Vin cent.

PhD studen__,f

Course 1 : Table of contents

1) What is deep learning ?

2) How it is used nowadays ?

3) Why it will become vital in the future
4) Objectives of this course
)

5) From linear regression to neural network
5.1) Definition of the problem
5.2) Adding complexity
5.3) Towards MLP

6) Analogy with the polynomial regression

1/33

1) What is deep learning ?

* Artificial Intelligence vs Machine Learning vs Deep Learning

(http://wiki.pathmind.com/ai-vs-machine-learning-vs-deep-learning)

- pile of if-then statements

" ~~ — — — — ARTIFICIAL INTELLIGENCE =
« o0 . ~ - A technique which enables machines
- statistical model mapping raw sensory Artificial Intelligence _ - to mimic human behaviour
. . -~
data to symbolic categories - -
) Machine Learning
MACHINE LEARNING
__________ Subset of Al technique which use
statistical methods to enable machines
to improve with experience
Deep Learning
~
S~ — DEEP LEARNING
S~

Subset of ML which make the
computation of multi-layer neural
network feasible

2/33

2) How it is used nowadays ?

* Self-driving cars (Tesla, Google)
- Lots of data to process (camera, LIDAR, RADAR,

GPS, various sensors, ...)

Deep Learning Deep Learning Al-based Tencminebaed =
(or Classical) (or Classical) (or Classical) N (ea.1 glng- 'as;e N Autonomous —
- Lots of action to take (breaking tuming prediction of Perception and High-Level Path Behavior Arbitration M t('” Cass,tml)l Vehicle
’ ’ Localization Planning (low-level path planning) it
A A A A
human and vehicle behavior, ...) Sufety Monitor

)

(b)

Figure 3: Examples of scene perception results. (a) 2D object detection in images. (b) 3D bounding box detector applied on
LiDAR data. (c) Semantic segmentation results on images.

©Google self-driving car Source : https://arxiv.org/pdf/1910.07738

"3 b &

T A 20 3/33

[") ‘o

.n'l .I
)
S H i

& B P E

© e= U ==

2) How it is used nowadays

* Face recognition

Input Low Intermedium High

Li, Xiang et al. Computer Methods in Applied Mechanics and
II‘!PMI Image Leﬂ Eve Right Eve ﬁmse frjfﬂ.u.i‘}l- Engineering. 347. 10.1016/j.cma.2019.01.005. (20]9).

Paul Debevec. A Neural Network for Facial Feature Location.
UC Berkeley CS283 Project Report, December 1992.
http://www.debevec.org/FaceRecognition/

... 9—_5' 4/33

3 @

Oaro
=
“ola

2) How it is used nowadays ?

* Recommendation systems (Netflix, Amazon, Spotify, ...)

Data
Recommendation1
m m —
Movie2 | Rating Recommendation2
Movie3 Rating Recommendation3
Movie4 | Rating i
>
oooo
Movies &
Rating
User

"75% of what people are watching on Netflix comes

from recommendations” McKinsey & Company

SEe o 7 oL
é}’%&;’ gj’gj "f 0101100 i
e T NI e —
®
You listen to and Spotify users oo :
save songs create billions of L g
J{ f playlists T
Spotify identifies similar]
Develops your songs that appear on {22p
“taste profile” those playlists L
Spotify finds songs that
fit your profile, but that
you haven't listened to
Discover
Weekly
| 2|
.
.
P4
>
»
Source: https://qz.com/571007 /the- >
. . . ’ .
magic-that-makes-spotifys-discover-
weekly-playlists-so-damn-good/
5/33

I
‘ |=,.°@

2) How it is used nowadays ?

* Self-learning robots

This robot dog has an Al brain and taught itself to

walk in just an hour, University of California, Berkeley

Atlas robot (Boston Dynamics) performing a sequence

of dynamic maneuvers that form a gymnastic routine

6/33

https://youtu.be/xAXvfVTgqr0
https://youtu.be/_sBBaNYex3E

o0,
i
463
§§IH§:

2) How it is used nowadays ?

* Automatic detection of fruits/vegetables and metal waste ! "

Al camera recognizes more than 120 fruits and
vegetables with a 97% precision (Robovision)

In ... Courtrai/Kortrijk, Belgium !!! & COMET Group

World first: metals sorted by robots. GeMMe laboratory
(Faculty of Applied Sciences at ULIEGE) & Citius engineering

"3 b &

e @ n?

. 7/33
(..g.n % =

.D'l -I
)
S H i

https://youtu.be/7c1lKFFF6dM

3) Why it will become vital in the future

* Sensors are everywhere, data keep growing !

