
Vincent Boudart

PhD student

Deep Learning

Introduction & Basics

Course 1 : Table of contents

1) What is deep learning ?

2) How it is used nowadays ?

3) Why it will become vital in the future

4) Objectives of this course

5) From linear regression to neural network

5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

6) Analogy with the polynomial regression

1/33

1) What is deep learning ?
• Artificial Intelligence vs Machine Learning vs Deep Learning
(http://wiki.pathmind.com/ai-vs-machine-learning-vs-deep-learning)

2/33

- pile of if-then statements

- statistical model mapping raw sensory

data to symbolic categories

- ...

- optimization algorithms

- decision tree, random forest, K-means

linear regression, support vector machine,

...

- neural networks

- performs exceptionally well on lots of

tasks

2) How it is used nowadays ?
• Self-driving cars (Tesla, Google)

- Lots of data to process (camera, LiDAR, RADAR,

GPS, various sensors, …)

- Lots of action to take (breaking, turning, prediction of

human and vehicle behavior, …)

3/33

©Google self-driving car Source : https://arxiv.org/pdf/1910.07738

2) How it is used nowadays ?
• Face recognition

4/33

Li, Xiang et al. Computer Methods in Applied Mechanics and

Engineering. 347. 10.1016/j.cma.2019.01.005. (2019).

Paul Debevec. A Neural Network for Facial Feature Location.

UC Berkeley CS283 Project Report, December 1992.

http://www.debevec.org/FaceRecognition/

2) How it is used nowadays ?
• Recommendation systems (Netflix, Amazon, Spotify, …)

5/33

"75% of what people are watching on Netflix comes
from recommendations" McKinsey & Company

Source: https://qz.com/571007/the-

magic-that-makes-spotifys-discover-

weekly-playlists-so-damn-good/

2) How it is used nowadays ?
• Self-learning robots

6/33

This robot dog has an AI brain and taught itself to

walk in just an hour, University of California, Berkeley

Atlas robot (Boston Dynamics) performing a sequence

of dynamic maneuvers that form a gymnastic routine

https://youtu.be/xAXvfVTgqr0
https://youtu.be/_sBBaNYex3E

2) How it is used nowadays ?
• Automatic detection of fruits/vegetables …... and metal waste !

7/33

AI camera recognizes more than 120 fruits and

vegetables with a 97% precision (Robovision)

In …. Courtrai/Kortrijk, Belgium !!!

World first: metals sorted by robots. GeMMe laboratory

(Faculty of Applied Sciences at ULIEGE) & Citius engineering

& COMET Group

https://youtu.be/7c1lKFFF6dM

3) Why it will become vital in the future
• Sensors are everywhere, data keep growing !

8/33

3) Why it will become vital in the future
• Performance achieved by AI in many domains is now state-of-the-art

9/33

Manufacturing

Medical diagnosis Security Camera

NetflixDrug discovery

3) Why it will become vital in the future
• Some problems have found a new solution

10/33

Traffic management

Protein folding

Books digitalization

Automatic translation

Rapid fraud detection

4) Objectives of this course
• This course is only an introduction but you should be able to...

- understand most of the key words/jargon of ML and DL

- be able to criticize papers in your field where deep learning is used

- understand problems that can happen during NN training

- create and train basic networks (both on tabular data, time series and images)

11/33

4) Objectives of this course
• The deep learning jargon...

12/33

Convolution layers

Learning rate

Pooling

Loss function

ReLU

Vanishing gradients

Backpropagation

Activation function

Gradient descent

Overfitting >< underfitting

Initialization

Optimizer

Transposed convolution

Fully-connected

Transfer learning

Normalization

Batch size

YOLO

GradCAM

RNN

4) Objectives of this course
• My pyramid of deep learning levels....

13/33

GOD

Experts

Advanced

Amateurs

Fanatics

General public
Terminator, iRobot,

self-driving cars, ...

Understand basic concepts

and can implement simple

neural networks

Black box doing amazing things

Can manipulate neural networks

and adapt them to their need

Create new architecture, rethink basic

principles (Google, Microsoft, …)

4) Objectives of this course
• My pyramid of deep learning levels....

13/33

GOD

Experts

Advanced

Amateurs

Fanatics

General public
Terminator, iRobot,

self-driving cars, ...

Understand basic concepts

and can implement simple

neural networks

Black box doing amazing things

Can manipulate neural networks

and adapt them to their need

Create new architecture, rethink basic

principles (Google, Microsoft, …)

You can reach this level !

4) Objectives of this course
• You will be able to do AND understand...

14/33

GoogLeNet (Google Brain team)

4) Objectives of this course
• You will NOT be able to do this...

15/33

Robot dancing

(Boston dynamics)

Faces created by using ProGAN.

These people do not exist.

Simulate and find

laws of physics

(Google DeepMind,

2min55)

https://youtu.be/BFK9lkez32E
https://arxiv.org/abs/1710.10196
https://youtu.be/2Bw5f4vYL98

5) From linear regression to neural network
• Let us settle a very simple problem: linear regression

- You have N data points with coordinates (x,y)

- You want to fit a line to these data

- AND predict new y for new x coordinates

• Model : y = w*x + b

• Parameters : w and b

• To find the best w and b, we need a mathematical expression to assess how close is our
model with respect to the existing data :

16/33

Graph taken from Grégory Baltus thesis

5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• The problem becomes an optimization problem !

- find w and b such that is minimal.

• We can solve this problem with a 3D graph

- Out of any possible combination of w and b, only 1

gives the minimum of the function.

