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Abstract 

 

Obesity is associated with a high risk of incidence of, and mortality for, 

postmenopausal breast cancer. Despite this well-established link, the molecular and 

mechanistic basis of the obesity and breast cancer association still remains unclear. 

In obesity research, genetic variation due to copy number differences has become 

increasingly popular. The salivary amylase gene, AMY1, is well-known for its 

extensive copy number variation (CNV) in the human genome and has previously 

been correlated with a genetic predisposition toward obesity; however, research 

surrounding this association is controversial. Despite an established relationship 

between obesity and breast cancer risk, the recently reported genetic association 

between AMY1 CNV and obesity has not yet been examined in normal and obese 

breast cancer patients. Furthermore, gene expression changes in breast tumours from 

obese women remain poorly characterised. We hypothesise that obese breast cancer 

patients are associated with (1) low AMY1 copy number and (2) differential 

expression of candidate genes in the breast tumour. 

This study included 55 post-menopausal breast cancer patients from The Cancer 

Society Tissue Bank, with a BMI (body mass index)> 30 (obese; n=28) or BMI < 25 

(healthy; n=27). Quantitative PCR (qPCR) assessment of germline AMY1 copy 

number status from blood showed that obese breast cancer patients have a lower 

average copy number of AMY1 compared to normal weight patients. Examining 

breast tumour expression profiles of obese and non-obese patients from two 

published studies, identified four candidate genes (GRIA2, DUSP4, NR2F1, and 

ADH1B) shared between both studies. Analysis of gene expression data from The 

Cancer Genome Atlas (TCGA) indicated that these four genes are differentially 

expressed within clinically relevant breast tumour subtypes characterised by 

oestrogen receptor, progesterone receptor and HER2 status. qPCR analysis of each 

candidate gene within our study cohort showed that the average expression of 

GRIA2, DUSP4, NR2F1 and ADH1B was lower in obese compared to healthy breast 

tumours, but these results were not statistically significant. My study indicated that 
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BMI may be associated with lower germline copy number of AMY1 in post-

menopausal breast cancer patients; however, further work with a larger cohort is 

needed to establish if GRIA2, DUSP4, NR2F1 and ADH1B are associated with 

obesity related breast cancer.  
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Chapter 1 

1 Introduction  

The prevalence of obesity is increasing worldwide at an alarming rate(1). Increased 

weight gain and obesity are correlated with a number of adverse health effects 

including increased risk of developing a number of different cancers(2). Obesity is 

associated with an increased risk and reduced survival rate of breast cancer in women 

worldwide, particularly in post-menopausal women(3, 4). Despite the well-established 

association between obesity and increased risk of breast cancer, the precise nature in 

which obesity influences breast tumourigenesis still remains relatively unclear.  

Differences in the sequences of an individual’s genome is what contributes to our 

overall uniqueness. Any genomic variations such as large duplications or deletions (ie. 

copy number variation (CNV)) can influence our traits, and cause susceptibility to 

diseases such as obesity. Copy number variants are large structural and highly heritable 

germline variations extensive throughout the human genome (Figure 1.1), yet, non-

recurrent de novo alterations can also cause the formation of unique germline CNV(5). 

Research has confirmed that AMY1 CNV, an extensively studied copy number variant 

in the human genome(6), has evolved as a response to strong positive selection imposed 

by starch intake in the human diet(7). The AMY1 gene is responsible for producing the 

salivary amylase protein active at the start of the human digestion process, breaking 

down large starch molecules into maltose as preparation for further catalysis in the 

stomach. The copy number of AMY1 has recently been linked to a predisposition to 

obesity in which fewer copies of AMY1 is a risk factor for the accumulation of excess 

fat mass(8). Despite the already well supported link between obesity and breast cancer 

risk, the newly established genetic association between AMY1 CNV and increased 

weight gain has not yet been examined in normal and obese breast cancer patients.  

Therefore, this review will examine the potential impact that AMY1 CNV may have on 

risk of breast cancer incidence, by initially providing an overview of obesity genetics, 

followed by examination of the obesity-breast cancer relationship and lastly assessing 

the impact of AMY1 CNV on a predisposition to obesity.  
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Figure 1.1 Gene showing copy number variation. Copy number variation can be in the form of 

duplications and/or deletions seen here in the whole and partial gene loss and gain on the paternal 

allele.  

 

1.1 Obesity 

1.1.1 Obesity Epidemic  

Obesity is a medical condition defined as the accumulation of excess fat mass to a point 

of significant increase in adverse health risks associated with the gain in weight(9). The 

rising prevalence of obesity worldwide has given rise to the current term “obesity 

epidemic”(2, 10, 11). In 2012 the World Health Organisation (WHO) calculated the 

prevalence of obesity worldwide to be 500 million, and by 2015 the number of cases 

was predicted to have increased to 700 million(9). Obesity related literature presents 

confirmation that the incidence of obesity is increasing worldwide in both developing 

and developed countries and for people of all ages(1, 10, 12). Generally the obesity 

epidemic is credited to an imbalance between energy consumption, energy expenditure 

and the consequent actions of the body’s weight regulation systems producing a 
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consistent positive energy balance, in that dietary intake outweighs the energy output 

through exercise and metabolic activities(2, 10, 13).  

Clinically a BMI (body mass index: weight in kilograms divided by the square of 

height in metres) above 30, categorises an individual obese(9). BMI is a universal and 

efficient tool for measuring obesity(14).  

 

1.1.2 Obesity and Predictive Ability of Genetics  

Generally the obesity epidemic is credited largely to environmental influences; 

however, people subjected to comparable environments throughout their life can still 

have varied degrees of predisposition to obesity, and this is attributable to individuals 

having differential genetic makeup(15). It is difficult to prove the precise underlying 

genetic cause of obesity, largely as a result of the complex mechanisms participating in 

the biological management of adiposity. Therefore, further research is required to 

establish the clinical significance of different genetic loci found to be associated with 

obesity. Following is a review of a number of studies that have attempted to uncover 

the genetic components affecting the incidence of obesity; split into monogenic and 

polygenic based analyses.  

 

1.1.2.1 Monogenic Obesity 

In some cases the genetic component of obesity has been established as simply a result 

of rare single-gene mutations producing large effect, this is collectively defined as 

‘monogenic’ obesity. Mouse studies in the mid-1990s revealed the first single gene 

mutation responsible for increased susceptibility to obesity and this was mapped to the 

human homologue LEP (leptin) gene(16). Leptin functions as a cell signalling hormone 

in the regulation of food intake, body weight and appetite; where absence or resistance 

can lead to uncontrolled eating and weight gain. Since then research analysing single 

gene mutations have revealed numerous genes now known to play a role in Mendelian 

forms of obesity (Table 1.1). These single gene mutations have overtime lent insight 

into the genetic nature of this disease, along with uncovering a number of different 

biological pathways incorporating these genes that are now known to be implicated 
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during incidence of obesity. MC4R (Melanocortin 4 Receptor) is the most common 

single-gene form of obesity that is currently known, explaining about 5% of the severe 

early onset obesity cases(17). MC4R codes for a membrane bound receptor protein that is 

mediated by G proteins and is reported to play an essential role in energy homeostasis 

and somatic growth(18). 

Research surrounding monogenic obesity has become predominantly concerned with its 

relative importance in the development of personalised medicine(15). For example, 

obese patients with LEP mutations can successfully overcome and reverse weight gain 

via leptin replacement(19, 20). However, many studies have challenged the relative 

importance of monogenic forms of obesity in terms of their involvement in the obesity 

epidemic(21, 22), and are perhaps justified as these single-gene variants, although they 

produce a significant effect in the obese phenotype, only account for a minute 

proportion (~5%) of all severe obesity cases(17). Moreover, medical advancements have 

been limited, and leptin deficiency is currently the only monogenic form of obesity 

with successful clinical treatments available(23).  
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Table 1.1 Summary of genes associated with monogenic forms of obesity. 

Gene Chr Mutation Type 
Obesity related 

characteristics 
Study 

LEP 7 

Homozygous reading frameshift, 

Missense mutations 

 

Severe, early 

onset obesity 
Montague, C.T et al (1997)(24)  

Echwald, S.M. et al. (1997)(25)  

Oksanen, L. et al. (1997)(26) 

LEPR 1 

Skipping of exon16 producing 

truncated protein 

 

Severe, early 

onset obesity Clement, K. et al. (1998)(27) 

POMC 2 

Frameshift loss of function 

mutation 

 

Severe, early 

onset obesity Krude, H. et al. (1998)(28) 

MC4R 18 
Nonsense and missense mutations 

 

Many obesity 

related traits Farooqi, I.S. et al. (2003)(29) 

BDNF 11 

Deletions inducing 

haploinsufficient 

loss of function 

Severe obesity Han, J.C et al. (2008)(30)  

NTRK2 9 

 

Missense variant 

 

Severe, early 

onset obesity Yeo, G.S. et al. (2004)(31) 

PC1 5 
Compound heterozygote mutation 

 

Severe, early 

onset obesity Jackson, R.S. et al. (1997)(32) 

SIM1 
1 and 

6 

Haploinsufficiency due to 

balanced 

translocation between 

chromosomes 

Severe, early 

onset obesity 
Holder, J.L. et al. (2000)(33) 

Chr: chromosome 
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1.1.2.2 Polygenic Obesity 

Polygenic obesity is the term used in research to describe the much more common but 

complex forms of obesity resulting from the interaction of a multitude of different 

single nucleotide polymorphisms (SNPs), along with an interaction with environmental 

components. Studies exploring the genetic foundation of common obesity have been 

largely unsuccessful, that is until technological advancements unearthed novel genomic 

approaches such as genome wide association studies (GWAS). GWAS locate common 

variants associated with common phenotypes such as obesity. Association studies have 

identified many common SNPs associated with obesity and body mass index (Table 

1.2). The FTO (fat mass and obesity associated) gene is known to contribute to the 

regulation of body size and fat accumulation, and even though its exact physiological 

function is not yet known, FTO dominates the genome wide association literature as the 

most common gene nearest obesity associated SNPs(34-36). Similarly, over a range of 

selected GWAS, FTO was the most frequently connected loci to the strongest 

predictive SNP relating to obesity (Table 1.2). Additionally various loci, such as 

MC4R, that have been previously linked with monogenic obesity, also connect to 

common variants (SNPs) associated with complex obesity(22, 37). It is important to note 

that although studies investigating obesity associated genes can be compared, such as in 

Table 2, they often vary in their definitions of obesity. For example one study(38) 

defined obesity by looking at the extremes (>3 SD) of the BMI normal distribution, 

whereas, another study(39) defined obesity by BMI class; BMI ≥ 30 kg/m2 for obesity 

class I, BMI ≥ 35 kg/m2 for obesity class II and BMI ≥ 40 kg/m2 for obesity class III.  

Although GWAS have been able to unearth many single nucleotide polymorphisms 

associated to increased adiposity, almost all of the single nucleotide base changes that 

have been associated with common obesity are not causal. Collectively these common 

variants have poor predictive power, only accounting for ~5% of the total heritability of 

BMI(21, 22, 40, 41). Thus, research is still aiming to explain the remainder of body masses 

missing heritability and answers will require use of further technological advancements, 

such as next generation sequencing, in order to examine rarer variants whilst 

maintaining high predictive power(42).  



7 

Table 1.2 Summary of the number and strongest associated SNPs with obesity or body mass index from different GWAS.*  

Abbreviations; BMI- Body mass index, Chr- Chromosome, GWAS-Genome wide association studies, SNPs- Single nucleotide polymorphisms  
a The number of associated SNPs with obesity or body mass index from different GWAS with a p-value threshold of p < 10-8 

b Strongest associated SNPs with obesity or body mass index from different GWAS with a p-value threshold of p < 10-8 

*GWAS selected in: A Catalog of Published Genome-Wide Association Studies; https://www.genome.gov/page.cfm?pageid=26525384#searchForm 

Study Disease/Trait 
Sample 

Size 

Number of 

associated SNPsa 

Strongest associated SNP 

(nearest gene ; Chr)b Odds Ratioc or Beta 

Wen et al. (2014)(43)  Body mass index 86,739 14 rs1558902 (FTO; 16) 0.03-0.08 per BMI unit increase 

Pei et al. (2013)(44)  Body mass index 20,913 2 rs6567160 (MC4R; 18) 0.08-0.09 per kg/m2 increase 

Graff et al. (2013)(45) Body mass index 13,627 6 rs9940128 (FTO; 16) 0.05-0.1  per BMI unit increase 

Monda et al. (2013)(46)  Body mass index 39,144 5 rs7708584 (GALNT10; 5) 0.02-0.07  per BMI unit increase 

Berndt et al. (2013)(39)  Body mass index 16,068 9 rs11075990 (FTO;16) 1.13-1.35c 

Berndt et al. (2013)(39)  Obesity 204,498 58 rs7185735 (FTO; 16)  1.04-1.45c 

Wheeler et al. (2013)(38)  Obesity (early onset, 

extreme) 
6,889 8 rs1421085 (FTO; 16)  1.22-1.67c  

Yang et al. (2012)(47) Body mass index 133,154 1 rs7202116 (FTO; 16)  0.04 per BMI unit increase 

Bradfield et al. (2012)(48) Obesity 13848 2 rs9568856 (OLFM4; 13) 1.14-1.22c 

Okada et al. (2012)(49)  Body mass index 26,620 7 rs12149832 (FTO; 16)  0.04-0.07 per BMI unit increase 

Wen et al. (2012)(50)  Body mass index 27,715 5 rs11671664 (GIPR; 19) 2.55-4.22% increase per BMI unit 

Jiao et al. (2011)(51) Obesity 327 2 rs988712 (BDNF; 11) 1.26-1.36c 

Wang et al. (2011)(52) Obesity 1,060 2 rs17817449 (FTO; 16)  NA 

Speliotes et al. (2010)(53)  Body mass index 123,865 31 rs1558902 (FTO; 16)  0.06-0.39  per kg/m2 increase 

Scherag et al. (2010)(54)  Obesity (early onset 

extreme) 
2,258 2 rs1558902 (FTO; 16)  1.22-1.37c 

Cotsapas et al. (2009)(55)  Obesity (extreme) 3,972 1 rs9941349 (MC4R; 18)  1.48c 

Meyre et al. (2009)(56)  Obesity 2,796 3 rs1421085 (FTO; 16)  1.12-1.39c 

Thorleifsson et al. (2008)(57) Body mass index 73,758 10 rs8050136 (FTO; 16)  3.63-8.04% standard deviation 

Willer et al. (2008)(58) Body mass index 32,387 6 rs9939609 (FTO; 16)  0.07-0.33  per kg/m2 increase 

Loos et al. (2008)(37)  Body mass index 16,876 1 rs17782313 (MC4R; 18) 0.05  per unit increase in log(BMI) 

Frayling et al. (2007)(36)  Body mass index 10,657 1 rs9939609 (FTO; 16)  0.36  per kg/m2 increase 

https://www.genome.gov/page.cfm?pageid=26525384#searchForm
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1.1.3 Obesity and Cancer Burden  

It is well-known that excess weight gain is linked to an increased risk of many health 

related diseases, particularly heart disease, type 2 diabetes, obstructive sleep apnea, 

osteoarthritis and certain types of cancer(2). Evidence suggests that a large proportion of 

all cancer related deaths in both sexes can be credited to patients carrying excess fat 

mass(59). There is evidence for heterogenic qualities of obesity such as the existence and 

difference between white and brown adipose tissue(14), heritage of adipocyte cells(60, 61), 

and topographical location(62). This heterogeneity has the potential to influence clinical 

outcome, particularly for obese cancer patients(14). Thus, it is important to measure and 

examine obesity as a multifactorial disease as well as analysing the specific 

characteristics of adiposity, when carrying out obesity related research.  

 

BMI is currently the best studied variable for the obesity and cancer relationship, most 

likely because BMI is a universal and well-established indicator of fat mass(59). 

Numerous studies have confirmed that greater BMI is positively correlated with an 

increase in cancer risk and cancer mortality, most notably in cancers of the kidney, 

endometrium, colorectal, pancreas, post-menopausal breast and oesophageal 

adenocarcinoma(63-67). Despite this well-studied and unequivocal BMI-cancer 

relationship, the multifactorial and heterogenic nature of both obesity and cancer means 

that these associations can only be assumed as correlative; the precise mechanisms 

acting during accumulation of excess fat mass causing an increased risk of cancer are 

less well understood(67, 68).  

 

There are four distinct mechanisms that have emerged and currently dominate the 

literature in attempting to explain the pathophysiological epidemiology of obesity-

related cancers. The four mechanisms are generally involved with both tumour 

initiation and tumour progression and include insulin resistance and hyperinsulinemia; 

adipokines expression such as leptin and adiponectin affecting cell growth, migration 

and invasion; obesity related inflammatory markers; and oestrogen producing 

proliferative effects(69-72). Obesity is known to be associated with extended periods of 

increased circulating levels of insulin in the blood (reflecting insulin resistance), a 

condition known as hyperinsulinemia. Hyperinsulinemia, through the blocking of 

IGFBP (insulin-like growth factor-binding protein) production, triggers an increased 

http://en.wikipedia.org/wiki/Cardiovascular_diseases
http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2
http://en.wikipedia.org/wiki/Obstructive_sleep_apnea
http://en.wikipedia.org/wiki/Osteoarthritis
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level of bio-available IGF-I (insulin-like growth factor 1), a potent mitogen and cell 

survival agent, thus acting to enhance and promote tumour initiation and tumour 

growth(73). Interestingly, conditions that can promote insulin resistance include 

inflammation and cytokine secretion, which are themselves mechanisms that can alter 

the tumour microenvironment to promote tumour cell proliferation and angiogenesis(74). 