Combo Sensor Thrattle HVAC Steering
Steering- Position Sensor Sensor

Differential torque Sensor =

Fuel Level #

Sens&

Non-Contacting
Angle Sensor

Motor f% e
Position { O p

Sensor

&

<y
C{mss}s Whgel Speed
eve ensor
Sensor . Mirror
Sensor
Accelerator Pedal
Angle Sensor
Headlight =
Range ’ IL’yl Transmission
Sensor . 4 Sensor

ap F Ed

==

DIFFERENT TYPES OF SENSORS
Proximity Sensor %

LDR

Color Sensor Gas Sensor {Light Sensor)

4
2 By o O‘E:L:iif ®

LM35 Alcohol Sensor Snicke Senior =
(Temperature Sensor)

Thermistor
(Temperature Sensor)
o

T % L

" “w Ulfrasonic Sensor

Ed

1 \ IR Receiver
Rain Sensor PIR Sensor Water Flow Sensor
Heartbeat Sensor = 5 E\ A *~
e et ' idi S R
f ”1 } Humidity Sensor Gyroscope ~
IR Sensor IR Sensor Touch Sensor Photo Transistor Soil Moisture Sensor
(Transmissive Type) (Reflective Type) (Light Sensor)

8/33

3) Why it will become vital in the future

* Performance achieved by Al in many domains is now state-of-the-art

& I

010100 abl
0101100

Medical diagnosis Security Camera

A7
n
i

9/33

3 @

ID-' -I
)
S H i

A o]

& B P E

Gy EEe= ==—u
®
of
"R

Cybersecurity)~ ‘ oy
« B i
Rn=4
y

Application of artificial intelligence in traffic jams monitoring

Traffic management

Protein folding | o

DeepMind

Books digitalization
@ ua :|5| 10/33

L=

Q
A
llil

4) Objectives of this course

* This course is only an introduction but you should be able to...

- understand most of the key words/jargon of ML and DL &

- be able to criticize papers in your field where deep learning is used

- understand problems that can happen during NN training

- create and train basic networks (both on tabular data, time series and images)

- Ry i1 &

=5
=
=H =
HED

T % /33
= *Vg i=e

@_ owugoiln_L-

O 5fe (‘2‘) (= Someiess
& B P E

|]

4) Objectives of this course

GradCAM
* The deep learning jargon...

Batch size "R

Overfitting >< underfitting
Convolution]ayers

Vanishing gradients
Loss function

Transfer learning

RNN

Learning rate

Normalization

Transposed convolution

Gradient descent

Fully-connected
ReLU

Initialization

12/33

A7
n
i

3 @

ID-' -I
)
S H i

[L =
: ,=1, Stomoo il

0101100 i

4) Objectives of this course &
* My pyramid of deep learning levels.... :
"R

=

o

GOD —> o, \)i

|$'
Create new architecture, rethink basic
.. . Yoshua Bengio Geoffrey Hinton Yann LeCun
principles (Google, Microsoft, ...) € Experts
Can manipulate neural networks
Advanced _— P ,
and adapt them to their need
Understand basic concepts
and can implement simple &~ Amateurs
neural networks
. = Black box doing amazing things
Fanatics 8 & hing

Terminator, iRobot,

o

self-driving cars, ...

General public

ﬂa u?

% 1 13/33
i 9 =

3 @

ID-' -I
)
S H i

S Gy (@ [EEE
Se —~ \§ -

4) Objectives of this course

* My pyramid of deep learning levels....

GOD —>

|$'
Create new architecture, rethink basic
.. . Yoshua Bengio Geoffrey Hinton Yann LeCun

principles (Google, Microsoft, ...) € Experts

Can manipulate neural networks

Advanced —_— P ,

and adapt them to their need
Understand basic concepts
and can implement simple e Amateurs You can reach this level !
neural networks

Fanatics = Black box doing amazing things

Terminator, iRobot,

— General public

self-driving cars, ...

@ RS 2% 13/33
W& °Q =

10,
&5
823
Hid

4) Objectives of this course ; @

* You will be able to do AND understand... ‘:
AT

1 0 0
0 1 0 0 =0}
0 0 1 0 o
0 0 0 1
1 0 0 0
10
\
0.8 1 ",."
I\-‘\
|
06 1 Wy
I\
i W
04 Inhlll(\
\
02 W
—— validation loss v"._‘i, "'-‘-.\'I"
0.0 training loss L AT P R

0 5 s 75 W00 125 150 175
epoch num

14/33

"3 &

.D'l -I
)
S H i

& & P E

4) Objectives of this course

* You will NOT be able to do this...
» | /-t

Robot dancing

(Boston dynamics)

Faces created by using ProGAN.
These people do not exist.