- Local minimum = global minimum

- This is the ordinary least square regression for which

analytical solutions exist (for polynomial regression)

17/33

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• Let us rewrite our problem... with some adaptations

- You now have N data points with coordinates (x0, x1, x2, y)

- You want to predict new y from new (x0, x1, x2) couples

• Let us write our model :

• The graph can be summarized as :

18/33

y

Adapted from Louppe, G.

Deep Learning

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• Let us rewrite our problem... with some adaptations

- You now have N data points with coordinates (x0, x1, x2, y0, y1, y2)

- You want to predict new (y0, y1, y2) from new (x0, x1, x2) couples

- Every y might need the input from all x (namely x0, x1 and x2)

• The model becomes :

- fully linear

- some inputs (x) might be useless for some outputs (y)

(e.g. y2 depends only on x0 and x2)

• How can we learn more complex relation between the data ?

19/33

x0

x1

x2

y1

y2

y0

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• How can we learn more complex relation between the data ?

• First guess : add more layers ?

composition of linear functions = linear function

20/33

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• How can we learn more complex relation between the data ?

• Second guess : use polynomial models

- Replace the simple linear regression with higher order models

• Two problems :

- require some knowledge of the solution

- computationally more expensive

21/33

Adapted from Louppe, G.

Deep Learning

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• How can we learn more complex relation between the data ?

• Third guess : add some non-linearities

Where ?

• Easy answer : at the output

- we keep a simple linear relation

- and add non-linearity at the end

• This non-linear function is called an activation function

22/33

5) From linear regression to neural network

Adapted from Louppe, G.

Deep Learning

5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• Simplest activation function

• These simple functions, added to a linear model, can lead to impressive results !

23/33

Step function Rectified Linear Unit (ReLU)

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• The unit we have built is the basic mathematical formulation of a neuron

• The activation function allows to cancel the contribution from some neurons

Information is sometimes not relevant

24/33

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• Even if our model is better than the multilinear model, it still cannot handle the underlying
complexity of the relationship between inputs and output

- Let us consider the output of our model as intermediate features

- We can repeat this pattern and build new layers, with different weights (and activation ?)

25/33

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• We have built our first neural network, called the multi-layer perceptron (MLP)

• It is made up of :

- simple model to tune

- non-linearities

- multiple layers (fully-connected or

linear layers)

• Disclaimer 1 : all the neural networks do not fit the template described above

• Disclaimer 2 : once defined, the model still need to be fitted (optimization)

26/33

5) From linear regression to neural network5.1) Definition of the problem

5.2) Adding complexity

5.3) Towards MLP

• Let us consider a set of points that you want to fit with a polynomial

- you don’t know the exact relation between the data

- you decide to go for "trial and error" and solve the least

square regression with a polynomial of degree d

- your final choice is based on the total error

27/33

6) Analogy with the polynomial regression

Taken from Louppe, G. Deep Learning

• Fit and total error for some polynomial degrees

28/33

6) Analogy with the polynomial regression

Taken from Louppe, G. Deep Learning

• The best solution seems achieved when d=10

29/33

6) Analogy with the polynomial regression

Degree of the polynomial

Total error

Taken from Louppe, G.

Deep Learning

• But when you add data points that were left aside...

30/33

6) Analogy with the polynomial regression

Total error

Degree of the polynomial

Taken from Louppe, G.

Deep Learning

• Capacity is the ability to find a good model

- polynomial regression : degree d

- neural network : number of layers, number of training steps, regularization terms, ...

• Underfitting >< overfitting

• Separate training and testing data

31/33

6) Analogy with the polynomial regression

• You always have to test your model ONCE the training is completed

- this will help you to understand

what your network is doing

- you will learn how to interpret both

training and testing curves

32/33

6) Analogy with the polynomial regression

• The deep learning jargon...

33/33

Convolution layers

Learning rate

Pooling

Loss function

ReLU

Vanishing gradients

Backpropagation

Activation function

Gradient descent

Overfitting >< underfitting

Initialization

Optimizer

Transposed convolution

Fully-connected

Transfer learning

Normalization

Batch size

YOLO

GradCAM

RNN

Course 1 : The end

Vincent Boudart, PhD student

vboudart@uliege.be

Vincent Boudart

PhD student

Deep Learning

Introduction & Basics

Course 2 : Table of contents

1) How neural networks learn ?

1.1) Gradient descent

1.2) Backpropagation

2) A word about activation functions

3) How to train neural networks ?

3.1) Optimizers

3.2) Initialization

3.3) Normalization

4) How to choose the loss function ?

4.1) Regression or classification ?

4.2) Interpretation of the loss

1/47

• The learning phase of a neural network is an iterative process based on gradient descent

• Let us consider a loss function defined over model parameters

- We will use the local information to iteratively find the minimum

- Let us define a starting point

- For a small perturbation of this starting point, the loss can

be written :

where is a constant that has been added

2/47

1) How neural networks learn ?

Taken from Louppe, G.

Deep Learning

1.1) Gradient descent

1.2) Backpropagation

• The learning phase of a neural network is an iterative process based on gradient descent

• To minimize the loss approximation, one has to solve :

which happens when

• By repeating this "small step" process, the update rule for the model parameters is thus :

3/47

1) How neural networks learn ? 1.1) Gradient descent

1.2) Backpropagation

• The learning phase of a neural network is an iterative process based on gradient descent

• We know how to update model parameters iteratively :

- are the initial parameters of the model

- is called the learning rate

• Both parameters are critical for the convergence of

the update rule !

4/47

1) How neural networks learn ?

Taken from Louppe, G.