Increased levels of obesity associated adipose tissue stimulates elevated levels of FFA, 

(free fatty acids) increasing the secretion of bioavailable adipokines (leptin), 

inflammatory cytokines and additional factors such as VEGF (vascular endothelial 

growth factor). Increased leptin levels are commonly observed in the serum of obese 

individuals, and this encourages further inflammatory responses in the adipose tissue, 

forming a proliferative positive feed-back loop(75). Furthermore, leptin is known to 

contribute to the regulation of aromatase and oestrogen by adipose tissues(76), in which 

enhanced oestrogen signalling is linked to an increased cancer risk particularly in 

breast, endometrial and ovarian cancers(77). However, the overall diversity in cancer 

development and progression means it is unlikely that one system is individually acting 

alone in obesity-related cancers(69), but it is important to understand these systems 

linking obesity and cancer, in order to improve procedures to prevent and treat obesity 

associated cancer. 

 

 

1.2 Obesity and Breast Cancer  

1.2.1 Susceptibility and Mortality Rates 

It is well known that obesity can influence susceptibility and survival outcome in 

numerous human cancer types, including breast cancer. In 2011 breast cancer was rated 

the most frequent and prominent source of cancer death in women worldwide(78, 79). 

Research has recognised that carrying excess fat mass increases susceptibility to breast 

cancer primarily in post-menopausal women(4, 80, 81). Epidemiological evidence suggests 

that excess body mass can increase breast cancer risk in post-menopausal women by 

approximately 40%(63). Importantly, excess BMI increases post-menopausal breast 

cancer risk in a non-linear fashion(82).  
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Generally increasing BMI is reported to act as a protective element for breast cancer 

risk in women pre-menopause(83, 84). Although opposing evidence has been presented(4), 

a recent meta-analysis confirmed a clear inverse association between obesity and pre-

menopausal breast cancer risk(85). This study suggests that this link is heavily dependent 

on ethnic variation but suggests that body fat distribution may also play a role. The 

mechanisms responsible for the inversed relationship in pre-menopausal women are 

unclear. Metabolic and hormonal changes that are associated with abdominal adiposity 

have been linked with the risk of pre-menopausal breast cancer and are speculated to be 

causing this reversed relationship(86).  

Obesity can also influence survival outcome in diagnosed breast cancer patients. A 

meta-analysis incorporating epidemiologic evidence from 43 publications assessed the 

relationship between breast cancer outcome and obesity at diagnosis, and determined 

that obese patients had a 66% reduced survival rate compared to non-obese 

counterparts(3). Literature provides a somewhat diverse report on overall survival of 

obese patients compared to breast cancer specific survival rates of obese patients, where 

some evidence suggests that co-morbidity due to obesity in breast cancer patients 

causes more unfavourable overall survival rates(87, 88). However, the above meta-

analysis reported the consequence of obesity to be alike in both overall survival and 

breast cancer specific survival(3).  

Four common hypotheses that may explain why obesity leads to reduced survival for 

breast cancer patients have been proposed. These include obese patients presenting with 

more advanced stages at time of diagnosis(89), having a higher risk of secondary breast 

cancer diagnosis(90), having naturally more aggressive tumours, and more likely getting 

lower doses of chemotherapy compared to non-obese equivalents. Research provides 

extensive evidence for the latter two hypotheses(91-94).  

 

1.2.2 Prognosis and Pathogenesis 

Obesity is associated with hormonal alterations that may be acting to promote breast 

tumourigenesis. There is strong evidence that increased concentrations of endogenous 

oestrogen can intensify the chances of developing post-menopausal breast cancer(95, 96). 

Post-menopause, high levels of aromatase provided by adipose cells, converts 

androgens to oestrogens, therefore increasing the amount of serum oestrogen in obese 
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post-menopausal women, particularly in local breast tissue, compared to normal or 

underweight post-menopausal women(97, 98).  

Research suggests the influence of obesity and weight gain on breast cancer 

susceptibility, and prognosis may fluctuate depending not only on menopausal status, 

mentioned earlier, but also oestrogen and progesterone receptor (ER and PR) 

expression(99-101). Typically ER+PR+ breast cancer tumours are associated with an 

obesity mediated increased likelihood of recurrence and poorer prognosis in post-

menopausal women(102, 103). Conversely, obesity is reported to be associated with an 

absence of hormone dependence and reduced breast cancer risk in pre-menopausal 

women; however, excess fat mass in younger women often results in worse prognosis 

at the time of diagnosis(104, 105).  

 

Obesity is significantly correlated with many traditional prognostic characteristics of 

breast carcinomas. Research confirms the predictive ability of increased BMI for 

presentation of larger tumour sizes, increased involvement of lymph nodes and greater 

chance of metastasis in post-menopausal oestrogen dependent breast tumours(102, 106).  

 

Obesity exerts primary and secondary level effects on breast tumour pathogenesis. 

Weight gain in post-menopausal women parallels an increase in adipose tissue, in 

which adipose tissue is known to yield primary level effects in obesity-mediated breast 

tumourigenesis via secretion of inflammatory cytokines(102) and adipokines (leptin and 

adiponectin)(107, 108), which are associated with increased incidence of breast cancer 

pathogenesis. Furthermore, an increase in weight gain in post-menopausal women is 

indirectly associated with insulin resistance, demonstrated to exert secondary level 

consequences in breast tumourigenesis such as hyperinsulinemia and elevated 

bioavailability of oestrogen(109, 110). Despite the wealth of literature dedicated to this 

area, the precise way in which obesity influences breast tumourigenesis still remains 

relatively unclear. Identification of possible mechanisms that are causing such a direct 

link have become centred on a dominant group of processes, including oestrogen 

signalling, hyperinsulinemia, adipokine expression (adiponectin, leptin) and 

inflammation(72, 110, 111). General conclusions propose the relationship to be almost 

certainly occurring as a result of a complex interaction between these different 

mechanisms(109, 112).  
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1.2.3 Obese Breast Tumour Transcriptomic Signature  

Genetic profiling is an informative tool enabling the genetic signatures of a number 

and/or different populations of cells to be identified and compared to each other. 

Analysis of tumour genomic DNA has classified a large cohort of breast tumours into 

four main breast tumour subtypes including, luminal A; luminal B; basal-like; and 

HER2 enriched(113, 114). Currently, the expression of clinical biomarkers (ER, PR and 

HER2 expression) within a patients breast tumour, are utilised by pathologists to 

categorise which of these four established intrinsic subtypes of breast cancer the tumour 

represents. Most luminal A and B tumours are ER+ and/or PR+, HER2-enriched 

tumours are largely HER2+, and basal-like (triple negative) cancers are generally 

negative for all three clinical biomarkers(113, 114). Based on a tumours ER, PR and HER2 

status, breast cancer patients are offered clinical treatments intended to be 

characteristically effective for their individual tumour(114). However, a number of ER+, 

PR+ and HER2+ tumours are still resistant to hormone blocking and anti-HER2+ 

therapies, which are current treatment strategies for targeting the growth of hormone 

dependent tumours(115). The causal mechanisms responsible for this resistance are still 

unclear. Equally so, for tumours with non-dependence on all hormone receptors, giving 

it a basal-like (triple negative) phenotype, means, that not only is the tumour more 

aggressive, it cannot be treated effectively with either of the well-established endocrine 

and anti-HER2 clinical therapies. Consequently, triple negative tumour treatment relies 

predominantly on specifically designed chemotherapy regimens. Previous large scale 

studies have sought to identify novel co-expressing genes associated with ER, PR and 

HER2 breast tumour biomarkers. They suggest that revealing such genes may 

ultimately aid an explanation for the appearance of treatment resistance and/or elucidate 

novel therapeutic targets/treatments, which is particularly important in the case of 

aggressive basal-like tumours(116, 117).  

Although, transcriptomic profiling of breast tumours has recognised these genomic 

patterns connected with clinically important pathological features (113, 114), little research 

has been carried out surrounding the genetic profiles of breast tumour genes in patients 

with differing BMI status, in fact only two studies have developed transcriptomic 

profiles for breast tumours from obese patients(118, 119).  
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The first, Creighton et al., compared breast tumour signatures (n= 103) from normal 

and overweight patients collectively to obese tumour transcript patterns, from which 

they derived 662 genes (p < 0.01) that were being differentially expressed in obese 

versus non-obese tumours(118). Of those genes differentially expressed in obese 

tumours, a high proportion (602 genes) were downregulated in obese tumours and 

linked with nucleus and transcription regulation systems. Similarly, Fuentes-Mattei et 

al. generated comparable transcriptomic data for 137 breast tumours, in which they 

identified 112 significantly differentially expressed genes, associated with 59 biological 

alterations, in tumours from obese oestrogen positive breast cancer patients(119). 

Fuentes-Mattei et al. verified genes involved in the mechanistic pathways associated 

with adipokines as well as oestrogen, insulin and IGF-1 signalling in obesity-enhanced 

oestrogen dependent breast cancer development(119).  

Interestingly, unpublished analysis of data derived from these studies highlights both 

GRIA2 (glutamate receptor, ionotropic, AMPA 2) and DUSP4 (dual specificity 

phosphatase 4) as potentially influential genomic locations in the obesity-breast cancer 

relationship, as both are significantly downregulated in obese patient tumours. GRIA2 

codes for one of four (GRIA1-4) glutamate receptor subunits that join to form a ligand-

activated cation channel in the mammalian brain. The DUSP4 gene product is 

expressed in a variety of different tissues where it is localised to the nucleus and 

functions by inactivating ERK1, ERK2 and JNK via phosphorylation.  

Further analysis comparing transcriptomic signatures generated in these two studies 

will hopefully confirm an overlap between the genetic profiles, and inquiry into this 

overlap may introduce molecular links between obesity and breast cancer and therefore 

informative development of potential prevention and/or treatment targets. 

 

 

1.3 Obesity and AMY1 Copy Number Variation 

1.3.1 Copy Number Variation  

Differences in the DNA sequence of our genome contribute to our overall uniqueness, 

where no two people in the world are genetically identical, not even monozygotic 
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twins(120). There are different forms of variation that appear in the human genome, 

ranging between gross structural alterations to single nucleotide polymorphisms 

(SNPs). Overall, SNPs are extremely common in the human genome but only account 

for a small proportion of the diversity currently acknowledged in human disease(121). In 

contrast, structural variation such as copy number variants, inversions, insertions, 

deletions and duplications, that affect more than just a single nucleotide base, explain a 

much greater proportion of human genetic diversity in comparison to single nucleotide 

changes(122, 123).  

Copy number variation (CNV) is a form of genetic variation present in the human 

genome. A copy number variant is a large structural duplication or deletion in which 

the consequence for the cell is an abnormal gene dosage of one or multiple genes. Copy 

number variants can range anywhere between 1000 nucleotide bases to numerous 

megabases in length. Duplication refers to extra copy/copies of a region and deletion 

refers to fewer than the normal number of copies (Figure 1.1). Research surrounding 

genomic variants has identified and catalogued greater than 100,000 copy number 

variants now regarded as a major source of genetic variation. Research indicates that 

CNV accounts for a significant percentage, approximately 12 %, of the variation 

currently recognised in the human genome(124). The genome is susceptible to de novo 

copy number mutations during human development, but CNV can also be inherited(5). 

CNV has potential clinical relevance in a number of diseases(125), due to the ability of 

copy number variants to influence our phenotypic traits. An example of a copy number 

variant in the human genome influencing susceptibility to common obesity is AMY1(8).  

 

1.3.1.1 Obesity and Copy Number Variants 

Copy number variants are becoming increasingly popular in obesity research. Since 

SNPs classified by GWAS have only been able to partially account for the heritability 

of common obesity(15, 21, 22), there has been a shift toward more predictive power, and 

thus the motivation to assess the role of copy number variants in complex disease, 

including common obesity(121). A large proportion of CNV studies interrogating obesity 

have discovered large rare structural variants linked to obesity(126-128). Except for the 

well-studied 539 kb deletion at 16p11.2, replication of CNV analysis across different 

human populations is currently lacking in the literature. Based on this lack of 
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replication reports discussing correlations between obesity and copy number variants in 

the human genome are currently not as globally significant as well researched SNPs 

linked with common obesity(126, 128). Research has also reported common biallelic copy 

number variants to be related to measures of obesity(129, 130), though common copy 

number variants are highly associated through linkage disequilibrium with SNPs. 

Polymorphisms yield small effect and restricted predictive power, thus the ability of 

common copy number variants in the genome will probably share a similar fate when it 

comes to contributing to the missing obesity heritability(131). Not surprisingly, some 

copy number variants that have been identified to associate with the obesity phenotype 

are at loci also containing common polymorphisms that have been previously linked 

with BMI(57, 127). Overall there is emphasis on the need for future research on complex 

multi-allelic copy number variants which are not as detectable in SNP-based GWAS 

and therefore may play an important role in understanding more about heritability of 

BMI and obesity(22, 132).  

 

1.3.2 AMY1 

1.3.2.1 Properties of Salivary Amylase  

Numerous amylase genes cluster in the human genome on chromosome 1p21, AMY1A, 

AMY1B and AMY1C expressing in saliva and AMY2A and AMY2B in the pancreas. A 

large proportion of saliva proteins are produced by the salivary glands, in which 

salivary amylase is the most abundant of salivary proteins(133). Salivary α-amylase is a 

monomeric protein secreted into saliva that begins the digestion of ingested starch 

molecules in the mouth and oral tract, by catalysing the hydrolysis of 1,4-alpha-

glucoside bonds located throughout oligosaccharide and polysaccharide molecules(134). 

Saliva amylase is the product of AMY1, well-known for its extensive copy number 

variation (CNV) in the human genome, ranging anywhere between 2 and 15 diploid 

copies per individual(6, 7).  

The relative importance of salivary amylase in the digestion of large starchy molecules 

may have initially been underestimated, particularly when compared to pancreatic 

amylase enzymes. Studies have shown that salivary amylase not only has the ability to 

very rapidly modify the molecular structure of complex carbohydrates in the mouth and 

oral tract (134), but that salivary amylase exists and functions throughout the stomach 
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(135). Moreover, once hydrolysis has begun, the somewhat metabolised starch acts to 

protect salivary amylase from stomach acid(136). When collated these findings imply a 

significant contribution of salivary amylase to total amylase concentrations throughout 

the digestive system.  

 

1.3.2.2 Evolution of AMY1 CNV 

Variation in AMY1 copy number at chromosome 1p21 is a stable and heritable genomic 

acquisition that arose during human evolution. Over time the human diet has become 

increasingly dependent on carbohydrate and starchy based foods as our agricultural 

industries have developed. Breakdown of these nutrients begins at the very start of the 

human digestion process where salivary amylase cleaves apart any large starchy 

molecules in preparation for further catalysis in the stomach(134). Studies on salivary 

amylase have established and verified the functional, positive correlation between 

AMY1 copy number and quantity of amylase protein found in saliva, thus influencing 

an increased rate of amylase enhanced starch breakdown(7, 137). Moreover, research has 

confirmed that people coming from populations historically exposed to high starch diets 

have evolved, on average, more copies of AMY1 compared to populations accustomed 

to reduced levels of starch intake(7). Nutritional pressure exerted by high starch diets 

over time represents a strong positive selection on AMY1 and subsequent salivary 

amylase production, causing the independent duplication of copy number in different 

populations around the world, thereby facilitating an increase in amylase induced starch 

metabolism(7, 138). These findings indicate the critical role of salivary amylase in the 

digestion of large starchy molecules regularly consumed in the human diet.  

 

1.3.2.3 AMY1 and Obesity 

AMY1 CNV is linked with a predisposition to obesity. A recent study by Falchi et al.(8) 

analysed gene expression data from adipose cells of 149 Swedish families with siblings 

that differed significantly in BMI using quantitative polymerase chain reaction (qPCR), 

and examined physiologically important copy number variants based on their ability to 

impact dosage of gene products; the study identified a single CNV region incorporating 

the amylase gene(8). After replicating their findings in a total of just over 6,000 subjects, 

the researchers were able to conclude a dosage dependent affect associated with AMY1 
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CNV and a predisposition to obesity (Figure 1.2)(8). The study argued that variation in 

AMY1 copy number may explain somewhere between 2.5% and 20% of the total 

heritability associated with obesity(8), more than previously acknowledged by 

Mendelian variants and hundreds of common polymorphisms.  