Simulate and find
laws of physics
(Google DeepMind,
2min55)

15/33

https://youtu.be/BFK9lkez32E
https://arxiv.org/abs/1710.10196
https://youtu.be/2Bw5f4vYL98

& o 1§
5) From linear regression to neural network ™ @

* Let us settle a very simple problem: linear regressior . . . 1 o

40 - = ®‘i [
- You have N data points with coordinates (x,y)

30 - : .
- You want to fit a line to these data .%q
- AND predict new y for new x coordinates >20r Vad 1

il / i
* Model : y = w*x + b or | | | | N

0 2 4 6 8 10

* Parameters: w and b x

Graph taken from Grégory Baltus thesis

* To find the best w and b, we need a mathematical expression to assess how close is our
model with respect to the existing data :

N
L:Zef:
=0

N
i —

N
(yz — yp-‘r'r:d,i)2 — Z(yl — ('EL-‘ T; + b))Q

=0 =0

DiE % o0es 16/33

3 @

ID-' -l

g olﬂl'lﬂoulllr

Do Cf\ Hss

& B P E
sHes

5) From linear regression to neural network ™ @

* The problem becomes an optimization problem ! o
il
N g, (7]
. - o 2 . . . {25}
- find w and b such that L = Z(yi — (wax; + b)) is minimal. =
/ﬁ% I
* We can solve this problem with a 3D graph SRR
00 /\ / /‘ TG
g ?\\X 3 /\ 5 ” 5"4,}«]
- Out of any possible combination of w and b, only 1 SRR "' ' '” ”’”’4’

\'.>"'.....~_' \
s O ’ ' Z7 ’
3&/\%&2@@(@@ Q2 “ ' é&ll" 7
:1
e

SIS SG N 0
>>>%§> 22/‘(:\2 R

gives the minimum of the function. S \<: S5 %?gi,%
FANI >

22 "‘ﬁ’ &
;.'%4/%'&

_§‘: §3§§ =

IS A e é 2
TR ? (e
’zif' =

- Local minimum = g]oba] minimum

T
s

- This is the ordinary least square regression for which

analytical solutions exist (for polynomial regression)

g

DIE) 2% 29% 17/33

5) From linear regression to neural network

* Let us rewrite our problem... with some adaptations
- You now have N data points with coordinates (x,, x, x,, y)

- You want to predict new y from new (x,, x, x,) couples

* Let us write our model : y = woxg+ wy Ty +woTo + b

—WT X +b

* The graph can be summarized as :
& ™
- ()
®

)
&
D

22

& G

Adapted from Louppe, G.
Deep Learning

add —)@

1) Definition of the problem

18/33

& G

==~
° ° 1) Definition of the problem)
5) From linear regression to neural network &
* Let us rewrite our problem... with some adaptations o
"R
- You now have N data points with coordinates (x,, x, X,, Yo ¥, Y2)
- You want to predict new (y,, v, y,) from new (x,, x, x,) couples %

- Every y might need the input from all x (namely x,, x, and x,)

* The model becomes: Y =W! X + B
- fu"y linear

- some inputs (x) might be useless for some outputs (y)

(e.g. y, depends only on x, and x,)

* How can we learn more complex relation between the data ?

"3 b ¢

oo
E[31]

. ,, % 19/33

& e @

5) From linear regression to neural network. .

* How can we learn more complex relation between the data ?

* First guess : add more layers ?

~aP composition of linear functions = linear function

20/33

0101100 il
00N010==
0101100 i

5) From linear regression to neural network. v, @

* How can we learn more complex relation between the data ?
il

’
* Second guess : use polynomial models &)

(=) J ==
L
- Replace the simple linear regression with higher order models T

y = bo-l-b1X1+b2X12+...+anf @ _,@

* Two problems : @

—r-
- require some knowledge of the solution @XL

- computationally more expensive Adapted from Louppe, G.

Deep Learning

T (i .. ' 29% 21/33
U ST

"3 b ¢

ID-' -I
)
S H i

0101100 il
00N010==
o101

==

@

* How can we learn more complex relation between the data ?
ht

5) From linear regression to neural network. .

&

* Third guess : add some non-linearities

~ap Where?

- [-®)

70

* Easy answer : at the output Y = AF(WT X + B)

- we keep a simple linear relation

¥
350

- and add non-linearity at the end

¥

* This non-linear function is called an activation function
Adapted from Louppe, G.

Deep Learning
G N 5 22/33

ouolwo.mL
00N0
oumoo

5) From linear regression to neural network gl @

* Simplest activation function

ST
Step function Rectified Linear Unit (ReLU) NG
1%'
1.0- 3
2
0.5-
1
0.0
- - - - -3 -2 -1 0 1 2 3
-5.0 25 0.0 2.5 5.0

* These simple functions, added to a linear model, can lead to impressive results !

