic trees

ATP-grasp superfamily

The CPS from the cluster A of PM-containing archaea, as well as the Ddl from the
dew cluster of bacteria, are member proteins of the ATP-grasp superfamily. Due to
the large number of protein functions and architectures within the ATP-grasp
superfamily (Fawaz et al. 2011), we focused our phylogenetic analyses on the
ATP-grasp domain. Furthermore, we wanted to investigate whether CPS is closely
related to Ddl (through HGT for instance). Thus, we excluded eukaryotic ATP-grasp
proteins from our analyses. In the local databases, we identified 8,013 unique protein
sequences containing at least one ATP-grasp domain, which are distributed across
1387 prokaryotic organisms. ATP-grasp domains were spliced out of full-length
proteins, yielding a total of 12,074 domain sequences, then sequence deduplication
led to 2344 sequences from which 149 highly divergent sequences were removed.
Annotation showed that 1788 domain sequences correspond to 17 members of the
ATP-grasp superfamily, while 406 sequences have no similarity with reference
ATP-grasp sequences (see Material and Methods). We also observed that PyC,
PccA and AccC reference sequences annotate sequences belonging to the same
monophyletic group. These three enzymes use hydrogenocarbonate as a substrate
(Diesterhaft and Freese 1973; Shen et al. 2006; Hou et al. 2015), which could
explain the phylogenetic proximity of their ATP-grasp domain sequences.
Accordingly, we decided to indistinctly tag the whole group with the three
annotations. A similar observation and decision were made for PurK and PurT
proteins, though the former uses hydrogenocarbonate as its substrate, while the

latter uses formate (Mueller et al. 1994; Marolewski et al. 1997).

Due to an internal gene duplication that occurred before LUCA (Lawson et al. 1996;
Philippe and Forterre 1999; Cammarano et al. 2002), the seven phylogenetic trees
(see Material and Methods) were rooted on CarB, the monophyly of which is
supported by high statistical values. Despite a low topology conservation between
the different evolutionary models and number of tree search iterations, some
recurring patterns can be observed (Fig. 3 and Fig S3 to S8). RimK ATP-grasp

domain sequences are always paraphyletic, due to the inclusion of GshB, GshAB
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and CphA, the latter two clustering into a smaller clan. The monophyly of
Acetate--CoA ligases AcD (Musfeldt and Schonheit 2002) is maximally supported
and a long branch is present at the base of the group. Except for the C40 model (Fig
S5 and S6), AcD forms a clan with the Succinate--CoA ligase SucC (Joyce et al.
1999). The position of the other members of the ATP-grasp superfamily is much
more elusive. For example, Pur2 (Cheng et al. 1990) emerges somewhat alone in
the LG4X tree (Fig. 3), whereas it forms a clan with either AcD and SucC in the four
C20 and C60 trees (Fig S3-4 and S7-8) or only with SucC in the two C40 trees (Fig
S5 and S6). Similarly, albeit Ddl and CPS branch together in one C20 tree with a
branch support of 63 (Fig S3), their respective positions within the ATP-grasp
superfamily are unstable (Fig 3 and Fig S3 to S8). Therefore, there is no strong
phylogenetic evidence for a specific relationship between the Ddl and CPS proteins.
In contrast, CPS is never close to CarB, which is at odds with the less extensive

phylogenetic analyses of Popa et al. 2012.
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Figure 3. Phylogenetic tree of the ATP-grasp superfamily rooted on CarB. The

tree was inferred from a matrix of 2,194 sequences x 180 unambiguously aligned

AAs using IQ-TREE under the LG4X+R4 model. Tree visualization was performed

using iTOL. Bootstrap support values are shown if greater or equal to 50. Branches

were collapsed on sequence annotation based on reference sequences. Black

collapsed branches correspond to unannotated sequences.

MraY-like family

Homology searches revealed that the bacterial homologue of OG0001163 is the
glycosyltransferase 4 (GT4) MraY. According to the NCBI CDD (Lu et al. 2020),
MraY is part of the MraY-like family, which further includes WecA (Amer and Valvano
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2001), WbpL (Campbell et al. 1997; Price and Momany 2005), and eukaryotic and
archaeal GPT (Dal Nogare et al. 1998). In addition to the MraY-like OG0001163, our
pipeline has highlighted transmembrane proteins in OG0001207 (Fig. 2), for which
the only bacterial homologue also has a MraY/WecA-like GT4 domain. Therefore, we
decided to add the sequences of OG0001207 to the phylogenetic analysis of the
MraY-like family. Although only one sequence similar to OG0001207 had been
identified in the bacterial database, 62 additional bacterial OG0001207 homologues
were identified in the (larger) prokaryotic database. According to the study of Lupo et
al. 2021, none of the genomes coding for those protein sequences are considered as
contaminated, which suggests that OG0001207 homologues genuinely exist in these
bacteria. Overall, a total of 1267 sequences from the MraY-like family were identified
in our databases, corresponding to 1071 unique sequences. Interestingly, 773
sequences among 1267 were identified by two or more HMM profiles of the
individual members of the MraY-like family. During the annotation pipeline, six
bacterial sequences remained unannotated due to their ambiguous position within
the preliminary guide tree (see Material and Methods). Moreover, reference
sequences of WecA and WbpL annotated putative sequences from the same

monophyletic group and thus, the whole group was considered as WecA/WbpL.

Due to this non-universal taxonomic distribution and lack of an ancestral gene that
could be present in the genome of LUCA, the three MraY-like family trees (see
Material and Methods) were left unrooted. Phylogenetic analysis showed that each
of the five members of the MraY-like family are monophyletic and all supported by
high bootstrap values. Moreover, MraY formed a clan with WecA/WbpL while GPT
formed a clan with OG0001163 and OG0001207 (Fig. 4). Those results are similar
for the three evolutionary models LG4X, C20 and C40. Regarding the six
unannotated sequences, the sequence of Synifrophaceticus schinkii is always basal
to 0OGO0001207, whereas the group composed of two sequences of
Ruminococcaceae sp. and two sequences of Treponema sp. is always basal to
MraY. The last sequence from Ruminococcus sp. is basal to MraY in the LG4X tree,
while it is basal to WecA/WbpL in the C20 and C40 trees (Fig. S9 and S10).
Taxonomic analysis revealed that Mra¥Y and WecA/WbpL are exclusive to bacteria,

while GPT is only found in archaea. Regarding OG0001163, it is exclusive to
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PM-containing archaea, as would be OG0001207, ignoring the few exceptions
discussed above.
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Figure 4. Unrooted phylogenetic tree of the MraY-like family. The tree was
constructed from a matrix of 1,070 sequences x 408 unambiguously aligned AAs
using IQ-TREE under the C40+G4 model. Open circles correspond to bootstrap
support values under 90. Blue sequences correspond to a MraY annotation, green to
WecA/WbpL, red to OG0001163 (MraY-like), yellow to OG0001207, purple to GPT,

and black to unannotated bacterial sequences.

Mur domain-containing family

Homology searches allowed us to identify 3398 unique sequences distributed across
755 prokaryotic organisms. These seqguences correspond to 12 members of the Mur

domain-containing family, which are the four bacterial MurCDEF, the four archaeal
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MuralRyd, MurT, CapB, CphA and FPGS. Taxonomic distribution within each member
protein group revealed that MurCDEF and CphA are specific to bacteria, Muralyd
are specific to PM-containing archaea, while MurT, CapB and FPGS are found both
in Bacteria and Archaea, albeit not universally. According to the function and ubiquity
of FPGS, we assumed that a FPGS protein was already present in LUCA, and trees
were rooted on the corresponding clan. The phylogenetic trees, inferred with three
models from a matrix of 3407 sequences x 550 AAs including the 12 members of the
Mur domain-containing family, showed that each member group is monophyletic and
supported by high statistical values (bootstrap values around 100; Fig S11 to S13),
except for the long-branched sequence of Francisella noatunensis, tagged as MurE,
which is positioned basal to the CphA clan (except in the C20 tree). In spite of the
solid monophyly of each Mur domain-containing family member, the recovered
relationships between these members (i.e., the topology of the family tree) depend
on the evolutionary model (LG4X, C20 or C40). We made the same observation for
phylogenetic reconstructions based on a smaller matrix restricted to the most
conserved AAs over the full-length sequence (3386 sequences x 228 AAs) (Fig. S14
to S16).

In order to investigate the orthology relationships between the four bacterial muramyl
ligases MurCDEF and their uncharacterized archaeal homologues Murallyd, we
performed phylogenetic analyses using only one out of four potential outgroups
among MurT, CapB, CphA and FPGS, under the three models (Fig. 5a and Fig S17
to S27). In these trees, Mura and Murf3 always group together, and further form a
clan with Mury and MurD in 11 trees out of 12. Murd groups with MurC in eight of the
single-outgroup trees. Furthermore, MuraftyD and MurdC form a clan in five trees,
while this larger clan further includes MurT in the three trees where the latter is
present. Interestingly, the sequence of Francisella noatunensis, tagged as MurE,
groups with CphA instead of MurE when CphA is considered during phylogenetic
inference. In the CapB and CphA outgroup trees computed with the C40 model,
Murd branches inside the MurE clan, within Firmicutes. Even though such an
alternative relationship would fit the structure of Methanothermus fervidus Murd
(PDB codes 6VR8 and 7JT8), described as a ‘type E peptide ligase’ (Subedi et al.
2022), the analysis of the two matrices under the more sophisticated PMSF
LG+C60+G4 model (Fig S28 and S29) did not return that topology, and instead

195



supported the first solution. Besides, two phylogenetic trees focusing on indels, with
FPGS as the only outgroup (see Material and Methods), tend to confirm the first
topology too (Fig 5b and S30). Indeed, when using a binary encoding, we also
observe a clan formed by MuraltyD and MurdC, which is supported by a bootstrap
value of 100, while MurE and MurF are paraphyletic. However, in those indel trees,

Murfs forms a clan with Mury rather than Mura.

In parallel, jackknife support values from species resampling analyses (Table 2; see
Table S3 for complete results and Material and Methods for details) confirmed the
monophyly of each of MurC, MurD, Mura, Murf3, Mury, Murd, CapB and FolC with
jackknife support ranging between 99.7% and 100% under the three evolutionary
models. Support for MurE, MurF and CphA is slightly lower and lies between 89.5
and 95.7%, whereas support for MurT is really low, with values ranging from 37.5 to
51.1% (Table 2 and Table S3). ASTRAL trees (Fig. S32 to S34) showed that the
sequences of Francisella noatunensis (tagged as MurE) and Solemya velum gill
symbiont (tagged as MurF) both group with CphA, which explains the lower jackknife
support for the latter. When these two sequences are instead considered as
belonging to CphA, support increases to 100% under the three evolutionary models.
Support for MurE and MurF also increases (Table 2), which suggests that both
sequences were mistagged by the annotation pipeline and rather are (divergent)
CphA proteins. Furthermore, LG4X and C40 species trees revealed that MurT is
polyphyletic and split into two distinct clans: 1) a large one composed of bacterial
and Methanobacteriales sequences, and 2) a smaller one composed of sequences
of Methanopyrales and Methanobacteriales, which we termed MurT-like. Indeed,
support for MurT increases to 99.7% when MurT-like sequences are considered as a
separate clan (Table S3). ASTRAL trees (Fig. S32 to S34) also confirmed the
relationships between the eight muramyl ligases observed in the single-outgroup
trees, even if those are blurred by the unstable positions of MurT and MurT-like.
Mura and Mur® are clustered in the three trees with a jackknife support of 86%,
71.3% and 66.7%, under LG4X, C20 and C40 models, respectively (Table 2).
Regarding Mury, it groups with MurT-like in LG4X (jackknife support of 39.0%) and
C40 (38.9%) trees, which further form a clan with MurD (27.9% and 31.3%), whereas
Mury forms a clan with only MurD in the C20 tree (37.3%). Moreover, Murd and
MurC form a clan in the LG4X ASTRAL tree (47.5%), but are paraphyletic in the C20
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(30.9%) and C40 (29.6%) trees. Murally, MurD and MurT-like are grouped in the
LG4X (27.5%) and C40 (15.9%) ASTRAL trees. In addition, MuraRyD, MurdC, MurT
and MurT-like are grouped in the C20 (22.6%) and C40 (29.7%) trees.
Symmetrically, these analyses revealed that MurE forms a clan either with MurF
(30.7%, 16.4% and 14.7%) or CphA (36.8%, 34.1% and 30.6%) (Tables 2 and S3).
Moreover, CapB appears to be closely related to FPGS in C20 and C40 ASTRAL
trees, with a jackknife support of 62.1% and 65.5%, respectively. As expected, the
clan formed by MurE, MurF, CphA, FPGS and CapB has the same jackknife support
as its counterpart (MuralRyD&CTT-like) in C20 (22.6%) and C40 (29.7%) trees
(Tables 2 and S3). Therefore, it appears that the primary sequences of MurEF
proteins are quite distinct from the six other muramyl ligases MuraBydCD.

Table 2. Jackknife support values computed from the 1000 replicates of species
resampling under three phylogenetic models: LG4X+R4, C20+G4 and C40+G4.
Specific clans are shown if the support value reaches 200%. in at least one of the
three models. Here, the two misclassified sequences of MurE and MurF are

considered as CphA sequences. For complete results, see Table S3.

Support value (%)

Clan LG4X C20 Cc40

CapB 1000 1000 1000
CphA 1000 1000 1000
FPGS 1000 998 997
MurC 1000 1000 1000
MurD 1000 1000 1000
MurE 993 930 935
MurF 990 998 994
MurT 357 511 510
Mura 1000 1000 1000
Murf® 1000 1000 1000
Mury 1000 1000 999
Murd 1000 1000 1000
a- 860 713 667
D-y 379 373 356
C-5 475 309 296
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E-F 307 164 147
CapB-FPGS 269 621 655
CapB-& 208 108 163
CphA-FPGS 322 109 110
CphA-E 368 341 306
T-y 87 211 261
CphA-E-F 242 141 145
CphA-FPGS-E 258 72 67
CphA-FPGS-E-F 243 84 70
D-T-a-R-y 136 159 208
CapB-CphA-FPGS-C-E-F-5 136 159 208
CapB-CphA-FPGS-E-F-5 188 324 404
C-D-T-a-R-y 188 324 404
C-D-T-a-R-y-5 94 226 297
CapB-CphA-FPGS-E-F 94 226 297
C-D-E-F-T-a-R-y-& 58 189 258
CapB-CphA-FPGS 58 189 258
CapB-FPGS-5 143 204 270
T-a-R 115 200 143

Overall, our analyses showed that neither MurT nor CphA should be considered as
an outgroup for the Mur domain-containing family. Indeed, we observe that MurT
sequences form either one or two (MurT + MurT-like) clans, which emerge from
within the larger clan formed by the six muramyl ligases MuraBydCD. In spite of the
difficulty to determine the exact positions of MurT and MurT-like, topology and
jackknife support tend to indicate that MurT sequences derive from the same
ancestral gene as MuralRydCD. In contrast to the other members of the Mur
domain-containing family, CphA originates from the fusion of two functional domains:
1) an ATP-grasp domain at the N-terminal region (see ATP-grasp superfamily) and 2)
the Mur ligase domain at the C-terminal region. This C-terminal region appears to be
closely related to MurE and MurF in our phylogenetic inferences. Regarding CapB,
species resampling showed that it is not related to the four bacterial muramyl ligases
MurCDEF nor to the four archaeal muramyl ligases Muraflyd, but more likely to
FPGS (Table 2), thus indicating that it can be used as an outgroup to study the
relationships between MurCDEF and MuraRyd. However, unlike FPGS, CapB

distribution is more restricted, the gene being found only in Gammaproteobacteria,
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Bacilli, Synergistetes, Halobacteria and a few Methanosarcinales and Korarchaota,

according to our taxonomic analyses.
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Figure 5. Phylogenetic trees of the Mur domain-containing family rooted on

FPGS. (a) The tree was inferred from a matrix of 3,046 sequences x 543
unambiguously aligned AAs using IQ-TREE under the C40+G4 model. (b) “Indels”
tree inferred from a matrix of 2997 sequences x 2243 unambiguously aligned AAs
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using RAXML under the BINGAMMAX model. Tree visualization was performed
using iTOL. Bootstrap support values are shown if greater or equal to 50. Branches

were collapsed on sequence annotation.

3D models of the archaeal Mur ligases

As the four archaeal muramyl ligases do not have straightforward orthology
relationships with their four bacterial counterparts, phylogeny alone cannot help
determining the origin of those enzymes. However, the 3D structure of proteins can
be used as a complement to unravel the evolution of muramyl ligases (Chang et al.
2004; lllergard et al. 2009). The structures of “Mura” (PDB code 6VR7) and “Murd”
(PDB codes 6VR8 and 7JT8) from Methanothermus fervidus are available in the
Protein Data Bank (PDB). This data was complemented by the 3D models of the
MuraRyd ligases from M. fervidus and Methanothermus smithii obtained with the
AlphaFold software (Jumper et al. 2021). Importantly, the Mura and Murd models
were obtained using a version of the PDB reference database predating the release
of the corresponding structures to assess the accuracy of AlphaFold on this type of
protein. The overall quality of all the models is very good, with average pLDDT
(predicted local-distance difference test) values of the best model superior to 90%
and only a few loops with significantly lower pLDDT values (Fig. S35). For Mura from
M. fervidus, the rms (root-mean-square) deviation between the crystallographic
structure and the AlphaFold model calculated for the Ca is 2.1A, while it is below
0.7A when calculated separately for each of the three domains. For Murd, these
values are 2.43A and below 1.0A, respectively. This shows that the AlphaFold
models are of very high accuracy for the individual domains but with some slight

movements observed between the domains.

As the nature of the AAs transferred to the pseudomurein precursors depends on the
structural features of the C-terminal domain of the various Mur ligases, the 3D
structures of Murallyd were compared with those of MurCDEF to identify their
respective role in PM biosynthesis. For Murd, a clear homology was observed with
the structure of the C-terminal domain of MurC (Mol Clifford D. et al. 2003), which
adds L-Ala to MurNAc in Bacteria (Fig. 6a). The residues surrounding the L-Ala
moiety are either strictly conserved (H198, R377, A459, H348 in MurC from
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Haemophilus influenzae) or substituted by an identical AA from a different structural
element (R380 in H. influenzae) or substituted by residues with similar properties
(H376 by a glutamine and Y346 by a phenylalanine). The AA added by Murd to the
archaeal PM peptide will therefore likely be an L-Ala as well, further strengthening
the phylogenetic link identified between Murd and MurC. However, as recently
reported, the N-terminal domain of Murd is more closely related to the corresponding
MurE domain (both the primary and secondary structures) than to the MurC domain
(Subedi et al. 2022).

A second significant match was observed between the structure of C-terminal
domains of Mury and MurD (Bertrand et al. 1999), which is responsible for the
addition of D-Glu in Bacteria (Fig. 6b). The conservation is less strict in this case
(only 1416 of MurD from E. colfi is conserved in Mury), but the functionality of other
AAs surrounding the D-Glu substrate is maintained. S415 and F422, which stabilize
the y-carboxylic acid through their backbone nitrogen and serine hydroxyl, are
replaced by the backbone nitrogen of a glycine and a subsequent glutamine. In PM,
the only AA with a carboxylic group away from the reaction center is the L-Glu added
at the fifth position through its y-carboxylic acid. This reaction must however involve
a significant modification in the vicinity of the reaction center, as the functional
groups of the stem peptide and AA added are inverted (bond between the vy
carboxylic acid of L-Glu and € amine of L-Lys at the third position of the peptide). In
this context, it is therefore difficult to interpret the replacement of K348 and T321,
which stabilize the a-carboxylic acid in MurD, by an arginine and a lysine,
respectively, as well as the presence of an arginine and an aspartic acid (R312 and
D289 in M. fervidus) close to the reaction center. While the ligation of L-Glu to the
L-Lys in third position by Mury is not fully validated by the comparison with MurD, it
remains the most likely role of this enzyme.

For Mura and Mur3, the comparison with the structure of the C-terminal domain of
bacterial Mur enzymes did not reveal obvious similarities. However, in the Mura
structure from M. fervidus and the model from M. smithii, two glutamic acids are
conserved in the cavity usually accommodating the substrate, suggesting a role in
the ligation of the L-Lys rather than the second L-Ala. This would leave Murf for the
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addition of the other L-Ala of the PM stem peptide, but it is difficult to verify because

the two AlphaFold models of Murld analyzed are not congruent in this region.
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Figure 6. Identification of the amino acid recognized by the C-terminal domain
of Murd and Mury. (a) Superimposition of the Murd structure from M. fervidus (PDB
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code BVRS; purple) with the AlphaFold model of Murd from M. smithii (pink) and the
MurC structure from Haemophilus influenzae (PDB code 1P3D; light cyan) in
complex with UDP-MurNAc-L-Ala (green). H-bonds between the L-Ala moiety and
MurC are shown as yellow dashed lines. (b) Superimposition of the AlphaFold
models of Mury from M. fervidus (purple) and M. smithii (pink) and the MurD
structure from E. coli (PDB code 4UAG; light cyan) in complex with
UDP-MurNAc-L-Ala-D-Glu (green). H-bonds between the D-Glu moiety and MurD

are shown as yellow dashed lines.

Discussion

Our phylogenetic analyses of the Mur domain-containing family show that each
member of the Mur family is monophyletic. However, the relationships between those
members are hard to establish owing to the low phylogenetic signal within the family
and because phylogenetic artifacts, such as LBA (Gouy et al. 2015), probably affect
phylogenetic reconstruction, especially for the trees including all non-Mur
“outgroups”. Indeed, compared to MurCDEF, archaeal muramyl ligases (here termed
MuraRyd) are characterized by very long branches, and particularly Murd, which has
experienced more than one substitution per site since its probable separation from
MurC. When focussing on Mur trees with only one outgroup, the topology is quite
robust to different evolutionary models and species resampling within each member
of the Mur domain-containing family. In this topology, MurD forms a clan with
Mura+Murf+Mury, MurC a clan with Murd, and MurE a clan with MurF, a result that
is also compatible with unrooted trees devoid of any outgroup (Fig S36 to S38).
Moreover, structural analyses of the C-terminal domain of the four archaeal muramyl
ligases allowed us to assign them a putative function in PM biosynthesis (Fig. 7).
Indeed, due to some similarities between MurC and Murd and between MurD and
Mury, we assume that Murd adds one of the two L-Ala and Mury adds L-Glu to the
stem peptide. Although there are no obvious similarities between Mura and Murf3
and bacterial muramyl ligases, some clues suggest that Mura is responsible for the
addition of L-Lys. Therefore, the second L-Ala of the stem peptide is probably added
by MurfR2.
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Figure 7. Putative functions proposed for the four archaeal muramyl ligases

(MuraByd) based on 3D structure comparisons. The pathway presented here is
the scenario proposed by Evamarie Hartmann, Helmut Koénig and Uwe Karcher
(Hartmann and Konig 1990; Konig et al. 1993; Hartmann and Koénig 1994). Although
a specific function has been attributed to each archaeal muramyl ligase, we could
not determine which one between Murf3 and Mur® adds the L-Ala in position 2 and

the L-Ala in position 4 of the stem peptide.

As previously stated, early analyses of their biosynthetic pathways have suggested
that neither PG nor PM were a feature of LUCA (Scheffers and Pinho 2005; Albers
and Meyer 2011; Subedi et al. 2021; Ithurbide et al. 2022). Therefore, LUCA
probably did not possess the various muramyl ligases presently involved in cell-wall
biosynthesis. However, FPGS is found in the three domains of life (Levin et al. 2004;
Gorelova et al. 2019; Kordus and Baughn 2019), indicating that the gene was
already part of the genome of LUCA. Thus, muramyl! ligases emerged in Bacteria
from a duplication of an ancestral version of FPGS and then were transferred to the
other domain. In our phylogenetic trees, archaeal muramyl ligases (MuralRyd) never
branch within bacterial muramyl ligases (MurCDEF), and those trees do not give
clues about the direction of the transfers. However, this topology could also be an

artifact due to fast-evolving sequences in archaeal species. This kind of artifact has
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already been reported, e.g., with plastidial genes in eukaryotes, which rarely branch
within (and rather sister to) Cyanobacteria (Sato 2021), although the endosymbiotic
origin of the plastid is widely accepted (Ponce-Toledo et al. 2019). Because the
LBCA already possessed a complete dew gene cluster (Léonard et al. 2022), and
given that PM is restricted to Methanopyrales and Methanobacteriales (Meyer and
Albers 2020), we propose a scenario for the evolution of archaeal muramyl ligases
through HGT (Fig. 8).

In this scenario, the ancestral gene of murCDEF was duplicated a first time in the
pre-LBCA lineage to vield the ancestral genes of murCD and murEF, followed by a
second round of duplications, which led to the current four bacterial muramyl ligases.
Some evidence indicates that the duplication of the murEF ancestral gene to yield
murE and murF could have occurred later than the duplication of the murCD
ancestral gene. In fact, murE and murF genes are always in tandem in the dcw
cluster of most bacterial species, as well as in the reconstruction of the LBCA dcw
cluster (Léonard et al. 2022), and can even be expressed as a single fusion protein
MurE-MurF (Laddomada et al. 2019). Moreover, in the majority of our Mur
domain-containing family trees, MurE and MurF have slightly shorter branches than
those of MurC and MurD. Early after the diversification of the LBCA, the murD gene
was transferred to the common ancestor of Methanopyrales and
Methanobacteriales, then murD experienced two duplications that yielded mura,
murfd and mury (our nomenclature). In addition, Mura, Mur? and Mury exhibit a 3D
fold similar to MurC/MurD for each of its three domains except for the presence of
insertions in some loops (Fig. S39). In contrast, there is strong evidence that mura
and murf3 arose from a gene duplication. These two muramyl ligases group together
in almost all phylogenetic reconstructions (in both rooted and unrooted trees) and, as
for MurF and MurE, their genes are in tandem in the genome of the majority of
PM-containing archaea. Moreover, some Methanobrevibacter and
Methanothermobacter genomes (two genera of Methanobacteriales) code for a
Mura-Murl} fusion protein (Subedi et al. 2021). As for the first, older, duplication of
murD, leading to mury and the mural3 ancestor, it is visible in unrooted trees, where

mura, murl3 and mury form a clan.
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However, the origin of the murd gene remains unclear: while most of the
phylogenetic trees and conserved residues in the C-terminal domain associate Murd
with MurC, the 3D structure of the N-terminal domain suggests that Murd is rather
related to MurkE (Subedi et al. 2022). This inconsistency between phylogeny and
structure can be due to different phenomena that are still to be untangled. First, the
phylogenetic models struggle to exactly position the Murd clan, probably due to its
long basal branch. In most of the cases, Murd forms a clan with MurC, while two
phylogenetic trees using a C40 model (Fig S28 and S29) show Murd emerging from
within the MurE clan. Second, one cannot exclude evolutionary convergence, where
a murC gene was first transferred and then its 3D structure gradually shifted to a
MurE-like fold, or conversely, a murE gene was transferred and its key AAs
converged to a MurC-like sequence. Finally, a more complex scenario would be the
transfer of both murC and murE genes, followed by their recombination at the

domain level, leading to the current Mur®d.

Species resampling allowed us to complete this scenario with the three remaining
proteins from the Mur domain-containing family: MurT, CphA and CapB. Hence, our
analyses showed that MurT is clearly related to the clan formed by MuraRyD&C,
CphA related to the MurEF clan, while CapB appears close to the outgroup, FPGS.
In contrast to FPGS and MurCDEF, which are ubiquitous in Bacteria, MurT, CphA
and CapB have a patchy distribution. Thus, they have probably arisen in a specific
lineage, followed by HGT, instead of being a feature of the LBCA. In such a context,
we assume that MurT could be derived from MurC or MurD, while CphA would
originate from the fusion of an ATP-grasp containing gene, similar to the Glutathione
biosynthesis GshAB, and a MurE or MurF gene. Regarding CapB, its origin is less
clear but, like FPGS, CapB uses L-Glu as a substrate (Hsueh et al. 2017; Gorelova
et al. 2019). Therefore, CapB could have been recruited from a duplicated FPGS
gene, which suggests that it was indeed a suitable outgroup to study the

relationships among the eight muramyl ligases.
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Figure 8. Proposed scenario for the duplication events and horizontal gene
transfers from Bacteria to Archaea having led to the extant organization of the

Mur domain-containing family. In this figure, only one possible origin is
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represented for Murd, the hypothesis where it stems from MurC.

Further insight about the transfers between Bacteria and PM-containing archaea can
be obtained from the phylogeny of MurT. Previously, MurT has been described in
Staphylococcus spp, Streptococcus pneumoniae and Mycobacterium tuberculosis
(Minch et al. 2012; Morlot et al. 2018; Noldeke et al. 2018; Maitra et al. 2021). Our
analyses revealed that MurT is not ubiquitous in Bacteria, being only found in
Firmicutes, Actinobacteria, Caldisericum exile (Caldiserica) and Thermobaculum
terrenum (Chloroflexi). We also identified homologues in Archaea, specifically in
Methanopyrales and Methanobacteriales. Interestingly, almost all bacteria have one
copy of the murT gene while some PM-containing archaea have two copies, which
we named murT and murT-like. Surprisingly, Methanobacteriales can possess only
MurT or only MurT-like or both, while the few available Methanopyrales solely have
one MurT-like gene. Moreover, archaeal MurT sequences are monophyletic and
emerge from within Firmicutes (as sometimes observed for Murd; Fig S28 and S29),
while bacterial MurT sequences are consequently paraphyletic. Regarding MurT-like,
the clan is monophyletic and basal to the MurT clan. In genomes of Staphylococcus
species, murT and gatD genes are clustered in an operon (Miinch et al. 2012; Morlot
et al. 2018). Methanobacteriales and bacterial species that harbor a MurT homolog
also have a GatD homolog while no GatD homologs are found in archaeal species
bearing only MurT-like. This pattern suggests that MurT and GatD genes were
transferred together to Methanobacteriales from a Terrabacteria lineage, probably
Firmicutes. According to the taxonomic distribution of archaeal MurT/GatD and
MuraRyd, we can assume that the gene transfers of murT/gatD and the two ancestor
genes of muraflyd both occurred before the diversification of PM-containing archaea.
In contrast, the origin of the murT-like gene is enigmatic, even though one possible
explanation would be a duplication of murT in the LCA of Methanopyrales and
Methanobacteriales, followed by differential loss of either murT/gatD or murT-like in

some recent lineages.