Falchi et al. findings(8) prompted Maria et al. in Mexico, where childhood obesity rates 

are of great concern, to assess the role of AMY1 dosage in these children. Six hundred 

children from all around Mexico were sampled, with a ratio of 1:1, obese and normal 

weight according to BMI. AMY1 copy number was assessed using digital polymerase 

chain reaction (digital PCR), and analogous to Falchi et al., researchers concluded there 

was a notable dosage effect of AMY1; subjects with greater than 10 copies of AMY1 

were all normal weight according to BMI scoring(139).  Similarly, researchers in Finland 

have recently demonstrated that AMY1 CNVs, specifically lower copy number, are 

associated with early-onset childhood obesity; however this association was only 

evident in young females(140).  

 

 

Figure 1.2 Low dosage of AMY1 has been credited as a significant risk factor toward accumulation of 

excess fat mass in people of European origin. 



18 

Despite the growing support in the literature for the inverse correlation between AMY1 

copy number and obesity, there is an undeniable discordance between what Falchi et 

al.(8) initially reported and what population based GWAS have revealed about the 

genetic contributions of common obesity. The amylase locus is structurally complex, 

making CNV not only especially difficult to calculate but challenging to derive 

connections with obesity susceptibility(141), questioning perhaps the choice of technique 

used in AMY1 copy number derivation. A recently published study looking at AMY1 

copy number in a large multi-ethnic cohort, reported no association between AMY1 

copy number and BMI, and suggested that the disagreement is attributable to their use 

of higher resolution techniques, being digital PCR, for determining AMY1 copy 

number(142). Table 1.3 represents all of the current reports surrounding obesity and 

AMY1 CNV, and the cohorts and techniques used to determine their findings.  

 

 

AMY1 Copy Number Variation and Obesity 

 Inverse Correlation No Correlation 

Quantitative 

PCR 

Falchi et al. 2014 (n=6,200) 
 

Digital PCR Mejia-Benitez et al. 2014; (n=597) 

Viljakainen et al. 2015 (n=132) 

Usher et al. 2015 (n=3,500) 

 

 

1.3.3 Summary 

There is clearly a need for research examining complex multi-allelic copy number 

variants to understand more about the heritability of obesity.  AMY1 represents the type 

of CNV that can fill this gap. The recently reported association between AMY1 CNV 

Table 1.3 Summary of the literature, to date, that has reported on AMY1 copy number variation 

and its association with obesity, using either quantitative PCR or digital PCR to determine the 

status of the correlation. The study’s authors, year of publication and the number of patient 

samples investigated are represented within each of the categories.  



19 

and a predisposition to obesity potentially explains some of the fairly large amount of 

missing heritability of human obesity.  

Falchi et al. and Maria et al. are the first two studies of their kind, establishing a genetic 

link between digestion of starchy foods and predisposition to obesity(8, 139). 

Furthermore, Falchi et al. reported a greater association between BMI and AMY1 copy 

number, than between BMI and FTO SNPs, contradicting the currently dominant 

literature valuing FTO as the strongest associated loci with susceptibility to obesity in 

humans (Table 1.2). Interestingly, further investigation of the extensive genome wide 

meta-analysis carried out by Speliotes et al., examining SNPs associated with measures 

of obesity, revealed a significant interruption of SNP reportage across the region 

incorporating AMY1(53).  Therefore, it is possible that increased structural variation such 

as large duplications or deletions, occurring in the amylase cluster, may obstruct the 

ability of GWAS locating SNPs in such genomic regions.  

All of the above is evidence that CNV provides a relatively novel and largely 

unexplored component of the human genome. Further investigation of copy number 

variants, particularly those including AMY1, may answer some of the literature’s 

pending questions, such as the missing obesity heritability, and the adverse health risks 

associated with weight gain, for example, obesity linked incidence and mortality of 

breast cancer.  

 

 

1.4 Research Hypotheses  

The prevalence of obesity is increasing at an alarming rate worldwide(1). Obesity is 

recognised for its involvement in amplifying risk of adverse health effects, with 

particular concern focused on the increase in obesity associated breast cancer incidence 

and mortality worldwide(3, 4). Regardless of past and current research supporting the 

positive correlation between obesity and breast cancer risk, the molecular basis and 

precise mechanistic properties of the association between obesity and increased breast 

cancer risk and development still remain unclear.  
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In the same way that past explorations have used genomic techniques to identify breast 

tumour subtypes, which can be treated with certain therapies for the most effective 

clinical outcome(114), it could be postulated that similar research may be able to 

determine genetic signatures and subsequent clinical therapies unique to obese breast 

tumours. It is conceivable that an obesity associated tumour initiation mechanism is not 

evident, or is transpiring at a less frequent rate in tumours arising in healthy weight 

women. Tumour gene expression analysis, of obese compared to healthy breast 

tumours, could reveal genes responsible for this suspected obesity associated breast 

tumour initiation system. Previous genetic profile studies have identified genes that 

may be associated with breast tumour phenotype in obese women(118, 119). Although 

these intriguing findings suggest a potentially important relationship between genetic 

risk and molecular phenotype of breast tumours, this still requires further research with 

a well characterised cohort of breast cancer cases.  

Additionally, recent research has demonstrated a clear inverse association between 

germline DNA copy number of the AMY1 gene and the risk of obesity(8). Conflict in the 

literature proposes that this inverse correlation is variable across different study 

cohorts. Therefore, although the association between AMY1 copy number and obesity 

risk may be controversial(8, 142), the established genetic association between AMY1 copy 

number variation and increased weight gain has not yet been examined in normal and 

obese breast cancer patients, despite the already well supported link between obesity 

and breast cancer.  

Hypothesis: Based on the above it has been hypothesised for the current study that 

obese breast cancer patients are associated with (1) low germline AMY1 copy number 

and (2) differential expression of other candidate genes in their breast tumours. In order 

to test the first section of this hypothesis, research was focused on determining whether 

lower AMY1 copy number is inversely correlated with increased body mass index 

(BMI), in breast cancer patients. The second section of this hypothesis explored the 

molecular phenotype of breast tumours arising in women with differing BMI status, by 

investigating two research objectives. Initially, by selecting candidate gene markers for 

obesity associated breast cancer based on what is already known about the 

transcriptome of breast tumours arising in women with differing BMI status. Lastly, by 

analysing the gene expression profiles of these candidate gene markers in obese 

compared to healthy weight breast tumours.  
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For comparative purposes this project involved the recruitment of two cohorts of breast 

cancer patient samples; those considered healthy weight (BMI < 25) and those 

considered obese (BMI > 30) according to BMI scoring. Comparison between obese 

and healthy weight breast cancer patients was carried out on 55 blood and 40 

overlapping tumour samples provided by The Cancer Society Tissue Bank 

Christhcurch.  
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Chapter 2  

2 Materials and Methods  

2.1 Patient Samples and Tumour Specimens 

A total of 16 pre-menopausal and 39 post-menopausal patients with histologically 

diagnosed breast cancer tumours available from The Cancer Society Tissue Bank were 

used in this study(143). Sample selection was biased towards postmenopausal women 

(>55 years) and the patients recorded BMI at the time of sample collection. Twenty-

seven patients with a BMI greater than 30 and twenty-eight patients with a BMI less 

than 25 were chosen. Available clinicopathological data was also obtained for all 55 

samples, including age at onset; BMI; oestrogen and progesterone receptor status; 

ERBB2 (HER2) expression; histological type and grade; and ethnicity (Table 2.1). 

Samples were approximately evenly split within each of these clinicopathological 

features among the obese and healthy cohorts.  

The Cancer Society Tissue Bank only collects samples from which patients have given 

consent for banking and pertinent future research use. The University of Otago Ethics 

Committee approved the use of the banked samples and their available 

clinicopathological data (approval number H14/131).  

The samples collected from The Cancer Society Tissue Bank were in the form of 55 

patient FTA® blood cards (Whatman, Thermo Fisher Scientific, Albany, Auckland, 

New Zealand) and 40 overlapping fresh frozen tissue samples. The blood samples are 

taken from the consenting patient during pre-surgical blood collection and delivered 

along with notice of the patients’ timetabled day of surgery. The tissue bank curator 

snap freezes all tissue samples in liquid nitrogen (-196 °C) as quickly as possible after 

collection and then stores them in secure -80 °C freezers(143). 
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Table 2.1 Summary of the clinicopathological data for breast cancer patient samples used in this 

study. 

ER- Oestrogen Receptor; HER2- Human Epidermal Growth Factor Receptor 2; IDC- Invasive 

Ductal Carcinoma; PR- Progesterone Receptor 

  

  Patient Blood Samples (n)  Patient Breast Tumours (n) 

  BMI<25 BMI>30 Total  BMI<25 BMI>30 Total 

Obesity 27 28 55  18 22 40 

Menopause        

 Pre- 8 8 16  0 2 2 

 Post- 19 20 39  19 19 38 

Grade        

 1 2 1 3  2 1 3 

 2 9 7 16  6 4 10 

 3 16 20 36  11 16 27 

ER        

 Positive  20 20 40  13 15 28 

 Negative  6 7 13  6 5 11 

 Unknown 1 1 2  0 1 1 

PR        

 Positive  19 17 36  12 13 25 

 Negative  8 8 16  7 6 13 

 Unknown  0 3 3  0 2 2 

HER2        

 Positive  4 6 10  3 6 9 

 Negative  18 18 36  10 12 22 

 Unknown  6 3 9  6 3 9 

Histological Type        

 IDC 15 17 32  10 14 24 

 Other 12 11 23  9 7 16 

Ethnicity        

 NZ European  26 24 50  19 18 37 

 Maori  0 3 3  0 2 2 

 Other 1 1 2  0 1 1 
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2.2  Nucleic Acid Extraction  

2.2.1 DNA 

2.2.1.1 FTA® Extraction  

Blood was extracted from FTA® cards using QIAamp DNA mini kit (Qiagen, Venlo, 

Linburg, Netherlands). FTA®cards trap lysed blood cells and provide a mechanism for 

germline DNA preservation. Punches (0.3 mm) were taken from blood stained FTA® 

cards for all 55 breast cancer patient samples. ATL buffer (tissue lysis buffer used for 

the purification of nucleic acids) and proteinase K were added to the FTA® punches in a 

microcentrifuge tube and incubated at 56 °C with shaking at 1,400 rpm for 1.5 hours. 

After incubation the extracted DNA was purified using the spin column/collection tubes 

and wash buffers from the QIAamp DNA mini kit (Qiagen, Venlo, Linburg, 

Netherlands). Optimisation required using 4 x 3 mm FTA® punches, 420 μL of ATL 

buffer and 60 μL of proteinase K to get sufficient DNA in the final 50 µL volume 

sample. 

 

2.2.1.2 Quantification of extracted DNA  

DNA purity and yield, was quantified by measuring the A260/A280 absorbance ratio 

on the ND-8000 spectrophotometer (NanoDrop Technologies, Rockland, DE). Sample 

DNA at concentrations greater than 5 ng/µL were required, to ensure that after a 1:2 

dilution there was still sufficient DNA from each patient sample for quantitative PCR 

(qPCR).  

 

2.2.2 RNA Extraction and cDNA synthesis  

Breast cancer tumour samples stored frozen at -80 ºC were collected from The Cancer 

Society Tissue Bank for the 40 breast cancer patients described above, matching with 

the blood samples used for germline DNA extraction. Frozen tumour samples were 

treated with liquid nitrogen and homogenised by crushing into a powder using a mortar 

and pestle held on dry ice.  

 

The mRNA was then extracted from the frozen breast tumour powder using TRIzol 

Reagent® (Invitrogen Corporation, Carlsbad, California, USA) and chloroform (5:1) 
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and centrifuging for 15 minutes at 12,000rpm in 4 °C. The clear aqueous phase 

containing the RNA was collected, and the remaining DNA and protein phases were 

frozen at -80 °C. The aqueous RNA phase was purified using the RNA clean-up and 

concentration kit (Norgen Biotek Corporation, Thorold, Ontario, Canada; Cat# 23600). 

RNA yield was quantified using a Qubit™ RNA assay (Invitrogen Corporation, 

Carlsbad, California, USA).  

 

 

2.3 Protein Extraction and Purification  

The remaining DNA and protein phases frozen after RNA extraction for all 40 breast 

cancer tumours were treated with 300 µL of 100% ethanol and centrifuged at 2000 rcf 

for 5 minutes at 4 °C to pellet the DNA. The phenol-ethanol supernatant containing the 

tumour protein was collected and the remaining DNA pellet was frozen at -20 °C. The 

protein in the phenol-ethanol supernatant was collected and pelleted by centrifugation 

at 12,000 rcf for 10 minutes at 4 °C. The protein pellet was washed using 2000 µL of 

0.3 M guanidine hydrochloride in 95% ethanol multiple times before being resuspended 

in 200 µL of 1% sodium dodecyl sulphate (SDS) by sonication. Insoluble material was 

removed and remaining soluble protein supernatant was used for Western blotting. 

Required protein quantities for Western blotting were attained for 36 of the 40 tumour 

samples.  

 

 

2.4 Bioinformatics  

The bioinformatic analysis focused on two different studies with publically available 

datasets. Searching “breast cancer gene expression signature obesity” in PubMed 

specifies 10 papers, of which two provide usable breast tumour gene expression data 

for the purpose of this study; one by Creighton et al.(118)and the other by Fuentes-Mattei 

et al.(119). 
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NextBio (https://www.nextbio.com) was used to gather breast cancer data generated by 

Creighton et al.(118) by searching for studies exploring ‘obesity’ and ‘breast cancer’. A 

comparison of gene expression between ‘obese (BMI > 30)’ vs ‘healthy (BMI < 25)’ 

breast cancer patients according to BMI scoring was conducted. Creighton et al.(118) did 

not exclude the overweight group from their analysis; hence Nextbio was used to 

generate the ‘obese’ vs ‘healthy’ association. Only the top 100 of the most statistically 

differentially expressed genes from Creighton et al.(118) were selected for the current 

analysis.  

The supplementary material from the Fuentes-Mattei et al.(119) study reported changes 

in gene expression after comparing ER+ breast tumours from obese (BMI > 30) and 

non-obese (BMI < 30) women. BMI data was not reported by Fuentes Mattei et al. 

(2014) and therefore non-obese patients could not be split between healthy and 

overweight. Thus, the non-obese category used by Fuentes-Mattei et al.(119) was treated 

as comparable to ‘healthy + overweight’ used by Creighton et al.(118).  

Lastly, gene duplicates were removed for any genes that appeared more than once in a 

dataset due to multiple probe ID callings. 

 

 

2.5 Quantitative Polymerase Chain Reaction (qPCR)  

2.5.1 AMY1 Copy Number Assay 

2.5.1.1 Primer/Probes  

Three pre-designed different primer/probes were used for relative copy number analysis 

including, RNase P (ribonuclease P) and two different AMY1 target primer/probes with 

varying amplicon length (Invitrogen Corporation, Carlsbad, California , USA) (Table. 

2.2). These primer/probe assays were chosen because they were used successfully in a 

previous nature genetics paper that explored germline AMY1 copy number variation 

(CNV) in the human genome(8). RNase P was used as the reference assay which maps 

within the single exon RPPH1 gene, the Ribonuclease P RNA component H1. Both 

AMY1 primer/probes were used as a method of validation, both mapping the same exon 

boundaries of the AMY1 target sequence. 

https://www.nextbio.com/
https://www.google.co.nz/search?espv=2&biw=1440&bih=787&q=carlsbad+california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSrWVFixcmJyFKMkn9zH7fzvj79bOC8JAP2RSVthAAAA&sa=X&ei=u6yQVZ2kB4jr8gXe87KQBg&ved=0CIIBEJsTKAEwEQ
https://www.google.co.nz/search?espv=2&biw=1440&bih=787&q=united+states+of+america&stick=H4sIAAAAAAAAAGOovnz8BQMDgysHnxCXfq6-gUlVRUp8rhIniG2ZbF5uoKWVnWyln1-UnpiXWZVYkpmfh8KxykhNTCksTSwqSS0qli6eIpt2yHk_92amGXIz-NQu393_HABLwXLoYgAAAA&sa=X&ei=u6yQVZ2kB4jr8gXe87KQBg&ved=0CIQBEJsTKAMwEQ
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Table 2.2 Copy number assay primer/probes. 

Target Assay ID/Catalog Number Amplicon Length 

AMY1 Hs 07226361_cn 81 bp 

AMY1 Hs 07226362_cn 101 bp 

RNase P 4403328 87 bp 

 

 

 

2.5.1.2 Quantitative PCR 

Quantitative PCR was carried out using the Roche LightCycler® 480 II (Roche Applied 

Science, Indianapolis, IN, USA). The quantitative PCR protocol that was followed is 

the KAPA Probe Fast qPCR Kit Master Mix (2x) Universal for the 384 well plate. 