"3 b ¢

oo
E[31]

L B e D 23/33
13 gn =

3 @

ID-' -I
)
S H i

g 01000 40 |
> P il C-/;\ gonolo==
%‘: | e
o o= O—0- .
e [o

5) From linear regression to neural network ®

5.3) Towards MLP

* The unit we have built is the basic mathematical formulation of a neuron G

I wo

*® synapse %

axon from a neuron e ‘%’
woo

impulses carried

toward cell body

/4 branches cell body f (V wix; 4 h)
dendrites ’ t/' 74 of axon w1 %
\, q€) =< F}"‘ i output axor
nucleus ———_g o — e~ arminals activation
y ' > WoTo function
7 &\ '\ impulses carried N\

1)

away from cell body

* The activation function allows to cancel the contribution from some neurons

~=P Information is sometimes not relevant

v . 24/33
(e 4 =

& ap @ EE
5) From linear regression to neural network ®

\I:r-n

5.3) Towards MLP

* Even if our model is better than the multilinear model, it still cannot handle the underlying
. . . . it
complexity of the relationship between inputs and output

- Let us consider the output of our model as intermediate features o

- We can repeat this pattern and build new layers, with different weights (and activation ?)

1 &

Input Layer Hidden Layers Output Layer

|
220

e

l; 25/33

A7
n
i

& ap @ EE
5) From linear regression to neural network ®

5.3) Towards MLP

|

* We have built our first neural network, called the multi-layer perceptron (MLP) o
"

It is mad f i
® It 1s made up of : =
- simple model to tune —_ // \ :

' \/ . \ o Y YN
- non-linearities AKS - i,/ <
X)\

- multiple layers (fully-connected or \, /' / X V' _/l/ f ‘
linear layers) :
9 ¢ @

* Disclaimer 1 : all the neural networks do not fit the template described above

* Disclaimer 2 : once defined, the model still need to be fitted (optimization)

3 @

Oaro
=
“ola

a__g 26/33

»
o
s>

13' -]

6) Analogy with the polynomial regression

* Let us consider a set of points that you want to fit with a polynomial o
"R
) . '\

- you don’t know the exact relation between the data — glx) &

80— @ y=glx)+¢

60 -
- you decide to go for "trial and error" and solve the least

: : : 40 -

square regression with a polynomial of degree d

20 -
- your final choice is based on the total error 0-
20

@} -100 -75 -50 -25 00 25 50 75 100
) Taken from Louppe, G. Deep Learning
i

o, Elg s S 27/33
53 (u@? g

ID-' -

3 @

ﬂ.

= b=

6) Analogy with the polynomial regression

* Fit and total error for some polynomial degrees

degree = 1, A(F d) = 640.80 degree = 2, R(f, d)=428.87

0 - 80 -
— gix) — gix)
. | — y=fix)
o y =fix) 60 -
® y=glx)+e ® y=gix)+e

degree =5, R(f d)=29.75

degree = 4, fi(f, d)=37.69

80 -
— gix)
— y=1flx)
60 -
® y=glx)+&
40 -
20 -
0-
=20 -

- i | | | | I
-100 -75 =50 =25 0.0 25 50 75 10.0 —160 —7’5 —5‘,0 —2l5 00 25 50 75 10.0

Taken from Louppe, G. Deep Learning

&
q;ﬂ

of o7
73
u
i

& g @

degree = 3, .‘i(f, d)=43.05

— gix)

—_ y=fix)

® y=glx)+e

|
10.0

degree = 10, R(f, d) = 14.23

— glx)

— y=fix)

® y=gix)+e

100

0101100 il
00N010==
0101100 i

—

28/33

6) Analogy with the polynomial regression

* The best solution seems achieved when d=10

Total error

107 -

- training error

| | '
4 6 8

Degree of the polynomial

10

Taken from Louppe, G.
Deep Learning

& G
o= O—=0-

29/33

6) Analogy with the polynomial regression ®

* But when you add data points that were left aside...

- = training error 2.3}
test error

10° -

Total error

Taken from Louppe, G.

102 - Deep Learning

Degree of the polynomial
o

30/33

6) Analogy with the polynomial regression

* Capacity is the ability to find a good model
- polynomial regression : degree d

- neural network : number of layers, number of training steps, regularization terms, ...