In any case, those scenarios assume that the LBCA is older than the LCA of
Methanopyrales and Methanobacteriales. However, molecular dating of prokaryotes
is challenging since there are only a few microbial fossils or traces for which a

meaningful taxonomy was proposed. The oldest evidence for microbial life has been
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identified in the Nuvvuagittug belt in Quebec, Canada, which is between 3.75 and
4,28 billion years old (Gy) (Dodd et al. 2017; Papineau et al. 2022). There are also
Archean rocks from up to 3.5 Gy containing chemical traces of microbial
methanogenesis and sulfate reduction (Shen et al. 2001; Ueno et al. 2006; Aoyama
and Ueno 2018; Catling and Zahnle 2020; MiRbach et al. 2021), thereby indicating
that methanogenesis could be one of the most ancient biochemical pathways.
Moreover, methanogenesis is a metabolism specific to the archaeal lineage
(Gribaldo et al. 2006; Sorokin et al. 2017; Spang and Ettema 2017; Drake and
Reiners 2021). Regarding bacterial microfossils, only three are unambiguously
identified, all affiliated with the cyanobacterial lineage, of which Eocentophysaliis, the
oldest one, has been described from 1.9 Gy stromatolites (Hofmann 1976). Most
scientists agree on the idea that the Great Oxidation Event (GOE) that occurred 2.4
Gy ago was due to the rise of oxygenic photosynthesis by Cyanobacteria. Using the
GOE and the cyanobacterial fossil record as constraints for molecular clocks, it has
been estimated that the cyanobacterial lineage appeared slightly before the GOE, as
reviewed in Demoulin et al. 2019. Two recent molecular clock studies used
horizontal gene ftransfers between archaeal methanogens and the LCA of
Cyanobacteria, along with the cyanobacterial fossil record and the GOE, to date the
origin of euryarchaeotal methanogens. They estimate the divergence between
Euryarchaeota and the TACK group to have occurred around 4.1 and 3.8 Gy ago.
Within Euryarchaeota, the LCA of class | methanogens (CIM) and class Il
methanogens (CIIM; Bapteste et al. 2005) (i.e., Methanomicrobiales and
Methanosarcinales) originated 3.66 Gy ago (Gribaldo et al. 2006; Wolfe and Fournier
2018). As we hypothesize above, murT/gatD and muralyd genes were transferred
from one or more bacterial lineages to the ancestor of Methanopyrales and
Methanobacteriales. In present-day microbial communities, methanogens and
sulfate-reducing bacteria (e.g., Deltaproteobacteria or Firmicutes) share the same
ecological niche and can live in syntrophy under certain conditions (Lin et al. 2006;
Muyzer and Stams 2008; Ozuolmez et al. 2015; Zouch et al. 2017). Evidence of
such associations between sulfur-reducing and methanogens organisms were also
identified in geological fluid inclusions from 3.5 Gy ago (Mifbach et al. 2021).
Therefore, gene transfers between sulfur-reducing bacteria and methanogenic
archaea could have occurred in that kind of environment and led to the origin of

PM-containing archaea.
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In one of the two putative gene clusters for PM biosynthesis, there is an ATP-grasp
domain-containing gene that is always located upstream of the mraY-like and murd
genes. Moreover, this ATP-grasp domain-containing gene is exclusive to
Methanopyrales and Methanobacteriales species. Thus, it has been proposed that it
is probably involved in PM biosynthesis (Subedi et al. 2021). However, this gene was
previously experimentally characterized by Popa et al. 2012, who concluded that it
was a small (actually the smallest) carbamoyl phosphate synthetase (CPS) closely
related to the “true” CPS, CarB. Given its putative function in cell-wall biosynthesis
and its restricted taxonomic distribution, we hypothesized that this small CPS was
not related to CarB but to Ddl instead and, as the muramyl ligases, had been
transferred from a bacterial lineage to PM-containing archaea. However, our
extensive phylogenetic analyses of the ATP-grasp superfamily remained
inconclusive about the origin of the small CPS. Indeed, in our seven trees, it never
clusters with CarB, nor with Ddl (except in the C20 tree). Moreover, the whole group
is supported by a long branch, which can explain the difficulty to position the small
CPS (i.e., LBA artifact). Although our phylogeny of the small CPS is inconclusive, its
genetic environment suggests that it is indeed involved in PM biosynthesis.
Accordingly, we postulate that the reported CPS function of this enzyme might be
non-specific. If so, its real function in PM biosynthesis still has to be experimentally
determined.

Located right downstream of the ATP-grasp domain-containing gene, the mraY-like
(OG0001163) gene codes for a transmembrane protein that shows homology with
the bacterial MraY. However, this archaeal MraY-like does not appear to have
evolved from the bacterial MraY (i.e., through HGT). Indeed, bacterial and archeal
proteins are clearly separated in all unrooted phylogenetic trees, although archaeal
monophyletic groups are characterized by long branches, especially OG0001207,
which could lead to strong phylogenetic artifacts (i.e, LBA). In contrast to Mur
domain-containing family and ATP-grasp superfamily trees, MraY-like family trees
were left unrooted. In fact, none of the MraY-like family members is found in both
Bacteria and Archaea. As shown in the Results section, Mra¥Y and WecA/WbpL are
only present in bacterial species, GTP is ubiquitous to archaea while MraY-like and
0G0001207 are exclusive to PM-containing archaea. In addition, WecA/WbpL is the
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only monophyletic group where some organisms bear two sequences, which could
indicate that WecA and WbpL are two paralogues. The position of the monophyletic
group composed of the four bacterial unannotated sequences revealed that they
could be divergent MraY sequences. According to the taxonomic distribution of
MraY, WecA/WbpL and GPT, we propose a scenario where an ancestral GT4 gene
found in LUCA was vertically transmitted to both Archaea (GPT) and Bacteria (the
ancestral gene of MraY and WecA/WbpL). The bacterial gene was then duplicated
once to yield mra¥Y and wecA/WbpL, and the latter experienced a second duplication
in some bacterial species. Thus, GPT would be the orthologue of Mra¥Y and
WecA/WbpL, while MraY and WecA/WbpL would be paralogous. For this
phylogenetic analysis of the MraY-like family, we followed the family as defined in the
NCBI CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=264002) to

increase the sequence sampling. In theory, it is possible that we undersampled the

family. Indeed, the GT4 domain is also present in other proteins, like MurG
(Mengin-Lecreulx et al. 1991; Laddomada et al. 2019), which are not part of the
MraY-like family. A proper way to study the origin of the MraY-like family would be to
infer a phylogenetic tree of the GT4 domain. However, such an analysis would be
very time-consuming due to the large number of GT sequences (Lombard et al.
2014). For now, overlapping HMM search results starting from the different family
members do not suggest any undersampling issue. Furthermore, although bacterial
homologues of OG0001207 have a MraY/WecA-like GT4 domain, the long branch of
the monophyletic group could indicate that OG0001207 and homologues are
probably not part of the MraY-like family.

The current architecture of PG and PM are well-known, but it is clear that both
polymers were different in their early evolutionary state, i.e., before acquisition and
diversification of their respective muramyl ligases. However, inferring the ancestral
states of PG and PM is almost impossible because those evolved in the stem branch
of Bacteria or CIM Archaea, respectively, before the LCAs of extant organisms. As
other Mur-ligase family proteins, like CapB, FPGS, MurT or CphA, bind AAs with an
a-carboxylic acid group (i.e., aspartic acid and glutamic acid), we can speculate that
the first muramyl ligase proteins were also associated with those AAs. Moreover,
glutamic acid is one of the most abundant AAs in many organisms, and it

participates in a wide array of metabolisms (Walker and van der Donk 2016).
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Therefore, glutamic acid could be one of the first AAs to have been selected by
muramy! ligases. In Bacillus, the complex formed by CapB, CapC, CapA and CapE
recruits L-Glu or D-Glu to synthesize the poly-y-glutamic acid capsule. This kind of
cell wall has been suggested to occur in Haloquadratum walsbyi, based on genomic
analyses. H. walsbyi is classified in Halobacteria, a class of Euryarchaeota
characterized by a diverse wvariety of cell walls: S-layer, sulfated
heteropolysaccharides, halomucin and a glutaminylglycan. The latter is composed of
poly-y-L-glutamate, to which are linked two types of oligosaccharides (Meyer and
Albers 2020). Analyses showed that CapB is ubiquitous in Halobacteria, indicating
that CapB could be involved in glutaminylglycan biosynthesis. Consequently, we

suggest that this simpler cell wall could resemble the ancient forms of PG and/or PM.

Material and Methods

Data availability

Publicly available datasets, including all detailed YAML configuration files used with
Forty-Two (Irisarri et al. 2017; Simion et al. 2017) and classify-ali.pl (D. Baurain;

https://metacpan.org/dist/Bio-MUST-Core), and a detailed command line log file can
be found here: https://doi.org/10.6084/m9.figshare.21641612.

Protein sequence databases

Three local mirrors of NCBI RefSeq were used during this study: 1) an archaeal
database composed of the 819 whole genomes that were available on March 7,
2019, 2) a bacterial database of 598 representative genomes selected by the
ToRQuUEMaDA pipeline (Léonard et al. 2021) and 3) a prokaryotic database of
80,490 genomes, already used in (Lupo et al. 2022). To assemble the bacterial
database, ToRQUEMaDA was run in June 2018, according to a ‘direct’ strategy and
using the following parameters: dist-metric set to JI (Jaccard Index), dist-threshold

set to 0.86, clustering-mode set to ‘loose’, and pack size set to 200.
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Identification of candidate proteins for pseudomurein
biosynthesis

Protein orthologous groups (OGs) were built from the conceptual translations of ten
archaeal whole genomes using OrthoFinder v2.2.1 (Emms and Kelly 2015) with
default parameters. These archaeal genomes correspond to five organisms having
pseudomurein (PM) (GCF_000008645.1, GCF_000016525.1, GCF_000166095.1,
GCF_002201915.1, GCF_900095295.1) and five without PM (GCF_000011185.1,
GCF_000013445.1, GCF_000017165.1, GCF_000025285.1, GCF_000251105.1)
and were downloaded from the NCBI RefSeq database on March 7th, 2019. Then,
taxonomic filters were applied to the OGs using classify-ali.pl v0.212670 in order to
select candidate proteins for PM biosynthesis. Hence, we first looked for OGs with
protein sequences from all five PM-containing archaea or from one Methanopyrales
and three Methanobacteriales or from four Methanobacteriales. To identify OGs
corresponding to a widespread gene that would also include a paralogue potentially
specific to PM-containing archaea, we used the same taxonomic criteria but set the
‘min_copy_mean’ option to 1.75 for PM-containing archaea and to 1.25 for other
species (see YAML configuration files for details). In addition, three HMM profiles
from NCBI CDD (Conserved Domain Database) (Lu et al. 2020) featuring
‘pseudomurein’ in their annotation were downloaded on December 18th, 2020. Then
the profiles were used to identify homologues in the conceptual translations of the
five PM-containing archaea with hmmsearch from the HMMER package v3.3 (Mistry
et al. 2013) with default parameters. Matching protein sequences were graphically
selected using the Ompa-Pa v0.211430 interactive software package (A. Bertrand
and D. Baurain; https:/metacpan.org/dist/Bio-MUST-Apps-OmpaPa) with the

‘max_copy’ option set to 20 and ‘min_cov’ to 0.7. Finally, the corresponding OGs

were added to the selection.

Genetic environment analysis of candidate proteins and

in-silico characterization of their domains

Genetic environment databases were built for the genes of the selected OGs using
the “3 in 1" module of GeneSpy (Garcia et al. 2019). Functional domains were

predicted using InterProScan v5.37-76.0 (Jones et al. 2014), along with SignalP
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v5.0b (Almagro Armenteros et al. 2019) and TMHMM v2.0c (Krogh et al. 2001).
InterProScan was used with default parameters and we disabled the precalculated
match lookup, while the SignalP organism option was set to ‘arch’. To avoid
misprediction by TMHMM, the signal peptide was first removed from the original
sequences when the cleavage site prediction probability was greater than or equal to
0.1.

Filtering of candidate proteins

To rescue potential pseudogenes or mistranslated proteins missing in selected OGs
with protein sequences from only four (out of five) PM-containing archaea, Forty-Two
v0.213470 was run in TBLASTN mode on the whole genomic sequences of the five
PM-containing archaea. Then, classify-ali.pl was used again to retain only the OGs
having sequences from all five PM-containing archaea. To enrich OGs with further
archaeal orthologues, a second round of forty-two.pl in BLASTP mode was
performed using the archaeal database of 819 whole genomes (see YAML
configuration files for details). Each enriched OG was aligned using MAFFT L-INS-i
v7.273 (Katoh and Standley 2013). From those alignments, HMM profiles were built
using the HMMER package and bacterial homologues were identified separately in
the bacterial and the prokaryotic databases. Protein sequences were graphically
selected using Ompa-Pa with ‘max_copy’ and ‘min_cov’ options set to 20 and 0.7,
respectively. For each OG, identical length and e-value thresholds were used for
both databases when selecting homologous proteins.

Phylogenetic analyses

ATP-grasp superfamily

In order to select a set of representative sequences containing the ATP-grasp
domain, we first built a HMM profile from the alignment of the OG containing
archaeal ATP-grasp domain proteins using the HMMER package. This profile was
uploaded to the HMMER website
(https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch) from which we retrieved
homologous sequences (excluding eukaryotes) from the Swiss-Prot database (Poux
et al. 2017). From those sequences, homologues were identified in our local
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bacterial databases using the HMM profile and Ompa-Pa. In parallel, the archaeal
OGs (see Identification of candidate proteins for pseudomurein biosynthesis)
homologous to the Swiss-Prot proteins were identified using NCBI BLASTp v2.2.28+
(Camacho et al. 2009) and enriched using Forty-Two with the archaeal database as
‘bank’. Finally, all archaeal and bacterial homologous sequences were merged into

one single file.

To identify most ATP-grasp-containing domain proteins in our local databases, the
merged file was aligned using MAFFT L-INS-i and the alignment was masked using
the mask-ali.pl perl script (D. Baurain; hitps://metacpan.org/dist/Bio-MUST-Core) to
isolate the ATP-grasp domain. From this domain alignment, an HMM profile was built
using the HMMER package to identify ATP-grasp domain-containing homologues in
our archaeal and bacterial databases, and homologous sequences were selected
using Ompa-Pa. Protein sequences with two ATP-grasp domains (i.e., CarB) were
cut at half-length, then both complete and half-sequences were aligned using
MAFFT and their ATP-grasp domain again isolated using mask-ali.pl. Protein
sequences were deduplicated using cdhit-tax-filter.pl perl script (V. Lupo and D.
Baurain; https://metacpan.org/dist/Bio-MUST-Drivers) with the ‘keep-all’ option
enabled and the identity threshold set to 0.65, then tagged using a BLAST-based
annotation script (part of Bio-MUST-Drivers) and highly divergent sequences were

removed using prune-outliers.pl v0.213470 with the ‘evalue’ option set to 1e-3,
‘min-hits’ to 1, ‘min_ident’ to 0.01 and ‘max_ident’ to 0.2. Finally, sequences were
realigned with MAFFT L-INS-i. Conserved sites were selected using ali2phylip.pl
v0.212670 (D. Baurain; https:/metacpan.org/dist/Bio-MUST-Core) with the ‘min’ and

‘max’ options set to 0.3. The resulting matrix of 2,194 sequences x 180 AAs was

used to infer phylogenetic domain trees using |IQ-TREE v1.6.12 (Nguyen et al. 2015)
with 1000 ultrafast bootstrap (UFBoot) replicates (Hoang et al. 2018) and under four
models: LG4X+R4, C20+G4, C40+G4 and PMSF LG+C60+G4. In total, seven trees
were computed because we tested the effect of increasing the number of iterations
from 1000 to 3000 for the C20 and C40 models, and from 3000 to 5000 for the
PMSF model.
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MraY-like family

The two OGs (see Identification of candidate proteins for pseudomurein
biosynthesis) containing proteins predicted with a domain glycosyltransferase 4 were
enriched in bacterial homologues using Forty-Two in BLASTP mode. In parallel,
representative sequences from other members of the MraY-like family
(https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cqi?uid=264002) were
downloaded from the UniProtKB (The UniProt Consortium 2021) database: WecA
(POAC78, POAC80, Q8Z38), GPT (P96000, B5IDH8) and WbpL (G3XD50,
AO0A379IBB8). The three files were then enriched in bacterial and archaeal (if any)

homologues using Forty-Two. Finally, the five files were aligned using MAFFT
L-INS-i.

To better explore the diversity of the MraY-like family, HMM profiles were built from
those alignments and homologous sequences were selected from HMMER hits on
the bacterial database using Ompa-Pa. All homologous protein sequences were
merged into one file and tagged using a BLAST-based annotation script (part of
Bio-MUST-Drivers) and aligned using MAFFT L-INS-i. Conserved sites were
selected using ali2zphylip.pl with the ‘min’ and ‘'max’ options set to 0.2. A first guide
tree was computed from the resulting matrix of 1070 sequences x 410 AAs using
IQ-TREE with 1000 UFBoot under the LG4X+R4 model. From this guide tree and
automated annotation, all sequences were manually tagged using ‘treeplot’ from the
MUST software package (Philippe 1993). According to their annotation, protein
sequences of each member of the MraY-like family were aligned using MAFFT
L-INS-i, then all members were realigned using Two-Scalp v0.211710 (A. Bertrand,
V. Lupo and D. Baurain; hitps:/metacpan.ora/dist/Bio-MUST-Apps-TwoScalp) with
the ‘linsi’ option enabled. Finally, ali2phylip.pl was used to select conserved sites
with the ‘min’ and ‘max’ options set to 0.2 and the resulting matrix of 1070
sequences x 408 AAs was used to infer phylogenetic trees with IQ-TREE under
three models (i.e., LG4X+R4, C20+G4, C40+G4) and 1000 UFBoot.

Mur domain-containing family

After enrichment of the OGs with archaeal and bacterial homologues, the multiple

OGs corresponding to the Mur domain-containing family were merged into one
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single (unaligned) file. In parallel, reference protein sequences from additional
members of the Mur domain-containing family were downloaded into three separated
files using the command-line version of the ‘efetch’ tool v10.4 from the NCBI Entrez
Programming Utilities (E-utilities): CapB (P96736), MurT (Q8DNZ9, AOAOH3JUU7,
ADAOH2WZQ7) and CphA (P56947, 086109, P58572). Forty-Two in BLASTP mode
was run, in two rounds, on the four files, using both bacterial and archaeal databases
as 'bank’, in a final effort to sample the diversity of Mur domain-containing proteins.
Then, fusion proteins were cut between the two protein domains and half-sequences
with no Mur ligase domain were discarded. The enriched files were merged and
protein sequences were deduplicated using the cdhit-tax-filter.pl with the ‘keep-all’
option enabled and the identity threshold set to 1. Mur domain-containing family
proteins were tagged using a BLAST-based annotation script (part of
Bio-MUST-Drivers) with an e-value threshold of 1e-20. Protein sequences were
aligned using MAFFT (default mode) and conserved sites were selected using
ali2phylip.pl with the ‘max’ option set to 0.3. A first guide tree was computed with
IQ-TREE under the LG4X+R4 model with 1000 UFBoot. Based on the automatic
annotation, all protein sequences were manually tagged following the guide tree

using ‘treeplot’ from the MUST software package.

In order to improve phylogenetic analysis, the alignment of the Mur
domain-containing family was refined as follows: 1) sequences from the different
members of the family were exported to distinct files and aligned using MAFFT
L-INS-i, 2) using the ‘ed’ programme from the MUST software package, misaligned
sequences were manually transferred to a “.non’ file, and then, reduced files were
realigned using MAFFT L-INS-i, 3) realigned files and ‘.non’ files were merged and
all sequences were aligned using Two-Scalp with the ‘linsi’ and ‘keep-length’ options
enabled. Conserved sites were selected using ali2phylip.pl with the ‘max’ and ‘min’
option set to 0.3. Phylogenetic analysis was performed on the resulting matrix of
3407 sequences x 550 AAs using IQ-TREE with 1000 UFBoot under three models of
sequence evolution: LG4X+R4, C20+G4 and C40+G4.

From the alignment of the four bacterial muramyl ligases (MurCDEF), the four
archaeal muramyl! ligases (MurafRyd) and the FGPS protein sequences, we have

produced two more alignments: one where the N-ter and the C-ter domains of the
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protein sequences were trimmed, and another where we kept only the most
conserved AAs. Fusion proteins were removed from those three alignments and
protein sequences converted to a binary encoding to analyze indels (i.e., 0 for a gap
or a missing character state and 1 for any AA). Short sequences were removed
using aliZzphylip.pl with the ‘min’ option set to 0.6. The three resulting matrices of
2997 sequences x 2243 AAs, 3001 sequences x 1799 AAs and 3004 sequences x
281 AAs, respectively, were used to infer phylogenetic trees with with RAxML
v8.1.17 (Stamatakis 2014) under the BINGAMMAX model.

The jackknife.pl perl script (part of Bio-MUST-Drivers) was used for species
resampling analysis with the ‘linsi' option enabled, ‘min’ and ‘max’ set to 0.3 and
‘n-process’ to 1000. The one thousand resulting alignments were used to infer
phylogenetic trees using IQ-TREE with 1000 UFBoot under the LG4X+R4, C20+G4
and C40+G4 models. Clan support values were assessed using the
parse_consense_out.pl perl script (Baurain et al. 2010) with the ‘'mode’ option set to
‘tree’. Consensus trees were computed from the 1000 replicate trees using ASTRAL
v5.7.7 (Zhang et al. 2018) with default options.
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2.3.2. Supplementary Material

Supplemental data

Background

In this study, our biocinformatic pipeline (Fig. S1) allowed us to identify five syntenic
regions (termed clusters A to E), which are conserved across the five pseudomurein
(PM)-containing archaea (Fig. S2). Two of these regions, clusters A and B, are
probably involved in PM biosynthesis, while cluster C seems to be involved in cell
surface proteins (e.g., pili) and cell shape determination (or gene regulation). In
contrast clusters D and E appear unrelated to such processes. Based on the genetic
environment of clusters A to C, we attempted to identify a conserved regulon for PM
biosynthesis and cell surface regulation. A regulon is a group of genes that are under
the control of the same regulatory element (Cristianini and Hahn 2006; Anderssen et
al. 2022).

Material and Methods

In order to determine whether the genes located in the three clusters are regulated
by same transcription factors (TFs), we extracted the DNA sequences of the
intergenic regions (IRs) if their length were at least 50 nucleotides (nt) long (or less if
the direction of the upstream coding region was in reverse orientation compared to
the considered gene). TATA-box and GpC island predictions were performed on IRs
using respectively funzznuc (pattern “‘TATAWNNN’) and newcpgreport (window size
of 50 and minimum length of 25) from EMBOSS package version 6.6.0.0 (Rice et al.
2000). Then, IRs between 50 to 75 nt with no TATA-box nor GpC island were
discarded. MEME (from the MEME Suite; Bailey et al. 2009) was used with different
combinations of IRs (Table S4) to identify DNA motifs that could be considered as TF
binding sites. MEME was configured to find three motifs with a maximum length of
30 nt and using the DNA alphabet. Predicted DNA motifs were uploaded on the
online tool PREDetector (Tocquin et al. 2016) with default parameters to identify new
candidate genes with similar motifs in their regulatory regions in the genomes of the
five PM-containing archaea. The resulting TSV files were filtered to retain only

“upstream” and “regulatory” predictions (see PREDectector documentation) and the
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gene loci were used to fetch the corresponding protein accessions from GeneSpy
(Garcia et al. 2019) GFM files.

Results

DNA motifs identified with MEME did not show significant E-values (from 1.5e-002 to
7.1e+003), indicating that MEME struggled to discover reliable motifs. Nevertheless,
we retained the five best motifs across all combinations to identify genes presenting
potential TF-binding sites. Despite MEME not using all input sequences to discover
motifs (Table S4), we searched for the discovered motifs in all PM-containing
archaea. However, quite unsurprisingly, PREDectector predictions solely worked in
organisms from which DNA sequences had been used for motif discovery, except in
one case: while no sequence from Methanobrevibacter smithii had been used for
motif prediction, some gene loci were identified in this organism using the second
motif. The OGs of the corresponding protein products were then filtered using
classify-ali.pl (see Material and Methods in the main text) keeping only those with
proteins found in the five PM-containing archaea or at least four of them (one
Methanopyrales and three Methanobacteriales), thereby allowing one missing gene
in Methanobacteriales. In total, 112 OGs with at least five PM-containing archaea
proteins and 19 with at least four were identified, of which 21 OGs had already been
identified in the main pipeline for identifying PM biosynthesis candidate proteins (see
main text). Among the new OGs, two were identified with different motifs (Table S1,
sheet 5), (1) OG0000311 (a glutamate--tRNA ligase) with motifs 1, 4 and 5 in
Methanopyrus sp., yet its upstream region (M-a; see Figure S2 and Table S4) had
been used for motif discovery, (2) OG0000359 with motif 2 in Methanopyrus sp. and
with motif 3 in Methanobacterium congolense. It is a single-copy gene present in the
ten archaea and it corresponds to the transcription factor Pcc1, which regulates the
cell cycle and polar growth (Kisseleva-Romanova et al. 2006). To investigate
whether OG0000359 could actually include the transcription factor regulating PM
biosynthesis, we performed the same pipeline of analysis (see Material and Methods
above). Due to the difficulty to define a DNA upstream sequence in Methanothermus
fervidus, we did not include it for motif discovery. The best motif identified by MEME
in the upstream region of OG0000359 genes is an 8-nt motif with an E-value of

9.0e-002. It allowed us to identify 185 OGs with at least five PM-containing archaea
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proteins and 40 with at least four of them. As above, out of these 225 OGs, 25 had
already been identified (see main text). The newly identified OGs were then
intersected with those selected using classify-ali.pl (i.e., multi-copy genes in
PM-containing archaea (paralogs) but existing in a single copy in other archaea).
Unfortunately, none of the new OGs passed this filter. Unlike bacteria (Anderssen et
al. 2022), the obtained results showed that such a regulon-oriented pipeline is
ineffective when predicting regulatory elements in archaea. However, it is not clear
whether it is only ineffective in this specific case or if the approach cannot be applied

to any extant archaea.
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Figure S1. Overview of the methods used for the bioinformatic analyses

carried out during this study (see Material and Methods of the main text for
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details). (a, previous page) Main steps of the pipeline for the identification and
filtering of the OGs potentially involved in PM biosynthesis. (b, this page) Details of

the datasets and AA substitution models used for phylogenetic analyses.
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Cluster A

Methanobacterium congolense

Methanobrevibacter smithii ATCC 35861

Methanopyrus sp. KOL6

Methanothermobacter thermautotrophicus str. Delta H

Methanothermus fervidus DSM 2088

Cluster B

Methanobacterium congolense

Methanobrevibacter smithii ATCC 356861
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Cluster D

Methanobacterium congolense

Methanobrevibacter smithii ATCC 35061

Methanopyrus sp. KOL6

Methanothermobacter thermautotrophicus str. Delta H

Methanothermus fervidus DSM 2088

Cluster E

Methanobacterium congolense

Methanobrevibacter smithii ATCC 35861

Methanopyrus sp. KOL6

Methanothermobacter thermautotrophicus str. Delta H

Methanothermus fervidus DSM 2088
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Figure S2. Genetic organization of the five clusters. Identified clustered genes

are colored, whereas other genes are left in white. Above each identified gene is

indicated its corresponding orthologous group (OG) number (without ‘OG’ and the

following 0Os). Intergenic regions used during the regulon pipeline (see Supplemental

data) are indicated with a lowercase letter (Table S4). The intergenic regions “b” and

“c” of Methanopyrus sp. are not shown in this figure and correspond to the upstream
region of the OG0001150 and OG0001147, genes respectively.
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Figure S3. Phylogenetic tree of the ATP-grasp superfamily rooted on CarB.
The tree was inferred from a matrix of 2,194 sequences x 180 unambiguously
aligned AAs using |IQ-TREE under the C20+G4 model with 1000 iterations. Tree
visualization was performed using iTOL. Bootstrap support values are shown if
greater or equal to 50. Branches were collapsed on homogeneous sequence
annotation based on reference sequences. Black collapsed branches correspond to

unannotated sequences.
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Figure S4. Phylogenetic tree of the ATP-grasp superfamily rooted on CarB.
The tree was inferred from a matrix of 2,194 sequences x 180 unambiguously
aligned AAs using |IQ-TREE under the C20+G4 model with 3000 iterations. Tree
visualization was performed using iTOL. Bootstrap support values are shown if
greater or equal to 50. Branches were collapsed on homogeneous sequence
annotation based on reference sequences. Black collapsed branches correspond to

unannotated sequences.
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Figure S5. Phylogenetic tree of the ATP-grasp superfamily rooted on CarB. The
tree was inferred from a matrix of 2,194 sequences x 180 unambiguously aligned
AAs using |IQ-TREE under the C40+G4 model with 1000 iterations. Tree
visualization was performed using iTOL. Bootstrap support values are shown if
greater or equal to 50. Branches were collapsed on homogeneous sequence
annotation based on reference sequences. Black collapsed branches correspond to

unannotated sequences.
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Figure S6. Phylogenetic tree of the ATP-grasp superfamily rooted on CarB. The
tree was inferred from a matrix of 2,194 sequences x 180 unambiguously aligned
AAs using |IQ-TREE under the C40+G4 model with 3000 iterations. Tree
visualization was performed using iTOL. Bootstrap support values are shown if
greater or equal to 50. Branches were collapsed on homogeneous sequence
annotation based on reference sequences. Black collapsed branches correspond to

unannotated sequences.
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Figure S7. Phylogenetic tree of the ATP-grasp superfamily rooted on CarB. The
tree was inferred from a matrix of 2,194 sequences x 180 unambiguously aligned
AAs using IQ-TREE under the PMSF LG+C60+G4 model with 3000 iterations.
Tree visualization was performed using iTOL. Bootstrap support values are shown if
greater or equal to 50. Branches were collapsed on homogeneous sequence
annotation based on reference sequences. Black collapsed branches correspond to

unannotated sequences.
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Figure S8. Phylogenetic tree of the ATP-grasp superfamily rooted on CarB. The
tree was inferred from a matrix of 2,194 sequences x 180 unambiguously aligned
AAs using IQ-TREE under the PMSF LG+C60+G4 model with 5000 iterations.
Tree visualization was performed using iTOL. Bootstrap support values are shown if
greater or equal to 50. Branches were collapsed on homogeneous sequence
annotation based on reference sequences. Black collapsed branches correspond to

unannotated sequences.
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Figure S9. Unrooted phylogenetic tree of the MraY-like family. The tree was
constructed from a matrix of 1,070 sequences x 408 unambiguously aligned AAs
using 1Q-TREE under the LG4X+R4 model. Open circles correspond to bootstrap
support values lower than 90. Blue sequences correspond to a MraY annotation,
green to WecA/WbpL, red to OG0001163 (MraY-like), yellow to OG0001207, purple

to GPT, and black to unannotated bacterial sequences.
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Figure §10. Unrooted phylogenetic tree of the MraY-like family. The tree was
constructed from a matrix of 1,070 sequences x 408 unambiguously aligned AAs
using IQ-TREE under the C20+G4 model. Open circles correspond to bootstrap
support values lower than 90. Blue sequences correspond to a Mra¥Y annotation,
green to WecA/WbplL, red to OG0001163 (MraY-like), yellow to OG0001207, purple

to GPT, and black to unannotated bacterial sequences.
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Figure S11. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. The tree was inferred from a matrix of 3407 sequences x 550
unambiguously aligned AAs using IQ-TREE under the LG4X+R4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S$12. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. The tree was inferred from a matrix of 3407 sequences x 550
unambiguously aligned AAs using IQ-TREE under the C20+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.

MurE-FranciIla neatunensis GCF 000262205.1@WP 014715240.1

253



Tree scale: 0.1

- MurE-| isella is GCF 1@WP 0147152401
Cpha-Francisella noatunensis GCF 000262205.1 @WP 0147152391

CphA

MurT

MurC

CapB
—4\ FPGS

Figure S13. Phylogenetic tree of the Mur domain-containing family rooted on

FPGS. The tree was inferred from a matrix of 3407 sequences x 550
unambiguously aligned AAs using IQ-TREE under the C40+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or
equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S14. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. The tree was inferred from a matrix of 3386 sequences x 228
unambiguously aligned AAs using IQ-TREE under the LG4X+R4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure 815. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. The tree was inferred from a matrix of 3386 sequences x 228
unambiguously aligned AAs using |IQ-TREE under the C20+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or
equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure $16. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. The tree was inferred from a matrix of 3386 sequences x 228
unambiguously aligned AAs using IQ-TREE under the C40+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or
equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure 817. Phylogenetic tree of the Mur domain-containing family rooted on
MurT. The tree was inferred from a matrix of 2677 sequences x 525
unambiguously aligned AAs using IQ-TREE under the LG4X+R4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or
equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S$18. Phylogenetic tree of the Mur domain-containing family rooted on
MurT. The tree was inferred from a matrix of 2677 sequences x 525
unambiguously aligned AAs using IQ-TREE under the C20+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.

258



Tree scale: 0.1 =

100 Murd
MurC
W MurE
100 MurF
Mura
MurB
ey

_& MurD

MurT

Figure S19. Phylogenetic tree of the Mur domain-containing family rooted on
MurT. The tree was inferred from a matrix of 2677 sequences x 525
unambiguously aligned AAs using IQ-TREE under the C40+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or
equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S20. Phylogenetic tree of the Mur domain-containing family rooted on
CapB. The tree was inferred from a matrix of 2519 sequences x 532
unambiguously aligned AAs using IQ-TREE under the LG4X+R4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S21. Phylogenetic tree of the Mur domain-containing family rooted on
CapB. The tree was inferred from a matrix of 2519 sequences x 532
unambiguously aligned AAs using |IQ-TREE under the C20+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or
equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S22. Phylogenetic tree of the Mur domain-containing family rooted on

CapB. The tree was

inferred from a matrix of 2519 sequences x 532

unambiguously aligned AAs using IQ-TREE under the C40+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure $23. Phylogenetic tree of the Mur domain-containing family rooted on
CphA. The tree was inferred from a matrix of 2461 sequences x 539
unambiguously aligned AAs using IQ-TREE under the LG4X+R4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.