Deep Learning

1.1) Gradient descent

1.2) Backpropagation

• The learning phase of a neural network is an iterative process based on gradient descent

• When the learning rate has the right value :

5/47

1) How neural networks learn ?

Taken from Louppe, G. Deep Learning

1.1) Gradient descent

1.2) Backpropagation

• The learning phase of a neural network is an iterative process based on gradient descent

• When the learning rate is too high :

6/47

1) How neural networks learn ?

Taken from Louppe, G.

Deep Learning

1.1) Gradient descent

1.2) Backpropagation

• The learning phase of a neural network is an iterative process based on gradient descent

• How do we know if the feedback from the gradients is accurate ?

- training a NN means finding the minimum of your loss function over your data

Ideal solution : compute the loss over all the samples in the training set

In practice you have thousands/millions of samples, leading to memory overload !

- Solution 1 : evaluate the loss over every single sample : stochastic gradient descent

- Solution 2 : evaluate the loss over a small subset : mini-batch gradient descent

7/47

1) How neural networks learn ? 1.1) Gradient descent

1.2) Backpropagation

• The learning phase of a neural network is an iterative process based on gradient descent

• Comparison between stochastic and mini-batch gradient descent

8/47

1) How neural networks learn ?

Batch GD
- impracticable

Stochastic GD
- computationally cheap

- costly in time

Mini-batch GD
- computationally heavier

- faster

1.1) Gradient descent

1.2) Backpropagation

• The learning phase of a neural network is an iterative process based on gradient descent

We will use mini-batch gradient descent as a good compromise

• At this point, we know how to update the model parameters

• How do we evaluate the gradients ?

- gradient for one parameter :

- gradient for multiple parameters :

9/47

1) How neural networks learn ? 1.1) Gradient descent

1.2) Backpropagation

• The procedure to evaluate partial derivatives in a NN is called backpropagation

• To introduce this concept, let us define a very simple NN with 2 hidden layers

• Let us define the forward pass

- First layer :

- Second and third layer :

10/47

1) How neural networks learn ? 1.1) Gradient descent

1.2) Backpropagation

• The procedure to evaluate partial derivatives in a NN is called backpropagation

• The forward pass expressions and matrices :

11/47

1) How neural networks learn ?

Total : 16 parameters

1.1) Gradient descent

1.2) Backpropagation

• The procedure to evaluate partial derivatives in a NN is called backpropagation

• Let us try to evaluate the partial derivative of the loss with respect to one parameter

- The chain rule of partial derivatives

- A neural network is a composition of very simple functions !

12/47

1) How neural networks learn ? 1.1) Gradient descent

1.2) Backpropagation

• The procedure to evaluate partial derivatives in a NN is called backpropagation

• Let us try to evaluate

13/47

1) How neural networks learn ?

depends on the

loss function

known easy to

compute

known

1.1) Gradient descent

1.2) Backpropagation

• Gradient descent and backpropagation are the core of deep learning algorithms

• What have we learned ?

- Backpropagation is cheap since we know some of the terms thanks to the forward pass !

- The other terms are easy to compute if we choose activation and loss functions adequately

- The weights cannot be initialized to zero

• What is left ?

- How to choose the loss function ?

- How to initialize the weights ?

14/47

1) How neural networks learn ? 1.1) Gradient descent

1.2) Backpropagation

• Let us have a look at the values of the different terms

- sigmoid as the activation function

- weights are initialized randomly from a Gaussian

• Gradients shrink to zero as the number of layers grows !

vanishing gradient problem

15/47

1) How neural networks learn ?

-1 ≤ w ≤ 1 ≤ 0.25 ≤ 1

1.1) Gradient descent

1.2) Backpropagation

• Activation function brings non-linearities to neural networks

- they help constraining the output of neurons

- they influence the network's capacity to learn and converge

• To be a good activation function (AF), you need to :

- be efficient : an AF should reduce the computation time

- be differentiable (almost everywhere)

Consequence of backpropagation

• This is ok ! In practice, the values never reach exactly zero !

16/47

2) A word about activation functions

• Bounded activation functions are prone to vanishing gradient

- That is why the ReLU has been introduced !

- This is a useful property to induce sparsity

- Other activation functions have been proposed to solve sparsity

17/47

2) A word about activation functions

-1 ≤ w ≤ 1 = 1 = 1

• Training a NN consists in applying a strategy to update the weights of your NN

• Why do we need a strategy ?

18/47

3) How to train neural networks ?

Ideal surface Real surfaceSurface valley

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• The learning rate chosen in the beginning of the training might not be adequate later on !

• One trick to solve this problem is called momentum

- Momentum adds inertia in the choice of the step direction

- The new variable is called the velocity

• Properties :

- It can go through barrier walls

- It accelerates when the gradient does not change much

- It dampens oscillations in narrow valleys

19/47

3) How to train neural networks ?
3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Particular case of momentum : Nesterov momentum

- simulate a step in the direction of the velocity, then calculate the gradient and make a correction

20/47

3) How to train neural networks ?
3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Particular case of momentum : Nesterov momentum

21/47

3) How to train neural networks ?
3.1) Optimizers

3.2) Initialization

3.3) Normalization

• The learning rate chosen in the beginning of the training might not be adequate later on !

• Other algorithms implementing momentum-like methods :

22/47

3) How to train neural networks ?

Adam RMSProp

- works well with

- one of the default optimizers in deep learning

- performs better in non-convex problems

- does not grow unboundedly

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Training a NN consists in applying a strategy to update the weights of your NN

this means adapting the learning rate and implementing momentum

• The algorithms that compute the gradients, implement the backpropagation, deal with
the learning rate and the momentum are called optimizers

• Other methods exist to tune the learning rate,

such as the scheduling :

- consists in reducing the learning rate over time

- can be combined with Adam, RMSProp, ...