Error

* Underfitting >< overfitting A

Underfitting zone Overfitting zone
* Separate training and testing data

Write code ———> Train ——> Test ——> Paper

training
error

I generalization
: error

optimal
capacity

RO
17
"
It

R
NG
27
. optimism
Y
e
Capacity
31/33

& G

6) Analogy with the polynomial regression

* You always have to test your model ONCE the training is completed

- this will help you to understand

what your network is doing

- you will learn how to interpret both

training and testing curves

- Ry i1 &

|
]
T
]

ZA

Write code ———> Train —> Validation —> Test ——> Paper

~~—

— Train ——> Te

32/33

* The deep learning jargon... GradCAM

Batch size
Overfitting >< underfitting

Convolution layers Pooling (2.9}

Vanishing gradients
Loss function

Transfer Iearning
RNN
Learning rate
Normalization

Optimizer

Transposed convolution

@ Backpropagation Gradient descent

Fully-connected ’

ReLU

R YOLO o

& Initialization

VLI o fo% N 33/33
E (a5l = N\

% * LIEGE
b universite Course 1 : The end

Ak! With my programming skills,
I will always hawe a job!

Breaking News: Machine Learning researchers
managed to get an Al to write cote

Vincent Boudart, PhD student
vboudart@uliege.be

Vin cent.

PhD studen__,f

Course 2 : Table of contents

1) How neural networks learn ?
1.1) Gradient descent
1.2) Backpropagation
2) A word about activation functions
3) How to train neural networks ?
3.1) Optimizers
3.2) Initialization
3.3) Normalization
4) How to choose the loss function ?
4.1) Regression or classification ?

4.2) Interpretation of the loss

1/47

1) How neural networks learn ? o

* The learning phase of a neural network is an iterative process based on gradient descent &
"R
. . '\

* Let us consider a loss function L(f) defined over model parameters ¢ =

- We will use the local information to iteratively find the minimum

- Let us define a starting point g

- For a small perturbation € of this starting point, the loss can 2-

be written : 01

. 1 5
L(€;60) = L(6) + € VoL (b)) + %HEH?

where 7Y is a constant that has been added T 0 2 a 6

Taken from Louppe, G.

"3 b ¢

Deep Learning

rP___? 2/47

Oaro
]
“wlo

]) How neural networks Iearn D 1) Gradient descen

* The learning phase of a neural network is an iterative process based on gradient descent

A 0,
* To minimize the loss approximation, one has to solve : V. L(¢;6;) = 0 =

1
VQ[,(Q(]) + ;E =0
which happens when ¢ = —~V,L(0))

* By repeating this "small step” process, the update rule for the model parameters is thus :

01 =0 — ’}’Veﬁ(‘?t)

F Ry 1 &

|
]
T
]

ZA

3/47

? 11) Gradient descent

1) How neural networks learn :

* The learning phase of a neural network is an iterative process based on gradient descent &
"R
. . '\

* We know how to update model parameters iteratively : 0,1 = 0, — vV oL (6;) &

- B are the initial parameters of the model

7Y is called the learning rate

* Both parameters are critical for the convergence of

the update rule !

Taken from Louppe, G.

Deep Learning
WE i 4/47

& ap (@ [EE
¢ e= il T-—

? 11) Gradient descent

1) How neural networks learn : &

* The learning phase of a neural network is an iterative process based on gradient descent = &
R
* When the learning rate has the right value :
Taken from Louppe, G. Deep Learning .
8;= —0.50, y=0.50 6,=-0.78,y=0.50 ;= —1.19,y=0.50 .%‘].

8l | | | | | i
-6 -4 =2 1] 2 4 6

6s= —3.06,y=0.50 85 = —3.33,y=0.50

010100 abl
010100 i

? 11) Gradient descent ’
1) How neural networks learn : &

* The learning phase of a neural network is an iterative process based on gradient descent = &

* When the learning rate is too high :

6= —2.00,y=1.30 6, = —3.80,y=1.30 2

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4

Taken from Louppe, G.

6,=-239,y=130

8;= —4.02,y=130 Deep Learning
4 -
2-
@ 0 1
-2 -
= -4
-6 -
Ommo
l’ A 8 -8 1 |
- A ' | U | | I | ' | ' |
A -6 -4 -2 0 2 + 6 -6 -4 -2 0 2 4 6

m " 9_9 6/47

]) How neural networks Iearn D 1) Gradient descen

* The learning phase of a neural network is an iterative process based on gradient descent

Xl
* How do we know if the feedback from the gradients is accurate ? -1 = 0 — vV L(0;) &
- training a NN means finding the minimum of your loss function over your data

~aP Ideal solution : compute the loss over all the samples in the training set

A practice you have thousands/millions of samples, leading to memory overload !