262



Tree scale: 0.1 =

MurD

MurC

I £ MurF

MurE-Francisella noatunensis GCF 000262205.1@WP 014715240.1

CphA

Figure S24. Phylogenetic tree of the Mur domain-containing family rooted on
CphA. The tree was inferred from a matrix of 2461 sequences x 539
unambiguously aligned AAs using IQ-TREE under the C20+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S25. Phylogenetic tree of the Mur domain-containing family rooted on
CphA. The tree was inferred from a matrix of 2461 sequences x 539
unambiguously aligned AAs using IQ-TREE under the C40+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S26. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. The tree was inferred from a matrix of 3,046 sequences x 543
unambiguously aligned AAs using IQ-TREE under the LG4X+R4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S27. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. The tree was inferred from a matrix of 3,046 sequences x 543
unambiguously aligned AAs using IQ-TREE under the C20+G4 model. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or
equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S28. Phylogenetic tree of the Mur domain-containing family rooted on
CapB. The tree was inferred from a matrix of 2519 sequences x 532
unambiguously aligned AAs using IQ-TREE under the PMSF LG+C60+G4 model
with 3000 iterations. The guide tree was the C40+G4 tree of Figure S22. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S29. Phylogenetic tree of the Mur domain-containing family rooted on
CphA. The tree was inferred from a matrix of 2461 sequences x 539
unambiguously aligned AAs using IQ-TREE under the PMSF LG+C60+G4 model
with 3000 iterations. The guide tree was the C40+G4 tree of Figure S25. Tree
visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure S30. Phylogenetic tree of the Mur domain-containing family rooted on
inferred from a matrix of 3001 sequences x 1799

FPGS. Indels tree
unambiguously aligned AAs using RAXML under the BINGAMMAX model. Tree

visualization was performed using iTOL. Bootstrap values are shown if greater or

equal to 50. Branches were collapsed on homogeneous sequence annotation.
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Figure 831. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. Indels tree inferred from a matrix of 3004 sequences x 281 unambiguously
aligned AAs using RAXML under the BINGAMMAX model. Tree visualization was
performed using iTOL. Bootstrap values are shown if greater or equal to 50.

Branches were collapsed on homogeneous sequence annotation.
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Figure S32. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. ASTRAL tree inferred computed from the 1000 LG4X+R4 species
resampling trees. Tree visualization was performed using iTOL. Branches were

collapsed on homogeneous sequence annotation.
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Figure S33. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. ASTRAL tree computed from the 1000 C20+G4 species resampling trees.

Tree visualization was performed using iTOL. Branches were collapsed on

homogeneous sequence annotation.

271



Tree scale: 10 —_

MurT

Mury

MurD

& Mura
_& Murp

MurT

4\ MurC

MurF

Murd

MurE

MurF-Selemya velum GCF 002020255.1@WP 0431170151

CphA-Solemya velum GCF 002020255.1@WP 078454838.1
CphA-Francisella noatunensis GCF 000262205.1@WP 0147152391
MurE-Francisella noatunensis GCF 000262205.1@WP 014715240.1

CphA
| CphA-Sulfobacillus thermosulfidooxidans GCF 001953275.1@WP 076005231.1

CphA

\ CapB
—\FPGS

Figure S34. Phylogenetic tree of the Mur domain-containing family rooted on
FPGS. ASTRAL tree computed from the 1000 C40+G4 species resampling trees.
Tree visualization was performed using iTOL. Branches were collapsed on

/

CphA

homogeneous sequence annotation.
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Figure S35. Cartoon representation of the AlphaFold models of the Murayd
enzymes from M. fervidus and M. smithii. Amino acids are colored according to
their pLDDT value (from red <50 to blue >90). The average pLDDT value calculated
for the entire protein is indicated below each model. Because our analysis is
centered on the C-terminal domain, we selected the model with the highest average
pLDDT for this specific domain among the five models generated by AlphaFold. For
Mura and Murf® from M. fervidus and Murd from M. smithii., these models had a

slightly lower total average pLDDT (less than 1%) compared to the overall best.
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Figure S36. Unrooted phylcgenetic tree of the Mur domain-containing family.
The tree was inferred from a matrix of 2432 sequences x 528 unambiguously
aligned AAs using IQ-TREE under the LG4X+R4 model. Tree visualization was
performed using iTOL. Bootstrap values are shown if greater or equal to 50.
Branches were collapsed on homogeneous sequence annotation.
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Figure S37. Unrooted phylogenetic tree of the Mur domain-containing family.
The tree was inferred from a matrix of 2432 sequences x 528 unambiguously
aligned AAs using IQ-TREE under the C20+G4 model. Tree visualization was
performed using iTOL. Bootstrap values are shown if greater or equal to 50.
Branches were collapsed on homogeneous sequence annotation.
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Figure S38. Unrooted phylogenetic tree of the Mur domain-containing family.
The tree was inferred from a matrix of 2432 sequences x 528 unambiguously
aligned AAs using IQ-TREE under the C40+G4 model. Tree visualization was
performed using iTOL. Bootstrap values are shown if greater or equal to 50.

Branches were collapsed on homogeneous sequence annotation.
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Figure S$39. Superimposition of the three domains of MurC, MurD, Mura, Murf
and Mury. (a) Superimposition of the N-terminal domain of MurC from Haemophilus
influenzae (PDB code 1P3D; green), MurD from E. coli (PDB code 4UAG; cyan), and
Mura from M. fervidus (orange) and M. smithii (yellow) (b) same as (a) with Murf}
from M. fervidus (magenta) and M. smithii (pink) (c¢) same as (a) with Mury from M.
fervidus (salmon) and M. smithii (red). (d, e, f) Same as (a, b, c¢) for the middle

domain. (g, h, i) Same as (a, b, c) for the C-terminal domain.
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3. Discussion
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3.1. On sequence mining of public databases

3.1.1. Contamination of public databases

Although RefSeq hosts high-quality genomes compared to GenBank, some issues of
RefSeq still need to be addressed, notably regarding contamination. In Chapter 1 of
the Results section (Lupo et al. 2021), we have demonstrated the presence of
mis-affiliated genomes in NCBI RefSeq. This is problematic for comparative genomic
or phylogenomic studies, because researchers often download genomes from public
repositories based on their assigned taxonomy. Obviously, inclusion of unwanted
organisms can lead to aberrant results and wrong conclusions (Cornet and Baurain
2022). Theoretically, Physeter is the only contamination detection tool able to detect
mis-affiliated genomes by comparing the main detected organism and the associated
taxonomy from NCBI (Schoch et al. 2020) or GTDB (Parks et al. 2018). However, it
is difficult to distinguish between mis-affiliated genomes and these two cases: 1) the
expected taxon is very scarce due to the heavy contamination of the genome and, 2)
when assessing contamination of rare genomes with no close representative in
reference databases (Cornet and Baurain 2022). Interestingly, these two cases are
the same that cause the singletons to appear in genome deduplication (see section
3.1.4.). Furthermore, RefSeq is often used as a reference database for
database-dependent tools designed for the detection of genomic contamination.
Presence of issues such as mis-affiliated or contaminated genomes in those
reference databases can lead to false-positive or false-negative results (Cornet and
Baurain 2022). Physeter minimizes the effects of contaminated genomes in
reference databases by using a leave-one-out approach (Lupo et al. 2021).
Nevertheless, this strategy is successful only if the database is rich enough to
maintain its taxonomic diversity during the leave-one-out step (Cornet and Baurain
2022). Altogether, these issues show the need to maintain high-quality and

contamination-free reference databases.

3.1.2. Horizontal gene transfer and contamination

The distinction between contamination and horizontal gene transfer (HGT) events is

a challenging issue that needs to be addressed in the future. HGTs have played an
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important role during the evolution of prokaryotes. Indeed, it has been shown that the
majority of bacterial genes have been transferred at least once across organisms
(Dagan and Martin 2007; Dagan et al. 2008). Moreover, HGT events have been
reported in gut microbiota and thus affect metagenomic samples (Eme et al. 2017;
Frazéo et al. 2019). Interestingly, HGT involving bacteria and eukaryotes have also
been reported (Keeling and Palmer 2008; Schmitt and Lumbsch 2009; McDonald et
al. 2012; Soucy et al. 2015; Kominek et al. 2019; Yubuki et al. 2020), although some
of them turned out to be the result of genomic contamination, such as in the
tardigrade (Arakawa 2016; Delmont and Eren 2016; Koutsovoulos et al. 2016) or
human genome (Salzberg 2017). This can be explained by the contamination
background noise, which affects the identification of HGT events. Oppositely,
“‘genuine” HGT can complicate the detection of contaminants. Consequently, a
foreign sequence within an organism is so far considered either as a contaminant or
the product of a HGT event, depending on the purpose of the software used,
whereas it could be genuinely one or the other or even both at the same time
(Cornet and Baurain 2022).

3.1.3. Facing sequence suppression in public databases

NCBI sequence databases receive a tremendous amount of data from direct
submission by individual laboratories or batch submission by high-throughput
sequencing centers (Bouadjenek et al. 2017; Sayers et al. 2022). Moreover,
international collaborations, such as the INSDC (Arita et al. 2021), increase the
number of the available sequences in those databases. To provide access to newly
added sequences to the worldwide community, the NCBI regularly performs new
releases of its databases. For instance, GenBank and RefSeq database releases
occur every two months (https://www.ncbi.nim.nih.gov/genbank/ Accessed 30
November 2022; https:/ftp.ncbi.nim.nih.gov/refseq/release/release-notes/archive/
Accessed 30 November 2022). Each new release is accompanied by a list of
nucleotide or protein sequences that have been removed from the corresponding
database between two releases (https://ftp.ncbi.nim.nih.gov/refseq/README
Accessed 30 November 2022). A sequence is manually suppressed when curators,
submitters or a third party report an error. It has been estimated that it takes on

average 1 month between the submission and the deletion of a suspicious sequence
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(Bouadjenek et al. 2017). The suppression of incorrect or dubious sequences is a
critical point for the quality and accuracy of public databases. However, these
suppressions of sequences are problematic for studies spread over several years.
During the study of the class D beta-lactamases (see Chapter 2 of the Results
section), we have faced sequence suppression (Lupo et al. 2022). Indeed, from the
3510 unique OXA-domain family sequences that we had identified, 763 are now
tagged as “Removed record” from the NCBI RefSeq database. More surprisingly,
408 of the 763 removed sequences are representative sequences used to compute
the phylogenetic tree. The suppressed sequences are not problematic for
reproducibility studies, since removed records are still accessible through old release
versions of the public databases (https://ftp.ncbi.nim.nih.gov/refseqg/removed/
Accessed 30 November 2022). However, suppressions are questionable regarding
the interpretation of the results, particularly for the phylogenetic tree, in which about
30% of the sequences are probably incorrect (or at least not genuine in terms of
organism source). Consequently, during the process of sequence selection for wet
lab validation, we had to ensure the presence of the ten selected protein sequences

in the last RefSeq database.

3.1.4. Divergent sequences and rare genomes

The 1413 representative OXA-domain family sequences have been selected by the
clustering program CD-HIT (Fu et al. 2012) from the 3510 unique sequences. In
addition to improving the performance of subsequent analyses (Fu et al. 2012),
sequence deduplication can mechanically bring out sequences that are more
divergent (i.e., singletons) than other sequences of a dataset (Evans and Denef
2020). The difference between divergent sequences and other sequences can be
real and due to, e.g., fast evolution, or due to artifacts (e.g., sequencing errors or
mispredictions of coding regions) (Di Franco et al. 2019), like our potentially incorrect
OXA-domain family removed sequences. Similar observations have been done for
genome assembly. Indeed, an aggressive deduplication of bacterial genomes
showed that a genome can be considered as a singleton for two reasons: 1) the
genome is truly different and forms a singleton cluster during deduplication (Léonard
et al. 2021; Léonard 2021), or 2) the genome is so heavily contaminated (i.e.,

chimeric) that this makes it look very different from the other, genuinely related,

283


https://ftp.ncbi.nlm.nih.gov/refseq/removed/

genomes (Cornet and Baurain 2022). However, it is very difficult to assess the
contamination level for a rare genome when there is no close representative in
reference databases (Cornet and Baurain 2022). In Chapter 3 of the Results section,
we have discussed the phylogeny of the gene murT. In this phylogenetic tree, we
have observed that MurT, along with its partner GadT (Munch et al. 2012; Noldeke et
al. 2018), is found in some bacterial lineages and exclusively in Methanobacteriales.
In contrast, an homologue of MurT, termed MurT-like, is only found in
Methanobacteriales and also in the single Methanopyrales of our dataset. However,
to assert that MurT is really absent from all Methanopyrales is adventurous at best,
because only one Methanopyrales genome (i.e., Methanopyrus sp. KLOG) was
available in RefSeq at the beginning of this study. Thus, this absence of the gene
murT could instead result from artifacts affecting only this specific strain. To confirm
or refute our observation, we have used the Forty-Two software package (Irisarri et
al. 2017; Simion et al. 2017) to mine potential MurT homologues in two additional
Methanopyrus genomes from RefSeq and one from GenBank. This control analysis
confirmed the absence of MurT and the presence of MurT-like in all four
Methanopyrus species. This also showed that GenBank is useful to validate
observations made for rare genomes of RefSeq, not by using the entire genomes

due to their lower quality compared to RefSeq but by mining individual sequences.

3.1.5. Public databases as a means to preserve biological
diversity

Despite the aforementioned limitations, public databases offer researchers the ability
to get their hand on large amounts of sequences and genomes. Such dataset
collections also allow to preserve biological diversity (Mahilum-Tapy 2009), even
more than microorganism collections, where contaminated or unpreserved cultures
can be definitely lost (Sharma et al. 2019). Owing to these data, researchers can
directly identify interesting sequences during genome mining analyses (Albarano et
al. 2020), clone or synthesize the corresponding genes into vectors and express
them in heterologous competent cells. In this respect, our study of class D
beta-lactamases perfectly illustrates a complete analysis, going from bioinformatic
analyses of public sequence data to wet lab validation of candidate protein

sequences. Such an analytical workflow can certainly be applied to other protein
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families. In addition, those public sequence data can be used in synthetic biology, a
field of biology that attempts to create new living organisms from synthetic
components (Benner and Sismour 2005). A few application examples of synthetic
biology are given in the review of Venter et al. 2022, among which the use of
synthetic genomics to recover non-cultivable viruses. This strategy was applied in
the recent pandemic of SARS-CoV-2 (i.e., a single-stranded RNA virus), where
commercially synthesized DNA were reassembled in the yeast Saccharomyces
cerevisiae and then transcripted into infectious RNA to rescue viable viruses (Thi
Nhu Thao et al. 2020).

3.2. Cell-wall polymers, antibiotics and cell division

3.2.1. Other functions of the peptidoglycan

The peptidoglycan (PG) is a ubiquitous polymer found in the cell wall of almost all
bacterial species (Pazos and Peters 2019). Most of the genes involved in PG
biosynthesis lie in the division and cell-wall synthesis (dcw) cluster, of which the
gene order and composition are relatively well conserved across the different
bacterial lineages (Tamames 2001; Mingorance and Tamames 2004; Real and
Henriques 2006). Recently, it has been shown that the last bacterial common
ancestor (LBCA) was already a complex organism, with PG and a complete dcw
cluster consisting of 17 genes: mraZ, mraW, ftsL, ftsl, murE, murF, mraY, murD,
ftsW, murG, murC, murB, murA, ddIB, ftsQ, ftsA and ftsZ (Léonard et al. 2022). In
addition to acting as a protective layer, PG has an important role in bacterial division,
which is initiated by the formation of the FtsZ (i.e., a cytoskeletal protein homologue
to the eukaryotic tubulin) septal ring (McQuillen and Xiao 2020). Indeed, even
species from the PVC group (e.g., Planctomycetes, Chlamydiae) once thought to
lack PG, actually exhibit a thin layer of PG, which is notably synthesized during
septal division (Liechti et al. 2014; Jeske et al. 2015; Packiam et al. 2015; van
Teeseling et al. 2015; Liechti et al. 2016). Only Mollicutes, which are strict
intracellular parasites including Mycoplasma spp, are the only known bacteria to lack
a cell wall (Trachtenberg 1998). These bacteria have a reduced dcw cluster that is
limited to a maximum of four genes: mraZ, mraW, ftsA (i.e., cytoskeletal protein

homologue to the eukaryotic actin) and ftsZ (Martinez-Torré et al. 2021; Léonard et
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al. 2022). The mechanism of division of these cell-wall-less bacteria is poorly
understood, but some results suggest that FtsZ plays an important role in their cell
division (Martinez-Torr6 et al. 2021). Interestingly, there exist many bacteria able to
switch into a cell-wall-less state named “L-form” (Allan et al. 2009). This state can be
achieved through genetic mutation or chemical inhibition of the enzymes involved in
PG biosynthesis. Without a protective layer of PG, L-form bacteria require an
osmoprotective growth medium for survival (Osawa and Erickson 2019). Despite
having no cell wall, L-form bacteria still have the ability to grow and proliferate
(Errington 2017). It was shown that L-form Escherichia coli cells do not completely
lack PG but have 7% of the normal amount, which allowed them to perform septal
division (Joseleau-Petit et al. 2007). However, a L-form of Bacillus subtilis with no
cell wall and knocked-down for the fisZ gene proliferates in a strange manner, which
does not follow the classical binary fission. Hence, the cell grows until the cell
membrane forms a protrusion, followed by the eruption of multiple progeny (Leaver
et al. 2009; Errington 2017). Interestingly, even though Chlamydia species use PG
for division, they lack the two cytoskeletal proteins FtsZ and FtsA. Thus, it was
proposed that another cytoskeletal protein, MreB, acts as a substitute for FtsZ
(Ouellette et al. 2020). This latter protein has also been proposed as the substitute
for FtsZ in the L-form B. subtilis mutant (Leaver et al. 2009). Although-cell wall-less
bacteria can still divide, the small amount of PG found in PVC group species, notably
during division suggests that PG is required for the classical septal division, while the
function of FtsZ can be fulfilled by other cytoskeletal proteins. Therefore, it looks like
PG has appeared so early in bacterial evolution that it is indissociable from the
division complex (Pende et al. 2021). Thus, beyond its protective role the other

function of PG is to scaffold the cell-division machinery.

3.2.2. Environmental bacteria as a reservoir of antimicrobial

resistance genes

The bacterial cell wall is so important for cell survival that it is the target of many
antimicrobial compounds, such as beta-lactam antibiotics (Bhattacharjee 2016). For
protection against those antibiotics, bacteria have developed different strategies of
resistance, notably the production of specific hydrolases termed beta-lactamases

(Bush 2018). In our study of class D beta-lactamases, we have emphasized the idea
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that environmental bacteria that have never been exposed to the pressure of human
and veterinary antibiotic therapy can constitute a reservoir of new beta-lactamases.
In natural habitats, microorganisms live in communities as a multi-cellular network.
When ressources begin to deplete, organisms start to secrete secondary
metabolites, of which antibiotics, that give a competitive advantage to producers. In
response, non-producer organisms developed antimicrobial resistance (AMR)
mechanisms, and it has been documented that antibiotics could also act as signaling
molecules between organisms of a microbial community (Sengupta et al. 2013).
Although there are still a lot of new antimicrobial compounds to be isolated from
naturally producing organisms (Adam et al. 2018), we can speculate that AMR
mechanisms already exist for these compounds that are still to be discovered, due to
the evolutionary arms race between producer and non-producer organisms. We
have to be mindful that even if new antimicrobial compounds are released for human
health therapy, an overuse of these antibiotics could increase the spread of the
associated AMR.

3.2.3. Antimicrobial resistance in Archaea

In 2020, Diene et al. (Diene et al. 2020) have identified in archaeal genomes genes
coding for putative class B and class C beta-lactamases. They cloned and
expressed two sequences of Methanosarcina into E. coli, and showed that both
sequences exhibit a weak beta-lactamase activity. Since no PG is found in archaea,
and thus no penicillin binding proteins (PBPs) either, we can question the use for
such beta-lactamases in archaeal species. Two hypotheses might explain the
presence of beta-lactamases in some archaea. First, we can speculate that those
archaeal enzymes are actually not beta-lactamases but far related archaeal
homologues with a hydrolase activity profile similar to bacterial beta-lactamases but
playing a different role in archaea (Colson et al. 2020). Second, these enzymes
would have been acquired through HGT from bacteria. Consequently, the AMR
genes were only maintained in archaea, probably because the corresponding
antibiotics can target an undetermined transpeptidase in the archeal cell. Yet,
detecting AMR gene in archaeal species is not problematic, at least so far. Indeed,
no pathogenic archaea have been identified to date, even though archaea do

possess characteristic of pathogens (e.g., interaction with eukaryotic cells,
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production of toxins) (Gill and Brinkman 2011). However, Methanobrevibacter smithii,
a commensal methanogenic archaeon notably found in human gut (Borrel et al.
2020), is often co-cultured along with pathogenic bacteria during different infections
(Collin et al. 2011; Grine, Lotte, et al. 2019; Grine, Drouet, et al. 2019; Djemai et al.
2021; Rasmussen and Collin 2021). Thus, we should reconsidered these
methanogenic archaea as opportunistic pathogens (Hassani et al. 2020), and
therefore search for anti-archaeal compounds, since several antibiotics (e.g.,
beta-lactams, glycopeptides) that target bacteria are not effective against archaea
(Khelaifia and Drancourt 2012). Nevertheless, M. smithii and other
pseudomurein-containing archaea are sensitive to two endoisopeptidases isolated
from phages, PeiW and PeiP. Both enzymes cleave the isopeptide bond Ala-e-Lys in
the stem peptide of the pseudomurein (PM), which leads to the lysis of the cell
(Schofield et al. 2015). Such enzymes might thus be considered as archaeal

antibiotics in case of future need.

3.2.4. Advantages to acquire pseudomurein cell-wall

Unlike bacteria, there is not a cell wall or a cell wall polymer that is ubiquitous in
archaea. Yet, the S-layer is the most commonly observed cell wall in the different
archaeal lineages. Thus, it was suggested that S-layer was the most ancient
archaeal cell wall structure to evolve (Klingl et al. 2019; Meyer and Albers 2020).
However, a recent study suggests multiple independent evolutionary origins for the
S-layer (Bharat et al. 2021). Beside this S-layer cell wall, some lineages of
Euryarchaeota are characterized by the presence of a cell wall polymer:
Methanopyrales and Methanobacteriales have PM, Methanosarcina have
methanochondroitin, whereas Halobacteria have halomucin, glutaminylglycan or
heteropolysaccharides. This taxonomic distribution suggests that cell wall polymers
have appeared independently during archaeal evolution. Based on these
observations, we speculate that the last archaeal common ancestor (LACA) had no
cell wall. Knowing that some modern euryarchaeotal species do survive in extreme
environments without any cell wall, what would be the advantages of acquiring a
cell-wall polymer other than acting as a simple protective layer? Indeed, some
cell-wall-less Thermoplasmata species (e.g., Thermoplasma, Ferroplasma) can

thrive in thermophilic (around 60°C) and acidophilic (pH < 2) environments
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(Golyshina and Timmis 2005; Reysenbach 2015). Instead of a bilayered membrane,
these euryarchaeota have a monolayered membrane to which are attached
glycoproteins and lipoglycans, which confer them a resistance to hydrolysis (Klingl et
al. 2019). This cell-wall-less state is analogous to Mollicutes in Bacteria. However, as
the LBCA probably already had PG and Mollicutes have a reduced dcw cluster, the
absence of a cell wall in Mollicutes is not an ancestral state and must be the result of
a secondary simplification due to its parasitic lifestyle (Martinez-Torré et al. 2021).
Above, we have argued that PG in Bacteria seems to be mandatory for the classical
septal division. Therefore, does the acquisition of a cell-wall polymer could enhance
the FtsZ-dependent septal division in Archaea? Despite a few exceptions, the cell
division (cytokinesis) in Bacteria is mainly mediated by the cytoskeletal protein FtsZ.
In eukaryotes, the cell division involves actin and proteins of the Endosomal Sorting
Complex Required for Transport (ESCRT), the latter notably mediating membrane
abscission (i.e., separation of daughter cells) during cytokinesis. In Archaea, two
division mechanisms are found, the FtsZ- and Cdv-based systems. Interestingly,
some proteins of the Cdv-based division are homologous to the eukaryotic
ESCRT-III sorting complex and are found in the TACK superphylum and the Asgard
(Lindas et al. 2008; Caspi and Dekker 2018; Pende et al. 2021; Ithurbide et al.
2022). In addition, while most Archaea possess two homologues of FtsZ, namely
FtsZ-1 and FtsZ-2, Methanopyrales and Methanobacteriales are the only cell-wall
polymer containing organisms to contain only one homologue of FtsZ. Moreover,
they are the only archaeal species to possess a MreB homologue, a cytoskeletal
protein involved in cell elongation in Bacteria (Pende et al. 2021; Ithurbide et al.
2022). In the maijority of bacteria, FtsZ is anchored to the cytoplasmic membrane
through FtsA (Mura et al. 2017), whereas SepF is the anchor of FtsZ in Archaea.
The SepF protein is also found in some Terrabacteria lineages and has an
overlapping role with FtsA. In contrast, FtsA has been identified in Methanopyrales
and is completely absent from the other archaeal lineages. Furthermore,
evolutionary analyses have shown that both SepF and FtsZ date back to the last
universal common ancestor (LUCA) (Pende et al. 2021; Ithurbide et al. 2022).
Unfortunately, these observations do not suggest any correlation between the
acquisition of a cell-wall polymer and the FtsZ-dependent septal division. Yet, it
highlights similar cell-wall-related genetic determinants between PM-containing

Archaea and Bacteria. Indeed, both divide through a FtsZ-based system relying on
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only one copy of the ftsZ gene, indicating that PM-containing Archaea have lost one
copy of ftsZ during their evolution. Moreover, they have a mreB gene, which was
probably acquired by HGT from Bacteria (Ithurbide et al. 2022). Beside protection
and cell division, a third incentive for acquiring a rigid cell-wall polymer could consist
in conferring a better resistance to phage entry and exit from the cell (Buchmann and
Holmes 2015).

3.2.5. HGT has triggered the evolution of pseudomurein

In Chapter 3 of the Results section, we have discussed HGTs of some genes
involved in PG biosynthesis that occurred between Bacteria to a common ancestor
of Methanopyrales and Methanobacteriales. Moreover, recent studies have shown
that Bacteria and PM-containing Archaea have a similar set of cytoskeletal proteins,
of which at least two (i.e., MreB, FtsA) have been acquired through HGT (Pende et
al. 2021; Ithurbide et al. 2022). These results indicate that several HGTs from
Bacteria could have driven the evolution of PM in the ancestor of Methanopyrales
and Methanobacteriales. Since only a small fraction of the genes involved in PG
biosynthesis were transferred, their ancestor had to complete the missing steps for
PM biosynthesis by its own set of genes. In relation to this, we do not know whether
this organism had a simpler cell-wall polymer prior to the transfers, which then
evolved into modern PM following the acquisition of bacterial genes, or whether it
used the acquired genes along with repurposed pre-existing genes to synthesize the

PM from scratch.

3.2.6. From modern traits to ancestral organisms

When phylogeny is used to retrace ancestral traits based on those of modern
organisms (top-down approach), the reconstructed ancestors often exhibit complex
features. For example, the LBCA was inferred to already have PG with a complete
dcw cluster (Léonard et al. 2022) while the last eukaryotic common ancestor (LECA)
has been modeled as having a mitochondrion, a nucleus, a complex endoplasmic
membrane system etc (Lane 2015). Moreover, all “intermediate” organisms (i.e.,
organisms exhibiting traits that would reflect the transition from LUCA to LBCA and
LECA or from prokaryote to eukaryote) have been lost during evolution (i.e., they

were stem groups now extinct). Because of their basal position in the eukaryotic tree,
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some scientists have thought that Archezoa (i.e., eukaryotes that lack mitochondria)
were a missing link of the transition between prokaryotic and eukaryotic state
(Cavalier-Smith 1987). However, it was subsequently shown that the basal position
of Archezoa was due to the long branch attraction artifact. Thus, this “primitive” state
of Archezoa actually results from secondary simplification induced by the
environment (Brinkmann and Philippe 2007), like Mollicutes in Bacteria
(Martinez-Torr6 et al. 2021). In addition, the high rate of HGT that occurs between
Bacteria and Archaea creates a background noise that complicates the phylogenetic
reconstruction of ancestral traits (Dagan and Martin 2007; Dagan et al. 2008). Extinct
stem groups, leading to complex LCAs, make the top-down approach uninformative
about the order of acquisition of traits of interest and their evolutionary advantage at
that time. Another approach, termed bottom-up, is advocated in the book of Nick
Lane entitled “The Vital Question: Why is life the way it is?” (Lane 2015), where the
author uses knowledge of present-day chemistry to imagine the prebiotic chemistry
that has led to LUCA. Although some of his hypotheses could in principle be tested
in the laboratory, this approach also has limitations. For example, it assumes that
prebiotic chemistry is identical to present-day chemistry. Moreover, even if the
predicted results are observed, nothing ensures that the original events really

happened in this manner.

3.2.7. Complexification or secondary simplification?

For the layman audience, “evolution” often equates to “progress”, in the form of
progressive complexification. This inaccurate yet popular view finds its iconic
representation in the Great chain of beings (or Scala Naturae) (Ragan 2009),
especially when it comes to the “evolution of Man”, going from crawling monkeys to
upright Western males wearing office suits. According to S. J. Gould (1941-2002),
such a misconception stems from the fact that “people are storytelling creatures”
who are fond of so-called “trends”. Moreover, it is true that, at geological scales, the
maximal level of organismic complexity is on the rise from the very beginning.
However, the maximum can be a very poor measure to describe a statistical
distribution (as can be the mean), especially a long-tail distribution. At a planetary
scale, Life has always been (and always will be) dominated by microbes (Gould

1996). Even when some criterion is chosen to order extant organisms on a
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complexity scale, it is very difficult to determine the direction of the evolutionary
process: towards an ever more complex state or back to a (much) simpler state,
following a path of secondary simplification? A good illustration of this is the case of
the RNA polymerase in eukaryotic mitochondria, which has been secondarily
simplified by the recruitment of a phage enzyme early in eukaryotic evolution,
whereas the other RNA polymerases increase in complexity from Bacteria and
Archaea to the nuclei of Eukaryotes (Forterre and Philippe 1999). When repeatedly
observing a complex feature scattered across multiple lineages of the Tree of Life, a
common argument for secondary simplification is parsimony: it would be
“‘unparsimonious” to assume multiple independent gains (i.e., convergent evolution)
of complex features, and thus one has to postulate a single origin, followed by
multiple independent losses. This line of thought underpinned a lot of the work of T.
Cavalier-Smith (1942-2021), in particular his hypotheses about the evolution of
eukaryotic organelles, such as the chloroplast (Cavalier-Smith 1999; Cavalier-Smith
2003). However, it is known today that most of the multiple examples of “complex
plastids”, once thought to trace back to only one or two events of “secondary
endosymbiosis”, are actually the result of a much more complex evolution involving
lateral transfers of organelles across distant eukaryotic lineages (Petersen et al.
2014; Sibbald and Archibald 2020). Altogether, this brief argumentation, which could
have been much longer considering the numerous examples of convergent
complexification, e.g., in protists (Lukes et al. 2009), and secondary simplification,
suggests that, for any feature displaying a patchy distribution across a group of given
organisms, it is impossible to decide a priori whether that feature is the product of
convergent complexification of secondary simplification. Only proper data collection

and model-based analysis can help.