23/47

3) How to train neural networks ?
3.1) Optimizers

3.2) Initialization

3.3) Normalization

• So far, we have learned how to train a neural network

- gradient descent and backpropagation allows to update the weights

- batch size and learning rate are very important

- choosing the right activation and loss functions is critical

• What about the initial values of the weights ?

- we know they cannot be zero

- are there some preferred initialization schemes ?

for convex problems, providing a good learning rate,

convergence is achieved regardless of the initial parameter values

24/47

3) How to train neural networks ?

weight's value

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• In practice, most of the problems are non-convex

initial values are important

• First strategy : you want the information to flow in your

network without reducing or magnifying the amplitude of the signals

- deeper layers should receive the information

- a way of stating that consists in preserving the same variance across layers !

25/47

3) How to train neural networks ?
3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Mathematically, this can be expressed as :

26/47

3) How to train neural networks ?

where ql is the width of layer l.

The only way to ensure the same variance across layers is :

This is enforced in LeCun's uniform initialization :

Taken from Louppe, G.

Deep Learning

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Second strategy : you want the gradients to flow in the backward pass without vanishing

- this can be enforced by maintaining the variance of the gradient fixed across layers

• Mathematically,

27/47

3) How to train neural networks ?

Taken from Louppe, G.

Deep Learning

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• The variance of the gradients with respect to the activations is preserved across layers if :

• A compromise on the conditions for the forward and backward pass is found in Xavier's
initialization, which initializes the weights with a variance :

• The normalized Xavier's initialization :

28/47

3) How to train neural networks ?
3.1) Optimizers

3.2) Initialization

3.3) Normalization

• How effective is the Xavier's initialization ?

29/47

3) How to train neural networks ?

Credits: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010

3.1) Optimizers

3.2) Initialization

3.3) Normalization

http://proceedings.mlr.press/v9/glorot10a.html

• He initialization (He et al., 2015) vs Xavier's initialization

• Performs better than Xavier's initialization in some cases

30/47

3) How to train neural networks ?

×

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Previous initialization strategies rely on preserving the variance across layers

- what about the first layer ?

• For the first layer, we have assumed that the variances of the input features are the same,
that is

31/47

3) How to train neural networks ?
3.1) Optimizers

3.2) Initialization

3.3) Normalization

• This constraint is not satisfied in general but can be enforced by normalizing or
standardizing the inputs through

32/47

3) How to train neural networks ?

with

Before normalization After normalization

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Another method to normalize your data is called batch normalization

- let us consider a mini-batch of data, where B is the number of data

- a mean and a variance are estimated across the batch

- These estimates will be used to normalize the output :

33/47

3) How to train neural networks ?

Credits: Ioffe and Szegedy, Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift, 2015.

3.1) Optimizers

3.2) Initialization

3.3) Normalization

https://arxiv.org/abs/1502.03167

• Where are we so far ?

34/47

3) How to train neural networks ?

Mini-Batch

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• Where are we so far ?

35/47

3) How to train neural networks ?

Mini-Batch

3.1) Optimizers

3.2) Initialization

3.3) Normalization

• The choice of the loss function is critical

- the best architecture + the best optimizer + the wrong loss = FAIL

- a simple architecture + a random optimizer + the good loss = SUCCESS

• Most of the problems can be translated into regression OR classification

36/47

4) How to choose the loss function ?4.1) Regression or classification ?

4.2) Interpretation of the loss

• Regression : involves predicting a value that is continuous in nature (temperature, price, ..)

37/47

4) How to choose the loss function ?

Mean Squared Error Mean Absolute Error (L1 loss)

Mean Squared Logarithmic Error Huber loss

Advantages :

- no local minima

- penalizes large errors

Drawbacks :

- outliers are not

handled properly

Advantages :

- outliers are handled

better than MSE

Drawbacks :

- parameter to tune

- complex

Drawbacks :

- computationally expensive

- there may be local minima

Drawbacks :

- more expensive than MSE

- penalizes more underestimates

than overestimates

Advantages :

- relax the penalties on

huge errors

Advantages :

- outliers handled properly

- no local minima

4.1) Regression or classification ?

4.2) Interpretation of the loss

• Classification : involves predicting a discrete class output

38/47

4) How to choose the loss function ?

Binary Cross Entropy Loss

Cross Entropy Loss

BCE with Logits Loss

Notes :

- requires the use of Sigmoid function as the output of

your NN

Notes :

- Sigmoid included in the loss (more numerically stable than BCE)

Notes :

- requires one-hot encoding of labels

- requires the use of Softmax function as the output of

your NN

4.1) Regression or classification ?

4.2) Interpretation of the loss

• Training a NN is long, complex and sometimes confusing

- You don't want to use brute force and redo the training 20 times

- Need visualization tools meanwhile the NN is being trained !

Plot your loss curves !

• Once your model is trained, check the loss curves before testing your network !!!

• Workflow :

39/47

4) How to choose the loss function ?4.1) Regression or classification ?

4.2) Interpretation of the loss

• First problem : underfitting/overfitting (Jason Brownlee, 2019)

40/47

4) How to choose the loss function ?

Problem : flat curve or noisy behavior of

with high values

Problem : loss curves can go lower but

halted prematurely

Solution(s) :

- add more data

- increase model capacity (more layers, etc..)

Solution(s) :

- add more training steps

- increase the learning rate if the training is

too long

Epochs Epochs

Loss Loss

4.1) Regression or classification ?