- Solution 1 : evaluate the loss over every single sample : stochastic gradient descent

- Solution 2 : evaluate the loss over a small subset : mini-batch gradient descent

"3 b ¢

oo
E[31]

- ., % 7147

1) How neural networks learn

* The learning phase of a neural network is an iterative process based on gradient descent

* Comparison between stochastic and mini-batch gradient descent

& ap (@ [EE
G Epe= i ==

? 11) Gradient descent

&
p Batch GD A Stochastic GD
- impracticable [*,% - computationally cheap
" - costly in time
Cost Cost 1:,;‘
T
g
Iterations] # Iterations .
A Mini-batch GD
g - computationally heavier
Cost L - faster
\"\—/xz
Iterations]
Bea &1

RO
17
"
It

8/47

]) How neural networks learn ? vetme

* The learning phase of a neural network is an iterative process based on gradient descent

~aP We will use mini-batch gradient descent as a good compromise

* At this point, we know how to update the model parameters 0, =0, — yV,L(6;)

* How do we evaluate the gradients ?

dL
- gradient for one parameter: VL = a0
sradicnt for il urameters s 2~ | 96580 |
i

=
]
o
HED
H..Oln
75
I

9/47

»

o
R e
o

1) How neural networks learn ? ...

* The procedure to evaluate partial derivatives in a NN is called backpropagation

il
* To introduce this concept, let us define a very simple NN with 2 hidden layers
- &
X1
* Let us define the forward pass)
1 .._.- : 'j-\.‘-. 2 .__.- - “l'z-\.‘..
- First layer : hl=Wla + bt &y & \
X s
(Ll _ f(hl) /
hz? —1'-**121 h? —Fﬁzz
- Second and third layer : »* =W?a' +b° ~ | |
X3 wl bl wZ b2 w3
a’® = f(h?)
S =W?a L =loss(y, S)

ofe o o 10/47
8, g

O
%}

1) How neural networks learn ? ... &

* The procedure to evaluate partial derivatives in a NN is called backpropagation

il
* The forward pass expressions and matrices :
g, 1]
hi wr wi, wi b o
1 1 1 Rl — |1 wi— 11 Wip Wis pl— V1
2 21 Wap Wa3 2
1
1 1 _
a = f(h") a [1]
as
2 PR 2 2
. 9 h 2 wi; Wis b
h* = W?a' +b* h® = ,;% W= = { 3 5 b= |1
13 w5, Wi b3
a = f(!) aa == %
as
3 3 3
S =W3a? W = [wl wg] Total : 16 parameters
g gy

o 11/47
") 'G)‘i. ==

o ot0mo0 ul |
> CJ;_\ S Hss
& ff: e
S Re = i =

1) How neural networks learn ? ... &

* The procedure to evaluate partial derivatives in a NN is called backpropagation

s
* Let us try to evaluate the partial derivative of the loss with respect to one parameter
X
- The chain rule of partial derivatives D &)
O

8Xt 8)(15 thfl

= hy —l“ﬁf_;ﬂ11n:ﬁ hy —Hﬁf_‘rﬁ1
8){0 8Xf_1 8}(0
h ~ - - o S N
recursive case [X2 | 5 |
ox; 0x; 1 0xy 0% hp1 —l“ﬁ'_fﬂziﬁﬁ h? —H'_‘ﬂzzxﬁ/'

B 8}{{[_1 8xt_2 Y 8—x1 8x0

X3

- A neural network is a composition of very simple functions !

S — W3 (f(w? FOWVL 2 +bY) + &:2))

ot o o]2/47
-gnl .G)‘i ’ =

"3 b &

oo
E[31]

X

010100 abl

.
> o0oN0==
B 101100
o ° b
> A0S =

1) How neural networks learn ? ... &

* The procedure to evaluate partial derivatives in a NN is called backpropagation o
"a@q
s ‘ll
. | or
Let us try to evaluate - .

Wa2 X1 | 2
oL L Oh} = =
2 ARz A2
ows, Oh; Ows, D /D >

hq —H daq hq —H aq oL
OL da3 Oh3 \ a3
— ¢ ‘ o (o0 SR -
C)a.% dh% dw%z (X2) I da} a2 % } L
oL 9S 0a3 Oh3 |

E)S 8@% 8}}% (‘}w%z

oL
‘Z \ known
depends on the known ¢€asy to
loss function compute

) & 13147

& G

1) How neural networks learn ? ... &
* Gradient descent and backpropagation are the core of deep learning algorithms o
"R
~) O =0, — Y VeL(0 oL W P
t+1 =0y — 7 VoL (0;) — 95 L2 fiihy) ay 29
* What have we learned ?
- Backpropagation is cheap since we know some of the terms thanks to the forward pass !
- The other terms are easy to compute if we choose activation and loss functions adequately
- The weights cannot be initialized to zero -
X1
hy? —Fﬁ11
@}. * What is left ? B
% - How to choose the loss function ? < __
. - How to initialize the weights ? 12 &
@ 22 .
e]
s 4/47

T Y

1) How neural networks learn ? ...