Assay optimisation indicated, due to AMY1 having potentially a 7 fold increase in 

primer targets compared to RNase P, that primer limiting allowed RNase P to reach 

plateau, confirming the use of 10x AMY1 primer/probe and 20x RNase P reference 

primer/probe reaction concentrations. Final reaction volumes included 1.5 µL of 

extracted target DNA, 1.5 µL of DEPC-treated water and 7 µL of the reaction Master 

Mix which included 5 µL of the 2x KAPA Probe Master Mix, 0.5 µL of 10x AMY1 

primer/probe (FAM™ dye–labelled)(Life Technologies, Carlsbad, CA, USA), 0.5 µL 

of 20x Ribonuclease P (RNase P) reference primer/probe (VIC® dye–labelled)(Life 

Technologies) and 1 μL of DEPC-treated water. Each PCR run had a ‘no template’ 

control (7 μL of Master Mix and 3 μL DEPC-treated water), HapMap samples 

NA18956 and NA18972 at 1 ng/μL with known copy number of 6 and 14, respectively, 

and a DNA sample of known AMY1 copy number acting as an internal calibrator across 

the different reactions. Each sample was run in triplicate for both AMY1 Hs07226361 

and Hs07226362 assay ID primer/probes.  

The PCR included an activation step at 95 °C for 10 minutes, followed by 40 cycles of 

denaturation (95 °C, 20 sec) and annealing (60 °C, 1 min) and finally cooling for 2 
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minutes at 37 °C. Fluorescence was measured once each cycle at 465-510 nm (FAM™ 

dye–labelled) and 533-580 nm (VIC® dye–labelled), after primer extension.  

Relative expression values were calculated by the LightCycler® Software (Roche). 

Relative quantification was calculated using the comparative Ct model following the 

arithmetic formula 2(-ΔCt)(144). ΔCt is the difference between the mean Ct values of the 

target gene and the assumed two copy number reference gene, RNase P. Mean Ct or the 

threshold cycle for each sample is inversely proportional to the amount of DNA 

present, and was calculated as the fractional cycle number averaged across the three 

replicates at which the fluorescence emitted exceeds the background threshold. The 

threshold for the detection of the sample during PCR was set above the background 

fluorescence and fell within the exponential phase of DNA amplification. Copy number 

of AMY1 for each sample was calculated using two HapMap samples, NA18956 and 

NA18972, with known copy number of 6 and 14, respectively, to which each sample 

was normalised.  

 

2.5.2 qPCR Analysis of Gene Expression Levels 

2.5.2.1 cDNA Synthesis 

Reverse transcription of the extracted mRNA from each breast tumour to get first-

strand cDNA was carried out immediately after extraction and purification, using 

Superscript® III First Strand Synthesis System for RT-PCR (First Strand Kit; 

Invitrogen, Carlsbad, California, USA). Each 20 μL reaction included 10 μL of 2x RT 

Reaction Mix (including, oligo[dt]20 [2.5 μM], random hexamers [2.5 ng/μL], 10 mM 

MgCl2 and dNTPs), 2 μL of RT Enzyme Mix (including, Superscript® III RT and 

RNaseOUTTM) and 8 μL of extracted mRNA. Reactions were mixed together, 

centrifuged and placed under reverse transcription conditions, including incubation for 

10 minutes at 25 °C, then 30 minutes at 50 °C and finally termination at 85 °C for 5 

minutes. 1 μL of E.coli RNase H was added to each reaction, followed by 20 minutes 

incubation at 37 °C. Each reverse transcription run included a ‘no template’ control. 

The samples were frozen at -20 °C until used for quantitative PCR. 
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2.5.2.2 Primer design 

Primers were designed for 5 genes including, GRIA2, DUSP4, NR2F1, ADH1B and 

EEF1A1 (Table 2.3). Primers were designed using Primer3 version 0.4.0. All gene 

sequences were taken from the U.S. National Centre for Biotechnology Information 

(NCBI). The primers were selected to span adjacent exons acknowledged as reliable 

matches for the gene of interest. The National Centre for Biotechnology Information 

(NCBI) Primer-BLAST tool was used to validate the specificity of the primer sets. 

Primers were synthesised by Integrated DNA Technologies (IDT) and suspended in 

DEPC-treated water to a final concentration of 50 μM and stored at -20 °C.  

 

 

Table 2.3 SYBR® primer sequences. 
 

 

2.5.2.3 Quantitative PCR 

Quantitative PCR was carried out using the Roche LightCycler® 480 II (Roche Applied 

Science, Indianapolis, IN, USA). For the purpose of this study the quantitative PCR 

protocol followed is the Platinum® SYBR® Green qPCR SuperMix-UDG for a 384 well 

plate. Each reaction 0.075 μL of target cDNA (reverse transcribed extracted mRNA), 

2.925 μL of DEPC-treated water and 7 μL of the reaction Master Mix which included 

Target Forward Primer Tm Reverse Primer Tm Amplicon 

Length 

GRIA2 TCAATGGGACA

AGTTTGCAT 

55.81 TTGCCATTTCTT

TTCAGCAG 

55.05 94 

DUSP4 CCTGGTTCATGG

AAGCCATA 

57.27 TAGGCCAGGCA

GATGGTG 

58.68 112 

NR2F1 GCCTCAAGAAGT

GCCTCAAA 

58.39 AGTGCGTACTG

GCCTGGAT 

60.99 94 

ADH1B GCTACTGACTGG

ACGCACCT 

61.88 CGCATCCAGTG

AAAACTTCTT 

57.10 112 

EEF1A1 AAAATGACCCA

CCAATGGAA 

55.39 CGTGTGGCAAT

CCAATACAG 

57.17 107 
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3.75μL of SYBR Green Master Mix, 0.375 μL of both forward and reverse primers at 5 

μM for the selected target and 2.5 μL of DEPC-treated water. Each PCR run contained 

both ‘no template’ controls (7 μL of reaction Master Mix and 3 μL DEPC-treated 

water) and reverse transcription negative controls (7 μL in reaction Master Mix and 3 

μL of first-strand cDNA negative control). Each sample was run in triplicate.  

 

The PCR included an activation step at 95 °C for 10 minutes, followed by 40 cycles of 

denaturation (95 °C, 15 sec) and annealing (60 °C, 1 min).  Fluorescence was measured 

once each cycle at 465-510 nm after primer extension. After amplification a melting 

curve was commenced by lowering the temperature to 60 °C for 1 minute before 

continually increasing the temperature (11 °C per second) to 95 °C and measuring the 

fluorescence throughout melting. Finally, the plate was cooled for 30 seconds at 40 °C.  

 

Relative expression values were calculated by the LightCycler® Software (Roche), 

where relative quantification was calculated using the comparative Ct model using the 

arithmetic formula 2(-ΔCt)(144). ΔCt is the difference between the mean Ct values of the 

target genes (GRIA2, DUSP4, NR2F1 and ADH1B) and the reference gene (EEF1A1). 

Mean Ct or the average threshold cycle for each sample is inversely proportional to the 

amount of cDNA present and was calculated as the fractional cycle number averaged 

across the three replicates at which the fluorescence emitted exceeds the background 

threshold. 

 

 

2.6 Digital Polymerase Chain Reaction 

2.6.1 Sample Selection 

A recent publication has suggested that the sensitivity of quantitative PCR (qPCR) in 

insufficient for copy number calling and that digital PCR is more suitable(142). For 

comparative purposes 3 of the 55 blood samples from the breast cancer patients used 

for AMY1 copy number analysis using qPCR were selected for copy number 

investigation using digital PCR. The 3 samples chosen were all healthy weight patients 

and based on qPCR results, covered a range of AMY1 copy number variants (6-15 
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AMY1 copies). Patient germline DNA was extracted from FTA cards following the 

FTA extraction process described earlier. DNA sample concentrations were determined 

using Qubit™ DNA assay (Invitrogen Corporation, Carlsbad, California, USA) (Table 

2.4). 

 

 

 

Table 2.4 DNA sample concentrations for the 3 patient samples selected for analysis using digital 

PCR. 

 

 

2.6.2 DNA Digest  

The QuantStudio 3D digital PCR system requires each target region (ie. each AMY1 

copy) to be in a discrete well, in the digital PCR chip, for accurate quantification. To 

ensure this a DNA digest was designed to cleave within AMY1 but leaving the amplicon 

site uncut. The restriction enzyme used was HindIII, which cuts at 5’-A|AGCTT-3’. All 

HindIII restriction sites within AMY1 were resolved using genome browser. The 

restriction enzyme was chosen because it was not effected by methylation and it did not 

cleave within either the AMY1 amplicon or the RNase P reference gene (Supplementary 

Figure 6.1).  

 

The controls used for this assay included a ‘no template’ control, a genomic DNA 

sample of known copy number (92.1 ng/µL) and the two HapMap DNA samples 

NA18956 (345 ng/µL) and NA18972 (331 ng/µL) with AMY1 copy number of 6 and 

14, respectively. Digests for controls were carried out in 50 µL reaction volumes 

including 3 µL of HindIII (20 U/mL) restriction enzyme (New England Biolabs, 

Ipswitch, Massachusetts, USA), 30 µL of 10X NEBuffer 2 (New England Biolabs, 

Ipswitch, Massachusetts, USA), 300 ng total DNA and remaining volume of water.  

 

Patient Sample BMI DNA (ng/µL) 

5 19.34 0.40 

8 24.34 0.49 

22 18.02 0.48 
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Due to the low DNA concentrations of the samples, digests were carried out in 30 µL 

reaction volumes. Reaction volumes included, 1.5 µL of HindIII (20 U/mL) restriction 

enzyme (New England Biolabs, Ipswitch, Massachusetts, USA), 5 µL of 10X NEBuffer 

2 (New England Biolabs, Ipswitch, Massachusetts, USA) and 23.5 µL of sample DNA. 

DNA digests were incubated for 16 hours at 37 °C before increasing the temperature to 

80 °C for 20 minutes to denature the enzyme.  

 

2.6.3 Digital PCR 

A digital PCR reaction involves a 20,000 well chip, PCR cycling and chip analysing on 

the QuantstudioTM 3D Digital PCR system (Thermo Fisher Scientific, Rockford, IL, 

USA). Each individual chip used in this experiment investigated AMY1 copy number 

status for a single sample. The samples analysed included 3 patient germline DNA 

samples. Digital PCR chips were loaded as per manufacturer protocols. In brief, a total 

reaction volume of 16 µl containing, 7.25 µl of QuantStudioTM 3D Master Mix 

(Thermo Fisher Scientific, Rockford, IL, USA), 0.725 µL AMY1 primer/probe (FAM™ 

dye–labeled)(Life Technologies, Carlsbad, CA, USA), 0.725 µL of 20x Ribonuclease P 

(RNase P) reference primer/probe (VIC® dye–labelled)(Life Technologies) and 7.3 µl 

of the digested DNA samples, was all loaded onto one chip. Loading was performed 

using the QuantStudio™ 3D Digital PCR Chip Loader, before chips were placed on a 

flat block thermocycler fixed at an 11° angle. The thermocycling reaction consisted of 

an initial activation step at 96 °C for 10 minutes, then 40 cycles of annealing (60 °C, 2 

minutes) and denaturation (98 °C, 30 sec), and ending with cooling for 2 minutes at 60 

°C. Chips were held at 10 °C until fluorescence was analysed. Fluorescence was 

measured once at the end of PCR on the QuantStudio™ 3D Digital PCR Instrument, to 

determine of the 20,000 wells per chip, the number of wells occupied by a target, 

reference, both or neither of these molecules. Fluorescence data was analysed using the 

online QuantStudio 3D AnalysisSuite Cloud Software, which calculates copies/µL of 

the AMY1 and RNase P genes in each sample based on a Poisson distribution. Copy 

number is calculated by calibrating each AMY1 target to its RNase P reference and 

lastly normalising to the HapMap samples NA18956 and NA18972, with known AMY1 

copy number of 6 and 14, respectively.  

 



33 

2.7 Western Blotting   

2.7.1 Protein Quantification  

Total protein concentrations for each tumour sample after protein extraction and 

purification were determined using the PierceTM BCA Protein Assay Kit (Thermo 

Fisher Scientific, Rockford, IL, USA) in order to ensure equal protein loading into the 

gel (n=36). A standard curve was constructed using BSA (0-1000 μg/μl) following 

microplate recommendations and reading absorbance at 562 nm on the wallac 1420 

Victor3 plate reader (PerkinElmer Life and Analytical Sciences, Massachusetts, USA) 

(Supplementary Figure 6.2). The standard curve was used to extrapolate from and 

calculate the extracted protein concentration for each tumour sample.  

 

2.7.2 SDS-Page 

Each protein sample was made up to a final volume of 200 μl at 1 μg/μl including, 100 

μl of 2 μg/μl protein in PBS, 50μl of 4X NuPAGE® LDS sample buffer (Novex, Life 

Technologies, Carlsbad, CA, USA), 20 μl of 1M DTT (dithiothreitol) (Sigma-Aldrich, 

St. Louis, MO, USA) and 30 μl of water.  The samples were heated to 70 °C for 10 

minutes before loading into NuPAGE® 4-12% Bis-Tris Gel (Novex, Life 

Technologies). According to the protein loading optimisation Western blots for DUSP4 

required 10 μg of total protein and 40 µg of total protein for GRIA2, loaded into each 

well. On each gel 4 μl of SeeBlue® Plus2 Prestained Standard (Novex, Life 

Technologies) was loaded and gels were run at 125V for 65-70 minutes using 1X 

NuPAGE® MOPS SDS Running Buffer (Novex, Life Technologies).  

 

2.7.3 Transfer 

PVDF membranes were incubated for 10 seconds in methanol for activation. The 

transfer setup (Supplementary Figure 6.3) was used to transfer protein from gel to 

PVDF (polyvinylidene fluoride) transfer membrane (Thermo Fisher Scientific, 

Rockford, IL, USA). Transfer used 1X BlotTM Transfer buffer (Novex, Life 

Technologies) with 10% methanol at 25V for 1 hour. GRIA2 and DUSP4 membranes 
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were blocked with 5% milk in TBS-tween 20 (Sigma-Aldrich, St. Louis, MO, USA) for 

1 hour before antibodies were introduced.  

 

2.7.4 Antibodies  

The primary antibodies for GRIA2 and DUSP4 were analysed in breast tumour samples 

(n=36). The anti-ionotropic glutamate receptor 2 (GRIA2) rabbit monoclonal primary 

antibody (EP966Y) (Abcam, Cambridge, MA, USA) was used at an optimised 

concentration of 1/500 with 5% skimmed milk in TBS-T incubated overnight at 4 °C. 

The anti-DUSP4 C-terminal rabbit polyclonal primary antibody (Abcam, Cambridge, 

MA, USA) was used at manufacturers instructed concentration of 1/500 with 5% 

skimmed milk in TBS-T incubated overnight at 4 °C.  

The DUSP4 blot was stripped with two 25 µL washes of mild stripping buffer (mild 

stripping buffer includes: 1.5 g glycine, 1 mL 10% SDS and 1 mL Tween20; made up 

to 100 µL and adjusted to pH 2.2). The stripped blot was blocked with 5% skimmed 

milk in TBS-T and re-probed for β-actin. The GRIA2 blots were cut to separate the 

GRIA2 and β-actin bands, before probing with primary antibodies. The β-actin primary 

antibody used was mouse monoclonal anti-β-actin antibody (Sigma-Aldrich, St. Louis, 

MO, USA) and was used at 1/10,000 with 5% milk in TBS-T and incubated for 1 hour.  

Blots were washed with TBS-T and secondary antibodies were applied. The polyclonal 

goat anti-rabbit immunoglobulins/HRP secondary antibody (Dako, Glostrup, 

Copenhagen, Denmark) was used for both GRIA2 and DUSP4 blots at 1/5000 in TBS-

T for 1 hour at room temperature. The secondary antibody used for β-actin was the goat 

anti-mouse polyclonal immunoglobulins/HRP antibody (Dako, Glostrup, Copenhagen, 

Denmark) used at 1/10,000 in TBS-T incubated for 1 hour. PVDF membranes were 

imaged by chemiluminescence on the Alliance 4.7 (Uvitec Cambridge, Cambridge, 

UK), after applying Amersham ECL primer Western blotting detection reagents (GE 

Healthcare, Little Chalfont, Buckinghamshire, UK). 

Due to barely detectable GRIA2 expression and dense background disguising the 

bands, the GRIA2 blots were re-wet with methanol for 30 seconds, blocked and re-

probed following the above protocol.  

https://en.wikipedia.org/wiki/Little_Chalfont
https://en.wikipedia.org/wiki/Buckinghamshire
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2.7.5 Relative expression  

The Western blot bands were quantified using Image J software. The DUSP4 and 

GRIA2 densitometry values were compared to their respective β-actin bands to 

calculate relative expression values. Relative expression values for each sample were 

then normalised across gels using the positive control sample run on each gel.   

 

 

2.8 Statistical Analysis  

Welch T-tests were performed on mean expression data or copy number estimates 

between breast cancer patient groups stratified by clinicopathological features. A P-

value less than 0.05 was considered as statistically significant. 

In order to visualise the change in mean expression data or copy number estimates data 

was analysed and represented as scatterplots using R statistical software (R-Studio 

Version 3.2.2). 
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Chapter 3 

3 AMY1 Copy Number Analysis   

3.1 Introduction  

There is a strong link between obesity and increased incidence and reduced survival 

rate in diagnosed breast cancer patients, particularly in post-menopausal women(3, 4). 