In our article “Was the Last Bacterial Common Ancestor a Monoderm after All?”
(Léonard et al. 2022), we tried to determine the ancestral state of the bacterial cell
envelope (i.e., monoderm or diderm) using statistical models. Indeed, there are two
major hypotheses that are discussed regarding the cell envelope architecture in the
LBCA: “diderm-first” (Cavalier-Smith 2006) and “monoderm-first” (Lake 2009; Gupta
2011). The first hypothesis assumes a diderm LBCA with multiple losses of the outer
membrane (OM) (i.e., secondary simplification), whereas the second hypothesis

assumes the opposite (i.e., convergent complexification). Our results indicate that
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the LBCA was a monoderm organism, equipped with a complete dcw cluster, thus
indicating that modern diderm bacteria have arisen multiple times through
complexification from a monoderm ancestor. Although a recent study supports our
views regarding the dcw cluster (Megrian et al. 2022), other studies, using a
parsimony-inspired approach, support the “diderm-first” hypothesis entailing
secondary simplification (Antunes et al. 2016; Witwinowski et al. 2022). In section
3.2.5, we discussed that the acquisition and subsequent tinkering of bacterial genes
by a common ancestor of Methanopyrales and Methanobacteriales had led to the
complexification of its cell envelope, through the acquisition of PM. Moreover, we
argued in section 3.2.4 that both S-layers and archaeal cell-wall polymers have
appeared independently in different archaeal lineages. Finally, diderm archaea are
observed in distantly related lineages, thereby suggesting convergent
complexification is at work in the archaeal domain too (Rachel et al. 2002; Baker et
al. 2006; Comolli et al. 2009; Dridi et al. 2012).

Even though this point was not the initial impetus for our thesis work, research on
Archaea has been recently revivified by the discovery of eukaryotic-like archaeal
lineages in metagenomic data obtained from marine sediments of Scandinavia
(Spang et al. 2015; Zaremba-Niedzwiedzka et al. 2017). Depending on the rooting of
the Tree of Life considered (Gouy et al. 2015), these intermediate lineages can either
be taken as transitional on the path from a prokaryotic LUCA (Krupovic et al. 2020)
to Eukaryotes, following a “fusion” between an archaeon and at least one bacterium
(Embley and Martin 2006), or as an intermediate stage in the simplification of a
complex (i.e., eukaryotic-like) LUCA into the simpler “akaryotes” that are regular
Archaea and Bacteria (Gouy et al. 2015). According to Nick Lane (Lane 2015), the
acquisition of the mitochondrion by an ancient prokaryotic cell was the key to
increasing complexity. Indeed, an average eukaryotic cell is 15,000 fold larger than a
prokaryotic cell. Thus, a larger cell requires much more energy for protein synthesis.
In eukaryotic cells, energy is supplied by mitochondria. In addition, he argued that a
large bacterium would require numerous copies of its chromosome to efficiently
translate the genes involved in the production of ATP required for protein synthesis.
Recently, very large bacteria (up to 2 cm) were described (Angert et al. 1993;
Volland et al. 2022). These organisms exhibit extreme polyploidy and thus support

Lane’s predictions. In their way, Thiomargaritales further blur the lines between the
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three domains of Life, as did the Asgard Archaea and other lineages with
eukaryotic-like features, such as Planctomycetes in the bacterial domain (PVC
group) (Devos and Reynaud 2010). In conclusion, despite recent and exciting
progress, the jury is still out with respect to the rooting of the Tree of Life and the
nature of LUCA (Gouy et al. 2015), including the architecture of its cell envelope.
Some authors even suggest that the three domains might actually form a single
domain, in which Archaea and Eukaryotes are two parallel experiments from a
PVC-like common ancestor (Devos 2021), showing that cellular complexity is not

easily mapped on a linear scale.
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Abstract: The very nature of the last bacterial common ancestor (LBCA), in particular the characteris-
tics of its cell wall, is a critical issue to understand the evolution of life on earth. Although knowledge
of the relationships between bacterial phyla has made progress with the advent of phylogenomics,
many questions remain, including on the appearance or disappearance of the outer membrane of
diderm bacteria (also called Gram-negative bacteria). The phylogenetic transition between mono-
derm (Gram-positive bacteria) and diderm bacteria, and the associated peptidoglycan expansion or
reduction, requires clarification. Herein, using a phylogenomic tree of cultivated and characterized
bacteria as an evolutionary framework and a literature review of their cell-wall characteristics, we
used Bayesian ancestral state reconstruction to infer the cell-wall architecture of the LBCA. With the
same phylogenomic tree, we further revisited the evolution of the division and cell-wall synthesis
(dcw) gene cluster using homology- and model-based methods. Finally, extensive similarity searches
were carried out to determine the phylogenetic distribution of the genes involved with the biosyn-
thesis of the outer membrane in diderm bacteria. Quite unexpectedly, our analyses suggest that all
cultivated and characterized bacteria might have evolved from a common ancestor with a monoderm
cell-wall architecture. If true, this would indicate that the appearance of the outer membrane was not
a unique event and that selective forces have led to the repeated adoption of such an architecture.
Due to the lack of phenotypic information, our methodology cannot be applied to all extant bacteria.
Consequently, our conclusion might change once enough information is made available to allow the
use of an even more diverse organism selection.

Keywords: bacterial evolution; cell-wall; outer membrane (OM); Bayesian inference (BI); phyloge-
nomics; comparative genomics; ancestral traits

1. Introduction

Cell-wall architecture has always been an important morphological character for bac-
terial classification [1]. Two main types of cell wall exist: the monoderm and the diderm
architectures. While monoderm bacteria are generally surrounded by a thick peptidoglycan
(and are positive to Gram coloration), in diderm bacteria, a thin peptidoglycan layer is
sandwiched between the cytoplasmic membrane and the outer membrane (and are negative
to Gram coloration) [2,3]. However, cell-wall features are insufficient to yield a classification
that would correlate with phylogenetic trees based on molecular data [4]. Hence, distantly
related phyla may have apparently identical cell walls (e.g., Negativicutes and Proteobacte-
ria), whereas closely related phyla or families may present variations in their peptidoglycan
thickness or composition, and even in the number of surrounding membranes (e.g., Nega-
tivicutes and Halanaerobiales compared to other Firmicutes) [5]. Nonetheless, the evolution
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of the bacterial cell wall should be addressed considering the phylogeny of the domain. The
number of membranes (one or two) that surround a bacterial cell, their lipid composition
and the thickness of the peptidoglycan layer are undoubtedly major characteristics of the
bacterial cell wall, and these features often come into consideration when discussing the
evolution of the bacterial domain. Hence, transition from one to two lipid membranes (or
the opposite) has attracted much attention. Disappearance of the outer membrane going
from “diderm” to “monoderm” architecture has been proposed by Cavalier-Smith [6,7] but
evolution from monoderm to diderm bacteria is usually favoured by other evolutionary
biologists [8-11]. It has been suggested that the endosymbiosis between an “actinobac-
terium” and a “clostridium” could be the starting point for the onset of double-membrane
bacteria [12], but how exactly this symbiosis could have further evolved to form a diderm
bacterium still is to be detailed. An attractive hypothesis accounting for the emergence
of the outer membrane is its evolution from a forespore of a spore-former “firmicute”.
Based on 3D electron cryotomographic images of spore formation in the diderm firmicute
Acetonema longuni, Tocheva et al. showed that the inner membrane (IM) of the mother cell is
inverted to become the outer membrane of the forespore and ultimately of the germinating
cell [13], leading to the assumption that the outer membrane of diderm bacteria could
have evolved from monoderms via sporulation [11,13-15]. In contrast, some studies of
the evolution of the cell-wall architecture in the phylum Firmicutes interpreted the double
membrane found in Halanaerobiales and Negativicutes (two classes of Firmicutes) as a
reminiscence of the double membrane in the Firmicutes ancestor, and thus concluded that
the outer membrane was lost multiple times in this phylum [16,17]. This interpretation
further opens the possibility that the last bacterial common ancestor (LBCA) was a bona
fide diderm bacterium.

Cell division in bacteria involves a series of proteins that fulfil many functions as
diverse as cytoplasmic membrane invagination, DNA transfer control, peptidoglycan
synthesis and daughter cell separation. They assemble into a dynamical complex that
overpasses the cytoplasmic membrane and has components in both the cytoplasm and the
periplasm. A small number of these proteins are essential and conserved in the genome
of almost all bacteria [18]. Several of these proteins of cell division are generally clustered
together with proteins involved in peptidoglycan synthesis in a single locus on the genome,
the dew (division and cell-wall synthesis) cluster [18]. This cluster is found in many bacteria
and its composition and gene order are generally well conserved [19,20]. It has also been
shown to be one of the most stable gene clusters (the cluster itself and the gene synteny
within the cluster are conserved in a broad taxonomic range of genomes) [18], on par with
the ribosomal clusters [21,22]. The longest version of the dew cluster includes 17 genes and
encompasses genes coding for proteins responsible for peptidoglycan precursors synthesis
(DdIB, MurA, MurB, MurC, MurD, MurE, MurE, MurG, MraY), proteins integrated in the
divisome (FtsA, Ftsl, FtsL, FtsQ, FtsW, FtsZ), and proteins involved in regulation via DNA
binding or RNA methylation (MraW, MraZ). The E. coli dcw cluster includes 15 genes, start-
ing with mraZ and ending with fisZ, but misses the murA and murB genes [23]. Many phyla,
orders, classes, or families are apparently characterized by the lack of specific genes in the
cluster, the absence of ftsA and ffsZ in Chlamydiae and Planctomycetes being well-known
examples [24]. These observations suggest that the organization of the dcw cluster holds
clues to bacterial evolution. Thus, its detailed study might complement sequence-based
phylogenomic approaches, including in terms of rooting of the bacterial tree. For example,
the integration of a gene in a specific position within the cluster probably happened only
once in the history of the bacterial domain, whereas gene loss and genomic reorganization
events, on the contrary, are expected to have been more frequent. Likewise, the phylo-
genetic distribution of the genes involved in the biosynthesis of the outer membrane in
diderm bacteria might provide useful information about their evolutionary status, ancestral
or derived, with respect to the bacterial domain as a whole [5,17,25].

In this work, we built a Bayesian phylogenomic tree of the bacterial domain using a
supermatrix of 117 single-copy orthologous genes sampled from 85 species representative
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of the bacterial diversity and for which a descriptive literature exists. We then researched
the cell-wall architectures for these species and used the tree to reconstruct the evolution
of two cell-wall traits, the number of membranes and the presence and thickness of the
peptidoglycan layer, again with Bayesian inference. Moreover, we compared the compo-
sition and gene order of the dew cluster in our 85 representative species and used a new
variant of a homology-based method to map the organization of the dcw cluster on the
evolution of the bacterial domain. Contrary to our expectations based on recent literature
and educated guesses, our Bayesian analyses inferred that the LBCA was a monoderm
bacterium with a thick peptidoglycan. This reconstruction implies that the outer membrane
of diderm bacteria appeared more than once, a hypothesis that is indeed supported by
differences in the genetic machinery involved in its biosynthesis across the various diderm
lineages, as shown by our extensive similarity searches. Our results also show that the
LBCA already had a complete dcw cluster and that its organization does not correlate with
cell-wall architecture.

2. Materials and Methods
2.1. Dataset Assembly
2.1.1. Data Download

The initial dataset of prokaryotic genomes and proteomes was downloaded from Ensembl
Bacteria release 20 [26] using wget. This dataset had 8848 Bacteria and 238 Archaea represented.

2.1.2. Genome Dereplication and Selection

We first reduced the number of genomes based on genomic signatures [27] to regroup
similar genomes into genome clusters with a prerelease version of our new software
ToRQuEMaDA [28]. Briefly, for five different k-mer sizes (from 2 to 6-nt), we computed the
frequency of each word in each genome using the program compseq from the EMBOSS
software package [29]. The complete lineage of every genome was recovered from the
NCBI Taxonomy database [30] using the program fetch-tax.pl from the Bio:MUST::Core
distribution (D. Baurain, https://metacpan.org/dist/Bio-MUST-Core, accessed on 16
February 2022). Each signature file was further analysed in R [31] to cluster genomes into a
predefined number of groups (300, 600, 900, 1200, 1500 and 2100) using various distance
metrics (i.e., Euclidean, Pearson and Hamming) and clustering algorithms (i.e., k-means,
ascending and descending hierarchical clusterings). To choose the best combination of
methods and parameters, the available taxonomic information was used to evaluate the
quality of the clustering. Briefly, we computed how many different taxa of each rank
(phylum, class, order, family, genus, species) were found in each individual cluster or
each set of clusters and chose the combination that best separated the higher-level taxa
(phylum, class, order, family) while merging the lower-level taxa (genus, species) [28]. This
led us to settle on the following set of methods and parameters: 6-nt k-mer, 900 clusters,
Pearson distance and ascending hierarchical clustering algorithm. Then, we selected
a single representative for each cluster, based on the quality of genome annotations, as
evaluated by the number of gene names devoid of uninformative words like “hypothetical”,
“putative”, “unknown” etc [28]. After including a few other well-characterized genomes
(e.g., Streptomyces coelicolor A3(2), Escherichia coli O127:Hé str. E2348 /69, Staphylococcus
aureus subsp. aurens MRSA252), we ended up with a list of 903 genomes: 822 Bacteria and
81 Archaea.

2.1.3. Identification of Orthologous Groups

For every protein sequence of every one of these 903 genomes, we launched an all-
versus-all BLAST-like similarity search using USEARCH v7.0.959 [32] with the following
parameters (evalue =1 x 105; accel = 1; threads = 64). Then, we used OrthoMCL v2.0.3 [33]
to cluster protein sequences into orthologous groups based on USEARCH reports, using an
e-value cut-off of 1 x 103, a similarity cut-off of 50% and an inflation parameter of 1.5, The
total number of proteins for the 903 genomes was 2,467,263, and these were partitioned into
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124,422 orthologous groups, whereas 326,269 sequences were considered as “singletons”
by OrthoMCL (i.e., without homologues).

2.1.4. Database Creation

Gene metadata (organism, genomic coordinates, strand, putative function) for every
protein was extracted from the definition lines of the Ensembl FASTA files and stored into
a custom designed MySQL (Oracle Corporation) relational database (see Figure S16), along
with orthology relationships, based on our protein sequence clustering.

2.2. Evolution of the Bacterial Domain
2.2.1. Supermatrix Assembly

To build a robust tree of the bacterial domain, we manually chose a subset of 85
genomes (out of the 903 genomes initially selected), trying to maximize the number of
classes. Then, using classify-mcl-out.pl [34], we selected all orthologous groups of proteins
featuring at least one representative of eight major bacterial phyla (Firmicutes, Chloroflexi,
Actinobacteria, Deinococcus-Thermus, Proteobacteria, Spirochaetes, Planctomycetes and
Bacteroidetes) and in which at most 10% of the selected genomes had more than one gene
copy. This left us with a list of 176 broadly conserved and (mostly) single-copy genes.
The final dataset was further reduced to 117 orthologous groups to ensure a maximum of
14 missing species in each individual orthologous group (Table S1). The corresponding
orthologous groups were aligned with MAFFT v7.127b [35] using default parameters. The
protein sequence alignments were then filtered with Gblocks v0.91b [36] using a set of
“medium stringency” parameters (as predefined in Bio::MUST::Core) and concatenated
with SCaFoS5 v1.30k [37]. Finally, the resulting concatenation was further filtered for sites
>50% missing character states, yielding a supermatrix of 85 species x 19,959 unambigu-
ously aligned amino-acid (AA) positions (4.29% missing character states). A preliminary
(more diverse) supermatrix was also created in the process, including 101 species and
19,959 unambiguously aligned AA positions (4.72% missing states).

2.2.2. Phylogenomic Analyses

For Bayesian inference (BI), we used PhyloBayes MPI v1.5 [38] to produce six replicate
Markov Chain Monte-Carlo (MCMC) chains of 50,000 cycles, with one tree sampled every
10 cycles, using the CAT+GTR+I" model of sequence evolution [39-41]. Constant sites were
deleted with the -dc option. Convergence was assessed using the program tracecomp from
the PhyloBayes software package. Two consensus trees (along with their posterior proba-
bilities) were extracted after a burn-in of 10,000 cycles: one over the six chains (A to F) and
another over the two most congruent chains (A and C; maxdiff = 0.130; meandiff = 0.001),
both with the -c option of bpcomp set to 0.01. Cross-validation tests to decide the best-
fit model (CAT+GTR+I') were carried out using PhyloBayes v3.3f [42], as suggested in
PhyloBayes manual (p. 38). For our preliminary tree, we ran two chains of 50,000 cycles,
with one tree sampled every 10 cycles, under the simpler CAT+I' model. The consen-
sus tree was extracted after a burn-in of 5000 cycles (maxdiff = 0.580; meandiff = 0.011).
All trees (including those described below) were formatted semi-automatically using the
scripts format-tree.pl, export-itol.pl and import-itol.pl (also from Bio:MUST::Core) and
{TOL v6 [43].

2.2.3. Congruence Tests

Congruence tests were performed on the 85-species supermatrix genes with Phylo-
MCOA v1.4 [44], then Maximum Likelihood (ML) reconstruction with RAXML v8.1.17 [45]
was used under the model PROTGAMMALGF (LG+F+T) to compare the topologies ob-
tained with and without the “cell-by-cell outliers” (i.e., specific species in specific genes
whose position is not concordant with their position in the other gene trees) found by
Phylo-MCOA.
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2.3. Evolution of the Cell-Wall
2.3.1. Cell-Wall Architecture of Extant Organisms

For each one of the 85 bacterial species, a dedicated survey of the literature was
conducted (Table S2). When no information about the cell-wall architecture was available
at the species level, we searched at a higher taxonomic level, sometimes up to the phylum.
Based on the collected data, we summarized the cell-wall architecture using two different
traits: the number of membranes and the presence and thickness of the peptidoglycan
layer (Table 53). For the membrane trait, we used the following binary coding: 0 for
one membrane and 1 for two membranes, whereas for the peptidoglycan trait, we used
three different states: 0 for no peptidoglycan, 1 for a thin peptidoglycan and 2 for a thick
peptidoglycan. Cell-wall trait analyses were then performed using BayesTraits V3 [46-48].
For Parachlamydia acanthamoebae, no clue about peptidoglycan thickness was found, so this
trait was coded as “12", following the suggestion in BayesTraits manual (p. 9).

2.3.2. Correlation between Cell-Wall Traits

Correlation between cell-wall traits was tested by comparing the discrete independent
and discrete dependent models using Bayes Factors (BF), as described in BayesTraits manual
(p. 13). We applied the steppingstone sampler, using 100 stones with 10,000 iterations
per stone. As this procedure only allows for the comparison of two binary traits, and as
our peptidoglycan trait had three possible states, we had to combine two different states
into a single state. Three different combinations were tested to check the robustness of the
correlation. For case A, the absence of peptidoglycan was coded as 0 and the presence of
peptidoglycan (either thin or thick) as 1. For case B, both the absence of peptidoglycan and
the thin peptidoglycan were coded as 0, while the thick peptidoglycan was coded as 1. For
case C, both the absence of peptidoglycan and the thick peptidoglycan were coded as 0,
while the thin peptidoglycan was coded as 1. Because P. acanthamoebae is a Chlamydiae,
which belong to the diderm-LPS group, its undocumented peptidoglycan layer (see above)
was considered as thin when recoding the peptidoglycan trait.

2.3.3. Ancestral State Reconstruction of Cell-Wall Traits

For ancestral state reconstruction, the two traits were considered separately. We used
the Bayesian phylogenomic tree rooted on Terrabacteria as an input tree, and further
checked the robustness of our inferences to five alternative roots, all within Terrabacteria.
Branch lengths were scaled to have a mean of 0.1, as suggested in BayesTraits manual
(p- 10). Five different MultiState models were tested: prior exponential of 10 (model “E”),
hyperprior exponential 0 to 10 (model “H1"), hyperprior exponential 0 to 100 (model “H2"),
reverse-jump hyperprior exponential 0 to 10 (model “R1”), and reverse-jump hyperprior
exponential 0 to 100 (model “R2"). Reversible-jump models had the opportunity to forbid
some transitions (rate = 0) and/or to equate distinct rates. Ten MCMC chains were run for
each combination of trait/root/model for 1,100,000 cycles, with one sample saved every
1000 cycles, and burnin set at 100,000 cycles. State probabilities and transition rates were
summarized as means of the 10 x 10,000 samples. To investigate the sensitivity of the
Bayesian inference of a monoderm LBCA to priors, one more analysis (biased on purpose
towards reversion from diderm to monoderm state) was re-run as 100 MCMC chains with
q01 and q10 exponential hyperpriors set to 0 to 1 for and 1 to 10, respectively.

2.3.4. Comparison of the Selected Models

Building on the steppingstones sampler files produced by the BayesTraits ancestral
state reconstruction, we compared the fit of our five models (in a systematic pairwise
fashion) to both the membrane and the peptidoglycan data (used for the ancestral state
reconstruction) using Bayes Factors. We selected the steppingstones files from the runs with
the tree rooted on the Terrabacteria. As above, the steppingstone sampler used 100 stones
with 10,000 iterations per stone.
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2.4. Evolution of the dew Cluster
2.4.1. Synteny Analyses of Extant Genomes

To study the gene order of the dcw cluster across our 903 genomes, we developed a
custom R script. This interactive interface allowed us to select any subset of genomes and
to focus on any region of the bacterial chromosome chosen as the reference genome for the
comparison. To maximize the robustness of these analyses, the data (genomic coordinates,
orthology relationships, functions) needed for the visualization are fetched in real-time
from the relational database. Examples of graphical outputs produced by this program
(limited to the 85 final organisms) are shown in “synteny_85_dcw.pdf” available in the
folder ProCARs. The orthologous groups corresponding to the genes of the dew cluster
were identified by a combination of homology searches using reference protein sequences
as queries and our R interface for visual confirmation of synteny conservation. In most
cases but the poorly conserved ftsL and ftsQ, a single orthologous group was found for
each gene. For fisL and, to a much lesser extent, fIsQ, several orthologous groups had to be
merged, based on the presence of an unidentified gene sequence at their respective expected
location, i.e., between mraW and fts! for ftsL, and just before ftsA for ftsQ. Moreover, HMM
profiles (pHMM) [49,50] (see also below) were built from unambiguous reference sequences
to ensure proper identification of ftsL and ftsQ genes in genomes with a fragmented dcw
cluster. Overall, ftsL. and ftsQ were spread over 36 and 24 orthologous groups (many having
only 2-3 sequences), respectively, whereas mraW, mraZ and ftsA were spread over 2, 3 and
4 orthologous groups, respectively.

2.4.2. Ancestral Gene Order Reconstruction

To reconstruct the evolution of the dew cluster, we used the program ProCARs [51],
modified to prevent gene inversions in the cluster (by enabling the -p option). ProCARs
input files were built semi-automatically from the relational database, focusing on the
85 bacterial species of our phylogenomic analyses and informed by synteny analyses of
extant genomes. Briefly, genes too far from other genes were encoded as lying on different

“chromosomes” by introducing artificial telomeres. When several “orthologous” genes were

available in a given genome for a specific gene, we first tried to select the gene copy lying on
the artificial “chromosome” with the highest count of other dcw genes. If this failed due to
ties, we turned to the gene copy located on the main DNA molecule (genuine chromosome
or largest scaffold in the genome assembly); otherwise, as a last resort, we selected the gene
copy in the same orientation as the dcw genes found on the genuine chromosome or largest
scaffold. Fina]ly, when two gene copies were in tandem, we considered them as a single
(duplicated) gene for the purpose of the ancestral reconstruction.

2.4.3. Phylogenetic Analyses

For the single-gene analyses of the dcw cluster in the 85 genomes of interest, we used
the 17 identified orthologous groups (possibly merged; see above) to produce trees ac-
cording to two different approaches: (1) by ML using RAXML v8.1.17 under the PROTGAM-
MALGF (LG+F+I') model and (2) by Bl using PhyloBayes v3.3f under the model GTR+C60+T,
with two MCMC chains run for 10,000 cycles, with burnin of 5000 cycles and sampling
every 10 cycles. Convergence was assessed as above (gene maxdiff’s ranging between (.208
and 1.000 and meandiff’s between 0.013 and 0.062), with the -c option of bpcomp set to
0.25, which turned unresolved nodes to multifurcations. Then, a concatenation of 15 of the
17 genes of the dcw cluster was built using SCaFoS v1.30k, leaving out ftsl. and ftsQ due
to their poor conservation (see above). For these 15 genes, additional steps were carried
out to ensure the orthology of the concatenated sequences. Briefly, we used our ProCARs
input to select only the genes belonging to the dew cluster (or sub-cluster) in each genome.
Orthologues not supported by synteny evidence were removed from the alignments using
prune-ali.pl (also from Bio::MUST::Core) before concatenation. We further filtered out sites
with >50% missing character states, thereby yielding a sparser supermatrix of 85 species
% 4571 AAs (8.47% missing character states). PhyloBayes MPI v1.4 was used to run two
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chains under the CAT+T" model for 50,000 cycles. We chose a burnin of 10,000 cycles and
kept only one sample every 10 cycles of the remaining 40,000 cycles. We selected both
chains to compute the tree (maxdiff = 0.284; meandiff = 0.007), with the -c option of bpcomp
set to 0.25. All trees were formatted as above.

2.5. Evolution of the Genes Related to the Outer Membrane
2.5.1. Homology Searches in Complete Proteomes

For our broader study of the taxonomic distribution of 16 genes involved in synthesis
and in maintaining the integrity of the outer membrane across the 903 selected genomes
(including previously discarded organisms like Thermotogae), we did not rely on synteny
as those were not part of a single cluster in any organism. Instead, we searched for the
orthologous groups containing unambiguous reference sequences for these genes. For each
set of orthologous groups potentially corresponding to a gene of interest (merging from
one to nine orthologous groups per gene), we computed an alignment over all sequences
with MAFFT v7.453 (using the accurate LINSI strategy) and checked by eye if it was
globally satisfactory or not, possibly after cleaning up a few divergent sequences. If the
alignment was good enough, we built an HMM profile from it to search the complete
proteomes of our 903 genomes using HMMER [49,50]. Then, based on the E-value, length,
pHMM profile coverage, copy number and taxonomy of the HMMER hits, we selected
the probably orthologous proteins using the visual software Ompa-Pa (A.R. Bertrand and
D. Baurain; available at https:/ /metacpan.org/dist/Bio-MUST-Apps-Ompal’a, accessed
on 16 February 2022). In contrast, when the alignment of all sequences was too poor, we
focused on the original orthologous group containing the E. coli sequence and tried to
build a profile by adding up to 6 (for lolB and IptC) of the additional orthologous groups
using an iterative strategy as implemented in the software Two-Scalp (A.R. Bertrand and D.
Baurain; available at https://metacpan.org/dist/Bio-MUST- Apps-TwoScalp, 16 February
2022). Then, we followed the same route as if the pHMM had been computed from
a “good-enough” alignment. For the specific case of the bamA gene, we first collected
28 orthologous groups containing proteins annotated as BamA, Omp85 and/or TspB,
then we used InterProScan v.5.48-83.0 with default parameters and disabled use of the
precalculated match lookup [52] to determine the number of POTRA domains [53] in the
1425 individual sequences. Two curated alignments based on preliminary ML trees (see
below) were built: one from the five orthologous groups where the sequences mostly had 4
or 5 POTRA domains (Table S4), which we considered as the orthologues of the genuine
BamA protein of true diderms-LPS, and one from five orthologous groups having 2 or
3 POTRA domains, which included the BamA “4” sequences of Cyanobacteria, as well as
related proteins (i.e., BamA-like/Lipo/TamA) [54]. By “curation”, we mean elimination of
incomplete and /or divergent individual sequences but without discarding representatives
of scarcer groups. Finally, these two alignments were used to build two pHMM profiles
and perform HMMER searches as described above.

2.5.2. Taxonomic and Phylogenetic Analyses

For each gene of the 16 genes, we retrieved the list of genomes containing the (probably)
orthologous proteins and tabulated the corresponding organisms at the phylum level. From
these numbers, we tried to identify recurring patterns of gene distribution. For two genes,
tolA and ybgF, the taxonomic distribution was discordant with respect to other genes (when
present) in the atypical diderms group. In each case, only one of the expected phyla of
the atypical diderms group had at least a copy, and this phylum was represented by a
noticeably lower number of sequences compared to other genes present in the atypical
diderms group (when they had copies of the gene). To decide if these discordances were
due to genome contamination or very recent gene transfers, we aligned the sequences with
MAFFT v7.453 (LINSI) and computed two phylogenetic trees using RAXML v8.1.17 under
the PROTGAMMALGF (LG+F+T') model. Trees were also produced for the 14 other genes
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associated with the outer membrane following the same method. All trees were formatted
as above, with unresolved nodes (BP < 25%) turned to multifurcations.

3. Results
3.1. A Robust Tree of the Bacterial Domain

To serve as the base for evolutionary analysis of the cell-wall architecture and re-
construction of the ancestral gene order in the dcw cluster, we needed a tree of Bacteria.
With the growing availability of fully sequenced genomes, phylogenomics has developed
as a discipline using the tools of phylogenetics but applied to tens to hundreds, or even
thousands, sequences of broadly conserved genes [55]. Phylogenomic trees can either be in-
ferred from supermatrices of concatenated genes [56] or through combination of single-gene
trees into supertrees [57]. Hence, the phylogenomic tree shown in Figure 1 was computed
by Bayesian inference based on a dense (4.29% missing character states) supermatrix of
117 single-copy orthologous genes (see Materials and Methods) sampled from 85 represen-
tative bacterial genomes with PhyloBayes MPI under the site-heterogeneous CAT+GTR+T"
model (CATegories + Generalised Time-Reversible + Gamma) of sequence evolution [38—41].
Congruence analyses were run on the 117 individual genes using Phylo-MCOA [44] and
did not reveal incongruent genes or species, beyond 62 individual sequences, which might
have experienced gene transfer and/or fast evolution. Once discarded, the overall results
did not change, as demonstrated by comparing two control trees (i.e., before and after
outlier removal) inferred with RAXML under the LG+F+I" model (see Figures S1 and S2).
Regarding model selection, cross-validation analyses on four different models confirmed
that CAT+GTR+T had the best fit to our dataset, followed by CAT+T, then GTR+T and
finally LG+T (Table S5).

Our unrooted tree is in good agreement with most recent concatenating phylogenomic
studies aimed at resolving bacterial evolution [58-68]. In particular, we robustly recovered
a bipartition of the bacterial lineages composing the Terrabacteria and the “Hydrobacteria”
(=Gracilicutes sensu [69]). Within these “megaphyla” first defined by Hedges and Battis-
tuzzi [58], resolution was weaker, as reflected in the lower posterior probabilities at medium
phylogenetic depth, whereas phyla and known superphyla (e.g., FBC, for Fibrobacteres-
Bacteroidetes-Chlorobi, and PVC, for Planctomycetes-Verrucomicrobia-Chlamydia) were
always clearly resolved. In the Terrabacteria, relationships between member lineages
slightly varied from run to run (we ran a total of six independent chains, Figure S3), while
in the Hydrobacteria (e.g., FBC, PVC, Protecbacteria), Epsilonproteobacteria were occasion-
ally separated from other groups of Proteobacteria (Figures 54 and S5). Some additional
phyla initially present in our dataset (i.e., Synergistetes, Fusobacteria and Aquificae) were
excluded from the tree shown in Figure 1 because they were difficult to robustly position
(e.g., due to the chimerical nature of the Aquificae) without bringing more cell-wall ar-
chitecture diversity (see also [70-72]). Likewise, we further discarded the Thermotogae,
which are also chimeras [70], even though their toga might be akin to a modified outer
membrane [73,74] (see Figure S6 for a preliminary 101-species tree including all these
lineages). Such uncertainties are not uncommon in bacterial phylogenomics and are the
result of a combination of weak phylogenetic signal, widespread lateral gene transfer and
systematic error (e.g., long-branch attraction artifacts) [72,75-82].