* Let us have a look at the values of the different terms ror

= sigmoid
= derivative

- sigmoid as the activation function L Bl

- weights are initialized randomly from a Gaussian N (0, 1) *l

o oL .

: 1712 1
- = — w h a et

1<w<1 <o025 <j &

* Gradients shrink to zero as the number of layers grows ! ()

~=) vanishing gradient problem

Xs ! wl bl w2 b2 w3

"3 b ¢

-0

Oaro
]
“wlo

15/47

& G
2) A word about activation functions &
* Activation function brings non-linearities to neural networks Sigmoid f
_ 1
- they help constraining the output of neurons 70 = e i
- they influence the network's capacity to learn and converge tanh |
tanh(x) o
o . ReLU m
* To be a good activation function (AF), you need to : max(0, z)
- be efficient : an AF should reduce the computation time) m
Leaky RelLU
- be differentiable (almost everywhere) max(0.1z, z)
lgt 1 = Qt — 7Y VQE 915 . : o
~=P Consequence of backpropagation * ! (6:)
Maxout

max(w! x + by, wl x + by)

* This is ok ! In practice, the values never reach exactly zero ! E'-U

x>0
ale —1) <0

"3 b ¢

-0

16/47

Oaro
]
“wlo

2) A word about activation functions

* Bounded activation functions are prone to vanishing gradient

- That is why the ReLU has been introduced !

oL oL
dws, ~ S wg f ’(h% *’lé

- This is a useful property to induce sparsity

- Other activation functions have been proposed to solve sparsity

Leaky ReLU) ELU
max(0.1x, x) z
Ju— . a(e” —1)

RelLU

max (0, x)

Sigmoid
o(z) = H%

tanh
tanh(z)

x>0 J
z<0 - y 0

D

17/47

3) How to train neural networks 2" &
* Training a NN consists in applying a strategy to update the weights of your NN
Or+1 =0 —yVoL(0) 8?:;%2 = gg wy f'(h3) a3 E]
* Why do we need a strategy ?
ldeal surface Surface valley Real surface

8
7
6 — =
5
4
3 w2
2
0 | SN Path taken by
R :;‘ T~ Gradient Descent
OE ;-"‘ Ideal Path
Ommo
"
1
a - an "5!]8/ 47

=5
2]
= H
KGR

3.1) Optimizers

3) How to train neural networks

* The learning rate chosen in the beginning of the training might not be adequate later on! %
"R
* One trick to solve this problem is called momentum =

- Momentum adds inertia in the choice of the step direction

- The new variable is called the velocity ¢

ur = aug—1 — Y VoL(0s)
Ory1 =0 —yVoL(0:) 4

Ori1 = 01 + uy

* Properties :

- 1t can go through barrier walls a1

- It accelerates when the gradient does not change much

- 1t dampens oscillations in narrow valleys

. ,, % 19/47

"3 b ¢

oo
E[31]

R mpe=s ==
° 3.1) Optimizers
3) How to train neural networks ? &
* Particular case of momentum : Nesterov momentum o
"R
- simulate a step in the direction of the velocity, then calculate the gradient and make a correction
o
we = aui—1 — v VeoL(6y) ur = aui—1 — Y VoL(0r + aup—1) =
Or i1 = 0 + uy Or+1 = 0 + wy

Ut
aut—1

— Y%

g S 25 20/47
u-gan i =

»

o
R e
o

3) How to train neural networks 27"

e Particular case of momentum : Nesterov momentum

.%
\
:) d
. Rt - P j
MOMENTUM AND NESTEROV’S

(D ACCELERATED GRADIENT

.

o ¥ 2l

"3 b ¢

Oaro
]
“wlo

3) How to train neural networks

* The learning rate chosen in the beginning of the training might not be adequate later

3.1) Optimizers

* Other algorithms implementing momentum-like methods :

Adam
st = p15e-1+ (1 — p1)ge
R S¢
St —
1—pf
re = pari—1 + (1 — p2)gt © gt
. Tt
Tt =
1 - ph
S
011 =9t—75+j/f—
t

- works well with p1 =0.9 p2 = 0.999

- one of the default optimizers in deep learning

RMSProp

re =pri1+ (1 —p)gr © gt

y
0+ /Tt

9t+1 — 91% -

- performs better in non-convex problems

- does not grow unboundedly

on! &
R
&
22/47

& op

. 3.1) Optimizers L ==
3) How to train neural networks ? o
* Training a NN consists in applying a strategy to update the weights of your NN 5
"R
~aP this means adapting the learning rate and implementing momentum
0,]
‘@'

* The algorithms that compute the gradients, implement the backpropagation, deal with
the learning rate and the momentum are called optimizers