4.2) Interpretation of the loss

• First problem : underfitting/overfitting (Jason Brownlee, 2019)

41/47

4) How to choose the loss function ?

Problem : validation curve increases while

training curve decreases

Possible solution(s) :

- reduce model capacity (less layers, etc..)

- reduce the learning rate if NN learns too fast

Problem : validation curve levels off while

training curve decreases

Possible solution(s) :

- collect more data (in case of memorization)

- change NN architecture

Epochs Epochs

Loss Loss

4.1) Regression or classification ?

4.2) Interpretation of the loss

• Second problem : unrepresentative training/validation dataset (Jason Brownlee, 2019)

42/47

4) How to choose the loss function ?

Problem : both losses show improvement

but a large gap remains

Solution(s) :

- add more samples in the training set

Problem : training loss smoothly decreases

while the validation loss oscillates "randomly"

Solution(s) :

- add more samples in the validation set

Epochs Epochs

Loss Loss

4.1) Regression or classification ?

4.2) Interpretation of the loss

• Third problem : too large momentum

43/47

4) How to choose the loss function ?

Problem : Training loss is increasing after some iterations!

Iterations

Loss

Possible solution(s) :

- use scheduling to reduce the learning rate or change the optimizer

- use another loss function (if possible)

Gradient Gradient

Momentum

Momentum

Direction

Direction

4.1) Regression or classification ?

4.2) Interpretation of the loss

• Comment : the (mini-)batch size is closely related to the learning rate

44/47

4) How to choose the loss function ?

Batch size : 64

Batch size : 256

Batch size : 1024

Naïve conclusion : increasing the batch size

leads to worst results

Identical learning rate, different batch sizes

4.1) Regression or classification ?

4.2) Interpretation of the loss

• Comment : the (mini-)batch size is closely related to the learning rate

45/47

4) How to choose the loss function ?

Batch size : 64

Batch size : 256

Batch size : 1024

Naïve conclusion : increasing the batch size

leads to worst results

Identical learning rate, different batch sizes

Batch size : 64 | Learning rate : 0.01

Batch size : 1024 | Learning rate : 0.1

Batch size : 1024 | Learning rate : 0.01

Different batch sizes AND learning rates

Correct conclusion : batch size and learning rate

have to be adapted together !

4.1) Regression or classification ?

4.2) Interpretation of the loss

• Most of the problems can be solved by simply looking at the loss curves !

- the examples shown should serve as a general rule

- depending on your architecture, lots of other things can go wrong

• You will not get it immediately

- understanding loss curves take time

- … and failures !

• From "Amateurs" to "Advanced" :

- interpreting loss curves + adapting your NN training

- be comfortable with other architectures

46/47

4) How to choose the loss function ?

GOD

Experts

Advanced

Amateurs

Fanatics

General public

4.1) Regression or classification ?

4.2) Interpretation of the loss

• The deep learning jargon...

47/47

Convolution layers

Learning rate

Pooling

Loss function

ReLU

Vanishing gradients

Backpropagation

Activation function

Gradient descent

Overfitting >< underfitting

Initialization

Optimizer

Transposed convolution

Fully-connected

Transfer learning

Normalization

Batch size

GradCAM

YOLO

RNN

Course 2 : The end

Vincent Boudart, PhD student

vboudart@uliege.be

Vincent Boudart

PhD student

Deep Learning

Introduction & Basics

Course 3 : Table of contents

1) Why convolutional neural networks ?

2) How to build a CNN ?

2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

3) Going further with convolutions

3.1) Skip connections

3.2) Transposed convolutions

3.3) Upsampling

3.4) Dropout

1/47

4) Tips and tricks to train NN better

4.1) Data augmentation

4.2) Transfer learning

5) More advanced networks

5.1) Advanced convolutions

5.2) GANs and autoencoders

5.3) Transformers

5.4) Recurrent networks

• For the moment, we know how to process tabular data with the multi-layer perceptron

• In lots of domains, data are much different than values in a table

2/47

1) Why convolutional neural networks ?

Medical diagnosis

Telescopes

Security Camera

• Can you process images with the multi-layer perceptron ?

• Let us consider Hubble images captured via the Advanced Camera for Surveys (ACS)

- High Resolution Channel : 1000 pixels square images

- Wide Field Channel : 4000 pixels square image

• You can flatten the images to get 1 dimensional data

millions of pixels leads to billions of parameters to train

• (Might be ok for small images)

3/47

1) Why convolutional neural networks ?

• Why MLP is not a good idea to process images ?

• Do we really need to connect all the pixels together ?

- No, resource consuming

• How can you be sure your MLP detects what you want ?

- No visual information, even in the intermediate layers

4/47

1) Why convolutional neural networks ?

• What conditions should we fulfill ?

- locality : only look in a small region around the pixel of interest

- invariance to translation : should recognize objects everywhere in the image

- feature hierarchy : should be composed of layers learning features at different scales

• What can we use to satisfy these conditions ?

- In computer vision, lots of tools make use of kernels

- edge detection, blurring and sharpening operators, template matching, ...

• Kernels are linear operators convolved with the input image

Convolution

5/47

1) Why convolutional neural networks ?

• A convolution layer applies the same linear transformation locally everywhere

• Convolutions generalize easily to N dimensions through multi-dimensions tensors

- for a 3D kernel u, it slides across the input image along its height h and width w

- the size h x w is the size of the receptive field

6/47

1) Why convolutional neural networks ?

Taken from : Francois Fleuret,

EE559 Deep Learning, EPFL

https://fleuret.org/ee559/

• Convolutions generalize easily to N dimensions through multi-dimensions tensors

- for a 3D kernel u, it slides across the input image along its height h and width w

- the size h x w is the size of the receptive field

7/47

1) Why convolutional neural networks ?