316



Genes 2022, 13, 376

9 of 26

Figure 1, Phylogenomic tree of the bacterial domain based on a supermatrix concatenating 117 single-
copy orthologous genes chosen for their broad conservation across Bacteria. The tree was rooted
on Terrabacteria. The supermatrix had 85 species and 19,959 unambiguously aligned amino-acid
positions (<5% missing character states). The tree was inferred from amino-acid sequences using
PhyloBayes MPI and the CAT+GTR+T model of sequence evolution. Open symbols at the nodes are
posterior probabilities (PP), and nodes without a symbol correspond to maximum statistical support
for phylogenetic inference (posterior probabilities of 1.0; averaged over two MCMC chains). The
length of the branch marked with *//” has been reduced by 50% for the sake of clarity. Colour key is
red = Terrabacteria, orange = Proteobacteria, green = FBC superphylum, blue = PVC superphylum.
Quter circles stand for the status of the peptidoglycan (PG) and of the outer membrane in the
organisms, according to our literature survey: red = thick PG, orange = thin PG, yellow = no PG,
dark blue = diderm, light blue = monoderm, white = no information. Alternating white and grey
backgrounds highlight the alternance between differentially coloured groups or phyla.

Rooting the different domains of Life is not an easy issue [82]. In Figure 1, we chose to
set the root of Bacteria between Terrabacteria and Hydrobacteria/Gracilicutes, following
studies having included Archaea as an outgroup [25,41]. Remarkably, this basal split mir-
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rors cell-wall architecture differences. In the first group, Firmicutes, Tenericutes, Actinobac-
teria, and presumably Chloroflexi (see below), are mostly monoderm bacteria. Together
with the atypical diderms, i.e., Deinococcus-Thermus, Cyanobacteria, Svnergistetes and
Thermotogae, they compose Terrabacteria [58]. On the other hand, the remaining lineages
are diderms mostly featuring lipopolysaccharides (LPS) and correspond to Hydrobacte-
ria/Gracilicutes; these will be called “true diderms-LPS” in this study. Over time, several
positions for the bacterial root have been proposed (Table 56). In the following, because
our Bayesian analyses required a rooted tree, we tested several of them, yet excluding roots
lying within the true diderms-LPS, which are likely monophyletic (see below). Beyond the
root of Figure 1, we thus explored the effect of setting the bacterial root within Terrabacteria
on our inferences.

3.2. Evolution of the Cell-Wall Architecture

To study the evolution of the cell-wall architecture, we carried out a thorough literature
survey on all the bacteria kept in our tree (Tables 53 and 54). For each organism, we collected
the number of membranes, the presence and thickness of the peptidoglycan layer and,
if relevant, the type of spore, as there exists evidence of potential functional connection
between sporulation and cell-wall remodelling processes [13,14]. However, preliminary
analyses showed that the spore trait was difficult to encode reliably in terms of homologous
states. Therefore, it was eventually discarded, whereas the two traits linked to the cell wall
itself were analysed using BayesTraits under the MultiState model.

Based on this survey (Tables S3 and 54), most bacterial phyla have two membranes
(diderm architecture) and a thin peptidoglycan layer. For example, Proteobacteria, Nitro-
spirae, Acidobacteria, Bacteroidetes and Chlorobi fall into this category and correspond
to true diderms-LPS lineages. For the organisms belonging to the PVC superphylum, this
architecture might be slightly different [83]. Actinobacteria are essentially monoderms
with a thick peptidoglycan, whereas Firmicutes and Chloroflexi both have monoderm and
diderm representatives. Firmicutes include Bacilli and Clostridia, two groups of endospore
formers. Clostridia and Bacilli correspond to two well-defined classes, sharing many traits
though being also very distinct. All Bacilli and most Clostridia are monoderms with a
thick peptidoglycan, but some Clostridia [84] (Halanaerobiales and Thermoanaerobacteri-
ales) and the Negativicutes have two membranes (some with lipopolysaccharides in the
outer membrane) and a relatively thin peptidoglycan layer [16,85,86]. Regarding the status
of the Chloroflexi cell-wall architecture, it is still controversial [68,587,858]. Beside these
canonical diderm and monoderm phyla, respectively corresponding to classical Gram-
and Gram+ bacteria, there exist a series of organisms with atypical cell-wall architectures.
Hence, Deinococcus-Thermus and Cyanobacteria are diderm bacteria with an outer mem-
brane, but their cell walls differ from those of the true diderms-LPS by having a thick
peptidoglycan instead of a thin layer (Table 52).

Consequently, the number of membranes observed in the extant organisms is either
one (state 0) or two (i.e., there is an outer membrane, state 1; Table S3). The evolutionary
analysis of this trait suggests a LBCA surrounded by only one membrane. This inference
is robust to five model variants (E, H1, H2, R1 and R2; see Materials and Methods) and
six different positions for the bacterial root (P(0) = 94.2% to 98.2%; Figure 57). Due to the
rabustness of our results to alternative rootings, we will only present those obtained with a
root located between Terrabacteria and true diderms-LPS (as in Figure 1). In accordance
with the inference of a monoderm LBCA, the posterior transition rates indicate that it is
easier to gain (q01) an outer membrane (range of the five model’s mean = 2.288-2.495,
Table 1) than losing (q10) an existing one (range = 0.008-0.132). If we try to alter the H1/H2
model hyperpriors to promote the loss (q10 = 1-10) at the expense of the gain (q01 = 0-1),
the LBCA remains inferred as a monoderm in 67.1% of the cases (mean P(0)), whereas it is
inferred as a diderm in 32.9% of the cases (mean P(1)) (Table 1). Concerning the rates, the
inferred loss rate remains weak (mean q10 = 0.000-0.187; Table 1), while the distribution of
the gain rate (q01) becomes bimodal, with a mode at 0.2 and another at 1.8 (Figure S8A)
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and remain low for the loss rate (q10) (Figure S8B). Consequently, under this extreme
parameterization, we distinguish two main configurations for the pair of rates (Figure S8C)
and the monoderm probability P(0) (Figure S8D).

Table 1. Overview of BayesTraits results. gij design posterior transition rates, whereas P(i) correspond
to posterior ancestral state probabilities. For the membrane (MBN) trait, state 0 = one MBN and
state 1 = two MBN, while for the peptidoglycan (PG) trait, state 0 = no PG, state 1 = thin PG and
state 2 = thick PG. “H biased” is the model where the hyperprior has been purposely biased to favour
a diderm LBCA (see Materials and Methods for details).

Node Trait Statistic E H1 H2 R1 R2 H Biased
LBCA MBN mean q01 2.495 2.352 2477 2.288 241 1.431
LBCA MBN mean q10 0.132 0.113 0.121 0.012 0.008 0.210
LBCA MBN mean P(0) 94951 94204 95375 97134  98.161 67.092
LBCA PG mean P(0) 22.068 4.022 38.604 0.397 0.594 N/A
LBCA PG mean P(2) 76497 94622  60.147 99535  99.358 N/A

LBCA PG mean 01 4.626 1.634 7.317 0.798 0.827 N/A
LBCA PG mean 02 6.935 2,020 20967 0953 1.041 N/A
LBCA PG mean q10 0.166 0.102 0.187 0.000 0.000 N/A

LBCA PG mean q12 0.128 0.109 0.118 0.001 0.000 N/A
LBCA PG mean q20 2.088 0.937 4.941 1.347 1.413 N/A
LBCA PG mean q21 1.890 2,165 1.600 1.398 1.419 N/A
Firmicutes PG mean P(0) 17.631 3.936 30.120 0.611 0.738 N/A

Firmicutes PG mean P(2) BLE91  95.648 69435 99.378  99.237 N/A

In the 85 extant organisms considered in our study, the peptidoglycan layer is either
absent (state 0), present and thin (state 1) or present and thick (state 2; Table 53). The LBCA
is inferred with a thick peptidoglycan. While this result is robust to alternative positions of
the root, some models (E and H2) let the possibility open (22.0-38.6%, Table 1) for the LBCA
having been devoid of peptidoglycan (Figure S9). Moreover, the posterior rates are highly
heterogeneous, depending on the transition considered, and present a sensitivity to the
model used (mean range = 0.000-20.967; Figure S10 and Table 1). Based on the values of the
rates, the thin peptidoglycan state (state 1), once acquired, is unlikely to change towards
another state, whereas the other two states (states 0 and 2) can exchange freely or change
towards the thin peptidoglycan state (Figure S10 and Table 1).

In a second step, we used BayesTraits to reconstruct the state of the characters for
the Last Common Ancestor (LCA) of every one of the 15 bacterial phyla included in
our study, as well as the LCA of several larger groups (e.g., PVC, Terrabacteria), still
based on the Terrabacteria root (Figure 2). As expected, the LCA of the true diderms-LPS
bacteria is inferred as a diderm organism featuring a thin peptidoglycan layer, whereas the
Terrabacteria LCA is reconstructed as a monoderm with thick peptidoglycan. The results
obtained for the larger groups are homogeneous across the different models (Figure S11).
For Firmicutes, which is the only phylum with some architectural diversity in our dataset,
two of the five models (E and H2) do not completely settle on an LCA monoderm with a
thick peptidoglycan, and instead do not dismiss an LCA without peptidoglycan (17.6%
and 30.1%, respectively; Table 1). Finally, a comparison of the fit of the five models using
Bayes Factors (Table 2) showed that model R1 was the best, followed by models R2, H1, E,
and finally H2. Therefore, the two models that do not fully agree with the others about the
peptidoglycan trait are also those that are deemed less fit by Bayes Factors (E and H2).
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Figure 2. Cladogram derived from the tree of Figure 1 featuring the cell-wall architecture in-
ferred for selected last common ancestors among Bacteria. Colour key is red = Terrabacteria,
orange = Proteobacteria, green = FBC superphylum, blue = PVC superphylum Branches ending
with a triangle represent collapsed groups (for details, see Figure 1 or Table 53). The pie chart sectors
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correspond to the posterior probabilities of the model reverse-jump hyperprior exponential 0 to 100
(R2). Colour key is red = thick PG, orange = thin PG, yellow = no PG, dark blue = diderm, light
blue = monoderm.

Table 2. Pairwise comparisons of BayesTraits model fit using Bayes Factors (BF). BF > 2 are interpreted
as positive evidence, 5 < BF < 10 as strong evidence and BF > 20 as very strong evidence in favour of
the more complex model [89].

Complex Simple MBN PG
R1 H2 7.41 22.86
E 5.95 17.47

H1 2.69 8.38

R2 242 1.91
R2 H2 499 2095
E 3.53 15.56

H1 0.27 647
H1 H2 471 14.47
E 3.25 9.09

E H2 146 5.39
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Hitherto, the two cell-wall traits were analysed separately, owing to the limitations of
the MultiState model used. However, from a biological point of view, their evolution might
be correlated. To account for this possibility, we conducted the BayesTraits procedure to
estimate the correlation between two traits, which revealed that the peptidoglycan and the
membrane characters are indeed linked. The actual strength of the correlation depended on
the scheme used to recode the three-state peptidoglycan trait into a binary character, which
was needed to estimate the correlation with the membrane trait (see Materials and Methods).
When the coding scheme rewarded the mere presence of the peptidoglycan layer, whatever
its thickness, the correlation was supported by strong evidence (log Bayes Factor for case
A =9.0), while it raised to very strong evidence when the scheme emphasized either a thick
peptidoglycan (case B = 27.6) or a thin peptidoglycan (case C = 37.8). These differences in
correlation can easily be explained. In case A, almost all organisms of our study without
peptidoglycan are also deprived of the outer membrane (see Parachlamydia acanthamoebae in
Figure 1), whereas organisms with a peptidoglycan layer often have an outer membrane.
In case B, all organisms without peptidoglycan or with a thin peptidoglycan layer are put
in the same category. In our study, all organisms with a thin peptidoglycan layer have an
outer membrane, and they are more numerous than the organisms without a peptidoglycan
layer. In case C, the organisms with a thin peptidoglycan layer have their own category
and, in our study, all these organisms also feature an outer membrane.

3.3. Evolution of the Gene Order within the dew Cluster

Initially, we studied the organization of the dcw cluster in extant organisms based
on the output of a custom visualization software showing orthologous gene groups in
their syntenic context (see Materials and Methods for details and “synteny_85_dcw.pdf”
available in the folder ProCARs from our Figshare, for the status of the dcw cluster in the
85 bacteria of our phylogenomic tree). This approach led us to identify the orthologous
groups for the 17 genes of (the most complete form of) the dcw cluster. In Cyanobacteria,
the nearly total absence of the dciw cluster is noteworthy: mraZ and ftsA are missing from all
cyanobacterial genomes examined, and all other genes of the cluster are generally present
but completely dispersed on almost as many loci as the number of genes, with some
exceptions, the doublet murC and murB or the doublet ftsQ and ftsZ (see .xlsx file available
in the folder ProCARs). The murA gene can be found in clusters or sub-clusters in several
genomes. The complete form of the dcw cluster is only seen in a single order of Clostridia,
the Halanaerobiales (more precisely, in Acetohalobium arabaticum). Halanaerobiales are
robustly affiliated to Firmicutes yet branching at the root of the phylum [90]. However,
murA is also present in sub-clusters in Cyanobacteria, Planctomycetes, Lentisphaerae and
Caldithrix abyssi. Otherwise, if present in the genome, murA is usually outside of the dcw
cluster. Beside this specific gene and particular phyla, several true diderms-LPS phyla are
characterized by the loss of specific genes from the cluster (ftsW in Thermodesulfobacteria,
murB and ddlB in the FBC superphylum, ftsA and ftsZ in Chlamydiae and Planctomycetes)
(see .xlsx file available in the folder ProCARs).

Taking the rooted phylogenomic tree of Figure 1 as an evolutionary framework and
the orthologous groups identified just above as input extant data, we used a new variant
of a homology-based reconstruction method (ProCARs) [51] to retrace the evolution of
the organization of the dew cluster in our 85 representative organisms. Qur reconstruction
shows that both the LBCA and the LCA of the Terrabacteria group were organisms featuring
a complete 17-gene dcw cluster. In contrast, the reconstructed cluster for the ancestor of the
true diderms-LPS group included 16 genes, with the murA gene outside of the cluster (even
if present in the genome). Detailed study revealed that the murA gene was also outside of
the main cluster in every reconstructed ancestor among true diderms-LPS (Figure 3A). This
gene is at best found on a small sub-cluster, and most of the time it exists as a singleton.
An example of such a small sub-cluster reconstructed by ProCARs can be seen in the
LCA of the FBC superphylum where murA and murB are in tandem. A parsimonious
way to explain these observations would be that the murA gene has left the dcw gene
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cluster (but persisted in the genome) of the LCA of true diderms-LPS and the LCA of
Actinobacteria, Deinococcus-Thermus and Chloroflexi (assuming these three phyla share

a common ancestor). Alternatively, it was lost independently in the three latter phyla.

Overall, the dcw cluster is conserved in almost all high-level ancestors down to the phyla

(see Figure 3A for a summary and .xlsx file available in the folder ProCARs, for details).

This conservation mostly takes the form of a single cluster (e.g., Proteobacteria LCA) or of
a limited number of sub-clusters, with the synteny retained within individual sub-clusters
(e.g., Chloroflexi LCA, Planctomycetes LCA). Thus, the dciw cluster appears as an ancient
locus with mainly a history of gene loss or gene delocalization, but likely no gene gain
since its establishment before the advent of the LBCA.
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organization in selected LCA among Bacteria. Full rectangle = gene present and in the main cluster;
empty circle in rectangle = gene present but in a sub-cluster; empty rectangle = gene present but
outside of any cluster. Note that the reconstruction procedure prevents the complete lack of a gene in
an ancestral genome. (B) Recurring distribution patterns at the phylum level for the proteins involved
with the outer membrane. Full circle = gene present in the group; empty circle = gene absent in the
group; “?” in a circle = potential presence of the gene in the group; /// = presence in a sub-group
only (i.e., Deinococcus-Thermus). Numbers in bold are the pattern numbers. Names written in bold
are the names of groups regrouping several phyla.

Phylogenetic trees for the 17 genes of the dcw cluster were computed from protein
sequences, but these trees are not well resolved (“DCW_17_SG.pdf” available in the folder
Trees). Known phyla can be supported by low to high bootstrap proportions (BP: 9-100%
and posterior probabilities (0.3-1.0), while the support is always too low to resolve the
relationships between phyla, even though general trends, such as the bipartition between
Terrabacteria and true diderms-LPS (Firmicutes—Chloroflexi-Actinobacteria-Deinococcus-
Thermus vs. Proteobacteria~-FBC-PVC), are observable in several single-gene trees. More-
over, trees inferred from genes often found outside of the dcw cluster (e.g., murC, murB and
ddIB) are blurrier than those computed from genes kept in the cluster. Finally, the trees of
the genes ftsQ and ftsL, for which the orthologous groups had to be manually reconstructed
(see Materials and Methods) are particularly chaotic. In contrast, the mraY tree (Figure 512)
is better supported (BP: 39-100%; posterior probabilities: 0.5-1.0) at the phylum level and is
the most congruent with the tree resulting from the 117-gene supermatrix (Figure 1). When
concatenated, the dcw genes (all but ftsQ and ftsL) recover a similar tree (Figure S13), notably
featuring the Terrabacteria group, the FBC group and the true diderms-LPS, but with one
exception: the PVC group is split in three, with the Planctomycetes and Verrucomicrobia
on one side, the Chlamydia on the other side and the Lentisphaerae within the FBC group.
This suggests that the dew cluster mostly experienced a vertical evolution.

3.4. Evolution of the Genes Related to the Outer Membrane

According to our ancestral reconstruction of the cell wall, the LBCA had a single mem-
brane around its cell, which implies that the atypical diderms lineages within Terrabacteria
(Cyanobacteria, Deinococcus-Thermus and some Firmicutes, i.e., the Halanaerobiales and
the Negativicutes) had to acquire their outer membrane independently and in distinct
events from the event at the origin of true diderms-LPS. At face value, this inference might
seem less parsimonious than hypothesizing a diderm LBCA and multiple independent
outer membrane losses over the evolution of the bacterial domain, as suggested repeat-
edly [5,25,68]. To decide whether the outer membrane could indeed have evolved several
times independently, we studied the taxonomic distribution of 16 genes involved in outer
membrane synthesis and integrity: bamA, lolB, IptA, IptB, IptC, IptD, IptE, IptF, IptG, pal,
tolA, tolB, tolQ, tolR, ybgC, ybgF. Briefly, BamA is the main protein of the Bam complex (to
which the other Bam proteins attach to), which is responsible for the assembly of beta-barrel
proteins in the outer membrane [91]. LolB is the only outer membrane-anchored protein of
the Lol pathway, which delivers lipoproteins to the outer membrane [3]. The Lpt system
(LptA to LptG) ensures the transport of the lipopolysaccharides from the cytoplasm to the
outer membrane [92]. Finally, the Tol-Pal system (Pal, TolA, TolB, TolQ, TolR, YbgC, YbgF)
is involved in the uptake of colicin, the uptake of filamentous bacteriophage DNA and the
integrity of the outer membrane [93].

The distribution of these genes was examined across our first selection of 903 bacterial
genomes (all genomes even the previously discarded ones) using curated Hidden Markov
Model (HMM) profiles built from orthologous groups including E. coli reference sequences
and complemented by phylogenetic analyses when orthology was doubtful (see Materials
and Methods for details). These results were then summarized at the phylum level to iden-
tify recurring patterns of gene distribution (Figure 3B and “OM_genes_presence-hmms.csv”
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available in the folder Outer_membrane, for details), while single-gene trees inferred from
the corresponding protein sequences are available (“"LBCA_OM_16_SG.pdf” available in
the folder Trees). Altogether, our study of the genes encoding the proteins BamA, LolB, the
Lpt system and the Tol-Pal system revealed four different patterns of presence/absence in
bacterial phyla with diderm organisms. These four gene distribution patterns correspond
to: (1) “atypical diderms” (see references in Table 52), i.e., Cyanobacteria, Deinococcus-
Thermus and diderm Firmicutes; (2) “monoderm Terrabacteria”, i.e., Chloroflexi, of which
some may be monoderms but all are devoid of lipopolysaccharides [68,87], Actinobacteria,
and monoderm Firmicutes; (3) “true diderms with LPS” (TDL = typical Gram-bacteria);
(4) Thermotogae, in which the outer membrane has been replaced by a toga made of
structural proteins and polysaccharide hydrolases (xylanases) [73,74,94]. Below, we briefly
comment on these gene distributions from a functional perspective.

First, according to our comprehensive homology searches, bamA is exclusive to true
diderms-LPS, Deinococcus-Thermus and Thermotogae, even though the latter lack nearly
all other outer membrane-related genes studied here. This result suggests a true diderms-
LPS origin for Thermotogae, which are now considered as chimeras partly derived from
(or at least related to) Aquificales [70,72,95]. This chimerical nature of Thermotoga is the
reason we did not include them in our phylogenomic tree (see above). Regarding the
presence of the bamA gene in the atypical diderms of the group Deinococcus-Thermus, it
has already been reported [96] and this result appears less compatible with a monoderm
LBCA. However, in other atypical diderms, we could not find a genuine BamA protein.
Instead, Cyanobacteria and diderm Firmicutes feature proteins that have a quite different
domain architecture (see BamA4 and BamA-like in Heinz et al., 2014 [54]) and for which
the orthology (i.e., overall sequence similarity due to vertical descent only) with the typical
BamA is at best dubious. Therefore, we currently disagree with the idea that BamA per se
would be common outside true diderms-LPS [97]. Nonetheless, BamA, taken as a family
regrouping the typical BamA, “BamA4” and “BamA-like” proteins, might indeed be an
essential family (each sub-group sharing a similar function) to all diderm (i.e., featuring an
outer membrane) but its members do not necessarily share a vertical transmission from a
single ancestral protein. To verify this hypothesis would require a whole new study and
is thus not expanded in the current article. Second, lo/B is exclusive to Proteobacteria, a
member of true diderms-LPS, whereas IptB (Lpt system) and ybgC (Tol-Pal system) are
found in all (or almost every) bacterial phylum of our selection of 903 genomes (including
Chloroflexi) and are thus not informative about the origins of the outer membrane. It
is likely that these two genes have function(s) outside their respective system, functions
that could be unrelated to the outer membrane. This has already been proposed for ybgF,
which might be part of a protein network involved in phospholipid biosynthesis [98].
On the opposite, the LptB protein is known to assemble with LptF and LptG to form
an ABC transporter for lipopolysaccharides [92,99], but the two corresponding genes
are apparently lacking in Acidobacteria (true diderms-LPS), Tenericutes and Chloroflexi.
Perhaps unexpectedly, this is also the case for Actinobacteria, these monoderm bacteria
further sharing with Chloroflexi the same distribution pattern for the 16 genes involved
with the outer membrane.

Beyond IptB and ybgC, the Lpt and Tol-Pal systems are found in both atypical diderms
and true diderms-LPS but to a different extent. Indeed, both systems are present in
atypical diderms, albeit only in a largely reduced form, whereas in true diderms-LPS,
they range from a largely reduced form (e.g., Chlamydiae or Planctomycetes) to a (almost)
complete form (e.g., Proteobacteria or Bacteroidetes), and this distribution is phylum-
specific (Figure 3B). Hence, two genes from each system are only present in (most) true
diderms-LPS genomes, IptD and IptE on one side, pal and tolB on the other side, whereas all
four genes are never found in atypical diderms genomes. Regarding folA and ybgF, they
may or may not be exclusive to true diderms-LPS, depending on the biological reality of
their scarce occurrence in some organisms belonging to atypical diderms (Firmicutes for
tolA and Cyanobacteria for ybgF). Based on our trees of the corresponding proteins, the
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dubious sequences (denoted by “?” in Figure 3B and by stars in “OM_genes_presence-
hmms.csv” available in the folder Outer_membrane) are sisters to Bacteroidetes (member
of true diderms-LPS) in both cases, plus one case with a sequence sister to Moraxella in folA
tree (Figures S14 and 515, see also “LBCA_OM_16_SG.pdf” available in the folder Trees).
Therefore, provided they are not the product of genome contamination [100], these genes
are unlikely to have been vertically inherited.

From a functional point of view, the genes retained by atypical diderms for the Lpt sys-
tem (IptA, IptB, IptC, IptF and IptG) are involved in the transport of the lipopolysaccharides
from the cytoplasm to the outer membrane and thus are not directly associated to the outer
membrane itself, contrarily to IptD and IptE, which form a complex at the outer membrane
that may serve as the recognition site for the lipopolysaccharides [101]. Similarly, for the
Tol-Pal system, atypical diderms genomes lack pal and tolB, two genes encoding proteins
located in the periplasm and therefore directly associated to the outer membrane [102,103].
QOverall, the Lpt and Tol-Pal systems in atypical diderms are thus restricted to components
that might have a function in the absence of an outer membrane.

Remarkably, the genes of the Tol-Pal system are clustered in most genomes of Pro-
teobacteria and Chlorobi, as well as in the lone genomes we studied within Fibrobacter
and Gemmatimonadetes, and sporadically in those of Verrucomicrobia and Acidobacteria
(available in the folder Outer_membrane sub-folder synteny_output). As all these lineages
belong to the true diderms-LPS, we cannot exclude that the conservation of the Tol-Pal clus-
ter appears patchier than it really is, owing to uneven levels of genome assembly. Regarding
the genes of the Lpt system, they are not clustered in any of the genomes examined, except
in Proteobacteria, where five of the seven genes are grouped on two loci (IptFG and IptABC)
(available in the folder Outer_membrane sub-folder synteny_output). Nevertheless, as the
synteny of the genes of both Lpt and Tol-Pal systems was only studied in the 85 genomes of
our phylogenomic tree, we may have missed non-Proteobacterial genomes in which some
of the Ipt genes are indeed clustered, as reported in the recent study of Taib et al. [17].

4. Discussion

The nature of the LBCA is unknown, especially the architecture of its cell wall. The lack
of reliably aftiliated bacterial fossils outside Cyanobacteria [104] makes it elusive to decide
the very nature of the LBCA. Nevertheless, phylogenomic inference leads to informative
results, and our analysis of the cell-wall characteristics of extant bacteria, combined with
ancestral state reconstruction and distribution of key genes, opens interesting possibilities:
the LBCA might have been a monoderm bacterium featuring a complete 17-gene dcw
cluster, two genes more than in the model E. coli cluster. This result was also supported
by the recent study of [105], in which the authors found 146 protein families that formed a
predicted core for the metabolic network of the LBCA. From these families, phylogenetic
trees were produced and the divergence of the modern genomes from the root to the tips
was analysed. It appears that the Clostridia (a class of Firmicutes) are the least diverged of
the modern genomes and thus the first lineage to diverge from the predicted LBCA were
similar to the modern Clostridia. Based on these results, the authors suggested that the
LBCA could have been a monoderm bacteria.

As diderm bacteria are not monophyletic, whatever the root used for the bacterial
domain, our reconstruction of a monoderm LBCA implies that the diderm character state
has appeared several times, which goes against the principle of parsimony commonly
invoked in such matters [68]. Indeed, acquiring an outer membrane is more than a sim-
ple mutation: it requires the acquisition of a whole new complex system. This makes
the “monoderm-first” result counter-intuitive to the opposite of the alternative, widely
held “diderm-first” hypothesis, in which the outer membrane is an ancestral feature hav-
ing evolved only once in the LBCA and later lost in monoderms [5,17,25,68]. However,
such an observation can be made in Archaea, where most of the studied organisms have
a monoderm cell wall featuring a S-layer and/or pseudomurein, methanochondroitin
and protein sheaths. In this context, some diderm Archaea have been reported in differ-
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ent distant phyla, like the Crenarchaeon Ignicoccus hospitalis, the Euryarchaeon ARMAN
(Archaeal Richmond Mine Acidophilic Nanoorganisms) or the Candidatus Altiarchaeum
hamiconnexum (SM1 Euryarchaeum) in the DPANN group [106]. Although it has not been
proved that a monoderm cell wall is the general architecture in Archaea, the discovery of
diderm Archaea within different phyla shows that acquisition of a second membrane has
occurred multiple times during archaeal evolution. Moreover, our results are model-based,
congruent across different roots and models and robust to a heavily biased hyperprior
towards the diderm-first hypothesis. It contrasts with other recent studies, which do not
rely on probabilistic models [5,68] and conclude to a diderm LBCA, based on qualitative
considerations. That being said, the diderm-first view has also been supported in the recent
work of Coleman et al. [25]. The latter study featured a reconciliation tree and infered the
diderm state of the LBCA based on the genes involved in lipopolysaccharides synthesis and
the flagellar subunits, notably PilQ, which is part of the Type IV pili. While the approach
of Coleman and co-workers was also model-based, it differed from ours by first inferring
the gene catalogue of the LBCA and then deducing its cell-wall architecture, whereas we
directly infer the LBCA architecture and then studied the underlying gene distribution
patterns to corroborate our inference. It is of note that the Type IV pili is also present in
monoderm bacteria [107], thus its presence does not automatically entail the inference of a
diderm LBCA.

Hence, following a bibliographic search for proteins with functions exclusive to di-
derms (without distinguishing between diderms with and without lipopolysaccharides), we
identified 16 candidates: BamA, which is part of a complex assembling the proteins in the
outer membrane [91], LolB, which is part of the proteins inserting the lipopolysaccharides
in the outer membrane [3], the Lpt proteins, which serve as a transport chain from the inner,
i.e., cytoplasmic [108], membrane (IM) to the outer membrane [92], and the Tol-Pal system,
the exact function of which is still unknown but important to the integrity of the outer mem-
brane [93]. Then, we studied the distribution of the 16 corresponding genes in 903 broadly
sampled bacterial genomes. Four recurring patterns of outer membrane gene distribution
were identified (Figure 3B): (1) atypical diderms (Deinococcus-Thermus, Cyanobacteria
and diderm Firmicutes), (2) monoderm Terrabacteria (Actinobacteria, Chloroflexi and
monoderm Firmicutes), (3) true diderms-LPS, and (4) Thermotogae. Thermotogae have
chimerical genomes [70] and are likely derived with respect to other bacteria; thus, their
cell-wall architecture is of secondary origin. Therefore, we do not elaborate further on
their case. For similar reasons, the atypical cell-wall of the Corynebacteriales (an order of
the Actinobacteria phylum) is not considered in this work. Indeed, Corynebacteriales are
positioned deeply within Actinobacteria [109], which again implies a secondary origin for
their peculiar cell-wall architecture.

From these patterns, it appears that even monoderm Terrabacteria share some genes
involved with the outer membrane despite their lack of an outer membrane. It implies
that these genes provide at best circumstantial evidence concerning the presence or the
absence of an outer membrane. Thus, solely relying on their detection to infer the presence
of an outer membrane would be hazardous. In the study of Coleman et al. [25], the authors
build upon two types of genes to justify their inference of a diderm LBCA: the genes
involved with the lipopolysaccharides synthesis and the genes involved with the pili type
IV. However, our results show that the mere presence of lipopolysaccharides genes is an
unreliable feature to infer the presence of an outer membrane, given that even monoderm
bacteria can carry some of them. Similarly, the study of [107] showed that the type IV
pili is not exclusive to the diderm bacteria. Therefore, the inference of a diderm LBCA
by Coleman et al. was based on genes that only provide ambiguous evidence for the
outer membrane.

Pattern 2 shows that Chloroflexi share the same gene distribution as monoderm
Terrabacteria, despite being mostly considered as diderms (3 out of 4 genomes) in our
reconstruction of the cell wall. Currently, there is still debate on whether Chloroflexi are
monoderm or diderm organisms, microscopical observations having been inconclusive
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so far but hinting at the presence of an outer membrane in some Chloroflexi [87,88]. The
fact that they share the same outer membrane gene distribution pattern as monoderm
Terrabacteria is a clue in favour of Chloroflexi having only one membrane too. In this case,
our reconstruction of the LBCA'’s cell wall would have had a small bias towards the diderm
state and, despite that unwarranted handicap, we still recovered the LBCA as a monoderm
bacterium. In our opinion, this result can be taken as more evidence for a genuinely strong
signal for a monoderm LBCA.