Despite the vast array of evidence that supports the strong association between obesity 

and breast cancer, the precise underlying mechanisms responsible for such a strong link 

are not that well understood.  

A form of germline alteration known as copy number variation (CNV) has become 

increasingly popular in molecular based obesity research. Copy number variants are 

large structural duplications or deletions which may overlap gene regions, resulting in 

variable gene dosage. These variants have been implicated in many different human 

diseases, including increasing susceptibility towards obesity(121), such as the CNV 

region overlapping the AMY1 gene(7). Recent research has demonstrated a clear inverse 

association between germline DNA copy number of the AMY1 gene and the risk of 

obesity(8). AMY1 codes for the salivary amylase protein, functioning at the beginning of 

the human digestion process, which breaks down large starchy molecules in the diet, as 

preparation for further catalysis in the stomach. A case-control study in Mexican 

children also reported an overall dosage dependent association between AMY1 copy 

number and risk of obesity, and that higher AMY1 dosage is a protective factor against 

obesity(139). A further study in Finland showed an increased risk of early-onset 

childhood obesity associated with lower AMY1 copy number in females, but not in 

males(140). Interestingly, however, a very recent publication investigated germline 

AMY1 copy number in a large multi-ethnic cohort totalling approximately 3,500 

individuals and reported no correlation between AMY1 copy number and risk toward 

increased BMI(142).  

Despite the now controversial but recently well supported link between obesity and 

AMY1 CNV, the proposed genetic association between AMY1 CNV and increased 
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weight gain has not yet been examined in normal and obese breast cancer patients. The 

aim of this study was to identify whether germline AMY1 copy number has a molecular 

link with breast cancer through its association with obesity. 

 

 

3.2 Experimental Design and Research Aims 

In this chapter, DNA was analysed from 55 breast cancer patient blood samples sourced 

from The Cancer Society Tissue Bank, 27 of which were categorised as healthy weight 

(BMI < 25) and 28 as obese (BMI > 30) according to BMI scoring (see Table 2.1 for 

patient clinicopathological data). Quantitative PCR was used to determine germline 

AMY1 copy number for comparison between healthy and obese BMI groups (section 

2.5.1).  

To examine AMY1 copy number calculated using different experimental techniques, 

digital PCR was also utilised to measure AMY1 copy number in three of the 55 blood 

samples (section 2.6).  

 

 

3.3 Results 

3.3.1 Germline AMY1 Copy Number in Obese Relative to Healthy Breast Cancer 

Patients 

The germline AMY1 copy number in obese compared to healthy breast cancer patients 

shows a definite trend toward lower copy number of AMY1 in obese breast cancer 

patients (Figure 3.1). Two different AMY1 primer probe assays were investigated in this 

chapter, the Hs07226361_cn (AMY1-61) and the Hs07226362_cn (AMY1-62) AMY1 

assays. AMY1-61 showed a reduction in the average AMY1 copy number from healthy 

(mean= 8.86) to obese (mean= 8.11) breast cancer patients. AMY1-62 also showed a 

reduction in the average AMY1 copy number from healthy (mean= 9.69) to obese 

(mean= 8.06). Each assay provided evidence for an inverse correlation between AMY1 

copy number and obesity risk in breast cancer patients, although the difference in 

AMY1 copy number between healthy and obese breast cancer patients was only 
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statistically significant using the AMY1-62 primer probe assay (p= 0.02). Overall the 

two different AMY1 assays are supported by previous reports of a relationship between 

lower AMY1 copy number and susceptibility toward obesity (8, 139, 140). 

Germline AMY1 copy number from the breast cancer study cohort was also compared 

to other pathological features; ER (positive vs negative); PR (positive vs negative); 

HER2 (positive vs negative); and Grade (1&2 vs 3) (Supplementary Table 6.1). These 

comparisons indicated that patient germline AMY1 copy number was not significantly 

different between ER+ versus ER- (p= 0.67); PR+ versus PR- (p= 0.28); HER2+ versus 

HER2- (p= 0.76); and Grade 1-2 versus 3 (p= 0.15) breast tumours (AMY1-62 assay). 

Additional analysis of the association between BMI and pathological features of the 

patient’s breast tumours, indicated that there was no significant difference within the 

pathological characteristics of the breast tumours between obese and healthy patients 

(Supplementary Table 6.2).  

Overall, germline AMY1 copy number did not differ within clinically important breast 

tumour pathological features, but does show an inverse correlation with BMI in breast 

cancer patients.  

 

3.3.2 Comparing AMY1 Copy Number Determined using Quantitative PCR and 

Digital PCR 

The aim for this section was to determine if methodological technique plays a role in 

copy number determination. AMY1 copy number in germline DNA, determined using 

quantitative PCR (qPCR) and digital PCR, was compared between three breast cancer 

patients and one healthy control sample (Figure 3.2). qPCR results gave the three 

samples (patients 5, 8, 22) copy number estimates of 8.7, 15.3 and 6.4 copies 

respectively. Alternatively, digital PCR predicted the same three samples to have copy 

number estimates of 12.3, 15.6 and 7.6, respectively. The germline AMY1 copy number 

calculated by digital PCR was higher, compared to qPCR, for all three patient samples. 

The biggest difference in calculated copy number was patient Sample 5, with a 

difference of 3.6 copies, and the smallest difference was in Sample 8 with a difference 

of 0.3 copies. Digital PCR produced marginally higher AMY1 copy number numbers 

compared to qPCR (p= 0.51). 
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Figure 3.1 AMY1 copy number estimates for healthy (n= 27; pink) and obese (n= 28; grey) patients 

determined using quantitative PCR. Error bars represent the standard error of mean of each 

population. Two assays were used to determine sample copy number; Hs07226361_cn (AMY1-61) 

and Hs07226362_cn (AMY1-62). Only AMY1-62 showed significant difference between healthy 

and obese. *, P-values < 0.05  

 

p= 0.236 

* 
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Restriction digestion is a required process when using digital PCR to determine 

genomic copy number. When investigating the digested DNA samples (n=3) using 

qPCR, the resulting AMY1 copy numbers were more similar to the copy numbers 

calculated following digital PCR (p= 0.89), than between the undigested qPCR and 

digital PCR AMY1 copy numbers mentioned above. The comparison of digested and 

undigested patient DNA sample copy numbers (p= 0.56), determined when using 

qPCR, suggested that digestion may affect copy number calling.  

 

 

 

Figure 3.2 AMY1 copy number determined using quantitative PCR (undigested and digested 

genomic DNA) and digital PCR for a subset of breast cancer patient samples (n=3). 

 

 

 

3.4 Discussion  

In the present study, it was confirmed that lower germline AMY1 copy number is 

associated with increased BMI in breast cancer patients. A significant inverse 
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correlation between AMY1 copy number and BMI was observed in obese compared to 

healthy breast cancer patients. It was also established that both methodological process 

and the number of AMY1 duplicates per genome may influence the calling accuracy of 

germline AMY1 copy number in purified DNA samples from breast cancer patients. 

Using restriction digestion to individualise each AMY1 duplicate for copy number 

determination using quantitative PCR (qPCR) is not currently recognised as a necessary 

process, yet when applied, was seen to alter the calculated copy number in samples 

with lower range AMY1 duplication.  

The current analysis has confirmed the inverse correlation between germline AMY1 

copy number and risk toward accumulation of excess fat, initially reported by Falchi et 

al.(8). Additional studies investigating differing cohorts around the world have managed 

to replicate this reported inverse association(139, 140). Yet despite the supporting evidence 

for this inverse association, the underlying physiological and/or metabolic functions 

that explain the apparent fitness advantage linked to the increased duplication of AMY1 

copy number is yet to be identified. Researchers have confirmed that variation in AMY1 

copy number is positively correlated with dosage of AMY1 mRNA, salivary amylase 

protein and salivary amylase enzymatic activity rate(7, 137).  

Based on the current findings, it would be logical to expect high AMY1 copy number 

resulting in higher blood glucose levels, compared with low AMY1 copy number, after 

an intake of starch. Based on this, many studies have focused on the ability of variation 

in salivary amylase to manipulate the glycemic load experienced by subjects after the 

ingestion of starch rich meals. The glycemic load is an estimate of how much a 

particular food would increase a person’s blood glucose levels after consumption, in 

which lower GI foods are considered favourable to overall health. An informative in 

vivo study released starch samples straight into the small intestine, missing out the oral 

digestion process, and observed these subjects had substantially decreased starch 

digestion and glycemic load(145). Interestingly however, when assessed in subjects with 

either high or low salivary amylase copies and therefore high or low enzymatic 

concentration and activity rate, the opposite effect was observed. Subjects with low 

salivary amylase concentrations had substantially higher blood glucose levels following 

starch ingestion(138), which was attributable to low salivary amylase lessening the pre-

absorptive insulin release. Additionally, a clinical experiment inhibited the enzymatic 

activity of salivary amylase and therefore slowed down the digestion and absorption of 
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dietary starch and observed a reduced spike in blood glucose after a carbohydrate rich 

meal, favouring the expected response. However, also observed was a decrease in 

weight over a 12 week period of salivary amylase inhibition (on average, 2.9 kg), 

disputing the existing theory(146).  

It has been suggested that the functional link between salivary amylase and increased 

weight gain may be connected with food perception, in which increased and/or reduced 

breakdown of starch influences the perceived sensation of oral food texture and flavour. 

When increasing concentrations of the amylase enzyme were added to custards, 

subjects reported reduced “food creaminess”, “creamy mouth after sensations” and 

“flavour release”, all of which are believed to be favourably desired food qualities(147, 

148). These results perhaps suggest that reduced amylase dosage attributable to lower 

AMY1 copy number has the ability to positively influence one’s liking of starchy foods. 

Based on this it could be hypothesised that individuals with lower amylase copy 

number are likely experiencing enhanced desirable sensations during oral ingestion of 

starch, and thus perhaps strengthening the chances of augmented dietary starch 

ingestion, compared to those with higher germline AMY1 copy numbers. This theory 

would agree with the current study’s observation where, in breast cancer patients, 

increased function of salivary amylase is correlated with decreased BMI.  

The lack of validation for the functional link between salivary amylase dosage and 

increased BMI, despite the support for the inverse correlation, could be attributable to 

the variable study cohorts in which the inverse association has been investigated. 

Although the current study has observed a definite trend toward reduced AMY1 dosage 

in obese breast cancer patients, only one of the assays used in the analysis reported a 

significant inverse relationship. The current lack of significance is possibly supported 

by a recent paper noting they observed no association between dosage of AMY1 copy 

number and risk toward the accumulation of excess fat, in a large, multi-ethnic obese 

and lean cohort(142). They suggest that the inconsistency between their findings and 

what has been previously reported is due to their use of higher resolution techniques, 

such as droplet digital PCR, to determine amylase copy number. Yet, of the previous 

publications reporting an inverse association between AMY1 copy number and obesity, 

two utilised digital PCR to determine AMY1 copy number within subject DNA 

samples(139, 140). The current analysis comparing the use of qPCR and digital PCR to 

calculate AMY1 copy number in germline DNA samples of breast cancer patients 
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suggests that digital PCR is calling marginally higher copy numbers compared to 

qPCR. Furthermore, the current evaluation has also considered that the lack of genomic 

DNA restriction digestion, that is required for copy number calculations using digital 

PCR, may be influencing the copy numbers that are calculated using qPCR. Overall, 

the comparison of quantitative PCR and digital PCR suggests that the germline AMY1 

copy number determined for an individual may vary depending partially on the 

experimental techniques that are used. Although contradictory, the findings by Usher et 

al., validate the importance of investigating AMY1 copy number, and its association 

with obesity risk, in breast cancer patients. Based on their findings, it cannot be 

assumed that obesity will be associated with low amylase copy number in different 

study cohorts. 

A limitation of the current analysis comparing qPCR and digital PCR germline AMY1 

copy number determination is the small sample size being investigated (n=3). The 

differences seen during this analysis would need to be investigated in a much larger 

cohort of germline DNA samples if they were to be validated.  

The current study supports a novel inverse correlation between AMY1 copy number and 

increased BMI in breast cancer patients. This relationship may provide evidence for 

low AMY1 copy number as a risk factor toward breast cancer development, through its 

association with obesity, but this inverse correlation still requires further validation. 

Firstly, the inverse association would need to be validated in a large cohort case-control 

investigation, and secondly, the fundamental functional connection between low 

salivary amylase dosage and increased fat accumulation would not only need to be 

identified but also confirmed to be biologically active in obese breast cancer patients. 

One thing is for certain, this is just the beginning of the AMY1 copy number and obesity 

debate, and this intriguing human loci has a bright and excitingly unpredictable future.  
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Chapter 4  

4 Obese Breast Tumour Gene Expression Analysis  

4.1 Introduction 

The exact mechanisms responsible for causing the strong link between obesity and 

breast cancer are yet to be identified, despite extensive research that has provided 

confirmation for the strong association between them.  

Currently, little research has been carried out surrounding the gene expression profiles 

of breast tumour genes in patients with differing BMI status, and only two studies have 

developed transcriptomic profiles for breast tumours from obese patients(118, 119). 

Creighton et al. compared breast tumour gene expression patterns (n=103) from normal 

(BMI < 25) and overweight (BMI = 25-30) patients to obese (BMI > 30) tumour 

transcript patterns, from which they derived 662 genes significantly differentially 

expressed in obese breast tumours(118). Similarly, Fuentes-Mattei et al. generated 

comparable transcriptomic data for oestrogen positive obese (BMI > 30) compared to 

non-obese (BMI < 30) breast tumours. They identified 112 genes, 62 that had 

significantly increased and 50 that had significantly decreased expression in obese 

compared to non-obese tumours (n=137)(119).  

Although these intriguing findings suggest a potentially important relationship between 

gene expression patterns during breast tumourigenesis and the obese phenotype, further 

research is required with a well characterised cohort of breast cancer cases. The current 

study hypothesises that obese breast cancers are associated with differential expression 

of selected candidate gene markers.  
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4.2 Experimental Design and Research Aims 

4.2.1 Identifying Candidate Genes 

To identify genes associated with breast tumours from obese women, two publically 

available microarray expression datasets from previous publications were 

interrogated(118, 119). The aim was to determine which genes differently regulated in 

obese breast tumours appear in both gene expression datasets (section 2.4).  

Genes shared between the two datasets were further investigated using The Cancer 

Genome Atlas (TCGA) online repository of gene expression data from 825 breast 

tumours(114). To determine which clinically important tumour phenotypes are associated 

with expression differences of these candidate genes, expression data were compared 

between clinically important breast tumour phenotypes (ER+ vs ER-, PR+ vs PR- and 

HER2+ vs HER2-).  

 

4.2.2 mRNA and Protein Expression Analysis of Candidate Genes  

This study analysed 40 post-menopausal fresh/frozen breast tumour samples collected 

from The Cancer Society Tissue Bank (n=18, BMI < 25; n=22, BMI > 30) (see Table 

2.1 for patient clinicopathological data). The tumour samples were homogenised, RNA 

was collected, purified and reverse transcribed into complementary DNA (cDNA). 

Finally, quantitative PCR (qPCR) was used to determine the level of candidate gene 

expression in the breast tumours (section 2.5.2). Candidate gene expression was 

compared between obese and healthy breast tumours, with the aim of determining if the 

level of expression differed between these two BMI groups. 

After RNA extraction, protein was also purified from 36 tumour homogenates. Protein 

expression levels of GRIA2 and DUSP4 were analysed using Western blotting to 

establish if the trend in GRIA2 and DUSP4 gene expression between the healthy and 

obese breast tumours was also evident at the protein level in the same tumours (section 

2.7).  
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4.3 Results 

4.3.1 Identifying Candidate Genes : Bioinformatic Analysis of Previous 

Microarray Analyses  

Investigation of Creighton et al.’s(118) previous microarray dataset identified a total of 

91 differentially regulated genes determined by probe IDs. They were presented as fold 

change in obese relative to healthy weight patients with both oestrogen receptor 

positive and negative (ER+ and ER-) tumours (Supplementary Table 6.3). Fuentes-

Mattei et al.’s(119) dataset lists the top 110 most differentially regulated genes 

determined by probe IDs and presented as log ratio differences in obese compared to 

non-obese patients with ER+ breast tumours (supplementary Table 6.4).   

Initially, the probe IDs mapping to genes that were significantly differentially regulated 

were compared across the Creighton et al.(118) and Fuentes-Mattei et al.(119) datasets, to 

identify which probe IDs were appearing in both datasets. This analysis identified five 

different probe IDs, three mapping to GRIA2, DUSP4 and NR2F1 (205358_at; 

204014_at; 209505_at) and two mapping to ADH1B (209612_s_at; 209613_s_at). 

Overall, the four genes that intersected both datasets and were identified as commonly 

dysregulated in obese compared to healthy breast tumours were GRIA2, DUSP4, 

NR2F1 and ADH1B (Figure 4.1).  

Both microarray datasets report that GRIA2, DUSP4 and NR2F1 are significantly 

downregulated in obese breast tumours, however, the direction of regulation of ADH1B 

is controversial (Table 4.1). Creighton et al.(118) report ADH1B to be downregulated in 

obese tumours but Fuentes-Mattei et al.(119) suggest ADH1B was upregulated in breast 

tumours from obese patients.  
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Figure 4.1 Venn diagram of statistically differentially expressed genes shared between the 

Creighton et al.(118) and the Fuentes-Mattei et al.(119) breast tumour microarray expression datasets.  