Taken from : Francois Fleuret, EE559

Deep Learning, EPFL

https://fleuret.org/ee559/

• Convolutions are great BUT do gradient descent and backpropagation still work ?

- Example of a very simple convolution :

• Let us write the convolution operation as a single matrix multiplication :

- For this, we can flatten the input :

- The kernel u can be expressed as :

8/47

1) Why convolutional neural networks ?

• Convolutions are great BUT do gradient descent and backpropagation still work ?

- The matrix multiplication gives :

• A convolution layer is just a special case of a fully connected layer :

9/47

1) Why convolutional neural networks ?

• Convolutions allow to process images with less parameters than fully-connected layers

• Gradient descent and backpropagation still work

We can use convolutions in a neural network !

• Can we adjust the convolution operation ?

• What are the ingredients needed to build a CNN ?

• How do the layers interact with each other ?

10/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• Can we adjust the convolution operation ?

- convolution is a linear combination of values from the input

- the kernel size is not the only parameter we can tune

• The padding specifies the size of a zeroed frame added around the input

- Padding is useful to control the spatial

dimension of the output map, for example to

keep it constant across layers

11/47

2) How to build a CNN ?

Taken from : Dumoulin and Visin, 2016.

2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

https://arxiv.org/abs/1603.07285

• Can we adjust the convolution operation ?

- convolution is a linear combination of values from the input

- the kernel size is not the only parameter we can tune

• The stride specifies a step size when moving the kernel across the signal

- Stride is useful to reduce the spatial dimension of

the feature map by a constant factor

12/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

Taken from : Dumoulin

and Visin, 2016.

https://arxiv.org/abs/1603.07285

• Can we adjust the convolution operation ?

- convolution is a linear combination of values from the input

- the kernel size is not the only parameter we can tune

• The dilation modulates the expansion of the filter without adding weights

- The dilation modulates the expansion of the kernel support

by adding rows and columns of zeros between coefficients

- Having a dilation coefficient greater than one increases the

units receptive field size without increasing the number of

parameters

13/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

Taken from : Dumoulin

and Visin, 2016.

https://arxiv.org/abs/1603.07285

• Convolution are defined through 4 parameters : kernel size, padding, stride and dilation

• The output of a convolution layer can be computed via :

- example : input image of size 200x200, kernel 3x3, stride 2x2, dilation 1x1, padding 0x0

- output : image of size 99x99

• The stride is the main parameter to reduce the size of the data !

Can we reduce the size of the image in another way ?

14/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• Pooling layers

- When the input image is large, pooling layers can be very useful

- the goal of pooling is to reduce the dimensions of the image but retaining useful features

- pooling layers do not have trainable parameters

• Most used pooling operations :

15/47

2) How to build a CNN ?

Maximum Pooling Average Pooling

Taken from : Francois Fleuret, EE559

Deep Learning, EPFL

2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

https://fleuret.org/ee559/

• Let say we want to classify images that are 200x200 into two categories : cats and dogs

• Let us apply a first convolution with k = 3x3, s = 2x2, d = 1x1, p = 0x0

- output : 99x99

• Applying again a convolution with the same parameters

- output : 49x49

• What are the problems of this procedure ?

16/47

2) How to build a CNN ?

Cat !

2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• 1) Convolutions are linear operators

- stacking them do not lead to a more complex relationship

- need non-linearities : activation functions !

• 2) You cannot choose the output of a convolution layer

- need to tune the parameters accordingly (kernel size, stride, dilation, padding)

- large images require a lot of convolution layers to be reduced by a sufficient factor

- how do you go from 2D images to 1D outputs (the classes "dogs" and "cats") ?

17/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• What are the ingredients needed to build a CNN ?

- convolutions

- activation functions (ReLU, Leaky ReLU, …)

- fully-connected layers (FC)

(- pooling layers)

• The most common CNN architectures follow the pattern :

- usually N ≤ 3 (for basic CNN), M ≥ 0 and K ≤ 3

- YOLO : N = 13, GoogLeNet : N = 22, ResNet50 : N = 48

18/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• A typical CNN architecture :

- convolution layers are used to learn some features in the input image

- fully-connected layers gather all these features to produce an output

NB : some CNN do not contain fully-connected layers, it is usually the case when the goal is not classification

19/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• What does the depth correspond to ?

20/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• What does the depth correspond to ?

• The depth of a layer corresponds to the number of different kernels used in that layer

- the more kernel, the more features can be learned

- but the more kernel, the more parameters to train

20/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• To distinguish and classify objects, animals or scenes lots of aspects are useful

- shape, color, texture, orientation, companion object, ...

- these aspects are often complex and require to be learned in a couple of steps

That is why multiple kernels are useful !

• Let us consider applying a convolution on a RGB image

- a 2D kernel slides over each channel (R, G and B)

- the resulting images are summed into a feature map

- this is repeated N times with N different kernels, giving

N feature maps for this layer (= depth of the layer)

21/47

2) How to build a CNN ?
2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• A composition of multiple convolutions allows the network to learn a hierarchical
composition of patterns

• Example with the ImageNet feature maps

- first layers appear to encode direction and color

- the direction and color filters get combined into

grid and spot textures

- these textures gradually get combined into

increasingly complex patterns

22/47

2) How to build a CNN ?