Patterns 1, 2 and 3 may be arranged following a gradual complexification, with pattern
2 being the simplest, pattern 1 the intermediate and pattern 3 the most complex. The study
of the functions of the proteins characterizing the different patterns reveals that pattern 3
is the only one including proteins directly involved with the outer membrane (i.e., linked
to the outer membrane), whereas pattern 1 only includes proteins indirectly involved
with the outer membrane (i.e., linked to the IM or interacting with the IM or located in
the cytoplasm) and pattern 2 only includes proteins indirectly involved with the outer
membrane and located in the cytoplasm. Although we know (some of) the outer membrane
pathways functioning in true diderms-LPS, for atypical diderms, we only identified the
common parts between their pathways and the true diderms-LPS pathways. The rest of the
true diderms-LPS pathways should have an equivalent in the atypical diderms pathways
but our approach by candidate genes did not allow us to identify them. This hints at the
possibility of a different evolution from a common base, as some of the functions performed
by the genes present in pattern 3 (true diderms-LPS) but absent in pattern 1 (atypical
diderms) should be carried out in one way or another (e.g., the maintenance of the outer
membrane or the outer membrane invagination during cell division) [110]. In this case,
the common base would be the partial Lpt and Tol-Pal systems, upon which at least two
different systems for handling the outer membrane would have built in the true diderms-
LPS and (all or some) atypical diderms. On the other hand, if the LBCA was a diderm,
then extant monoderms would have been the result of several independent secondary
simplifications. Consequently, the monoderms dispersed within the Terrabacteria group
would share the same origin, a diderm ancestor, but would not necessarily end up with the
same remaining genes after their respective simplification. Yet, they all display the same
single pattern (pattern 1).

Assuming a monoderm LBCA, single-gene trees might suggest that some outer mem-
brane genes found in atypical diderms (e.g., LptF and LptG) stem from horizontal transfer
from true diderms-LPS, rather than through vertical inheritance from a diderm LBCA
ancestor. However, because most of these trees are poorly resolved (despite good multiple
sequence alignments), the evidence is weak at best. Based on a parsimony reasoning,
the exclusivity of pattern 3 to true diderms-LPS and the fact that it is shared between all
of them suggest, alongside their well-supported branch in our phylogenomic tree, the
monophyly of the true diderms-LPS group. Indeed, if all current genomes of a group have
the same subset of genes, the LCA of the group is likely to have had these genes (in a
form or another). If correct, the bacterial root cannot lie within true diderms-LPS and as
already mentioned, a root on (or within) Terrabacteria implies that the diderm cell-wall
architecture appeared at least on two separate occasions. The latter inference is necessary to
account for diderms other than true diderms-LPS in Firmicutes, Cyanobacteria, Chloroflexi
and Deinococcus-Thermus, which then raises the issue of how the lipopolysaccharides
are transported from the IM to the outer membrane for these atypical diderms nested
within Terrabacteria. Indeed, they do not share the same Lpt system as true diderms-LPS
as theirs is “reduced”, so they must have developed another system grafted (or not) onto
the “reduced” Lpt system.

Another clue that might confirm our reconstruction is that the rare organisms amongst
the CPR (Candidate Phylum Radiation, also known as Patescibacteria [62,111]) to have been
described to feature a monoderm cell-wall architecture [112]. In several trees including
the CPR (with the Archaea used as the outgroup), these are the first to diverge from the
other bacteria, while the remaining of those trees have the same structure as ours [64,65].
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However, in [25,113], the CPR subtree is found within the Terrabacteria with strong support.
Consequently, depending on the accepted topology, the CPR could either be another (small)
clue for a monoderm LBCA (CPR at the base of the bacterial tree) or only for a monoderm
ancestor for the Terrabacteria group (CPR within the Terrabacteria group). Nonetheless, as
most CPR genomes still lack detailed reliable information about the cell-wall architecture
of the corresponding organisms, there was no point adding them to our study for now.

When it comes to the reconstruction of the dew cluster, the LBCA is inferred as featuring
a complete 17-gene cluster. This complete cluster has probably been vertically transmitted
since then and often subject to parallel reduction, either by escape of one or several genes
from the cluster or by disappearance of those genes from the genome. As it is shared by
both monoderm and diderm organisms, the decw cluster does not give a clue about the issue
of the number of membranes of the LBCA. However, it confirms that the LBCA had a cell
wall with a peptidoglycan layer, even if it does not inform on its original thickness.

In true diderms-LPS and Terrabacteria, the murA gene is (almost) always absent from
the main dcw cluster. In Firmicutes, which are at the base of Terrabacteria, this gene is
nevertheless considered located within the cluster by our reconstruction, as this is the
situation for five (out of nine) genomes from our selection of 85 representatives. The
gene is also found in sub-clusters distributed relatively patchily across Cyanobacteria,
Firmicutes, Epsilon-proteobacteria, Elusimicrobia, Caldithrix abyssi, planctomycete KSU1,
and Lentisphaera araneosa. Both extant and reconstructed ancestors show that true diderms-
LPS have excised their murA from the main cluster after diverging from Terrabacteria,
whereas Terrabacteria kept it longer in the main cluster. However, murA is found located
on sub-clusters in both groups.

For the moment, there is no scenario to explain the appearance of the outer membrane
in the lineage leading to true diderms-LPS, but such a scenario exists for the appearance
of diderms in Firmicutes: it is the failed endospore origin [11,13,15,114]. According to
this hypothesis, an ancestral monoderm endospore former would have experienced a
failed sporulation, thereby locking the endospore within the cell while never finishing the
spore. With time, it would have become a diderm bacteria. Indeed, during sporulation,
the prespore engulfed in the bacterial mother cell has two membranes. A thin layer of
the mother peptidoglycan subsists between these membranes before the cortex is added
around the prespore between this small layer and the outer membrane. Although not yet a
diderm-LPS architecture, a cortex-less spore could be a starting point for the emergence
of diderm bacteria in the specific case of Firmicutes. In 2016, Tocheva [14] amended the
model by arguing that this founding event would have taken place in an ancestor not
only to diderm Firmicutes but to all diderm bacteria. Regarding the origin of the outer
membrane in atypical diderms other than Firmicutes, we have already mentioned that
Chloroflexi might be monoderms, based on their shared pattern (pattern 2) with monoderm
Terrabacteria. This leaves us with Cyanobacteria and Deinococcus-Thermus, along with the
large true diderms-LPS group. Because pattern 3 looks like a complexification of pattern 1,
the origin of didermia in true diderms-LPS might come from one of these atypical diderms
phyla by horizontal gene transfer of outer membrane genes, followed by comp]exification
in an ancestor of true diderms-LPS. Alternatively, true diderms-LPS ancestors might have
transferred outer membrane genes to distinct ancestors of atypical diderms phyla, thus in
the opposite direction. At this stage, this remains an open question because of the lack of
resolution of the corresponding single-gene trees, which prevents any definitive answer.
However, it is of note that the failed sporulation scenario is compatible with the inferences
of [105].

5. Conclusions

Our results suggest that the LBCA might have been, against familiar parsimony
reasoning, a monoderm bacteria with a thick peptidoglycan layer, which is also supported
by the recent study of [105]. The reconstruction of the deiw cluster adds a strong hint towards
an LBCA with a peptidoglycan layer but does not discriminate between a thick and a thin
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peptidoglycan layer. Concerning our study of the outer membrane genes, their distribution
suggests that indeed a monoderm ancestor is possible, but the evidence is not decisive.
Yet, further improving our results using the same methods would require a more accurate
description of the cell-wall architecture of the extant organisms, notably the presence
or absence of the lipopolysaccharides, an information which, in our experience, is often
lacking. When available, it is concentrated in the older literature, when organisms were
cultivated and characterized before being sequenced, in contrast to the numerous candidate
bacterial phyla that populate recent phylogenomic trees [66,67]. Nevertheless, even older
genomes do not guarantee an exploitable description, like Rivularia sp. (Table S2: 38).
Moreover, we observe that some outer membrane genes involved with the precursors
of lipopolysaccharides synthesis are also present in genomes of bacteria that does not
have lipopolysaccharides on their outer membrane (or even an outer membrane), thus
relying solely on the presence of specific genes to determine the presence or absence of
lipopolysaccharides is not adequate.

One could argue that the current study does not concern the LBCA but the LCA of cul-
tured (and characterized) Bacteria and we would not completely disagree as we ourselves
see it as a proof of concept of the method. A follow-up would be interesting to carry out
once accurate information for the cell wall of more phyla are available. In such a follow-up
study, it could be interesting to add supplementary genomes such as the “rogue” lineages
(e.g., Aquificae and Thermotogae), additional phyla of uncertain phylogenetic position
(e.g., basal Terrabacteria), completely new genomes (e.g., CPR) or even an outgroup to root
the tree (e.g., Archaea). Aquifex being “just another” group of diderms and Thermotogae
being a chimera with a specific diderm architecture, their inclusion would only provide a
limited amount of information compared to considering additional Terrabacteria genomes
or representatives of the recently discovered CPR. Regarding the difficulty to place such
lineages accurately in a phylogenomic tree, it could be overcome by adding genes that are
not single copy but at the expense of more work to sort out the orthologous copies. The CPR
group would be a particularly welcome addition, provided a useful description of their cell
wall could be obtained. Concerning the addition of an outgroup, the question of how it
will be used should be answered first: will it be included in the cell-wall reconstruction
analyses or will it only be used to root the bacterial subtree. Indeed, if it is not used for
reconstruction, any slow evolving fully sequenced Archaea would be usable. On the other
hand, if we are interested in reconstructing their cell wall too, we would need to select
them very carefully, just as we did for Bacteria. In this respect, the cell-wall diversity of
Archaea is as complicated as the bacterial one, if not more, which would add another level
of difficulty, and thus uncertainty, to the inferred results.

Supplementary Materials: The following are available online at https:/ / www.mdpi.com /article/
10,3390/ genes13020376/s1. Figure S1: Unrooted phylogenomic tree of the bacterial domain based
on a supermatrix concatenating 117 single-copy orthologous genes chosen for their broad conser-
vation across Bacteria. Figure 52: Unrooted phylogenomic tree of the bacterial domain based on a
supermatrix concatenating 117 single-copy orthologous genes chosen for their broad conservation
across Bacteria. Figure 53: Evolution of the log likelihood of six PhyloBayes MCMC chains running
under the CAT+GTR+I" model of sequence evolution. Figure 54: Phylogenomic tree of the bacterial
domain based on a supermatrix concatenating 117 single-copy orthologous genes chosen for their
broad conservation across Bacteria. Figure S5: Trees inferred by the six individual MCMC chains
running under the CAT+GTR+I" model of sequence evolution. Figure 56: Phylogenomic tree of the
bacterial domain based on a supermatrix concatenating 117 single-copy orthologous genes chosen
for their broad conservation across Bacteria. Figure S7: Posterior probabilities for a monoderm
LBCA according to five different models and six possible roots for the bacterial domain. Figure
S8: Posterior transition rates and posterior probability of being monoderm for the model where
the hyper-prior was purposely biased towards the “diderm-first” hypothesis. Figure S9: Posterior
probabilities for a LBCA featuring a thick peptidoglycan (PG) layer according to the five different
models and the six possible bacterial roots. Figure 510: Posterior transition rates for the peptidoglycan
(PG) trait. Figure S11: Posterior probabilities for the peptidoglycan (PG) and membrane traits in
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Abstract: Euglena gracilis is a well-known photosynthetic microeukaryote considered as the product
of a secondary endosymbiosis between a green alga and a phagotrophic unicellular belonging to
the same eukaryotic phylum as the parasitic trypanosomatids. As its nuclear genome has proven
difficult to sequence, reliable transcriptomes are important for functional studies. In this work, we
assembled a new consensus transcriptome by combining sequencing reads from five independent
studies. Based on a detailed comparison with two previously released transcriptomes, our consensus
transcriptome appears to be the most complete so far. Remapping the reads on it allowed us to
compare the expression of the transcripts across multiple culture conditions at once and to infer a
functionally annotated network of co-expressed genes. Although the emergence of meaningful gene
clusters indicates that some biological signal lies in gene expression levels, our analyses confirm that
gene regulation in euglenozoans is not primarily controlled at the transcriptional level. Regarding the
origin of E. gracilis, we observe a heavily mixed gene ancestry, as previously reported, and rule out
sequence contamination as a possible explanation for these observations. Instead, they indicate that
this complex alga has evolved through a convoluted process involving much more than two partners.

Keywords: transcriptome assembly; gene expression; transcriptional regulation; ontology network;
co-expression network; taxonomic analysis; database contamination; kleptoplastidy

1. Introduction

Euglena gracilis is a secondary green alga that can grow in a wide variety of environ-
ments. E. gracilis belongs to the euglenids, a monophyletic group of free-living, single-celled
flagellates that inhabit aquatic ecosystems. Euglenids are distinguished mainly by their
unique type of cell covering, the pellicle. The latter is a complex structure composed of
proteinaceous strips covered by a cell membrane and underlain by the microtubule system
and the cisternae of the endoplasmic reticulum [1]. Together, euglenids, symbiontids (free-
living flagellates living in low-oxygen marine sediments), diplonemids (free-living marine
flagellates) and kinetoplastids (free-living and parasitic flagellates, e.g., Trypanosoma) form
the monophyletic group of Euglenozoa [2-5]. Euglenids are early diverged members of the
Euglenozoa and distant relatives to the kinetoplastids [6]. Thus, analysing E. gracilis genomic
information is a way to approach the evolution of parasitism, due to their common ancestry
with kinetoplastids [7,8]. For example, it has been shown that many additional subunits of
the mitochondrial respiratory chain previously considered exclusive to kinetoplastids are
shared with E. gracilis, and therefore cannot be associated with the parasitic lifestyle [9]. Yet,
it is worth mentioning that free-living bodonids (e.g., Bodo saltans) are better comparators
for parasitism [10,11]. The relationship between euglenids and kinetoplastids has been first
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proposed by T. Cavalier-Smith based on ultrastructural similarities (e.g., “mitochondrial
cristae shaped like a flattened disc with a narrow neck”) [12], then supported by other lines
of evidence, such as alignments of nuclear rRNA [13], the addition of a leader sequence
to nuclear pre-mRNAs [14] and the presence of trypanothione reductase in E. gracilis,
previously found only in kinetoplastids [15].

E. gracilis bears a complex plastid [16], derived from a green alga belonging to Pyra-
mimonadales, and acquired by a free living phagotrophic eukaryovorous euglenid ances-
tor [17-19]. As the result of a so-called “secondary” endosymbiosis, this chloroplast is
bound by three membranes, whereas primary plastids only have two membranes [20,21].
Whatever the specific event, endosymbiosis is accompanied by massive gene loss and gene
transfer from the genome of the symbiont to the nuclear genome of the host (Endosym-
biotic Gene Transfer or EGT) [22]. Moreover, there can be gene transfers from sources
other than the symbiont giving rise to the observed plastid [Horizontal (or Lateral) Gene
Transfer or HGT/LGT], for example, over (more or less cryptic) transient endosymbioses
(e.g., “shopping bag” [23-25] and “red carpet” [26] hypotheses). Alternatively, HGT can
occur in a, possibly ulterior, “non-endosymbiotic context” [27,28] (e.g., “limited transfer
window"” hypothesis” [29]), because it may be easier to duplicate or recruit a foreign gene
for servicing the nascent plastid than to get it from the symbiont itself [30]. In any case,
both EGT and HGT have shaped the nuclear genome of photosynthetic euglenids, leading
to heavy genetic mosaicism (e.g., [7,31,32]).

Due to its great metabolic flexibility, a large number of culture media and growing
conditions have been used to study E. gracilis over the past 60 years [33-37]. Commonly, the
mineral composition remains similar from one medium to another, but three parameters
vary greatly: the pH (which can be acidic or neutral), the source of organic carbon (e.g.,
acetate, ethanol, and succinate) and the concentration of the carbon source (from 10 mM to
more than 150 mM). E. gracilis can therefore exploit a variety of organic carbon sources,
as well in the dark (heterotrophic conditions) as in the light (mixotrophic conditions),
where a high concentration of organic carbon leads to a decrease in photosynthesis by
repressing chlorophyll biosynthesis, reflecting the fact that this organism switches between
nutritional modes and combines them readily [35—40]. E. gracilis is also known for its
atypical metabolic pathways, some of them producing compounds of commercial interest.
In photosynthetic euglenoids, carbon reserves are stored in the cytoplasm in the form of
paramylon (f3-1,3-glucan), in place of the starch («-1,4 and «-1,6-glucan) typical of the
green line [41,42]. Paramylon can be used to produce bioplastics [43] and, similarly to
other -glucans, has been reported to display some anti-tumoural activity [44]. In anoxic
(fermentative) conditions, E. gracilis has the unique ability among microalgae to convert
paramylon into wax ester compounds suitable for drop-in jet biofuels conversion because
of their low freezing point [45-47]. E. gracilis is also used as a source of dietary supplements
(e.g., the most bioactive form of vitamin E, a-tocopherol, is present in E. gracilis biomass in
a relatively high amount) [48].

Due to its evolutionary and biotechnological interests, E. gracilis is the best studied
member of the euglenids. Its chloroplast genome (143 kb) was among the first plastid
genomes ever sequenced [49], while its tiny mitochondrial genome has been recently
resolved [50,51]. To date, few studies have used high throughput sequencing technologies
to publish Omics information on E. gracilis [7,52,53]. In this respect, attempts to sequence
its nuclear genome are also very recent (initially estimated between 1 Gb to 9 Gb; see [54]
for a review). These efforts have culminated with the release of a very large (500 Mb) and
highly fragmented draft genome, as authors recalled, due to gapped contigs or unknown
base representation in half of the genome [7].

In this work, we have assembled a consensus transcriptome taking advantage of the
raw read data publicly available, including newly generated transcriptomic libraries, for
a total of five different data sources. Our assembly protocol was very thorough, with
a special emphasis on potential contaminant sequences, resulting in the most complete
transcriptome released to date for E. gracilis, according to a systematic comparison with the
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two other public transcriptomes [7,53]. After functional and taxonomic annotation of the
predicted coding sequences, we performed a comparative study of their expression level
across a range of culture conditions and studies, which allowed us to build an information-
rich network of co-expressed genes. However, these results confirm that transcriptional
control is not the primary level of genetic regulation in euglenozoans, while our taxonomic
analyses point to highly mixed gene ancestry, compatible with a kleptoplastidic phase of
plastid acquisition.

2. Materials and Methods
2.1. Data Collection
2.1.1. Public Repositories

Searching for public RNA-Seq data for E. gracilis in the International Nucleotide Se-
quence Database Collaboration (INSDC) returned eight studies. We further recovered an
additional dataset, produced and submitted to the European Nucleotide Archive (ENA)
repositories by ourselves (see Section 2.1.2 for details). Of these nine studies, only five short
read datasets (5 experiments /23 samples) that used Illumina technology to analyse whole
transcriptomes were exploitable. Among the discarded experiments, PRJEB4713 con-
tained 454 GS FLX Titanium long reads, a size that is difficult to handle by the chosen
assembler, while PRJEB21674 only included a single euglenid sample (among 1179), vet
labelled as “Euglena sp.”, PRINA294935 primarily contained mitochondrial sequences,
and PRINA12797 (built out of ESTs) was not accessible from public repositories. At last,
PRJDB4781 was not included because our meta-assemblies had been completed by the date
of its release (October 2019). The data files from the five retained experiments were down-
loaded using fastq-dump utility from the SRA Toolkit with -I and -split-file arguments to
divide files into forward and reverse paired reads. We also collected the two transcriptome
assemblies hitherto available, GEFR01 and GDJRO1. The former was encoded under study
accession PRINA298469, which corresponds to experiments B and C, and the latter, which
corresponds to experiment D), was encoded as study PRINA289402. For further details on
experimental design or/and samples, see Table 1.

2.1.2. In-House Experiments, Cell Culture and Sequencing

The strain of E. gracilis (1224-5/25) was obtained from SAG (Sammlung von Algenkul-
turen Gottingen, Germany). Cells were cultured in liquid mineral medium tris-minimum-
phosphate (TMP) at pH 7.0 and 25 °C, supplemented with a mixture of vitamins (vitamin
B12:10-2 mM, vitamin B8 10-4 mM and vitamin B12 10-4 mM). In three samples, acetate
(60 mM) was added as a carbon source, under different photosynthetic photon flux densities
(PPFD, T8 fluorescent neon tubes) (in the dark, at low PPFD (50 uE m™2 s71) or at medium
PPFD (200 uiE m~2 s~ 1), while in a fourth sample, acetate was not supplied and light was
set to low PPFD (50 pE m~2 s~'). For each sample, the cells in the exponential phase
(1-2 x 10 © cells/mL) were recovered by centrifugation, 10 min at 500 g. Total RNA was
extracted with the protocol outlined in [55], then fragmented and retro-transeribed before
standardization using the Duplex-Specific Nuclease kit (Evrogen, Russia). Each library was
prepared using the Illumina total mRNA kit (Illumina, San Diego, CA, USA) and quantified
by qPCR using the KAPA Library Quantification Kit (Roche, Switzerland). Subsequently,
samples were sequenced in both reading directions (paired-end 2 x 100 nt) on four separate
tracks of a high-speed sequencer Illumina HiSeq 2000, yielding on average ca. 235 mil-
lion reads per sample. Library preparation, DSN normalization and high-throughput
sequencing by Illumina technology were carried out by the GIGA genomics platform
(https:/ /www.gigagenomics.uliege.be (accessed on 23 July 2014)). Raw reads have been

Reirshats}

deposited at the ENA database under the study accession number PRJEB38787 (Table 1).

2.2. Data Assembly

A schematic representation of the de novo transcriptome reconstruction and analysis
pipeline is given in Figure 1. All computations were performed on a grid computer.
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Table 1. Representation of the collected data and overview of the experimental design. Exp. Code: letter assigned to each experiment
(one letter per study). Study Acc.: public accession number of the BioProject. Sample Code: first letter corresponds to the experiment,
first digit to experimental conditions of the samples, and second digit (if any) to the replicates. Run Acc.: public accession number of
read FASTQ files. Temp.: estimated Celsius degrees of cell culture temperature. Medium: type of cell culture medium, rich (R) or
mineral (M) plus carbon source (+C). Light: estimated light experimental conditions, darkness (D), low-light (LL) and high-light (HL).
Shaking: rpm of shaker incubator. Cult. Cond.: trophic regime, fermentative (F), heterotrophic (H), phototrophic (P) or mixotrophic
(M). Harvest Phase: development stage of the culture when collected, exponential phase (Exp) or stationary phase (Stat).

Exp. Sample Cult Harvest

Code Study Acc. Code Run Acc. Temp. Medium Light Shaking Cond. Phase Reference
ALl SRR3159774 b5 R+C D 0 Tl Exp
Al2  SRR3159775 25 R+C D 0 H Exp
Al3  SRR3159776 25 R+C D 0 H Exp
A PRINASIOZ6Z 45 SRR3159777 25 R+C L 0 M Exp 7l
A22  SRR3159778 2 R+C 1L 0 M Exp
A23  SRR3159779 2 R+C LL 0 M Exp
B1 ERR974915 2 M+ C LL 0 M Stat
B PRIEB10085 B2 ERR974916 30 R+C D 200 H Stat (521
C  PRINA29S469  CO0  SRR2628535 25 M LL 0 M Stat ]
DO SRR3195326 26 R+C HL 120 M Stat
D11 SRR3195327 26 R+C HL 120 M Stat
D12  SRR3195329 26 R+C HL 120 M Stat
D13 SRR3195331 2 R+C HL 120 M Stat
, D21 SRR3195332 2 R+C HL 120 F Stat
D PRINAZSMO2Z oo SRR3195334 26 R+C HL 120 F Stat 53]
D23 SRR3193335 26 R+C HL 120 E Stat
D31  SRR3195338 2 R+C HL 120 E Stat
D32  SRR3195339 26 R+C HL 120 F Stat
D33  SRR3195340 26 R+C HL 120 F Stat
El ERR4227585 2 M LL 100 r Exp
E2  ERR4227386 2 MiC D 100 H Exp This
E PRIEB38787 E3  ERRI227387 2 MC 1L 100 M Exp study
Ed ERR4227588 25 M+C HL 100 M Exp
DATA PRE- ASSEMBLY CONDENSATION CONDENSATION
COLLECTION PROCESSING

EXPERIMENT ASSEMBLY
E E

Figure 1. Schematic representation of our de novo transcriptome meta-assembly pipeline.
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2.2.1. Data Pre-Processing

Every raw read file (run accessions SRR /ERR) was treated as one sample, even if
two or more files were replicates of the same experimental condition. Once collected and
transformed into fastq files, all samples were treated separately. Raw reads were analysed
with FastQC v0.11.6 to assess the quality of the data [56]. PRINSEQ-lite.pl v0.20.4 was
used to remove reads that contained more than one ambiguous nucleotide [57]. Then,
Trimmomatic v0.32 was used with the fo]]owing parameters (ILLUMINACLIP: TruSeq3-
PE.fa:2:30:10 SLIDINGWINDOW: 4:25 LEADING: 3 TRAILING: 3 MINLEN: 25) to truncate
the low quality regions of certain sequences and cut adapters and other Illumina-specific
sequences from the reads [58]. Output data was sorted into three different batches as
paired, unpaired and singleton reads. Finally, read quality was re-assessed using FastQC,
and the resulting plots visually compared to those obtained in the beginning to check the
effect of the filtering procedure.

2.2.2. Transcriptome Assembly

Pre-processed reads (paired, unpaired and singleton reads) were assembled per ex-
periment in two steps to yield five transcriptomes, one per experiment. We used Trinity
v2.4.0 software [59] for de novo transcriptome assembly. During the first step, samples
of each experiment were assembled four times, combining values (one/two) of mini-
mum count for k-mers to be assembled (—min_kmer_cov) with normalization turned off
(-no_normalize_reads) or on (default) to provide maximal sensitivity for reconstructing
lowly expressed transcripts. In all cases, we used the default parameters with a minimum
contig length (-min_contig_length) of 100 nt. Second, to reconstruct one single transcrip-
tome per experiment, the four assembled transcriptome replicates were pooled together
with the tr2aacds.pl script (using default parameters) from the EvidentialGene v2016.07.11
software package [60,61].

2.2.3. Transcriptome Decontamination

To ensure the purity of the five transcriptomes, we determined the guanine-cytosine
(GC) content distribution across reconstructed transcripts. Furthermore, we explored
the potential contamination of the five transcriptomes individually by comparing their
transcripts against the NCBI nucleotide database (nt) using BLASTN v2.2.28 [62,63]. We
used a conservative approach with an E-value threshold of 1 x 107* and an identity
threshold of 90% to maximize the identification of true matches. The best hit for each query
was selected, and the organism name (sscinames) of these top matches were collected,
tabulated and quantified. Abundant organisms other than Euglena were flagged as putative
contaminants. To obtain uncontaminated transcriptomes, the original reads were first
aligned to the corresponding genomes (downloaded from Ensembl [64] using Bowtie
2 v2.2.6 in local mode (-local —-no-unal)) [65,66]. Reads for which the alignment score
exceeded the default minimal value of 20 + 8.0 * In(L), where L is the read length, were
removed. Then, the remaining (i.e., unaligned) reads were assembled again following the
procedure described in Section 2.2.2.

2.2.4. Generation of a Consensus Transcriptome

The five resulting transcriptomes (one per experiment) were further combined and
analysed with the tr2aacds.pl and evgmrnaZ2tsa2.pl (-onlypubset) scripts from Eviden-
tialGene to select the overall best candidate transcripts. The remaining reconstructed
transcripts were discarded because they were classified either as redundant, fragmented or
uninformative coding sequences, based on untranslated region (UTR) length, gaps, amino
acid quality, and stop and start codon presence. After reducing redundancy, Evidential-
Gene clustered the best transcripts by groups of likely isoforms using CD-HIT v4.6.8 [67,68]
and a similarity threshold of 90% on the amino-acid sequences. Sequences were considered
as true isoforms (i.e., representing the same gene) when sharing high-identity (>98%)
exon-sized fragments, as determined with BLASTN v2.2.28 (E-value cut off of 1 x 10~1),
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Transcripts proposed by EvidentialGene as the most representative isoform for each gene
were selected for annotation (see Sections 2.4 and 2.5) and for studying gene expression
(Sections 2.6-2.8).

2.3. Assessment of Transcriptome Quality

Additional analyses were performed to determine the quality of the assembled tran-
scripts. The same set of analyses was also performed on the two other transcriptomes
publicly available (GEFRO1 [7] and GDJRO01 [53]) for comparison with the present study.
First, basic statistics based on the length of transcripts and the number of ORFs were
computed. Read representation was determined by mapping back the cleaned reads (see
Section 2.2.1) to each of the three transcriptomes with the aligner Bowtie 2 v2.2.6 (-local,
-no-unal) as described in [65]. Note that unpaired and singleton reads were excluded from
all quality statistics. In parallel, we used two evaluation tools, Detonate v1.11 [69] and
TransRate v1.0.3 [70], to get reference-free quality scores for the three transcriptomes.

To check the presence of the spliced leader (SL) sequence [14] in the three public tran-
scriptomes, we used wordmatch from the EMBOSS software package [71] and three length
thresholds (12, 14 and 24 nt) found in the literature [52,53]. Matches were only considered
when falling at the 5'-end of a transcript, whether in forward or reverse orientation, as
transcripts are not oriented in the transcriptomes. More precisely, each transcript was
first reverse-complemented, and both versions (forward and reverse) were truncated at
40 nt before running wordmatch. Besides, transcripts actually corresponding to rRNA
sequences were identified by combining RNAmmer v1.2 [72] and MegaBLAST v2.2.28 [62]
searches (E-value cut-off of 1 x 10~%, the latter using accessions X12890.1 (E. gracilis rrnC
operon), M12677.1 (SSU rRNA 18S) and X53361.2 (LSU rRNA 28S) as queries. Regarding
coding sequences, we estimated the numbers of putative genes with GeneMarkS-T (beta
version) [73] and measured transcriptome completeness with BUSCO v.3.0.1 [74,75] using
both “Eukaryota” and “Protists ensentbl” datasets.

Lastly, we used CD-HIT-2D v4.6.8 [67,68] to identify similar predicted protein se-
quences between transcriptomes with our transcriptome as a reference. We explored
different word sizes (2 to 5) at several thresholds of sequence identity (ranging from 0.5 to
0.9). Sequences from the other two public transcriptomes that could not be clustered with
sequences of our consensus transcriptome were tentatively aligned using BLASTP v2.2.28
instead [62]. We further calculated the expression of presumably “missing” sequences
in GDJRO1 (D) and GEFRO1 (B-C), respectively, following the procedure described in
Section 2.5. The sequence was deemed invalid and not considered missing if its expression
was below one transcript per kilobase million (TPM) in the transcriptome from which it had
been identified. In a complementary analysis, highly similar nucleotide sequences from
the three transcriptomes were clustered all together at once using CD-HIT-EST (identity
threshold of 0.9, word size of 8, coverage of the shorter sequence of 0.9). Within each cluster,
transcripts were pooled per transcriptome and their properties used to compare the three
transcriptomes over all clusters, in terms of redundancy, length and identity. Analyses were
performed either on all clusters or only on clusters shared across the three transcriptomes.

2.4. Transcript Annotation

The annotation procedure was carried out in three steps. First, assembled transcripts
(i.e., the EvidentialGene representative isoforms) were annotated with EggNOG-mapper
v1[76,77]. We used HMMER to compare our data with the eukaryotic database of EggNOG,
prioritizing coverage. Second, we annotated our transcripts by similarity using PSI-BLAST
v2.2.28 searches [62] (E-value cut-off of 0.001) against Swiss-Prot [78]. Third, we aligned the
assembled transcripts to the NCBI protein (1) database [63] using TBLASTN v2.2.28 [62]
(same E-value cut-off). We recovered Gene Ontology terms (GO) [79] and Kyoto Ency-
clopedia of Genes and Genomes Orthologs terms (KO) [80] of each transcript for further
term enrichment analysis and network representation (see Section 2.7 for details). For
that purpose, EggNOG features were assigned when possible to a transcript; if annotation
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was missing, PSI-BLAST v2.2.28 annotation was provided instead, or even TBLASTN
v2.2.28 features whenever the two first previous methods failed. For mitochondrion and
plastid-specific analyses, the components of the photosynthetic and respiratory electron
transport chains were identified by BLASTP v2.2.28 searches [62] (E-value cut-off of 0.001)
against reference proteins described in the literature. Hence, respiratory subunits were
taken from [9,81,52], whereas subunits of photosystem I, photosystem 1I, cytochrome b6f
complex, cF1Fo ATP-synthase were sourced from [83], and LHC polyproteins from [84].