 

 

Table 4.1 Differential expression data for the four genes reported to be significantly differentially 

expressed in breast tumours from obese women compared to healthy women by both Creighton et 

al.(118) (BMI < 25 vs BMI > 30) and Fuentes-Mattei et al.(119) (BMI < 30 vs BMI > 30).  

 Creighton et al. Fuentes-Mattei et al. 

Genes Fold Change (Log2) P-Value Fold Change (Log10) P-Value 

GRIA2 -2.39 0.0082 -0.31 <0.001 

DUSP4 -1.80 0.0108 -0.83 <0.001 

NR2F1 -1.40 0.0322 -0.31 0.004 

ADH1B -2.30 0.0126 0.51 <0.001 

 

 

 

Based on their appearance in both microarray datasets these four significantly 

differentially regulated genes were selected to be further analysed as the candidate 

genes. 

GRIA2, DUSP4, NR2F1 and ADH1B 

Creighton et al.  Fuentes-Mattei et al. 
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Gene expression data from The Cancer Genome Atlas (TCGA)(114) (http://www.cbio- 

portal.org/) was utilised to perform an analysis of the candidate gene markers in a large 

cohort of breast cancer patients. TCGA provides extensive gene expression and 

clinicopathological data for breast cancer tumours derived from 825 patients, including 

breast tumour ER (oestrogen receptor), PR (progesterone receptor) and HER2 (ERBB2 

expression) status. BMI information for patient tumour data in TCGA has not been 

recorded, thus no comparison could be made between breast tumours from obese and 

non-obese patients. The change in regulation of the four common genes was compared 

between the 825 breast cancer tumours based on presence or absence of the clinical 

biomarkers ER, PR and HER2.  

Analysis suggests that candidate genes generally displayed significant differences in 

expression between ER(+/-), PR(+/-) and HER2(+/-) breast tumours. All genes showed 

statistically significant (p< 0.05) higher expression in ER+ breast tumours (Figure 4.2), 

while only NR2F1 was not highly statistically significant (p <0.001) in PR positive 

breast tumours (Figure 4.2 and 4.3). However, within the HER2 phenotype GRIA2 and 

ADH1B are on average more highly expressed in HER2+, NR2F1 more lowly 

expressed in HER2+, and DUSP4 indicated no difference between HER2(+/-) breast 

tumours (Figure 4.4). 
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Figure 4.2 Boxplots showing the difference in regulation of GRIA2, DUSP4, NR2F1 and ADH1B 

between TCGA patients that have ER positive (n= 403) and ER negative (n= 118) breast cancer 

tumours. Error bars represent the standard error of the mean for each BMI cohort. *P-values < 0.05 

are statistically significant differences in gene expression between ER positive and ER negative 

tumours (n=521). 

  

* * 

* * 
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Figure 4.3 Boxplots showing the difference in regulation of GRIA2, DUSP4, NR2F1 and ADH1B 

between TCGA patients that have either PR positive (n= 341) or PR negative (n= 179) breast 

tumours. Error bars represent the standard error of the mean for each BMI cohort. ***P-values < 

0.001 are statistically significant differences in gene expression between PR positive and PR 

negative tumours (n=520). 

  

*** 

*** 

*** 
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Figure 4.4 Boxplots showing the difference in regulation of GRIA2, DUSP4, NR2F1 and ADH1B 

between TCGA patients that have HER2 positive (n= 75) and HER2 negative (n= 433) breast cancer 

tumours. Error bars represent the standard error of the mean for each BMI cohort. *P-values < 0.05 

are statistically significant differences in gene expression between HER2 positive and HER2 

negative tumours (n=509). 

  

* 

* * 
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4.3.2 Candidate Gene Expression in Breast Tumours from Obese and Healthy 

Weight Women   

4.3.2.1 GRIA2, DUSP4, NR2F1 and ADH1B mRNA expression in obese 

breast tumours 

All four of the candidate genes (GRIA2, DUSP4, NR2F1   and ADH1B) exhibited 

decreased mean expression in obese relative to healthy weight breast tumours, although 

these differences were not statistically significant (Figure 4.5). The largest difference in 

expression was seen in ADH1B, expressing at least approximately 5X less in obese 

compared to healthy breast tumours. GRIA2 had the smallest difference in expression in 

obese relative to healthy tumours, with half the amount in obese tumours. The healthy 

cohort had greater variation in candidate gene expression, whereas the obese tumours 

had more tightly clustered candidate gene expression. The coefficient of variation for 

GRIA2, DUSP4, NR2F1 and ADH1B expression in the healthy group was 3.09, 2.36, 

1.45 and 3.28, respectively. Similarly, the coefficient of variation for GRIA2, DUSP4, 

NR2F1 and ADH1B expression for the obese group was 2.28, 0.98, 0.99 and 1.10, 

respectively. The increased variation in candidate gene expression within the healthy 

cohort may be explained by the unusually high expression of one influential tumour 

sample (Figure 4.6). The same influential tumour sample had unexpectedly high GRIA2 

and DUSP4 expression. Similarly, a second tumour sample was expressed at an 

unexpectedly high level for NR2F1 and ADH1B, influencing the analyses of these 

genes. Interestingly, when these influential points were removed from the analysis and 

fold change values re-calculated, the variation within the healthy cohort was 

substantially reduced across all four candidate genes (Supplementary Figure 6.4). 

However, the differences between the obese and healthy cohorts were still not 

statistically significant. The fold change in DUSP4, NR2F1 and ADH1B expression for 

the obese group relative to the healthy group was also reduced by 0.40, 0.14 and 0.52, 

respectively, but remained downregulated in tumours from obese women. In contrast, 

the difference in GRIA2 expression for obese relative to healthy tumours was increased, 

and was also reversed; GRIA2 was being upregulated in obese breast tumours. 

Nevertheless, the influential values were not removed from the final analysis, as they 

were real expression values for these breast tumour samples.  

Candidate gene expression was also compared within pathological features of the 

patients’ breast tumours (Table 4.2). The expression of GRIA2, DUSP4, NR2F1 and 
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ADH1B followed the same trends of expression between these pathological features as 

was seen in the analysis using TCGA data. However, only GRIA2 showed a statistically 

significant association with ER+/- and PR+/- tumours. Lastly, the pathological status 

(ER, PR and HER2) of the tumours was compared to the patients’ BMI (Table 4.3). 

There was no significant difference in the mean BMI scores between patients with ER, 

PR or HER2, positive and negative tumours.  

 

 

 

 

Figure 4.5 The relative expression in obese (BMI > 30; n= 22) compared to the healthy (BMI < 25; 

n= 18) breast tumour cohorts for GRIA2 (p= 0.52), DUSP4 (p= 0.27), NR2F1 (p= 0.12) and ADH1B 

(p= 0.29) expression. The healthy tumours are the pink bars and the obese the grey bars. The error 

bars are the standard error of the mean. 
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Figure 4.6 The difference in gene expression (target/reference), for GRIA2 (p= 0.52), DUSP4 (p= 

0.27), NR2F1 (p= 0.12) and ADH1B (p= 0.29) in breast tumours (n=40). The target/reference ratios 

are the level of target gene expression normalised to the reference gene (EFF1A1) in that sample. 

Each circle represents an individual tumour sample, the pink cluster the healthy weight tumours and 

the grey, tumours from obese patients. The errors bars are the standard error of the mean for each 

BMI cohort.  
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Table 4.2 Analysis of candidate gene expression within the pathological features of the patients’ 

breast tumours.  

 Pathology 

Features 

ER- 

(n= 11) 

ER+ 

(n= 28) 

PR- 

(n= 13) 

PR+ 

(n=25) 

HER2- 

(n= 22) 

HER2+ 

(n= 9) 

GRIA2 
Fold Change1 0.01 0.005 270.194 

P-Value 0.047* 0.047* 0.054 

DUSP4 
Fold Change1 0.185 0.221 3.681 

P-Value 0.06 0.091 0.183 

NR2F1 
Fold Change1 0.433 0.394 0.979 

P-Value 0.066 0.051 0.960 

ADH1B 
Fold Change1 0.180 0.188 1.492 

P-Value 0.252 0.275 0.431 

1Difference in candidate gene expression in negative compared to positive breast tumours  

*Significant difference in candidate gene expression (P < 0.05) 

 

 

 

 

Table 4.3 Comparison of the patients BMI within the pathological features of the breast tumours. 

Pathological Feature    Sample Size  Average BMI P-value 

ER Status 
Negative 11 28.4 

0.96 
Positive  28 28.3 

PR Status 
Negative 13 28.8 

0.93 
Positive  25 28.6 

HER2 Status 
Negative 22 29.7 

0.88 
Positive  9 29.2 
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4.3.2.2 DUSP4 and GRIA2 protein expression in obese breast tumours 

GRIA2 and DUSP4 were chosen from the candidate genes as they have quality 

antibodies that are well validated, and are available for human sample analysis. 

Additionally, DUSP4 is well supported in the literature to be associated with breast 

cancer. The DUSP4 protein expression correlated with DUSP4 mRNA expression in 

obese compared to healthy breast tumours (Figure 4.7). Densitometry analysis of 

DUSP4 protein expression exhibited, on average, a trend toward lower levels of 

DUSP4 in obese (mean= 0.37) compared to healthy (mean= 1.60) breast tumours; 

however, this difference was not statistically significant (Figure 4.7 (B)). 

The healthy cohort of breast tumours displayed greater variation, than the obese group, 

in DUSP4 protein expression. When probed for β-actin (the loading control) tumour 

sample 1 belonging to a healthy weight patient consistently expressed β-actin at levels 

approximately 300x less than the average expression of β-actin in the healthy tumour 

cohort. However, the same breast tumour had DUSP4 levels that were only 10% lower 

than the average DUSP4 expression of this study cohort (Figure 4.8). Thus, after 

densitometry analysis normalising DUSP4 expression to its relative β-actin, sample 1 

had an atypically high level of DUSP4 expression, causing a significant increase in the 

standard error of the mean in the healthy weight group. Interestingly, sample 1 was not 

the same tumour specimen that was expressing unusually high levels of DUSP4 mRNA 

in the previous analysis (Figure 4.6); instead, sample 1 expressed relatively average 

levels of DUSP4 mRNA compared with the healthy tumour cohort. Thus, all of the 

tumour samples remained in the analysis of DUSP4 protein expression.  

Due to the low, barely detectable GRIA2 protein expression in the same tumour 

samples, expression data could not be derived for GRIA2 through Western blotting. 

Optimisation included increasing primary antibody concentration from 1/2000 to 1/500, 

increasing the total protein load from 10 µg to 40 µg per sample and re-wetting the 

membrane with methanol in case of accidental drying out during the transfer process. 

Despite making these changes to the original protocol, the GRIA2 bands were faint, and 

densitometry analysis was impeded by background (Supplementary Figure 6.5).  
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Figure 4.7 A) The average difference in gene expression (target/reference), for DUSP4, in breast 

tumours from healthy (n= 18, pink) and obese (n= 22, grey) women (p= 0.27). The target/reference 

ratios are the level of target gene expression normalised to the reference gene (EFF1A1) in that 

sample. Error bars are the standard errors of the mean.  B) The protein average expression of 

DUSP4 in obese (n= 20, grey) and healthy (n=16, pink) weight breast tumour samples (p= 0.25). 

Error bars are the standard errors of the mean.  
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 Figure 4.8 Representative Western blots of DUSP4 with 3 minute exposures and 10 µg of total 

protein loaded per well. A) Tumour samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Red arrow- Sample 1 

has low expression of β-actin and normal DUSP4 expression. B) Tumour samples: 12, 15, 16, 17, 

18, 19, 20, 21, 24, 25, and 7. Sample 7 was used as a positive control to normalise across gels.  
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4.4  Discussion 

The current analysis of candidate gene expression in breast tumours from obese women 

and women with a healthy weight determined that DUSP4 was trending towards 

downregulation in obese compared to healthy breast tumours, and this correlated with 

DUSP4 protein expression in these tumours. Similarly, this study revealed that GRIA2, 

NR2F1 and ADH1B mRNA showed a trend toward downregulation in obese breast 

tumours. However, no statistically significant differences were observed with mRNA 

and DUSP4 protein expression in the current study cohort of breast tumours from obese 

and healthy weight women. Despite using different techniques for resolving mRNA 

expression, the overall decrease observed for GRIA2, DUSP4, and NR2F1 in tumours 

from obese women is supported by the previous microarray analyses. Similarly, the 

lower expression levels of ADH1B in breast tumours from obese women agrees with 

the earlier of the two genetic signatures(118, 119). 

Initially, this chapter explored current gene expression profiles of obese breast tumours 

in order to identify and examine candidate genes that are differentially regulated in 

tumours derived from obese compared to healthy breast cancer patients. Considering 

that the underlying biological mechanisms responsible for the link between obesity and 

breast cancer are yet to be identified, it is surprising that only two previous analyses 

have reported transcriptomic profiles of obese breast tumours(118, 119). A comparison of 

datasets derived from each of these studies identified four obesity associated candidate 

genes (GRIA2, DUSP4, NR2F1 and ADH1B) that were significantly differentially 

expressed in breast tumours (Figure 4.1). The GRIA2 (glutamate receptor, ionotropic, 

AMPA 2) gene codes for one of four glutamate receptor subunits (GRIA1-4) 

collectively forming a ligand-activated cation channel predominantly found in the 

mammalian brain(149). The DUSP4 enzyme, encoded by DUSP4 (dual specificity 

protein phosphatase 4), is localised to the cell nucleus and inactivates ERK1, ERK2 and 

JNK via phosphorylation(150). NR2F1 (nuclear receptor subfamily 2, group F, member 

1), also known as COUP-TFI (COUP transcription factor 1), encodes a steroid hormone 

receptor protein, in which the targets of this transcriptional factor have not yet been 

fully identified(151). Lastly, the ADH1B enzyme, encoded by ADH1B (alcohol 

dehydrogenase 1B), functions with high activity for ethanol oxidation and plays a main 

role in the catabolism of ethanol(152).  
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GRIA2, DUSP4, NR2F1 and ADH1B are upregulated in ER+ and PR+ breast tumours, 

but show unique trends of up or downregulation within HER2+/- breast tumours 

(Figures 4.2-4.4). These results are somewhat supported by previous research that 

observed GRIA2 expression to be associated with breast cancer through its co-

clustering with the expression of ESR1 (oestrogen receptor 1) in primary invasive 

breast tumour biopsies, expressing at higher levels in ER+ breast tumours(116). 

However, other studies have not reported any statistical or molecular association 

between GRIA2 expression and the ER, PR and HER2 status of breast tumours. Overall 

this investigation suggests that GRIA2, DUSP2, NR2F1 and ADH1B may represent 

novel co-expressing ER, PR and/or HER2 related genes, but further investigation of 

their expression is required to determine whether these genes have the ability to aid in 

clinical applications.  

The current study has shown that downregulation of DUSP4 correlates with reduced 

levels of DUSP4 protein in obese breast tumours. Assuming that lower DUSP4 protein 

concentrations in the obese breast tumours are paralleled with a reduced rate in its 

enzymatic activity, it is reasonable to expect DUSP4 mRNA to be expressed at lower 

levels in obese breast tumours. DUSP4 inactivates ERK1, ERK2 and JNK via 

phosphorylation(150). Increased levels of JNK have been associated with the risk of 

obesity, obesity induced hyperinsulinemia, and more importantly, increased anti-

apoptotic signalling(153-155). Similarly, ERK1 and ERK2 are involved in a mitogen-

activated protein kinase (MAPK) signalling cascade that is significantly upregulated in 

many different human cancers in which signalling promotes cellular migration, 

survival, proliferation and cell cycle progression(155, 156). Additionally, highly aggressive 

basal-like breast cancers have been associated with a reduction in DUSP4 mRNA 

expression. Evidence suggests that deficiencies in DUSP4 regulate the resistance to 

anti-tumour chemotherapies in these aggressive breast tumour subtypes by promoting 

interleukin-6 and interleukin-8 expression to generate a cancer stem cell phenotype(150, 

157). Supplementary Figure 6.6 depicts a schematic of the DUSP4 pathway model 

proposed by Balko et al., in basal-like breast cancers(150). Based on this, I hypothesise 

that downregulation of DUSP4, observed in breast tumours from obese women, is 

analogous to that shown in basal-like breast cancers, where increasing levels of ERK1, 

ERK2 and JNK, promote cellular mitosis and supress stress induced apoptosis. Such a 
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molecular phenotype in breast tumours from obese patients may contribute to poorer 

prognosis and poorer treatment responses.  