Taken from Zeiler & Fergus, 2013

2.1) Parameters of a convolution

2.2) Ingredients of a CNN

2.3) How it really works

• So far, we have seen the basic ingredients that compose convolutional networks

- you can now build simple networks for classification tasks

- if you want to build large network, some additional ingredients will be needed

• Large networks, even with ReLU, suffer from vanishing gradients

23/47

3) Going further with convolutions

With Sigmoid With ReLU

3.1) Skip connections

3.2) Transposed convolutions

3.3) Upsampling

3.4) Dropout

• Training large neural networks is made possible thanks to skip connections

• They allow the gradients to shortcut the layers and

pass through without vanishing

24/47

3) Going further with convolutions3.1) Skip connections

3.2) Transposed convolutions

3.3) Upsampling

3.4) Dropout

• For some applications, you do not want to reduce the size of the image, rather you want
to have images as outputs

• Convolutions are used to downscale the useful information

Can we reverse the convolution operation ?

25/47

3) Going further with convolutions 3.3) Upsampling

3.4) Dropout
3.1) Skip connections

3.2) Transposed convolutions

Image segmentation Super-resolution

• Transposed convolutions

- used to increase the size of the data

- different from deconvolution (that is the exact inverse convolution)

- generally used together with convolutions

26/47

3) Going further with convolutions 3.3) Upsampling

3.4) Dropout
3.1) Skip connections

3.2) Transposed convolutions

• Transposed convolutions

- suffer from checkerboard effects (can be reduced by using a kernel size divisible by the stride)

- can prevent the network to converge (leading to funny images...)

- sometimes other upscaling strategies are preferred

27/47

3) Going further with convolutions 3.3) Upsampling

3.4) Dropout
3.1) Skip connections

3.2) Transposed convolutions

Taken from Odena, et al., 2016Taken from Jinsol Kim, 2022

https://distill.pub/2016/deconv-checkerboard/
https://gaussian37.github.io/dl-concept-checkboard_artifact/

• Transposed convolutions are not always the best solution to upscale the information

- suffer from checkerboard effects

- involve trainable parameters

• Upsampling methods can be used to this purpose !

- only one parameter to tune : upsampling factor

- no trainable weights

28/47

3) Going further with convolutions3.1) Skip connections

3.2) Transposed convolutions

3.3) Upsampling

3.4) Dropout

Nearest Neighbors Bilinear Interpolation

• Another upsampling method : unpooling

- exact inverse of pooling

- used together with pooling layers in two-sided network

29/47

3) Going further with convolutions3.1) Skip connections

3.2) Transposed convolutions

3.3) Upsampling

3.4) Dropout

• Increasing the depth of your CNN can lead to overfitting

- because you increase the capacity of your network

- for some tasks, it can learn the statistical noise in your data

- this improves the training curves but fails on the validation curves

• Dropout has been introduced to solve this problem

- dropout consists in "dropping" out some nodes

- each node has a probability p to be dropped

- for a layer of 1000 nodes, if p=0.5, 500 nodes will be dropped

- dropout is activated only during the training phase

30/47

3) Going further with convolutions3.1) Skip connections

3.2) Transposed convolutions

3.3) Upsampling

3.4) Dropout

Epochs

Loss

Taken from :

Srivastava, N. 2014

• Dropout is part of the regularization methods

- regularization consists in discouraging the learning of a more complex model to prevent overfitting

- bring sparsity in the network layers

- the nodes focus more on learning the generalized features

31/47

3) Going further with convolutions3.1) Skip connections

3.2) Transposed convolutions

3.3) Upsampling

3.4) Dropout

Taken from : Srivastava, N. 2014

Without dropout Without dropoutWith dropout With dropout

• The lack of data is the biggest limit to the performance of deep learning models

- collecting more data is usually expensive and laborious

- synthesizing data is sometimes complicated and may not represent the true distribution

• How can we create larger datasets in a simple and efficient way ?

- convolutions are translation invariant, they are translation equivariant

- but they are not equivariant to other transformations

• Data augmentation consists in applying transformations

to your data to create an artificially larger dataset

32/47

4) Tips and tricks to train NN better4.1) Data augmentation

4.2) Transfer learning

Taken from Divyanshu M. 2020

https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a

• Some of the transformations used

- rotation, flipping and cropping are the most used

- noise can also be added to the weights, gradients or activations

33/47

4) Tips and tricks to train NN better4.1) Data augmentation

4.2) Transfer learning

Taken from DeepAugment, 2020.

https://github.com/barisozmen/deepaugment

• Training deep models from scratch on millions of images can take days or weeks

- sometimes you do not have the resources required to train large models for a long period

- or you lack experience to build deep networks

• Why can't you take advantage of the resources of others ?

- many trained models are publicly available

- they can be used as features extractors for your own problem !

• There exists two ways :

- transfer learning

- fine-tuning

34/47

4) Tips and tricks to train NN better4.1) Data augmentation

4.2) Transfer learning

• Transfer learning

- consists in taking a pre-trained network, remove the last layer(s) and take the rest of the network as a fixed
feature extractor

- the only trainable weights are in your own layers at the end

- generally better than training from your own data only

- requires sometimes to adjust your data (resizing, resampling, …)

35/47

4) Tips and tricks to train NN better4.1) Data augmentation

4.2) Transfer learning

Taken from Mormont

et al, 2018.

https://orbi.uliege.be/handle/2268/222511

• Fine-tuning

- Nearly identical to transfer learning but the weights from the pre-trained network are also fine-tuned

- all or only some of the layers can be tuned

36/47

4) Tips and tricks to train NN better4.1) Data augmentation

4.2) Transfer learning

Taken from Dive Into Deep Learning, 2020. Taken from Matthia Sabatelli et al, 2018.

https://d2l.ai/
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Sabatelli_Deep_Transfer_Learning_for_Art_Classification_Problems_ECCVW_2018_paper.pdf

• Let us consider a problem where you want to classify images

- we know how to do it if there is only one object in the image

- in the case of multiple objects, our approach does not work anymore

- the ideal goal would be to separate the objects in the image

• To achieve that goal, we can use bounding boxes

- this implies finding the location AND the class of an object

- these two problems are not easy two solve together !