2.5. Taxonomic Analyses

Taxonomic affinities were determined based on BLASTX v2.2.28 [62] searches against a
broadly sampled proteome database, composed of 73 manually selected eukaryotes [85] and
19,802 representative prokaryotes subsampled from a curated database of 27,762 genomes [86].
For each assembled transcript, a last common ancestor (LCA) was computed based on
their closest relatives (best hits, if any) in the database, provided they had a bit-score
>80 and were within 95% of the bit-score of the first hit (MEGAN-like algorithm [86,87]).
Organellar (plastid and mitochondrion) encoded proteins were distinguished from nuclear-
encoded proteins by querving (BLASTP) two E. gracilis organelle databases assembled from
the NCBI RefSeq “Proteins” portal [63]. To identify with certainty an organelle-encoded
protein, only hits with a minimum percentage identity of 99% and a strictly identical length
were considered. Such organelle-encoded sequences were expected at least from our own
reads, which were generated in the absence of poly-A selection.

In parallel, tetranucleotide frequencies (TNFs) were computed for individual tran-
scripts using the default settings of compseq from the EMBOSS software package [71].
Then, assembled transcripts for which a taxonomic affiliation had been obtained were
ranked following their GC content and split into four partitions of equal size in terms of
number of transcripts. Finally, ten principal component analyses (PCAs) were computed
on TNFs, each one based on 1000 randomly chosen transcripts, using the prcomp function
of the STATS v3.4.3 R base package [88]. For each PCA, two different colour schemes were
applied on data points: the broad taxonomic affiliation of the transcript LCA (divided
into four groups: Viridiplantae, Kinetoplastida, other Eukaryota and Bacteria), and the
GC-content partition of the transcript.

2.6. Expression Quantification

The abundance of assembled transcripts was estimated by using RSEM v1.2.31 [89] and
Bowtie2 v2.2.6 aligner [65,66]. Specifically, we used the align_and_estimate_abundance.pl
Perl script wrapped in the Trinity v2.4.0 software package [59]. Data was then processed
with abundance_estimates_to_matrix.pl Perl script without normalization parameters to
generate the final expression matrix. Expression values are provided in transcripts per
kilobase million (TPM) and pooled per gene (i.e., gene-level counts) [90].

Each count value was log2-transformed and converted to a Z-score to make samples
comparable (sample mean was subtracted from each sample observation and divided
by sample standard deviation). Batch effects were tentatively removed with the help of
the SVA v.3.26.0 R package [91], so as to adjust data for unwanted sources of variation.
However, such correction proved to be ineffective and thus abandoned (see Results and
Discussion). For downstream analyses, only the 2500 most variable genes were retained
(based on their expression variance across the 23 samples).

2.7. Gene Clustering Based on Expression Profiles

The 2500 most variable genes were clustered using the Partitioning around medoids
(PAM) algorithm (from the CLUSTER v.2.0.7 R package) [92], which creates a fixed number
of clusters (k) by minimizing the sum of the dissimilarities of the observations to their
closest representative object (medoid). To capture both positive and negative relationships
between gene pairs, we used a dissimilarity matrix of expression based on the squared
Pearson correlation (d = 1 — r?). The optimal cluster segregation was selected by cycling
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through the number of potential solutions, ranging from k =5 to 75. In each solution, an
average of maximal absolute correlations within-cluster (w-k cormay) and an average of
minimum absolute correlations between-cluster medoids (b-k cory,,) were computed. To
intercept the point where optimal cluster segregation occurred, a reinterpretation of the
Dunn index was used, and we computed the b-k cory,;, and w-k cormay ratio, choosing
the solution with the minimal ratio value. At this optimal point, decreasing or increasing
the number of cluster solutions would not better explain the data [93]. Heat map and
hierarchical clustering analyses (correlation was used as the distance and centroid linkage
clustering as the method) of expression data were carried out using the pheatmap function
from the pheatmap v1.0.12 R package [94] and, when necessary, row-wise data (gene
expression of the transcripts) was aggregated using k-means clustering to facilitate visual
inspection of expression across conditions.

2.8. Gene Ontology (Enrichment) Analyses

The clusters based on the 2500 most variable genes were further analysed to visu-
alize overrepresented biological terms using the whole GO and KEGG term space from
Section 2.4 as a background. We explored enriched pathways within the expression clus-
ters using ClueGo v2.5.0 tool [95], a visualization plug-in implemented in the Cytoscape
v3.6.0 environment [96]. Term overrepresentation was estimated by an enrichment test
based on the hypergeometric distribution followed by Benjamini-Hochberg adjustment for
multiple testing. An annotation network was built with the ClueGo plug-in from kappa
scores, which reflect the associations between genes and GO and KEGG terms. Network
specificity was set between 3 and 12 GO hierarchy levels, and term selection was set to a
minimum of 3% genes per cluster. Kappa score threshold was set to 0.3, and we allowed
GO parent-child term fusion. Moreover, we explored the network with the MCODE algo-
rithm [97], implemented as a Cytoscape plug-in, to detect densely connected regions or
hubs in the network. Those hubs were found in the network establishing a degree cut-off
of 2 for network scoring criteria, without including loops. Option Fluff was selected and
parameters for Cluster Finding panel were set at 0.1 and 0.2 for node density and node
score cut-off, respectively, a minimum of 2 edges per node of cluster cores (K-Core) and a
maximum depth of 100.

3. Results and Discussion
3.1. Data Collection/Datasets

QOut of the eight datasets publicly available for E. gracilis, only four [PRINA310762
(A), PRJEB10085 (B), PRINA298469 (C), PRINA289402 (D)], were retained to assemble our
consensus transcriptome, along with our own experiment PRJEB38787 (E; Table 1), which
used Duplex-Specific thermostable nuclease (DSN) normalization to avoid poly-A selection.
These five datasets totalled circa 2.6 billion raw I[llumina reads (100-nt long), of which 70%
belong to our experiment. After quality treatment, between 5 and 7% of reads were lost
in experiments PRINA310762 (A), PRINA298469 (C) and PRINA289402 (D), whereas the
rejection of reads was more important in experiments PRJEB10085 (B) and PRJEB38787
(E). In PRJEB10085 (B), 19% of reads were truncated as a consequence of low-quality
regions, whereas in PRJEB38787 (E), 50% of reads were discarded because of the high
number of ambiguous nucleotides, especially in reverse reads. Hence, we got 57.8 million
of good quality reads out of 62 after pre-processing of experiment PRINA310762 (A) [7],
310 million reads out of 383 for experiment PRJEB10085 (B) [52], and 267.7 million from
experiment PRINA289402 (D). In the latter case, we used all samples as input, whereas
Yoshida et al. (2016) only used the reads from cells grown in mixotrophic conditions to
build their assembly [53]. Finally, Ebenezer et al. (2019) used 410 million reads as input for
their transcriptome assembly, probably as the result of combining reads from PRJEB10085
(B) and PRJNA298469 [7].

After quality filtering, ca. 1.5 billion reads were retained, pre-processed read files
of each individual experiment were assembled in four replicates using Trinity and then
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condensed into one individual transcriptome per experiment using EvidentialGene, which
served as the basis for creating the consensus transcriptome (see Materials and Methods
for details). Overall, PRJEB38787 (E), PRJEB10085 (B), PRINA289402 (D}, PRINA310762 (A)
and PRINA298469 (C) experiments accounted for 55, 20, 17, 4, and 2% of the pre-processed
reads used for the individual assemblies, respectively.

3.2. De Novo Assembly Evaluation
3.2.1. Individual Assemblies

The presence of sequences within a data set that originate from sources other than the
sequenced sample is a known limitation of RNA-Seq experiments (e.g., [98,99] in human
datasets). For some studies, such as large-scale phylogenomics, contaminants can be very
problematic and must be dealt with using an array of different approaches [100]. Thus,
before combining the individual five transcriptomes into a final consensus transcriptome,
all assembled sequences were BLASTed against the NCBI nucleotide (1f) database [63] to
identify possible contaminants. Using stringent thresholds, we found in the five transcrip-
tomes only 948 unique hits of reconstructed transcripts that matched organisms other than
E. gracilis. These organisms were considered as possible contaminants. Among them, we
selected the five organisms whose abundance was the greatest (Homo sapiens, Saccharomyces
cerevisiae, Escherichia coli, Ovis aries and Caenorhabditis elegans). It is noteworthy that sheep
(and cow) DNA is commonly sequenced on our genomic platform. By mapping all pre-
processed reads to the nuclear genome of these five species, we found that contaminants
were less than 0.01% of the reads matching one of the contaminant genomes. In comparison,
it has been shown that 0.13% of contaminant reads were present on average in a subset of
150 sequencing data files from the 1000 Genomes Project [101]. In the case of PRINA298469
(C), we flagged as contaminants 68 reads per million reads (RPM), a larger proportion
compared to the other experiments, which varied between 2 and 29 RPM (Table 2). Con-
taminant reads were removed and new assemblies of each experiment were generated
anew from decontaminated reads, following the same procedure as above (see Section 2.2.2
for details). Afterwards, a new BLAST analysis was performed to quantify whether the
contamination level was reduced. As expected, hits matching to C. elegans, Escherichia coli,
H. sapiens, O. aries and Saccharomyces cerevisiae decreased, while hits matching to Euglena
remained similar (Supplementary Figure S1). Besides, we traced the non-Euglena sequences
that persisted in the final consensus transcriptome presented just below (see Section 3.2.2).
Overall, from 716 unique hits of non-Euglena sequences identified with the latter BLAST
analysis, only 64 were still present in the final consensus transcriptome (see Section 3.3.2 for
details on the contamination sources). As a case in point, the complex genetic makeup of
E. gracilis (e.g., [52]) makes it difficult to determine when a sequence, even if very peculiar,
has been acquired from a very distantly related species or whether it can be a contaminant
(see also Section 3.3.2 for an attempt to differentiate the two cases). For example, the
glyoxylate cycle is localized within the mitochondria in E. gracilis and isocitrate lyase and
malate synthase form only one bifunctional enzyme, called EgGCE [102,103]. A bifunc-
tional enzyme for the glyoxylate cycle is also found in the worm C. ¢legans (opisthokonts),
revealing an independent acquisition of the bifunctional enzyme by convergent evolution
in these two organisms [104].

The five decontaminated individual transcriptomes were then evaluated with Tran-
sRate to check their uniformity. Four transcriptomes vielded ca. 42,342 (£6159) transcripts
on average, whilst the number of reconstructed sequences in experiment PRJEB10085 (B)
was more than twice the average, 95,490 sequences (Table 2). In addition, the computed
GC content was 58% for experiment PRJEB10085 (B), a lower percentage compared to the
other assembled transcriptomes, which was around 64%. Finally, we discovered a high
frequency of sequences under 500 nt and characterized by a lower GC content (Supple-
mentary Figure $2). After those small sequences were removed (representing 62% of the
transcripts), TransRate statistics were recomputed and yielded values more in line with
other experiments, both in terms of number of sequences (36,287) and GC content (62%).
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We could not determine what the removed sequences were by similarity searches. They
might represent some sort of artefact, contamination, or even be the result of a specific
feature of experiment PRJEB10085 (B), for example the sequencing of a different strain, i.e.,
E. gracilis var. saccharophila Klebs (SAG 1224 /7a) [52], whereas the other four experiments
all used the Z strain (SAG 1224-5/25).

Table 2. Basic statistics based on transcript properties of reconstructed transcriptomes from collected data. ACC: study
accession, REF: bibliographic reference, RAW: number of downloaded reads, PRE: number of good reads after pre-processing,

CNT: number of reads removed after pre-processing considered as contamination (reads per million; rpm), SEQ: number
of transcripts, MIN: minimal sequence length, MAX: maximal sequence length, MEAN: mean sequence length, TOTAL:
combined sequence length, SEQ < 200: number of transcripts under 200 n, SEQ > 1 k: number of transcripts over 1000 nt,
SEQ > 10 k: number of transcripts over 10,000 nt, ORF: number of sequences with a predicted open reading frame, ORF (%):
for contigs with an ORF, the mean % of the contig covered by the ORF, N[z]: minimum contig length needed to cover [z]%

of the transcriptome. GC (%): percentage of guanine-cytosine content, PART and PART (%): number and percentage of

sequences contributed to the final consensus transcriptome (see below). In PRJEB10085 (B) (filtered), sequences <500 nt

were further discarded (see text).

Statistic A B B (Filtered) C D E
ACC PRJNA310762 PRJEB10085 PRJEB10085 PRINA298469 PRJNA289402 PRJEB38787
REF [7,52,53] This study
RAW 61,531,862 383,416,636 383,416,636 27,096,926 285,148,782 1,902,226,200
PRE 57,862,467 310,302,570 310,302,570 25,244,887 267,779,751 875,299,135
CNT 740 (12 rpm) 9080 (29 rpm) 9080 (29 rpm) 1750 (68 rpm) 1191 (4 rpm) 2403 (2 rpm)
SEQ 38,559 95,490 36,287 42,363 37,425 51,021
MIN 101 101 500 101 101 101
MAX 13,929 21,744 21,744 11,354 26,839 10,795
MEAN 1043 647 1312 810 1120 610
TOTAL 40,861,413 64,426,688 47,615,807 34,438,742 42,382,170 31,671,589
SEQ < 200 4330 17,074 0 782 3051 3989
SEQ>1k 16,289 18,638 18,638 10,932 17,048 7104
SEQ>10k 4 15 15 1 13 1
ORF 24,757 29,060 27,842 27,063 24,817 26,882
ORF (%) B8% 82% 83% 89% 87% 93%
N90 576 347 654 419 606 367
N70 1140 667 1101 686 1187 528
N50 1607 1282 1574 1014 1658 753
N30 2257 2033 2243 1452 2318 1090
N10 3600 4026 3707 2358 3812 1850
GC (%) 64% 58% 62% 64% 64% 64%
PART 22,234 - 27,730 10,129 19,663 11,602
PART (%) 24.3% - 30.3% 11.1% 21.5% 12.7%

3.2.2. Final Consensus Transcriptome

To obtain our final transcriptome, we combined the individual five decontaminated
transcriptomes into a consensus transcriptome. Regardless of the aforementioned differ-
ences in the amount of pre-processed reads per dataset, the contribution of transcripts from
each study in the final consensus transcriptome was rather balanced, where PRJEB10085 (B),
PRINA310762 (A), PRINA289402 (D), PRJEB38787 (E), and PRJNA298469 (C) accounted for
30.3%, 24.3%, 21.5%, 12.7%, and 11.1%, respectively (Table 2). The resulting transcripts were
classified into non-redundant protein-encoding genes, and one representative isoform was
selected for each gene. Our new transcriptome was then compared with the other two pub-
licly available transcriptomes, GDJR01 (D) [53] and GEFRO1 (B-C) [7] (Table 3). Ebenezer
etal. (2019) [7] used a combination of in-house generated sequences (PRJNA298469 (C))
and publicly available data tfrom O'Neill et al. (2015) [52] (PRJEB10085 (B)) to assemble
a transcriptome. Assembly transcriptome statistics were computed with TransRate. The
overall number of sequences reported in the present work is 91,040, with N50 of 1432 nt,
whereas in GDJR01 (D), it was 113,152 (N50 1604), and 72,506 (N50 1242) in GEFRO1 (B-C).
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The mean length of our transcripts was 1096 nt, a value closer to GDJR01 (D) than GEFRO1
(B-C), which was ca. 200 nt smaller. The number of protein coding regions predicted by
GeneMarkS-T (58,542) and the number of open reading frames (ORF) found with Tran-
sRate (62,287) are slightly smaller than in GDJRO01 (D), but about twice greater than in
GEFRO01 (B-C). Our own sequences were classified into 49,922 predicted non-redundant
protein-encoding genes, which is comparable to GDJR01 (D), but almost eighteen thousand
genes more than in GEFR01 (B-C). As expected, these recomputed numbers are similar
to those reported in the original publications of Yoshida et al. (2016) [53] and Ebenezer
etal. (2019) [7]. Additionally, O'Neill et al. (2015) [52] found over 32,000 unique compo-
nents for their E. gracilis transcriptome. The total size of our consensus transcriptome is
100 Mb, whilst the size of GDJR01 (D) is 122 Mb, 63 Mb for GEFR01 (B-C) and 38.4 Mb for
O’Neill et al. (2015) [52] transcriptome. Overall, the genome size of E. gracilis has been
estimated from total DNA content to range between 1 Gbp to 9 Gbp [54]. In contrast, the
most recent estimation based on high throughput sequencing data was 332-500 Mb in
size for the whole haploid genome [7] but, because half of the genome is gapped or has
unknown base representation, the authors pointed out that this latter estimation was likely
to be approximate.

Table 3. Basic statistics of transcript properties computed for the three public transcriptome assem-
blies, intluding the consensus transcriptome generated in the present work, and completed with data
retrieved from the publications of Ebenezer etal. (2019) [7] and Yoshida et al. (2016) [53]. Row titles
are as in Table 2, except for CDS: number of unique coding sequences (i.e.,, ORFs or UNIGENES),
GMS-T and GMS-T (%): number and percentage of predicted protein coding regions calculated by
GeneMarkS-T.

Statistic GEFR01 GDJRO1 HBDMO1
REF [7,53] This study
SEQ 72,506 113,152 91,040
MIN 202 201 201
MAX 25,763 21,553 26,839

MEAN 869 1087 1096

TOTAL 63,049,595 122,976,775 100,187,451

SEQ < 200 0! 0! 0!

SEQ>1k 19,740 49,277 37,294

SEQ>10k 25 27 24
ORF? 30,467 65,943 62,287

ORF (%) 79% 73% 85%
N90 374 523 545
N70 704 1130 965
N50 1242 1604 1432
N30 1916 2181 2049
N10 3344 3347 3410

GC (%) 61% 63% 63%
CDS 32,128 49,826 49,922

GMS-T 35,929 63,432 58,542

GMS-T (%) 49% 56% 64%

T Submission tools for sequence repositories do not accept transcripts < 200 nt. Hence, the number of sequences
in the public version of HBDMO1 is lower than reported elsewhere in this work. 2 ORFs were determined with
TransDecoder, whereas CDS were determined with EvidentialGene (or a similar tool, depending on the study).

The pre-processed reads from the five experiments were aligned back to the three
public transcriptomes as a metric of completeness. In most cases, the percentage of mapping
was over 80%, reaching even more than 90%, with the exception of reads produced by
ourselves PRJEB38787 (E), which had a representation of ~75% and ~50% in GEFRO01 (B-C)
and GDJRO1 (D), respectively (Table 4). It is probable that our reads have a lower mapping
percentage because they were generated from DSN-normalized total RNA samples, for
which analyses of a preliminary sequencing lane revealed many reads corresponding to
non-mRNA sequences (e.g., rRNA). However, the specifically low mapping to GDJR01
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(a)

GDJRO1

GEFRO1

HBDMO1

(D) cannot be explained easily because “transcripts” matching to rRNA sequences were
identified in all three public transcriptomes (Supplementary Archive File S1).

Table 4. Mapping fraction of pre-processed reads from each collected dataset (rows) to the three
public transcriptome assemblies (columns), GEFR01 [7], GDJRO1 [53] and HBDMO1 (this study).

Code Accession Reference GEFR01 GDJR01 HBDMO01
A PRINA310762 [7] 87.40% 92.51% 93.38%
B PRJEB10085 [52] 84.68% 90.13% 91.49%
C PRINA298469 [71 80.26% 91.66% 90.39%
D PRINA289402 [53] 85.25% 95.04% 94.28%
E PRJEB38787 This study 75.28% 51.39% 80.76%

Using BUSCO on our predicted proteins, we found that the consensus transcriptome
contained 84.8% of complete eukaryotic orthologs and half of them were duplicated, while
10.6% were missing (Figure 2). In comparison, we estimated the completeness of GDJR01
(D) at 80.8% of complete orthologs, of which a fifth were duplicated, and completeness
of GEFRO1 (B-C) at 76.9%, with only 4% of them duplicated. Moreover, we observed
that lower percentages of complete orthologs were accompanied by higher numbers of
fragmented and missed sequences. Overall, our consensus transcriptome appears to be the
most complete, GEFR01 (B-C) being the least. Ebenezer et al. (2019) [7] also determined
BUSCO completeness in GDJR01 (D) and GEFRO01 (B-C) transcriptomes in addition to the
original transcriptome presented by O'Neill et al. (2015) [52] and similarly concluded that
GEFRO1 (B-C) was the least complete transcriptome. Beyond transcripts missing due to low
expression, discrepancies in the number of complete orthologs predicted by the different
studies may also be due to the use of different tools for protein prediction. Whereas we
used cdna_bestorf.pl script from EvidentialGene, the other studies used TransDecoder [59],
which, reportedly, tends to predict larger amounts of proteins, but performs worse for true
transcripts [105]. Despite these differences, the general representation scores of the reads
in the assembled transcripts were similar across the three public transcriptomes, even if
depending on the exact evaluation software used (Table 5).

. Complete (C) and single-copy (S) . Complete (C) and duphcated (D) b . Complete (C) and single-copy (S) . Complete (C) and duplicated (D)
W Missing (M) (b)

Fragmented (F)

Fragmented (F} W Miissing (M)

B o
| T T T |
0 20 40 60 80 100

0 20 40 60 80 100
%BUSCOs %BUSCOs

Figure 2. BUSCO-generated charts showing the relative completeness of the three public transcriptome assemblies,
GEFRO1 [7], GDJRO1 [53] and HBDMO1 (this study). BUSCO datasets were based on odb9. (a) “Eukaryota” (303 BUSCOs);
(b) “Protists ensembl” (215 BUSCOs).
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Table 5. TransRate and Detonate assembly scores for the three public transcriptome assemblies,
GEFRO1 [7], GDJRO1 [53] and HBDMO1 (this study). Scores indicate how well transcripts are sup-
ported by the RNA-Seq data.

Assembly Score GEFR01 GDJR01 HBDMO01

TransRate Score 0.1789 0.0304 0.0430
TransRate Optimal Score 0.2051 0.1729 0.0764

Detonate Score 97,461 x 10° ~97,561 x 10° 97,459 x 100

As already mentioned, one evidence supporting the evolutionary relationship between
trypanosomatids and euglenids are trans-splicing mechanisms [14]. We found that the
SL-sequence was present in no more than 10.8% of transcripts in our transcriptome, far
from the approximately 53-60% prevalence reported before [14,53], and closer to the 16%
found by [52]. However, when performing the exact same analysis on the other two public
transcriptomes, we find contrasting results, with SL-sequence matches recovered in at most
of 2% and 30.3% of GEFRO1 and GDJRO01, respectively (Table 6). This indicates that the
transcriptome of Yoshida et al. (2016) [53] has the most complete transcripts in 5-end, even
though our own assembly includes 200 transcripts with a full-length perfect match to the
24-nt SL-sequence (vs. 45 and 5 for GEFR01 and GDJRO01, respectively). Comparison of the
mapping coverage for the three public transcriptomes shows that partial matches (12-14 nt)
are much more numerous than full-length matches, as expected, but that the former are
concentrated at the very beginning of the transcripts, which suggests that they are genuine

SL-sequences (Supplementary Figure 53).

Table 6. SL-sequence related statistics for the three public transcriptome assemblies, GEFRO1 [7],
GDJRO1 [53] and HBDMO1 (this study). These correspond to exact matches limited to the first
40 nucleotides of each transcript.

Threshold (nt) Statistic GEFRO01 GDJR01 HBDMO01
Forward matches 24 5 86
Reverse matches 21 0 114
24 Total matches 45 5 200
Average length (nt) 24.00 24.00 24.00
Forward matches 176 16,580 3370
Reverse matches 200 12,999 3265
14 Total matches 376 29,579 6635
Average length (nt) 16.28 1557 15.59
Forward matches 749 18,322 4403
Reverse matches 766 16,016 5397
12 Total matches 1515 34,338 9800
Average length (nt) 13.37 15.19 14.68

Finally, we determined whether sequences of the other two available transcriptomes
were present in our consensus transcriptome through two complementary approaches:
one pairwise, sensitive and based on protein sequences, and one global, conservative and
based on nucleotide sequences (Supplementary Table S1b). First, when using CD-HIT-
2D with our transcriptome as a reference, a word size of 2 and an identity threshold of
0.4, 26.1% (34,490) of total sequences from GDJR01 (D) were missing and 37.6% (28,552)
of total sequences from GEFRO1 (B-C). Missing sequences were BLASTed (TBLASTN E-
value cut-off of 0.001) against our transcriptome, and 20.5% (27,152) of total sequences
of GDJRO1 (D) were recaptured and 24.8% (18,870) of GEFRO1 (B-C) (Supplementary
Table Sla). After computing TPM values using the pre-processed reads generated in this
study, we found that only 518 missing sequences of GDJR01 (D) were expressed above
1 TPM and 1595 in GEFRO1 (B-C), which means that potentially 0.5% and 2% of the truly
expressed sequences from GDJR01 (D) and GEFRO1 (B-C), respectively, are missing from
our consensus transcriptome. Hence, these sensitive analyses suggest that we captured
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more than 98% of the sequences produced in the other transcriptomes hitherto published.
Second, CD-HIT-EST was used to compute clusters of related transcripts at an identity
threshold of 90%. We recovered 121,851 clusters, in which the three transcriptomes had
very similar patterns of presence and representation (Supplementary Table S1b). Hence,
each transcriptome had at least one transcript in 60,220 to 66,041 clusters, whereas they each
provided the representative (longest) sequence in 39,434 to 41,610 clusters. Singleton cluster
statistics were slightly different, with GEFR01 having 29,997 specific clusters, followed
by GDJRO1 (27,058) and then our own transcriptome (19,028). When focusing on the
24,164 clusters shared between the three transcriptomes, we see that our transcriptome
contributes the highest number of representative sequences, which confirms that they
are generally longer than their homologues in the other two transcriptomes. This is also
visible in a direct comparison of the mean an maximum transcript length across the three
transcriptomes, whether on the 121,851 or the 24,164 clusters (Supplementary Figure 54).
In contrast, comparison of the median and max identity between transcripts of the three
datasets reveals that GEFRO1 sequences are the most similar on average to the sequences
from the two other transcriptomes. They are also the less redundant, with the lowest
number of transcripts per cluster.

Altogether, these comparative analyses indicate that the three publicly available
transcriptomes each have a distinct edge on the other two: Ebenezer et al. (2019) [7]
assembled a compact set of sequences nonetheless providing a large fraction of unique
transcripts, whereas Yoshida et al. (2016) [53] obtained a more redundant transcriptome,
but with many transcripts complete at their 5-end, as evidenced by the detection of SL-
sequences, and for our part, we generated the longest transcripts on average, including a
few hundred featuring a full-length SL-sequence, with moderate redundancy.

3.3. Global (Transcriptome) Annotation
3.3.1. Functional Annotation of Transcripts

The combination of annotation strategies in our 49,922 predicted non-redundant
protein-encoding genes yielded 9916 sequences with GO terms, 7775 KEGG orthologs,
13,298 sequences with a functional annotation and 13,850 with a taxonomic affiliation
(Supplementary Table S2; see also Section 3.3.2). In the same way, O'Neill et al. (2015) [52]
found 14,389 proteins with annotated functions out of the 32,128 predicted proteins of their
transcriptome, whereas out of the 49,826 unique components reported by Yoshida et al.
(2016) [53], approximately 11,314 were functionally annotated. Ebenezer et al. (2019) [7]
annotated over 19,000 sequences, but without discerning what kind of attributes were
associated in each case.

In comparison to the annotation performed in the other transcriptomes, we were able
to find all the enzymes of the mevalonate pathway, including the diphosphomevalonate
decarboxylase (EC 4.1.1.33), which was missing in the work of O'Neill et al. (2015) [52],
thereby revealing that the last reaction is catalysed by a canonical enzyme. Regarding
the carbohydrate-active enzymes, we found results similar to those outlined by O’Neill
et al. (2015) [52]. Hence, we identified a great number of glycosyltransferases (311) and
glycoside hydrolases (80), of which a quarter (19) were different types of glucanases
(Supplementary Table S3). Corroborating the results of Yoshida et al. (2016) [53], we found
two transcripts encoding glucan synthases, but could not identify transcripts encoding a 1,3-
B-D-glucan phosphorylase, despite that such an enzyme has been previously characterised
biochemically [106,107].

In E. gracilis, the photoreceptor is considered by some authors to be a rhodopsin-like
protein where the retinal chromophore is a carotenoid [108]. We found five enzymes
involved in retinol metabolism (EC 2.3.1.76; EC 3.1.1.64, EC 2.3.1.135; EC 1.1.1.105, EC
1.3.99.23) but, in line with Ebenezer et al.’s (2019) [7] findings, we could not find any
rhodopsin-like protein candidates. Instead, we found 47 genes involved in visual per-
ception processes (GO:0007601) and, more broadly, 333 genes related to photoresponse
(Supplementary Table 54), including 13 cAMP/cGMP phosphodiesterases involved in
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amplification of luminous signal, 15 GTPase regulators, nine arrestins, which are important
for regulating signal transduction at G protein-coupled receptors, eight cryptochromes,
and three cyclic nucleotide-gated channels of rod photoreceptors. In addition, we found
13 proteins of the paraflagellar rod, a structure observed in euglenids, kinetoplastids and
dinoflagellates [109-111]. Such a structure is associated with the paraflagellar body (also
called paraxonemal body, PAB) in E. gracilis [112]. We also found 49 transcripts coding for
photoactivated adenylate cyclases (PAC), which are light-sensitive proteins of PAB [113].
Of these, 43 clearly show a bacterial affinity in our analyses, whereas two are highly similar
two trypanosomatid sequences [114].

To better understand the general functionality of the consensus transcriptome, we
reported the CO annotation results as high-level terms of the three ontologies without the
detail of the specific fine-grained terms. For such a task, we used the generic GO Slim
Mapper tool of The Saccharomyces Genome Database [115], and the list of summarized
GO terms (GO slim) can be found in Supplementary Table S5. As we used a compendium
of culture conditions, we expected to capture the sum of functionalities represented by the
studies individually. We found a total number of 164 GO terms after GO slim analysis,
represented by core metabolism (41), transport (13), cell organization (15) and maintenance
(25), nucleotide metabolism (35) and protein synthesis (17), vesicle or cilium organization
(15) among others. The annotation from O'Neill et al. (2015) [52] was classified into 157 GO
categories while Yoshida et al. (2016) [53] determined, under mixotrophic conditions, that
the main functional categories were genetic information processing (399 components),
translation (291 components), and energy metabolism (239 components). Besides, genes
belonging to the latter three categories were generally down-regulated during anaerobic
treatment [53]. In the same way, Ebenezer et al. (2019) [7] indicated that major categories
were dominated by core metabolic, structural and informational process supergroups,
consistent with the current work and previous studies [52,53].

3.3.2. Taxonomic Annotation of Transcripts

As a complex alga resulting from a secondary endosymbiosis between a euglenozoan
host and a chlorophyte alga, E. gracilis bears genes from multiple origins [16,25]. In terms
of sequence similarity (and depending on the current sampling in reference organisms),
its nuclear genome is expected to be composed of four main gene classes: (i) Euglena-
specific genes, (ii) kinetoplastid-specific genes, (iii) eukaryotic genes (i.e., widespread in
other eukaryotes), and (iv) (green) genes acquired during the secondary endosymbio-
sis [31]. Over the last fifteen years, this issue has been extensively studied, both using
similarity [52,53] and phylogenetic [7,9,31,32,116-119] approaches, either at small (i.e.,
targeted subsets) [9,116~118] or larger (i.e., transcriptomic) scales and, when at larger
scale, either by focusing on the chloroplast [119] or by surveying “unbiased” transcript
collections [7,31,32,52,53]. All these studies have revealed that E. gracilis display sequence
similarities to a panel of organisms that is larger than predicted by a simple theory of
secondary symbiogenesis [120,121]. Unsurprisingly, our large-scale similarity analyses
of the consensus transcriptome confirm the results of these previous works (Figure 3).
A first observation is that only 28% of the predicted non-redundant protein-encoding
genes (13,850 out of 49,922) bear any exploitable similarity with sequences in reference
databases. Among those, 937 (7%]) correspond to organisms to which we could not assign a
specific taxon, whereas 4054 (29%) were only identified as “Eukaryota”. The remaining
gene similarities are distributed among kinetoplastids (1364, 10%), green plants (977, 7%)
and other subgroups of eukaryotes, whether photosynthetic, such as cryptophytes (530,
4%) and haptophytes (468, 3%), or not, e.g., opisthokonts (947, 7%). Bacterial groups
account for 1690 transcripts (12%), among which the most prominent are proteobacteria
(34% of bacteria) and cyanobacteria (212, 13%). Only 40 (2%) and 15 (0.9%) transcripts are
affiliated to the PVC group or Chlamydiae, respectively [122]. As expected [31], focusing on
119 nuclear-encoded genes involved in mitochondrial and photosynthetic electron transfer
chains increases the similarity signal in favour of kinetoplastids (20 out of 86, 22%) and
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green plants (20 out of 33, 58%), respectively (Supplementary Figure S5; see also HTML
Supplementary Files 52 and S3).

cellular_organisms

Figure 3. Taxonomic analysis of reconstructed transcripts (BLASTX MEGAN-like affiliations). The Krona chart is a zoom on
the 13,850 transcripts to which a taxonomy could be associated, i.e., 28% of the 49,922 reconstructed transcripts. Among this
classified fraction, 937 (7%) correspond to organisms to which we cannot assign a specific taxon (“other cellular organisms”).
The thin blue slice is labelled “Archaea” (0.2%). The interactive chart is available as HTML Supplementary File S1.