Of all the candidate genes analysed in this study, DUSP4 is the only gene consistently 

recognised in the literature for its association with breast cancer. However, the 

literature surrounding the association of DUSP4 expression with breast tumourigenesis 

is still controversial. In support of the current study’s findings, some researchers have 

provided evidence for increases in DUSP4 acting in the suppression of tumour 

progression and metastasis(158-160), whereas opposing evidence suggests that higher 

DUSP4 expression is playing a role in promoting breast cancer growth and 

proliferation(161-163). These previous examinations of DUSP4 expression have 

investigated differences only between malignant and benign breast tissues, thus the 

current study is the first to directly measure DUSP4 mRNA in breast tumours from 

healthy and obese patients.  

Aside from evidence proposing that adipokines are involved in the upstream regulation 

influencing the development of the overall obesity associated genetic signature(119), 

there is no current evidence describing the biological systems causing DUSP4 to be 

uniquely downregulated in obese breast tumours. Investigation of the mechanisms 

responsible for lower DUSP4 expression in breast cancer could reveal cellular systems 

linking obesity and the initiation of more aggressive breast tumours. For breast tumours 

developing in obese patients, better understanding of these functional mechanisms may 

elucidate potential targets for future therapies that can counteract the trend toward 

obese breast tumour DUSP4 deficiency, observed in the current analysis. 

Research investigating expression levels of GRIA2 in different types of cancer cells, 

including liver, intestine, brain and uterus, has shown that downregulation of GRIA2 

both promotes and conversely supresses cancer cell replication(164-167), but only one 

study has provided evidence for an association between breast cancer and GRIA2 

expression(116). The current study showed that the trend toward lower GRIA2 expression 

in breast tumours from obese women was reversed when the single influential sample 

was removed from the analysis, suggesting that this trend is inconclusive (Figure 4.5, 

Supplementary Figure 6.4). This uncertainty could imply that the level of GRIA2 

expression in breast tumours is only associated with BMI by chance, or, that its link to 

obesity in previous genetic signatures(118, 119) is possibly due to its connection with 
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ESR1(116). The gene expression results from the current study suggest that GRIA2 was 

the only candidate gene significantly associated with ER status of the breast tumours 

(Table 4.2). This is supported by this previous link between GRIA2 and ESR1 

expression(116). Furthermore, the obese breast tumour genetic signature determined by 

Creighton et al. did not harbour ER, PR or any other oestrogen controlled genes, but 

did associate statistically with reduced ER levels(118). The literature surrounding the 

association between obesity and ER status in breast cancer is still controversial(168). 

This may explain why this study saw no association between BMI and the ER, PR and 

HER2 status of the breast tumours. 

Investigations of ER+ breast cancer cell lines have reported an up regulation of NR2F1 

to be involved in the progression of breast cancer. Increased NR2F1 expression during 

breast tumour development is suggested to modulate oestrogen signalling and thus is 

participating in enhancing tumour growth, invasion and hormone resistance(169, 170). 

This is contrary to observations from the current study, in that breast tumours from 

obese women, that could be expected to have more progressive cancers, were 

expressing lower levels of NR2F1 compared to tumours from healthy weight women. 

However, unlike the previous studies which showed NR2F1 expression in 

predominantly ER+ breast cancer cell lines, the current study analysed NR2F1 

expression in both ER+ and ER- breast tumours, making comparison across these 

studies difficult.  

The expression of ADH1B is not associated with the initiation or progression of breast 

cancer. On the other hand, the regulation of ADH1B, in another breast tissue (adipose), 

has been associated with risk factors strongly linked to breast cancer, such as obesity 

and insulin resistance(171).  

Although the previous microarray studies(118, 119), by Creighton et al. and Fuentes-

Mattei et al., analysed gene expression in similar sized cohorts of pre-treatment breast 

tumour biopsies, the obesity-signatures from these studies were derived from slightly 

different tumour cohort pathologies and comparisons. Creighton et al. analysed mRNA 

in both ER positive and negative (ER+/-) tumours, and compared gene expression 

patterns from healthy (BMI < 25) and overweight (BMI = 25-30) tumours combined, to 

obese (BMI > 30) tumours(118). In contrast, Fuentes-Mattei et al. analysed mRNA from 

ER+ breast tumours only, comparing gene expression patterns between healthy (BMI < 
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25) and obese (BMI > 30)(119). Despite these inter-study differences conceivably 

limiting the likelihood of seeing any gene overlap between the studies, comparison of 

the datasets derived from each of these studies identified four common genes (GRIA2, 

DUSP4, NR2F1 and ADH1B) differentially expressed in obese breast tumours.  

The current study used a relatively small sample size for both mRNA (n=40) and 

protein (n= 36) expression analysis. If the trend seen in this study, downregulation of 

expression in breast tumours from obese women, is valid then it is likely that with a 

larger cohort the trend would become significant. The smaller sample numbers used in 

this study make the results vulnerable to outliers influencing the statistical analyses. 

The exclusion of the influential values contributed toward less variation in the healthy 

cohort and a reversal in GRIA2 obese breast tumour expression (Supplementary Figure 

6.4). However, results obtained during this study were from assays carried out in 

triplicate, therefore, all of the observed expression data remained in the final analysis.  

It is well known that patient obesity is strongly associated with increasing the risk of 

breast cancer and developing more invasive and metastatic breast tumours, particularly 

in post-menopausal women(3, 4). Better understanding of the obese breast tumour 

transcriptome may help identify genes involved in the underlying mechanisms 

responsible for these links between obesity and breast cancer. The current study 

suggests that low GRIA2, DUSP4, NR2F1 and ADH1B expression in breast tumour 

biopsies may be related to patient obesity. However, these results are inconclusive, and 

further investigations with larger sample sizes would need to be done to better examine 

these preliminary findings.   
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Chapter 5 

5 Discussion 

Obesity is a strong predictor for both increased prevalence and reduced survival rate in 

diagnosed breast cancer patients(3, 4). Yet despite the strong link between obesity and 

breast cancer, the precise underlying mechanisms responsible for such a strong 

association are yet to be identified. Therefore, the overall aim of this study was to 

explore the molecular links between obesity and breast cancer, in order to identify 

genes potentially influencing obesity associated breast cancer incidence and mortality. 

This study explored two different forms of genomic changes within 55 breast cancer 

patients. Initially, a form of germline alteration known as copy number variation (CNV) 

was investigated in 55 breast cancer patient blood samples. Following this, changes in 

the level of candidate gene expression from 40 overlapping breast tumour biopsies were 

explored. 

Germline alterations are commonly inherited changes, but can also be de novo 

mutations that arise during development. Advantageously, germline changes can be 

explored in human blood samples as they are evident in all cells throughout the body. 

The germline alteration of interest for the current analysis was a CNV at the AMY1 

locus, due to its proposed inversed relationship with obesity(8). The AMY1 locus 

(1p21.1) codes for the salivary α-amylase enzyme, the most abundant enzyme secreted 

from the salivary glands. Salivary α-amylase begins the oral digestion of large starch 

molecules, in which are large polymers of glucose monomers. Salivary amylase breaks 

apart these monomers via hydrolysis of the internal α-1,4 glycosidic bonds. The AMY1 

salivary amylase genes exhibit extensive CNV in the human genome ranging anywhere 

between 0 and 20 copies per individual. It has been suggested that selection pressure 

imposed on historical populations, by higher starch consumption, resulted in the 

evolution of greater AMY1 copy numbers compared to populations adapted to low 

starch diets that have evolved lower AMY1 copy numbers(7).  
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The aim of the first hypothesis was to identify whether germline AMY1 copy number 

has a molecular link with breast cancer through its association with obesity. To test this 

hypothesis, I investigated the association between AMY1 copy number and obesity in a 

cohort of well-characterised breast cancer patients, using quantitative PCR (qPCR). It 

was observed that low germline AMY1 copy number was significantly associated with 

increased BMI in breast cancer patients. These findings are consistent with the 

previously reported inverse association between obesity and low germline AMY1 copy 

number(8, 139, 140). The results from this investigation suggest that low AMY1 dosage 

could indirectly increase the risk of breast cancer, through promoting the development 

of an obese phenotype.  

Salivary amylase is responsible for dietary starch breakdown into simple sugar 

molecules, as preparation for further digestion in the stomach. Based on this 

information, I propose that after starch ingestion, people possessing low AMY1 copy 

number and therefore low amylase levels, would have lower and more prolonged blood 

glucose loads compared to individuals with higher amylase copy number (Figure 5.1). 

As blood glucose increases, so too do insulin concentrations in the blood, as insulin 

assists the entry of blood glucose into cells such as muscle(172). Hyperinsulinemia is the 

extended increase in blood insulin, due to prolonged escalations of glucose. For 

individuals with low AMY1 copy number ingesting starch rich diets, the prolonged 

elevation of blood glucose may be the physiological link to increased risk of obesity. 

Hyperinsulinemia mimics insulin resistance in the body and is commonly recognised as 

a symptom of obesity(73), however, the causal relationship between obesity and 

hyperinsulinemia remains to be resolved. It has been suggested that reducing 

circulating insulin may act as a preventative and/or treatment measure for mammalian 

obesity and its associated complications(173). Based on this information and the current 

study’s findings I hypothesise that low dosage of AMY1 linking to hyperinsulinemia 

could initiate a proliferative feedback loop in which hyperinsulinemia is instigated in 

developing obesity, and obesity then heightens insulin hypersecretion (Figure 5.2). 

Obesity remains a complex and heterogenic disease. The model of obesity that emerges 

as a result of low dosage of salivary amylase cannot be assumed to be the only model of 

obesity that may be responsible for causing the increased incidence and reduced 

survival rate in diagnosed breast cancer patients.  
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Figure 5.1 This diagram represents this studies proposed bio-mechanism occurring when people 

possessing low AMY1 copy number, and therefore low amylase levels, ingest starch rich meals 

compared to people with high AMY1 copy number. People with lower AMY1 copy number (red line) 

would have lower and more prolonged blood glucose loads that take longer to return to base-line, 

compared to individuals with higher AMY1 copy number (blue line).  
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Figure 5.2 Flow diagram representing the proposed model linking low AMY1 copy number/dosage 

to the increased risk of obesity. After the ingestion of a starch rich meal, individuals with lower 

AMY1 copy number undergo an increase in blood glucose that is slower and more prolonged than 

people that have higher AMY1 copy number. This prolonged blood glucose is followed by elevation 

in blood insulin concentrations, in which prolonged increase in blood insulin mimics a condition 

known as hyperinsulinemia. The close link between obesity and hyperinsulinemia makes it hard to 

determine whether hyperinsulinemia causes obesity or obesity causes hyperinsulinemia, or both. In 

this model a proliferative feedback loop (red arrows) between hyperinsulinemia and obesity links 

low AMY1 copy number and increased risk of obesity. 
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It is widely appreciated that sustained hyperinsulinemia is considered a possible 

mechanism involved in obesity associated breast tumour initiation and/or 

progression(109). However, the precise way in which obesity associated 

hyperinsulinemia influences breast tumourigenesis remains unclear. Two previous 

microarray analyses have identified obese breast tumour genetic signatures, in which 

many genes were being either up or downregulated in obese compared to healthy breast 

tumours(118, 119). Within these signatures there are specific genes that are differentially 

expressed in obese patient’s breast cancers. The expression of these genes could 

provide a molecular link between obesity and obesity inducing co-morbidities, such as 

hyperinsulinemia, with the development and growth of breast carcinogenesis. The 

second hypothesis tested in this study was that obese breast cancers are associated with 

differential expression of candidate genes. This study identified four candidate genes 

(GRIA2, DUSP4, NR2F1 and ADH1B), recognised to be commonly dysregulated in 

these previously established obese breast tumour transcriptomes(118, 119). When directly 

measuring the level of GRIA2, DUSP4, NR2F1 and ADH1B mRNA expression in 

breast cancer biopsy homogenates from obese and healthy women, these candidate 

genes showed a trend toward downregulation in obese compared to the healthy breast 

tumours, although this trend was not statistically significant. These results are 

consistent with the findings from the two previous microarray studies(118, 119). 

Furthermore, it was determined that DUSP4 protein was also expressed at lower levels 

in obese compared to healthy breast tumours. 

 

Previous transcriptomic analyses support the current study’s observed downregulation 

of DUSP4 in obese relative to healthy weight breast tumours(118, 119). Based on previous 

research and this study’s results it is hypothesised that low expression of DUSP4 in 

obese breast tumours may play a role in aggressive cell phenotypes through its 

interaction with downstream MAPK enzymes. However, the upstream molecular 

mechanisms responsible for the likely downregulation of DUSP4 within these obese 

patients have yet to be identified. Fuentes-Mattei et al.(119) suggest the obesity signature 

of ER+ breast tumours, in obese versus healthy weight patients, is most likely occurring 

as a result of upstream regulation by adipokines, insulin and IGF-I signalling. Low 

DUSP4 expression is one of the genes within the obese breast tumour transcriptional 

signature, and therefore it is possible that prolonged insulin hypersecretion is acting to 
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negatively regulate DUSP4 expression. This means that hyperinsulinemia may not only 

be increasing the risk of becoming obese, but also acting as a mechanism inducing 

tumour proliferation by causing DUSP4 to be downregulated in obese breast tumours. 

Thus, lower AMY1 copy number may cause prolonged insulin hypersecretion after 

ingestion of starch resulting in an upstream regulation and reduced DUSP4 expression.  

 

Low AMY1 copy number has been speculated to be increasing the risk of obesity 

through its ability to cause prolonged increases in blood insulin concentrations 

following the consumption of starch rich meals. There may be a link between AMY1 

copy number and ADH1B expression in obese breast cancer through their proposed 

associations with hyperinsulinemia. ADH1B was observed to be downregulated in 

obese breast tumour samples, supported by the transcriptomic examination carried out 

by Creighton et al.(118). A previous study has observed reduced ADH1B expression 

correlating strongly with hyperinsulinemia and obesity in adipose samples from obese 

relative to healthy weight subjects (according to BMI and waist circumference 

measures)(171). This suggests that a reduction in ADH1B expression in obese breast 

cancers could be involved in inducing a degree of hyperinsulinemia within these 

tumours, triggering mitosis and increased tumour cell survival.  

 

Lower germline copy number of AMY1 may also be associated with a subsequent 

downregulation in AMY1 mRNA within breast tumours of obese patients. Fuentes-

Mattei et al.(119) recognised AMY1 to be differentially regulated in ER+ breast tumour 

biopsies from obese relative to healthy weight patients (Supplementary Figure 6.4). 

Interestingly, AMY1 was downregulated in obese tumours, which is perhaps what 

would be expected if obese breast cancer patients have significantly lower germline 

AMY1 copy numbers. The lower expression of AMY1 within the tumour of obese breast 

cancer patients could be influencing tumour hyperinsulinemia and perhaps more 

aggressive breast carcinogenesis.  
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Overall, this study has investigated potential molecular links (germline and tumour) 

that may be influencing the obesity associated increased risk and development of breast 

cancer. Results from this study indicated that obese breast cancer patients have both 

significantly lower germline AMY1 copy number and tumours with a trend toward 

lower GRIA2, DUSP4, NR2F1 and ADH1B expression. The link between lower AMY1 

copy number and reduced expression of these candidate genes, in obese women, may 

interact through their association with patient hyperinsulinemia to increase the risk of 

breast tumourigenesis and contribute to a more agressive tumour phenotype. 

 

 

5.1 Future Research  

To better understand the potential genetic link between AMY1 and breast cancer, future 

research is required to investigate both the germline AMY1 copy number and AMY1 

mRNA expression levels in healthy and obese breast cancer patients. The level of 

AMY1 expression within a patient blood sample can be compared to their observed 

copy number status. These correlations have already been established in the saliva and 

blood of healthy subjects(137) but not in breast cancer patient blood samples. 

Additionally, to test whether low AMY1 copy number is linked with hyperinsulinemia, 

and therefore obesity, it will be important to measure AMY1 copy number and the 

degree of insulin resistance in obese and healthy breast cancer patients. These findings 

will determine whether there is a correlation between hyperinsulinemia and low AMY1 

copy number.  

The current study has found a trend toward downregulation of GRIA2, DUSP4, NR2F1 

and ADH1B in obese breast tumours, but these associations were non-significant. If this 

study were to be continued, a larger sample cohort of breast cancer patients/tumours 

would need to be investigated in order to validate the observed molecular associations 

between obesity and breast cancer.  

To better quantify the level of GRIA2, DUSP4, NR2F1 and ADH1B protein expression 

in tumours, other technologies such as ELISA (enzyme-linked immunosorbent assay) 

could be used as they provide a more quantitative approach relative to Western blotting. 
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The DUSP4 ELSIA results could also be compared back to the DUSP4 Western blots 

carried out in the current study. 

There is considerable evidence that dysregulation of DUSP4 is playing a role in the 

basal-like breast cancer aggressive phenotype(150). Whether the downregulation of 

DUSP4 is associated with aggressiveness in breast tumours from obese patients is yet to 

be identified. The current study has been the first to show a trend of lower DUSP4 

mRNA and protein expression, with increased BMI in breast cancers. Previous studies 

have established that downstream effects of reduced DUSP4 expression (ERK1, ERK2 

and JNK activation), are influencing breast cancer cells to become more aggressive. 

Therefore, it would be of value to analyse the expression of ERK1, ERK2 and JNK in 

the breast tumours from the current study. Lower levels of DUSP4 protein may be 

associated with increased quantities of DUSP4 downstream targets in obese breast 

tumours.  