• …. or segmentation !

- it consists in finding a label for every pixel in the image

- can transposed convolutions be useful ?

37/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

5.3) Recurrent networks

5.4) Transformers

• Bounding boxes : YOLO (You Only Look Once – Redmon et al, 2015.)

- YOLO is one of the best object detection algorithm

- it considers object detection as a regression problem

- from a pre-identified set of bounding boxes and confidence values, it select the best ones

• Many engineering choices :

- the network is pre-trained on the ImageNet dataset

- use Leaky ReLUs for all layers

- data augmentation with scaling and color transformation

- normalize the bounding box parameters in [0,1]

- dropout after the first convolutional layer

- reduce the weight of large bounding boxes by using the square roots of the size in the loss

38/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

5.3) Recurrent networks

5.4) Transformers

• Bounding boxes : YOLO (You Only Look Once – Redmon et al, 2015)

- the input image is divided into a grid (S x S) and for each grid cell, the network predicts B bounding boxes,
a confidence value for each box and C class probabilities

- the loss designed to train YOLO is quite complex and contains many terms achieving different purposes

39/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

Taken from : Francois Fleuret, EE559 Deep Learning, EPFL

5.3) Recurrent networks

5.4) Transformers

https://fleuret.org/ee559/

• Segmentation : UNet (Ronneberger et al, 2015)

- built as a fully convolutional network

- consists in symmetric contraction and expansion paths, with connections from the contracted part to the
expanding part

40/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

Taken from Ronneberger

et al, 2015.

5.3) Recurrent networks

5.4) Transformers

https://arxiv.org/abs/1505.04597

• To go further...

• Object detection :

- Single Shot Multi-box Detector (SSD, Liu et al, 2015) : improves over YOLO by using a fully convolutional
network

- Region-based CNN (R-CNN, Girshick et al, 2014) : instead of producing a large set of bounding boxes,
region proposals are extracted from the image

• Segmentation :

- Mask R-CNN (He et al, 2017) : extends the R-CNN model for segmentation

41/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

5.3) Recurrent networks

5.4) Transformers

• How can you be sure your network detects what it is supposed to ?

- sometimes CNNs do not work as expected

- a deep network can overfit and learn the statistical noise in the data

- you can look at the feature maps to see how the layers are activated

• ...or let a neural network do it for you : Grad-CAM

- Grad-CAM is a neural network producing heatmaps

- check how the gradients flow through a network to

trace back the important regions in the input image

- you can trace back the gradients to any feature map

- easily adaptable to any CNN

42/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

Taken from Zeiler & Fergus, 2013

5.3) Recurrent networks

5.4) Transformers

• Generative Adversarial Networks (GANs) and Autoencoders

- the goal of these networks is both to learn the underlying distribution in the data

AND to produce realistic data

- they mainly differ by the way they are trained

• Autoencoders

- made of two networks : an encoder and a decoder

- the networks can either be MLPs or CNNs

- often used to denoise data

- do not really work as it is

Variational Autoencoders

43/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

Taken

from Deepak

Birla, 2019.

Taken from Francois Fleuret,

Deep Learning, UNIGE/EPFL

5.3) Recurrent networks

5.4) Transformers

https://medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f
https://fleuret.org/dlc/

• Generative Adversarial Networks

- the generator is responsible for the generation of new images from a random noise vector (latent space)

- the discriminator tries to discriminate the generated images from the real ones

- the training is a competition between these two networks

• GANs are very powerful but very hard to train

44/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

Taken from Karras et al, 2018.Taken from Thalles Silva, 2018.

5.3) Recurrent networks

5.4) Transformers

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

• How to make sense of sequential data ?

- examples : activity recognition in videos, text translation, speech recognition, ...

- the analysis of some situations can change with time

• Recurrent networks have been designed to address data sequentially

- they maintain a recurrent state, updated at each step

- predictions can be computed at each step

- implement gating, similar to skipped connections

- examples : LSTM and GRU

- might be hard to train for long sequences

45/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

5.3) Recurrent networks

5.4) Transformers

LSTM block

• Transformers are very different from other neural networks

- composed of an encoder and a decoder

- they implement the attention mechanism, consisting in transporting information from parts of the input
signals to parts of the output specified dynamically

- attention layers produce weights that are functions of the inputs

- require input embedding

• Steps :

- The encoders start by processing the input sequence.

- The output of the encoder is then transformed into a set

of attention vectors K and V that will help the decoders focus

on appropriate places in the input sequence.

- Each step in the decoding phase produces an output token,

until a special symbol is reached indicating the transformer

decoder has completed its output.

46/47

5) More advanced networks 5.1) Advanced convolutions

5.2) GANs and autoencoders

5.3) Recurrent networks

5.4) Transformers

• The deep learning jargon...

Convolution layers

Learning rate

Pooling

Loss function

ReLU

Vanishing gradients

Backpropagation

Activation function

Gradient descent

Overfitting >< underfitting

Initialization

Optimizer

Transposed convolution

Fully-connected

Transfer learning

Normalization

Batch size

YOLO

GradCAM

RNN

47/47

Course 3 : The end

Vincent Boudart, PhD student

vboudart@uliege.be