Similarly to other complex algae (e.g., cryptophytes and chlorarachniophytes [123],
ochrophytes and haptophytes [124,125]), E. gracilis transcriptomes show a heavily mixed
ancestry in terms of gene donor lineages. However, it is a known (yet somewhat neglected)
issue that publicly available transcriptomes can be contaminated by foreign sequences
because of ecology (e.g., predator-prey, host-parasite or symbiotic relationships), or due to
cross-contamination (either in the lab or on sequencing platforms) (see [126] and references
therein). That is why we exerted special care to avoid including non-Euglena transcripts
when assembling the five individual transcriptomes (see Section 3.2.1). In our final consen-
sus transcriptome, we still identified 64 sequences as contaminants, of which 23 are false
positives, owing to strong sequence similarity with different kinetoplastids (9 transcripts),
green plants or algae (7), or non-green microalgae (7). Since the transcriptome had already
been publicly released at the time, the other 41 remaining sequences were retained in
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subsequent analyses, but tagged as contaminants (Supplementary Table 56). Moreover, we
used the taxonomic annotation of the 13,850 annotated transcripts to determine whether
contaminants could be identified by their base composition pattern (see [127] and refer-
ences therein). To this end, PCA plots were computed based on transcript tetranucleotide
frequencies. Two types of colour annotation were then applied: one following a scale
of GC-content and one following the taxonomy (Supplementary Figure 56). It appears
that the taxonomic signal is mixed throughout these PCAs, whereas GC-content clearly
corresponds to the PC1 axis. Thus, it was not possible in our case to identify and sort out
contaminated transcripts (if any) from Euglena transcripts with this approach.

3.4. Systematic Functional Annotation of Top Differentially Expressed Genes

To better understand the functional organization of the most relevant E. gracilis genes
under the assayed culture conditions, we computed a network of ontologies, based on
transcript expression levels across all samples and studies (Supplementary Table S7). For
this purpose, we only selected GO and KEEG terms that corresponded to the 2500 most
variable genes (in terms of expression) to determine which biological functions were
represented and how they were related to each other. The resulting organized network
contained 119 nodes, with an average of nine neighbours per node, and 436 genes from
the initial 2500 genes were retained (some genes being part of multiple hubs). We then
used the MCODE algorithm to find evidence of higher order organization (Figure 4).
The network was composed of nine modules (or hubs), each defined by one ontological
category (Supplementary Table S8). Hub number 1 (72 transcripts) reflects “regulation of
DNA damage checkpoint”, with transcripts involved in apoptosis, control of transcription
and other developmental processes. Unlike hub number 7 (see below), hub 1 has a stress
response component. Hub 2 (191 transcripts) is the largest hub, and comprises genes
involved in translational initiation and termination, or protein targeting to a membrane, and
is thus defined by “ribosome” terms. Hub 2 is connected to hubs 3, 5 and 6 in the network.
Categorized as a “thylakoid” hub, hub 3 (133 transcripts) is the second largest hub. It mainly
comprises photosynthetic electron transport chain transcripts and other components that
respond to light stimuli. According to taxonomic annotation, the majority of the genes
represented in this hub come from green organisms. Transcripts involved in protein
kinase activity were found in Hub 4 (23 transcripts), defined as “cyclin-dependent protein
serine/threonine kinase regulator activity”. Hub 5 (25 transcripts) corresponded mainly
to processes involved in genetic information processing, such as spliceosome, exosome,
chromosome-associated proteins, or chaperones. Hub 6 (79 transcripts) is defined by several
categories related to mitochondrial protein complexes and mitochondria transport, and has
a central position in the network (connections to hubs 1, 2, 3 and 8). Hub 7 (46 transcripts)
was defined by “DNA integrity checkpoint” ontology terms and consisted of cell cycle
processes, such as transition from G1 phase to S or the previously mentioned DNA integrity
checkpoint. Hub 8 (53 transcripts) was categorized as “response to temperature stimulus”
and was composed mainly of transcripts that encode heat shock proteins. Components
of hub 9 (22 transcripts) were related to “negative regulation of translation”. Overall,
our 2500 most relevant genes appear to be distributed around the central role of the
mitochondrion, whose origin traces back to the euglenozoan host cell [31]. In this respect,
our taxonomic analysis specifically revealed that more than 10% of genes are related to
kinetoplastids (the closest available proxy for the host cell) in all hubs, except for hub 3,
categorized as “thylakoid” (Supplementary Table $9).

3.5. Cluster Annotation Enrichment Analysis and Gene Co-Expression

From the same top 2500 variable genes, we identified positive and negative rela-
tionships between pairs of genes based on gene expression. We tried to capture genes
that behave conjointly across the various experimental conditions and group them into
clusters. According to our expectations where a gene would be binary regulated (up or
down), the optimal k solution should range between 25 (32) and 213 (8192) (accounting
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for 5 to 13 distinct experimental conditions with a total sample number of 23; see Table 1).
We computed the optimal number of clusters and determined that 36 clusters was the most
suitable solution for the selected genes (Supplementary Figure S7). To better understand
the underlying biological processes inside the clusters, ontologies that were overrepre-
sented were extracted and analysed. Only five out of the 36 clusters were characterized by
significantly overrepresented ontological terms (Supplementary Table S10). In total, those
five clusters were composed of 631 transcripts out of the 2500 initially used for clustering,
and 52% of them had at least one annotation attribute. Their expression can be visualized
in hierarchically clustered heat maps (Figure 5).

Results from the enrichment tests revealed that “nucleosome category” was overrep-
resented in cluster 1, which contains transcripts of the “DNA damage checkpoint” and
“ribosome” hubs of the ontological network, hub 1 and 2, respectively (see above). These
transcripts encode histones, and core components of “nucleosome”, that participate in
wrapping and compacting DNA into chromatin. The observation that DNA packaging,
transcription and translation shared the same gene expression pattern may be relevant
because in euglenids, as well as in dinoflagellates, chromosomes are permanently con-
densed [128]. Furthermore, transcripts encoding different components of the chloroplast
reaction centres of hub 3 were also found in this cluster. This cluster was characterized by a
larger down-regulated expression in PRJEB38787 (E), while other experiments were slightly
over and under zero. Cluster 4 was enriched in “photosynthetic electron transport” and
"DNA damage checkpoint” related terms mainly present in hub 3, with several transcripts
encoding ATP synthase subunits in the former and cell cycle and apoptosis regulator
proteins in the latter. Gene expression in cluster 4 was homogeneous with values ranging
between one or minus one, except for a group of genes greatly down-regulated in studies
PRJNA310762 (A), PRIEB10085 (B), PRINA298469 (C), and likely to be not expressed in
such experiments. About a third of the transcripts from cluster 19 encode different types
of serine/threonine proteins and are ontologically typified by “cyclin-dependent protein
serine/threonine kinase regulator activity”, which are processes closely related to cell
cycle regulation. Their expression was slightly negative in the experiment PRJEB38787
(E) and positive in PRJEB10085 (B) while it remained unaltered in the rest of the experi-
ments. “Neuroblast proliferation” and “neuroblast division” categories illustrated cluster
24, which, considering the unicellular nature of E. gracilis, was more likely to be related to
cytoskeletal structure of eukaryotic cells formed during cell division or cell polarity than
regulation of neurogenesis. In study PRJNA289402 (D), ABC transporters, fatty acid and
polyketide synthesis were more down-regulated than in the remaining studies. Lastly,
cluster 25 was enriched in “positive regulation of mitochondria organization” due to the
presence of putative mitochondrial heat shock proteins that were co-regulated across stud-
ies. Besides, expression of cluster 25 was disparate for PRINA289402 (D), compared with
the other studies. A main difference was a group of transcripts largely downregulated in
the PRINA289402 (D) experiment, while they were upregulated in the remaining studies.
Those transcripts putatively encode different components of the nitrogen metabolism,
some chloroplastic electron transport chain components and ATP-dependent RNA helicase.
A few transcripts related to cell cycle and translation, present in the annotation network,
were found in cluster 25.

The cluster patterns reported above show that expression is driven by study rather
than experimental conditions of the studies. Even if disappointing, these findings were
similar after the tentative SVA correction of the batch effect present in the studies (Supple-
mentary Figure S8). Presumably, our approach was not able to properly capture the batch
effect, maybe due to an unbalanced batch-group design of the studies [129]. Nonetheless,
we observed that a selection of 133 genes, coding for the components of the photosynthetic
and respiratory electron transport chains, were grouped together. This subset of genes,
located in the chloroplast and in the mitochondrion, respectively, was selected because
most of the experimental conditions (light/dark, presence or absence of acetate in the
medium, oxic/anoxic environment) of the studies were expected to affect respiration and
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photosynthesis. As illustrated in Figure 6, the expression of these genes is also driven
by the study rather than by the reported physico-chemical parameters of each experi-
ment. Yet, most components of the mitochondrial electron transport chain among the
133 selected genes were grouped together after hierarchical clustering of their expression,
while chloroplastic components exploded into different subgroups. Concretely, genes
coding for light-harvesting complexes grouped together distantly from other chloroplastic
components. These transcripts are nuclear-encoded and showed a taxonomic affinity to
Streptophyta (Supplementary Table S11).
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Figure 4. Annotation network of ontological terms showing the functional organization and relationships between the
2500 most variable genes. GO and KEGG terms were considered as a large pool in which the genes could be associated with
0 to N terms. Such associations served as the basis to infer the network (see text). Colours correspond to ontological terms
(or groups of related ontological terms).
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Figure 6. Expression heat map of 133 genes involved in electron transport chains. Heat maps and trees regroup samples
behaving similarly across genes on the horizontal axis and genes behaving similarly across samples on the vertical axis (see
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text). Samples are colour-coded both by condition (F = fermentative, M = mixotrophic, H = heterotrophic, I = phototrophic)
and by study (A = PRINA310762, B = PRJEB10085, C = PRINA298469, D = PRINA289402, E = PRJEB38787). Genes are
colour-coded by organelle (CT = chloroplast; MT = mitochondrion).

Overall, our last analysis indicates that genes that share common metabolic functions
are packed together, as would be expected, even though the expression is driven by study
rather than culture condition. Beyond the technical issues that may have contributed to a
loss of exploitable signal (e.g., heterogeneous experimental “design”, see Table 1, uncor-
rected batch effects), these negative results can also be interpreted as additional evidence
for the idea that, similar to what is known in trypanosomatids, nuclear gene expression in
E. gracilis is not primarily regulated at the transcriptional level. In these parasites, gene reg-
ulation mostly occurs at the post-transcriptional level, through stabilization/degradation of
mRNA molecules and control of mRNA translation (see [8] for a recent review of the issue).
While the former mechanism should in principle change transcript abundance, the latter
one might not be visible in comparative transcriptomics. For example, Yoshida et al. (2016)
observed little change at the transcriptomic level following anaerobic treatment. More-
over, these changes in gene expression were inconsistent with respect to the activation of
paramylon degradation and wax ester production [53]. In a more systematic investigation,
Ebenezer et al. (2019) reported a striking lack of correlation between transcriptomic and
proteomic data when comparing light and dark conditions [7]. As already mentioned, the
raw transcriptomic data from these two studies were included in the present work (along
with those of O'Neill et al. (2015) [52] and our own data), which allowed us to compare
gene expression across a wider range of culture conditions at once. A few meaningful
clusters of genes (i.e., following functional term enrichment) could be identified based on
shared expression patterns across samples, which suggests that there is some biological
signal in transcript abundance. However, the dominance of batch effects on these levels
further questions the usefulness of transcriptomics for functional studies in E. gracilis.

4. Conclusions

Owing to its singular evolutionary origin, a merger between a chlorophyte alga and a
phagotrophic unicellular belonging to a non-model eukaryotic group [20], E. gracilis is a
fascinating, multifaceted chimeric organism, whose significance is constantly growing in
domains as varied as the production of bio-based products [43], the treatment of wastewater
([130]), the provision of food supplements for space exploration [131], or the elucidation
of mechanisms it shares with its parasitic trypanosome cousins [38,9,15] (see also the other
articles of the present Special Issue).

By building a consolidated transcriptome of this photosynthetic eukaryote, we aimed at
providing a solid resource to the community, taking into account previous work [7,52,53], yet
enriched with unreleased data (obtained back in 2012-2014; Supplementary Figure S9) [132].
Our final consensus transcriptome comprises 91,040 unique transcripts and 49,922 predicted
non-redundant protein-encoding genes. It appears to be the most complete up-to-date,
at least according to sequence metrics, the number of universal orthologs found, read
percentages supporting the assembly, and the fact that most of the E. gracilis sequences
available to date have been included. Hence, we have been able to capture more than
98% of the sequences produced in the other transcriptomes hitherto published, while the
number of predicted genes is in the same range [7,53]. This suggests that there was still
some room for improvement, contrary to expectations for the opposite [7], and it might
be related to the inclusion of reads obtained without poly-A selection, but following DSN
normalization.

Annotating these transcripts, whether from a functional or taxonomic point of view,
remains a challenge, notably because of the lack of well-characterized closely related
organisms, the trypanosomes being relatively derived parasites [133]. This results in a
mere 26-27% of our predicted genes annotated by sequence similarity, above the 23% of
Yoshida et al. (2016) [53], but below the 45% of O'Neill et al. 2015 [52] and the 52-55% of

358



Genes 2021, 12, 842

230f 29

Ebenezer et al. (2019) [7], who further considered orthogroup sharing as annotation. In
principle, this should encourage more large-scale studies, e.g., comparative transcriptomics
performed in a wide range of culture conditions and stresses, in order to build a reliable
gene expression network from co-expression data, and thereby provide alternative means
for annotating genes of unknown function. Alas, as it now appears quite clearly, gene
expression is mostly controlled at the post-transcriptional level in euglenozoans [7,8],
including the regulation of chloroplast development in photosynthetic euglenids [134].
This implies that functional studies in E. gracilis have to be carried out through proteomics
rather than transcriptomic approaches (e.g., [119,135]). This is fully possible considering the
availability of several high-quality transcriptome assemblies to feed reference databases for
proteomic fragment identification, including the one presented in this work. In this respect,
the unfortunate lack of a complete genome beyond the draft level, even if frustrating, is
not an insuperable issue [7].

Regarding the highly mixed taxonomic affinities of Euglena transcripts, our similar-
ity searches yielded proportions in line with previous studies, even when those studies
were based on more reliable phylogenetic approaches [136], such as the comprehensive
work of Ebenezer et al. (2019) [7]. Altogether, the current knowledge points to the “shop-
ping bag” [23-25] (or “red-carpet” [26]) model for the evolutionary origin of Euglena, i.e.,
transient endosymbioses during which multiple rounds of HGT/EGT have progressively
shaped the plastid proteome. Yet, it is noteworthy that such a gene mixture would also
be compatible with a kleptoplastidic origin for photosynthetic euglenids, in which the
transient “endosymbioses” would actually imply stolen plastids and not intact symbionts.
Moreover, some predatory euglenids, such as Peranema trichophorum, can feed either by
phagocytosis of whole cells or by drilling a hole in their prey and then sucking up its cellular
contents [137], a process known as myzocytosis [138]. Beyond providing a selective force
for transferring genes to the host nucleus to service the ingested plastids, as in the recently
characterized ARS (Antarctic Ross Sea) dinoflagellate bearing haptophyte-derived klep-
toplastids [139], a kleptoplastidic model would also better fit the three membranes of the
euglenid chloroplasts [20,140] and the presence of kleptoplastids acquired by myzocytosis
in the early branching Rapaza viridis [141].

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
103390/ genes12060842/s1. Figure S1: Taxonomic distribution of best BLAST hits before and after
decontamination. Figure 52: GC-content distribution across reconstructed transcripts and in function
of transcript length. Figure 53: Mapping coverage analysis for the 24-nt SL-sequence on the 5-end
of the transcripts. Figure 54: Comparison of transcript count, length and identity over clusters of
highly similar transcripts. Figure S5: Taxonomic analysis of reconstructed transcripts corresponding
to mitochondrial and photosynthetic electron transfer chains. Figure S6: PCA plots computed
on the tetranucleotide frequencies of taxonomically annotated reconstructed transcripts. Figure S7:
Correlation values for a range of cluster solutions. Figure S8: PCA plots computed on gene expression
before and after SVA batch effect correction. Figure $9: Quality-control of the total RNA prepared in
our lab. Table Sla: Pairwise overlap between the new consensus transcriptome and two publicly
available transcriptomes. Table S1b: Global overlap between the three public transcriptomes. Table 52:
Annotation of the 49,922 predicted non-redundant protein-encoding genes. Table S3: List of 392 genes
corresponding to carbohydrate-active enzymes. Table S4: List of 380 genes involved in visual
perception processes and photoresponse. Table 55: List of 164 GO slim terms generated by the
Slim Mapper tool. Table 56: List of 64 possibly contaminant transcripts persisting in the final
consensus transcriptome. Table 57: Expression values in transcripts per kilobase million (TMP) for
the 49,922 genes. Table S8: Composition of the 9 hubs in the ontology network. Table 59: Taxonomic
analysis of the 9 hubs in the ontology network. Table S10: Composition of the 5 clusters in the gene co-
expression network. Table S511: Expression values (in TPM) of 133 genes involved in photosynthetic
and respiratory electron transfer chains. Archive file S1: RNAmmer and MegeBLAST reports
for rRNA sequences. HTML file 51: Interactive Krona chart for the taxonomic affiliations of the
49,922 genes. HTML file S1: Krona chart for the nuclear genes involved in the mitochondrial electron
transfer chain. HTML file S3: Krona chart for the nuclear genes involved in the photosynthetic
electron transfer chain.
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Abstract

Genome contamination is a well known issue in genomics. Although it has already
received a lot of attention, with an increasing number of detection tools made available
over the years, no comparison between these tools exists in the literature. Here, we
report the benchmarking of six of the most popular tools using a simulated framework.
Our simulations were conducted on six different taxonomic ranks, from phylum to
species. The analysis of the estimated contamination levels indicates that the
precision of the tools is not good, often due to large overdetection but also
underdetection, especially at the genus and species ranks. Furthermore, our results
show that only redundant contamination is accurately estimated.
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Background

Genomic contamination is a well-known, albeit recurrent, problem in genomics. It
appears when a genome, often a Metagenome-Assembled Genome (MAG), contains
DNA sequences that do not belong to the expected organism [1]. This umbrella
concept actually masks different sources of DNA mis-affiliation, which can occur
almost anytime between the selection of a sample and its bioinformatic analysis [1].
Nowadays, genomes are the basis of numerous studies, and it is no longer necessary
to demonstrate that genomic contamination is a cause for artifacts, notably in
phylogenomic inference [2-4]. Consequently, the detection of contaminants is a topic
that has attracted the attention of scientists, with the development of numerous
detection tools and an increasing rate of publications over the recent years. Although
all these tools ultimately report a quantified level of contamination, they are based on
various algorithms and do not measure the same information [1,5]. Indeed, among the
most popular tools, two major categories can be distinguished: those relying on the
presence of multiple marker genes (e.g., CheckM [6] and BUSCO [7]) and those
based on whole-genome surveys (e.g., GUNC [8], Physeter [5] and Kraken2 [9]).
Because of these differences in algorithms, Cornet et al 2018 [10] and Lupo et al 2021
[5] have reported the difficulty to meaningfully compare these tools, let alone
computing correlations between their estimates. Simulations of genome
contamination, in which the exact amount of contaminant sequences is known, can
nevertheless be used to overcome such a limitation. In the present study, we compare
the detection performance of six of the most used tools (CheckM [6], BUSCO [7],
GUNC [8], Physeter [5], Kraken2 [9], and CheckM2 [11]) in order to assess their
efficiency. To do so, we used simulations at multiple taxonomic ranks, while varying
the contamination scenarios.

Results and Discussion

Regardless of the contaminant source, it is now established that it can be summarized
into three main types at the genomic sequence level (Figure 1) [1,8]. The first type is
redundant contamination that occurs when the contaminant sequence is redundant
with an homologous genomic sequence of the expected organism [1]. The second
type is replaced contamination that is similar to the first one, but with the genuine
sequence of the expected organism lacking from its genome [1]. The third type is
single contamination that occurs when the contaminant sequence has naturally no
homologous sequence within the genome of the expected organism [1]. To mimic
these three situations, we selected 705 high-quality reference genomes belonging to
class Clostridia and genus Lactobacillus and simulated contamination events of the
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three types (Figure 1). Our simulations were performed out at six different taxonomic
ranks, from intra-phylum to intra-species.

Surprisingly, our results reveal that, with the exception of Kraken2, none of the tested
tools was able to accurately estimate the contamination level (CL) of our combined
scenarios, when the three different contamination types were mixed (Figure 2).
Separated simulations are available in Supplementary materials for redundant (Figure
S$1), replaced (Figure S2), and single (Figure S3) events. CheckM, based on the
duplication of gene markers [6], overestimated the redundant CL (Figure S1), but quite
logically, does not detect replaced (Figure S2) or single (Figure $3) contamination
events. Similar to its main metric, CheckM's complementary metric used for genetically
close contaminants (strain heterogeneity) also overestimated CL, but at the genus and
species ranks (Figure 2). BUSCO, which is also based on marker duplication [7],
largely overestimated the redundant CL (Figure S1) at all ranks and, as for CheckM,
underdetected replaced (Figure S2) and single (Figure S3) contamination events.
GUNC, which searches for sequence chimerism [8], presents a pattern of both over-
and underestimation at four ranks (phylum, class, order and family) (Figure 2), with a
minimum of 59% of underestimation (see Table S1 for the percentage of
underestimation of each tool at each taxonomic rank). At the genus and species ranks,
GUNC only underestimated CL (Figure 2), notably for replaced events where it
detected nothing (Figure S2). Physeter, which is based on Lowest Common Inference
(LCA) of DIAMOND blastx [12] hits [5], overestimates CL at all ranks for all types of
contaminants (Figure 2). In contrast, Kraken2, which takes advantage of exact long
kmer matching [9], showed the best estimation of CL, fitting well to the simulations,
with the exception of the species rank, which was largely underestimated (see Table
S1). It is noteworthy that the genomes used in our simulations were of high quality
(see Online Methods) and included in the Kraken2 database. Owing to its exact kmer
matching algorithm [13], one cannot exclude that Kraken2 would perform less well on
rare genomes, compared to our simulations. CheckM2, which uses machine learning
based on genomic contamination simulation (gradient boost model) without relying on
taxonomic information, [11], largely overestimated the redundant CL (Figure S$1),
especially at the genus and species ranks. Replaced (Figure S2) and single (Figure
S$3) CL were underestimated at all ranks, with the exception of the single type at the
genus and species ranks. Percentages of underestimation(Table $1) showed that
CheckM2 underestimates CL in more than 97% of the cases for both replacement and
single events, while it never underdetected the redundant type (to the exception of the
species rank in 1.3% of the cases). To overcome the impossibility to directly correlate
the performance of the different tools (due to their algorithmic differences), we
computed the correlation of each tool to the expected CL of our simulations. The tools,
not including Kraken2, correlated badly, often negatively, with the expected CL level
of the simulations, the correlation coefficient (R2) never going beyond 0.37 (Figure 2,
Figures S$1-83).
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Beside genomic contamination, another kind of genomic exchange naturally affects
genomes: horizontal gene transfer (HGT). One of the major differences between HGT
and contamination is that the first one accumulates mutations in the receiver (and
donor) organisms [14] after transfer whereas contamination occurs shortly before or
after genome sequencing, hence contaminant sequences are exact matches between
donor and receiver genomes [1]. To investigate the effect of HGT on detection
performance, a non-null mutation rate was optionally enabled during the simulations
(see Online Methods), either at 10% (Figure S4) or 25% (Figure S5). None of the
tools (to the exception of Physeter) conflated contamination and HGT, which
suggested that HGT events should not increase CL on real data. While reassuring, a
possible drawback is that if the contaminant sequence is an HGT, it has few chances
to be detected. This can be damaging since HGT frequently occurs in bacteria [15-
19]. Somewhat ironically, the inability of Physeter to differentiate between HGT and
genomic contamination indicates that LCA algorithms are likely to prove useful in this
case, even if too conservative due to their inclination for overdetection.

Conclusion

We conducted this study because no tools comparison, despite the availability of no
less than 18 programs, had been published to date, raising the question in the
community: “which tool should we use?” Our results have demonstrated that CL is
frequently overestimated, resulting in unwarranted removal of sometimes precious
genomes. Nevertheless, especially at the genus and species ranks, the odds of
underestimation are always significant. This is a matter of concern because the risk of
contamination by closely related taxa is higher when dealing with MAGs. We have also
demonstrated that the replaced and single contamination types suffer less from
underestimation compared to the redundant events. The results of this study are all
the more surprising asour simulations were rather simple. Furthermore, simulations
were conducted with only one contaminant genome, at low CL, while contamination
by more than one taxon, at high CL, regularly occurs in public repositories [10,5]. Our
conclusion is that, given the current algorithmic state of the field, which requires more
innovation, users should use a combination of tools to estimate CL, and one of these
tools should be Kraken2. Our contamination simulation framework, CRACQOT, is freely
available as a Nextflow workflow [20], sustained by a Singularity container [21], at
https://github.com/Lcornet/ GENERA/wiki/20.-CRACOT. It might be useful in future
projects, for example to estimate the accuracy of new tools underdevelopment.
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Online Methods

Contamination simulations (overview of CRACQOT)

Our genome contamination simulations were carried out with the Nextflow workflow
CRACQOT, freely available at hitps://github.com/Lcornet/GENERA/wiKi/20.-CRACOT.

705 high quality genomes belonging to class Clostridia and genus Lactobacillus were
selected as input for CRACOT. These genomes were selected based on the GUNC
[8] clade separation score (CSS), which measures the chimerism of genome contigs.
Furthermore, we imposed on these genomes to have no more than five contigs with
no ‘N’ within each contig. The contamination values of these genomes for the six tools
are available in Table S2. The median contamination was 0.45% for CheckM V1.2.1
[6], 0.02% for GUNC V1.0.5 [8], 0.87% for BUSCO V5.4.3 [7], 22,3% for Physeter
V0.213470 [5], 2,45% for Kraken2 V2.1.2 [9], 8% for CheckM2 V0.1.3 [11].

The first step of CRACOT, Figure 1, was to create random genome pairs, one genome
being considered hereafter as the main “expected” organism and the second as the
slave “contaminant” organism. The pairing, based on the NCBI Taxonomy [22,23]
provided by Bio-Must-Core V0212670 (https://metacpan.org/dist/Bio-MUST-Care),
associated with the genomes was made for one specific taxonomic rank, ranging from
phylum to species. When a rank is selected, the two genomes should belong to the
same taxon at this rank, but have a different taxonomy starting with the next rank. For
instance, the phylum rank (e.g., Firmicutes) means that the two genomes belong to
the same phylum but not to the same class (e.g., if one genome belongs to Bacilli, the
other genome belongs to Clostridia).

The plasmids of the selected genomes were removed after the pairing step, so as to
not interfere with the detection of contamination. Removal was performed with
PlasmidPicker (https://github.com/haradama/PlasmidPicker) with default settings.
Proteins werethen predicted with Prodigal V2.6.3 [24], used with default settings.
Finally, OrthoFinder V2.5.4 [25], with default settings, wasused for orthologous
inference.

The three types of contamination were simulated based on the common and single
protein orthogroups (OGs). Common proteins weredefined as proteins present in only
one copy for both the main and slave genome in the OG while single proteins were
singletons of the slave genome. Duplicated contamination events were fished from the
pool of common OGs, and the corresponding gene sequences of the slave genome
were added to the end of the last contig of the master genome (with a serie of five ‘N’
added to either side of the gene). Replaced contamination events were also fished
from the pool of common OGs but slave genes replaced the genuine genes within the
main genome. Single contamination events were fished from the pool of singletons of
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the slave organism, and the corresponding gene sequences were added to the end of
the last contig of the master genome, as above. The number of events of each type is
a user-specified option. At each simulation, 150 chimeric genomes were asked as
CRACOT output, but the real output number depends on the number of available
common and single protein OGs. The number of simulated genomes used in this study
are given in Table S3. Chimeric levels of the simulations are indicated in Table S4.

HGT can be simulated for each of the three sequence types. The mutation rate was
computed with HgtSIM [26], with the rate option set at 1-0-1-1 so that a mutation rate
in DNA sequences corresponds to the same simulation rate in the proteins [26].

CRACOQOT was used to simulate contamination events, not only the redundant,
replaced or single type separately, but also as a combination of the three types. Two
HGT simulations for a combination of the three contamination types, with a mutation
rate of 10% and 25%, were also generated.

Genomic contamination estimation

Genomic contaminants were estimated using the Nextflow workflow GENcontams
(https://github.com/Lcornet/ GENERA/wiki/09.-Genome-quality-assessment) from the
GENERA project [27]. CheckM V1.2.1 [6] was used with the lineage_wf option and the
provided database. GUNC V1.0.5 [8] was used with default settings and the
Progenomes 2.1 database [28]. BUSCO V5.4.3 [7] was used in auto-lineage mode
and the provided database. BUSCQO’s number of duplicated markers was used as a
proxy for the contamination level. Physeter V0.213470 was used with the auto-detect
option and the database provided in Lupo et al. (2021) [5]. Kraken 2 V2.1.2 [9] was
used with default settings and the database ‘PlusFP’ downloaded from
https://benlangmead.github.io/aws-indexes/k2. Kraken2 levels of contamination were
computed with the Physeter parser with the auto-detect option set to ‘count_first’. The
list of taxa used by the Physeter parser was automatically produced by the create-
labeler.pl script using the list of genera found in the nodes.dmp file from the local mirror
of NCBI Taxonomy. CheckM2 V0.1.3 [11] was used with default settings and the
provided database.

Correlation and violin plot creation

Spearman correlations between the CL estimates of the tools and the simulated levels
of contaminants, as created by CRACOT, were computed with R [29]. Violin plots
were created with ggplot [30]. The R code for the creation of these plots is available
at https://github.com/Lcornet/ GENERA/wiki/21.-Supplemental-Scripts#4-make-
cracot-tablepy-and-cracot-rscript.
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Figures

Figure 1: Flowchart of CRACOT.

CRACQT is a Nextflow workflow, supported by a Singularity container. It is a six step
program. The first step is the genome selection according to a user-specified list. The
second step is the association of genomes, by pairs of the same taxonomic group.
Step 3 to 5 corresponds to the removal of plasmid, protein prediction and orthology
inference. Finally, genome contamination simulations are based on the information
produced during the orthology inference, the common (to both the expected and
contaminant organisms) and single (of only the contaminant organism). Common
genes are used for redundant and replaced contamination events while singleton are
used for single contamination events. Optionally, a mutation rate can be enabled for
each of these three basic types to simulate horizontal gene transfer.

Figure 2: Contamination estimation, at six taxonomic ranks, of the combined
types of contamination.

Simulations were performed with a combination of the three contamination types
(redundant, replaced, single). The median values of the contamination level (%CL) of
these simulations are indicated by the blue line, while these CL estimated by the six
tools are summarized by the violin plots. Spearman correlation values between the
estimate of each tool and the simulated level of contamination are indicated in red.
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