A previous study suggests that that DUSP4 may being downregulated in some breast 

tumours due to copy number loss or epigenetic downregulation(150); however, the 

upstream regulation causing reduced DUSP4 expression is yet to be identified. Further 

research investigating the mechanisms responsible for DUSP4 downregulation in obese 

breast tumours would perhaps elucidate mechanisms tying in with obesity-associated 

patient hyperinsulinemia. The degree of insulin resistance of obese and healthy breast 

cancer patients could be compared to the level of DUSP4 expression within breast 

tumours. The influence of hyperinsulinemia on DUSP4 regulation may provide both a 

mechanistic and molecular link between obesity and breast cancer. This could provide a 

potential therapeutic breakthrough, significant for patients who have DUSP4 deficient 

obesity associated breast tumour phenotypes.  

 

 

5.2 Conclusion  

The overall aim for the current investigation was to explore potential molecular links 

between obesity and breast cancer, as the molecular and mechanistic basis of the 

obesity and breast cancer association still remains unclear. Furthermore, gene 
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expression changes in breast tumours from obese women remain poorly characterised. 

To my knowledge, this study has been the first to investigate the relationship of 

germline AMY1 copy number, and breast tumour GRIA2, DUSP4, NR2F1 and ADH1B 

gene expression in obese and healthy breast cancer patients.  

Results showed that obese breast cancer patients were associated with lower germline 

AMY1 copy number. Thus, due to a relationship with obesity low AMY1 copy number 

may be indirectly associated with a degree of genetic predisposition towards breast 

cancer. Additionally, the current study suggests that a trend toward lower GRIA2, 

DUSP4, NR2F1 and ADH1B expression, observed in breast cancers from obese 

women, may be suggestive of an obese patient phenotype. However, future research 

investigating a larger sample cohort would be needed to determine if such a relationship 

exists. 

Hyperinsulinemia is considered an important mechanism for risk and poor outcome in 

breast cancer. This study proposes molecular mechanisms including, low AMY1 copy 

number and negative regulation of DUSP4, that may underlie those links, and provide 

testable hypotheses for future research.  
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Chapter 6 

6 µSupplementary Data 

 

 

 

 

 

Supplementary Figure 6.1 Location of HindIII restriction digestion sites within the AMY1 target 

gene and RNase P (RPPH1) reference genes and the location of the primer/probe target sequences 

within the AMY1 and RNase P genes. 
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Supplementary Figure 6.2 A representative BSA standard curve and best fit line equation using 

BCA assay (0-1000 μg/mL). 
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Supplementary Figure 6.3 Schematic for the assembly of the transfer elements and the direction of 

the current used for Western blotting. 
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Supplementary Table 6.1 Comparison of AMY1 copy number, for both Hs07226361_cn (AMY1-

61) and Hs07226362_cn (AMY1-62) primer/probe assays, to patient tumour pathological features. 

  AMY1-61 

Pathological Feature  
Sample 

Size 

Mean AMY1 

Copy 

Number 

Standard 

Error 

P-

value 

ER Status Negative 13 8.24 0.51 
0.56 

 Positive 40 8.62 0.40 

PR Status Negative 16 7.86 0.47 
0.12 

 Positive 36 8.86 0.42 

HER2 Status Negative 36 8.23 0.37 
0.37 

 Positive 10 9.07 0.83 

Grade 1 & 2 17 9.12 0.60 
0.29 

 3 33 8.34 0.40 

 

  

  AMY1-62  

Pathological Feature  
Sample 

Size 

Mean AMY1 

Copy 

Number 

Standard 

Error 

P-

value 

ER Status 
Negative 13 8.67 0.67 

0.67 
Positive 40 9.02 0.43 

PR Status 
Negative 16 8.42 0.57 

0.28 
Positive 36 9.21 0.45 

HER2 Status 
Negative 36 8.62 0.41 

0.76 
Positive 10 8.94 0.92 

Grade 
1 & 2 17 9.69 0.58 

0.15 
3 33 8.61 0.45 
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Supplementary Table 6.2 Comparison of patient tumour pathological features and patient BMI. 

Pathological Feature   Sample Size  Average BMI P-value 

ER Status 
Negative 11 29.17 

0.84 
Positive  38 29.74 

PR Status 
Negative 14 28.50 

0.70 
Positive  34 29.44 

HER2 Status 
Negative 33 30.36 

0.71 
Positive  9 31.51 

Grade 
1 and 2 17 29.75 

0.95 
3 33 29.59 

Histological Type 
IDC 29 30.11 

0.69 
Other 22 29.17 

IDC= Invasive ductal carcinoma 
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Supplementary Table 6.3 List of genes statistically significantly (fold change and p value < 0.05) 

differentially expressed in breast tumours from obese (BMI >30) compared with healthy patients 

(BMI <25) from data generated by Creighton et al.(118). 

Gene Symbol Probe ID Fold Change P-Value 

GRIA2 205358_at -2.39 0.0082 

ADH1B 209612_s_at -2.3 0.0126 

AGTR1 205357_s_at -1.99 0.0227 

DUSP4 204014_at -1.8 0.0108 

GALNT7 218313_s_at -1.69 0.0096 

MEST 202016_at -1.68 0.0125 

SCUBE2 219197_s_at -1.68 0.0246 

FRY 204072_s_at -1.66 0.0017 

PRKAR2B 203680_at -1.65 0.008 

PLN 204939_s_at -1.6 0.0094 

SEMA3C 203789_s_at -1.59 0.0127 

TGFBR3 204731_at -1.58 0.0355 

GYG2 215695_s_at -1.57 0.032 

CCND1 208712_at -1.56 0.0214 

FMO2 211726_s_at -1.54 0.03 

IL6ST 212195_at -1.53 0.0075 

TFPI 213258_at -1.53 0.017 

ABAT 209459_s_at -1.52 0.0369 

RNASE4 213397_x_at -1.49 0.011 

TNFSF10 202688_at -1.48 0.024 

DUSP6 208892_s_at -1.48 0.0207 

FLRT3 219250_s_at -1.48 0.041 

ITM2A 202746_at -1.47 0.0463 

ITPR1 203710_at -1.47 0.0095 

TMEM47 209656_s_at -1.47 0.0122 

LRIG1 211596_s_at -1.47 0.003 

PCLO 213558_at -1.47 0.0038 

CLDN8 214598_at -1.46 0.0485 

BCL2 203685_at -1.45 0.0241 

KAL1 205206_at -1.45 0.0088 

BG251521 213156_at -1.45 0.0271 

CTBP2 201218_at -1.44 0.0004 

MAGI2 209737_at -1.43 0.0061 

GPD1L 212510_at -1.43 0.0023 

CDKN1C 213348_at -1.43 0.0165 

ENOSF1 213645_at -1.43 0.0006 

PLSCR4 218901_at -1.43 0.0182 

SPARCL1 200795_at -1.42 0.0416 

CYP1B1 202437_s_at -1.42 0.0381 

XIST 221728_x_at -1.42 0.0265 

NRIP1 202599_s_at -1.41 0.0307 

STS 203767_s_at -1.41 0.0209 
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ZNF91 206059_at -1.41 0.0032 

MEIS3P1 214077_x_at -1.41 0.0003 

HIST1H2AC 215071_s_at -1.41 0.0411 

BCL6 203140_at -1.4 0.0038 

209505_at (NR2F1) 209505_at -1.4 0.0322 

LIMCH1 212327_at -1.4 0.0211 

TNS1 221748_s_at -1.4 0.0491 

PODXL 201578_at -1.4 0.0062 

FAM13A 202973_x_at -1.39 0.034 

PER2 205251_at -1.39 0.000088 

ALG13 205583_s_at -1.39 0.0002 

ZDHHC17 212982_at -1.39 0.008 

ADI1 217761_at -1.39 0.0025 

HSD17B11 217989_at -1.39 0.0212 

CADPS2 219572_at -1.39 0.0081 

NBEA 221207_s_at -1.39 0.0127 

TMX4 201581_at -1.38 0.0169 

ACSL3 201661_s_at -1.38 0.014 

PKP4 201928_at -1.38 0.0002 

RHOBTB3 202976_s_at -1.38 0.025 

RB1 203132_at -1.38 0.0092 

PDZD2 209493_at -1.38 0.0329 

PION 213142_x_at -1.38 0.0113 

PGRMC2 213227_at -1.38 0.0069 

C1orf115 218546_at -1.38 0.0064 

RYBP 201845_s_at -1.37 0.0051 

PCM1 202174_s_at -1.37 0.0029 

KIF5C 203130_s_at -1.37 0.0334 

IRS2 209185_s_at -1.37 0.0171 

CACNA1D 210108_at -1.37 0.0268 

GPR116 212950_at -1.37 0.0275 

KIAA0485 214295_at -1.37 0.0115 

SLTM 217828_at -1.37 0.0026 

ADD3 201034_at -1.36 0.0416 

214753_at 214753_at -1.36 0.0026 

LZTFL1 218437_s_at -1.36 0.0075 

TRIM14 203148_s_at -1.35 0.0105 

TSC22D3 208763_s_at -1.35 0.0015 

NCOA1 209106_at -1.35 0.0002 

DOCK9 212538_at -1.35 0.0002 

ENO1 217294_s_at 1.36 0.0312 

S100G 207885_at 1.4 0.0333 

ARNTL2 220658_s_at 1.4 0.008 

NLRP2 221690_s_at 1.43 0.027 

CCL18 209924_at 1.46 0.0086 

KRT6B 213680_at 1.5 0.0415 
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MMP12 204580_at 1.56 0.0323 

S100A2 204268_at 1.58 0.0105 

MMP9 203936_s_at 1.63 0.0015 
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Supplementary Table 6.4 List of genes statistically significantly (p≤0.01 and absolute value of log-

ratio > 0.1) differentially regulated in ER+ breast tumours in obese (BMI > 30) compared with non-

obese (BMI < 30) patients from data generated by Fuentes-Mattei et al.(119). 

Gene Symbol Probe ID Log ratio (Log10) P-Value 

PIP 206509_at -1.4353 <0.001 

AQP3 39248_at -1.2791 <0.001 

GJA1 201667_at -1.0564 0 

C8orf4 218541_s_at -1.0396 <0.001 

UGT2B28 211682_x_at -0.9668 <0.001 

MYBPC1 214087_s_at -0.964 <0.001 

NPY1R 205440_s_at -0.9324 <0.001 

CXCL13 205242_at -0.9132 <0.001 

SGK3 220038_at -0.8923 <0.001 

HSPA2 211538_s_at -0.8459 <0.001 

DUSP4 204014_at -0.8303 <0.001 

AREG 205239_at -0.735 <0.001 

PDLIM1 208690_s_at -0.7316 0.005 

PRSS23 202458_at -0.7164 0.004 

MUC1 207847_s_at -0.7116 0.009 

SERHL 214243_s_at -0.6772 <0.001 

CADM1 209031_at -0.5888 0.001 

SULF1 212344_at -0.5774 <0.001 

IGFBP5 211958_at -0.5225 0.007 

MSMB 207430_s_at -0.5198 <0.001 

EHF 219850_s_at -0.4399 0.003 

ANXA3 209369_at -0.4304 0.003 

SLC26A3 206143_at -0.4272 <0.001 

MMP10 205680_at -0.3848 <0.001 

FKBP5 204560_at -0.3581 <0.001 

IGHM 211634_x_at -0.3544 0.008 

SLC1A1 206396_at -0.353 <0.001 

TSPAN8 203824_at -0.3404 <0.001 

CITED1 207144_s_at -0.334 0.002 

PGR 208305_at -0.3336 <0.001 

RLN2 214519_s_at -0.3178 0.001 

GRIA2 205358_at -0.3115 <0.001 

NR2F1 209505_at -0.3106 0.004 

TFPI2 209277_at -0.3104 <0.001 

COL5A1 212489_at -0.3099 0.008 

CRISP3 207802_at -0.3012 <0.001 

IL20RA 219115_s_at -0.292 0.003 

SMARCA1 215294_s_at -0.2729 0.005 

NDP 206022_at -0.2659 0.004 

NPY5R 207400_at -0.2598 0.006 

GLRB 205280_at -0.2592 <0.001 

DLX2 207147_at -0.2522 <0.001 

PLCL1 205934_at -0.2443 0.002 
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AMY1A 208498_s_at -0.2336 <0.001 

MSLN 204885_s_at -0.227 <0.001 

FLJ11184 218513_at -0.216 <0.001 

FAM5C 217562_at -0.2126 <0.001 

UGT2B4 206505_at -0.1888 <0.001 

EREG 205767_at -0.1695 0.002 

IL33 209821_at 0.1552 0.008 

ATRNL1 213745_at 0.2 <0.001 

C11orf30 219012_s_at 0.208 0.004 

HBZ 206647_at 0.2222 0.007 

ALB 214842_s_at 0.2371 <0.001 

PEG3 209243_s_at 0.2394 0.001 

ITSN1 209298_s_at 0.2481 <0.001 

PIR 207469_s_at 0.2636 0.008 

CDSN 206193_s_at 0.2821 <0.001 

GSTT2 205439_at 0.2857 <0.001 

TIMP4 206243_at 0.2898 <0.001 

PCOLCE2 219295_s_at 0.2914 <0.001 

FHL1 201539_s_at 0.2978 <0.001 

MRC1 204438_at 0.3005 0.002 

IL8 211506_s_at 0.3015 <0.001 

DPT 213068_at 0.3045 0.001 

TRIM58 215047_at 0.3177 <0.001 

AFP 204694_at 0.3256 <0.001 

TF 203400_s_at 0.3302 <0.001 

CAV2 203323_at 0.3331 0.002 

RSF1 218166_s_at 0.3337 <0.001 

CLEC3B 205200_at 0.3466 <0.001 

AOC3 204894_s_at 0.3483 <0.001 

CHRDL1 209763_at 0.3489 0.0002 

CRABP1 205350_at 0.389 <0.001 

CP 204846_at 0.4028 0.001 

LBP 214461_at 0.412 <0.001 

ASCL1 209987_s_at 0.4495 <0.001 

TWIST1 213943_at 0.4551 <0.001 

RBP4 219140_s_at 0.4764 <0.001 

CD36 206488_s_at 0.4912 0.005 

ADH1B 209612_s_at 0.5118 <0.001 

LEP 207092_at 0.5158 <0.001 

ACOX2 205364_at 0.5172 0.002 

GRB14 206204_at 0.5212 <0.001 

CAV1 212097_at 0.526 0.002 

TOP2A 201292_at 0.5498 0.003 

PLOD2 202620_s_at 0.5637 0.002 

TSKU 218245_at 0.5767 0.001 

CLSTN2 219414_at 0.5877 <0.001 
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ADIPOQ 207175_at 0.6023 <0.001 

LPL 203548_s_at 0.6368 <0.001 

GPX3 201348_at 0.6369 <0.001 

PPBP 214146_s_at 0.6429 <0.001 

FABP5 202345_s_at 0.6529 <0.001 

SAA1 208607_s_at 0.6929 <0.001 

KCNK1 204679_at 0.6946 0.003 

AMIGO2 222108_at 0.6981 0.003 

PLIN 205913_at 0.7004 <0.001 

AKR1C3 209160_at 0.7246 <0.001 

G0S2 213524_s_at 0.7461 <0.001 

HBG1 204848_x_at 0.7619 0.002 

CFD 205382_s_at 0.7621 <0.001 

HBG2 204419_x_at 0.7872 0.001 

S100A8 202917_s_at 0.7919 <0.001 

HBD 206834_at 0.855 <0.001 

AKR1C1 204151_x_at 0.8679 <0.001 

AKR1C2 209699_x_at 0.8686 <0.001 

FABP4 203980_at 0.9573 <0.001 

SNCA 204466_s_at 0.9795 <0.001 

ALAS2 211560_s_at 1.0281 <0.001 
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Supplementary Figure 6.4 The relative expression of the obese (BMI > 30; n= 22) compared to the 

healthy (BMI < 25; n= 17) breast tumour cohorts for GRIA2 (p= 0.47), DUSP4 (p= 0.60), NR2F1 

(p= 0.26) and ADH1B (p= 0.35) with the influential data points removed. The healthy tumours are 

the pink bars and the obese the grey bars. The error bars are the standard error of the mean.  
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Supplementary Figure 6.5 Representative Western blot for GRIA2 with a 15 minute exposure and 

loading 40 µg of total protein per well. Tumour Samples: positive control, 12, 15, 17, 18, 19, 20, 21, 

24 and 25. 
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Supplementary Figure 6.6 The proposed pathway model for the function of DUSP4 in basal-like 

breast cancers.  

Schematic taken from: Balko JM, Schwarz LJ, Bhola NE, Kurupi R, Owens P, Miller TW, et al. 

Activation of MAPK Pathways due to DUSP4 Loss Promotes Cancer Stem Cell-like Phenotypes in 

Basal-like Breast Cancer. Cancer research. 2013;73(20):6346-58.(150). Reprinted with permission 

from American Association for Cancer Research; License Number: 3727850326500. 
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