6014
* Other methods exist to tune the learning rate,

such as the scheduling :

- consists in reducing the learning rate over time

- can be combined with Adam, RMSProp, ... 30l

"3 b ¢

ResNet-18
—ResNet 34 34-layer
2OL ffffffff e e————ee—— -17 —
0 10 20 30 40 50

iter. (1e4)

9_ is' 23/47

o
]
=l

3) How to train neural networks 2 &

e So far, we have learned how to train a neural network
- gradient descent and backpropagation allows to update the weights
- batch size and learning rate are very important

- choosing the right activation and loss functions is critical

* What about the initial values of the weights ?
- we know they cannot be zero
- are there some preferred initialization schemes ?
~aP for convex problems, providing a good learning rate,

convergence is achieved regardless of the initial parameter values

& G

9t+1 = 0 — Y Veﬁ(gt)

oc oL

= - wy f'(h3) ab

dw3, oS

l

weight's value

24/47

& G (@ EE
° o = ===
3) How to train neural networks 2 &
* In practice, most of the problems are non-convex
"R
~a initial values are important
NG
c%n
* First strategy : you want the information to flow in your
network without reducing or magnifying the amplitude of the signals
- deeper layers should receive the information
- a way of stating that consists in preserving the same variance across layers !
S = w3 (f(W2f(W1:s+b1) +62))
T30 25/47

3) How to train neural networks 2 &
* Mathematically, this can be expressed as : - :
X1 Loy
Q11 - o .
\Y% {hi] =V Z wij hfjl] hyt —>{as?) |
7=0

h,? —nﬂlz\ '%'
| ‘Xz ()
g-1—1 - /‘

j gt —>(ag?))
j=0 -
(X3 ¥ 1 pt W2 b2 Wl
VIR] =gV [w] VIR i
where q; is the width of layer . 1
The only way to ensure the same variance across layersis : V [’wz} — 0 Vi
[-1

Taken from Louppe, G.

3 3 Deep Learning
a1\ @1

L 26/47
«-@'ﬂ Sy B

3) How to train neural networks 2

* Second strategy : you want the gradients to flow in the backward pass without vanishing

- this can be enforced by maintaining the variance of the gradient fixed across layers

|=v

* Mathematically, [d¥
dh!

[qi1—1 -
> o
| =0

(g1 1—1 -
dy
v Z dhlﬂ—l
| J= J
Q'J—llv d:l)
dhiH!

=0 j
dy
dhi+1

[+1
OR!,]

dhitt Oh;
J t

&8
.
— |%'
X1 o
hyt —HZ:/ﬂ11\:Z h? —H:/lf\:\
X2) (s)
hzi _n::/azi\:: hzz _H::/azz\:: /
(X ¥\t pt W2 b2 W3
Taken from Louppe, G.
Deep Learning
27147

& G

3) How to train neural networks 2

* The variance of the gradients with respect to the activations is preserved across layers if :
dy dy I+1
\% [W] =q 1V [dhm} V [w N5

~ V[wl}:% vl

* A compromise on the conditions for the forward and backward pass is found in Xavier's
initialization, which initializes the weights with a variance :

1 2
V [w!] = —
w] L g +q

* The normalized Xavier's initialization : w!, ~ U

6 6
g1ta \Vai1t+q

"3 b ¢

i
")

ID-' -I
£
S H i

28/47

"3 b &

.n'l -I
)
S H i

g
. -~ AR e

3) How to train neural networks ? ®

. . .] . °e_ o . . o 0
* How effective is the Xavier's initialization ?)
"R
15¢ T T T T T T T T I 100 T T 1
—Layer 1 —Layer 1 %
Layer 2 —Layer 2 'i'
10 —Layer 3 —Layer 3
/\ —Layer 4 50 —Layer 4
5! , Layer 5 Layer 5
0 | e S— — | a J ? = d
-1 08 -06 -04 -02 O 0.2 0.4 0.6 0.8 1 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Activation value Backpropagated gradients
2 T T T T . 10 T T T T T I 1
—Layer 1 —Layer 1/ |
- | i |
1.5- m Layer 2 ;J ’ d[w Layer 2
‘.gﬁ.—‘ e Y —Layer3 “I ""., | —Layer 3 |
1 -] g —Layer 4 5 —Layer 4|
.,|W Layer 5 it % 3 sosis| |
g yer
0.5 Aol * j \ ‘
i o % 1 ' Iﬁk\f |
e e, | s \
0 cnetp 1 1 1] M 0 _‘M" i 1 i 1 '“Q‘M Aw. (S
-1 -08 -06 -04 -02 0 02 04 06 08 1 -0.25 -0.2 0.15 -0.1 -005 0 0.05 0.1 0.15 02 025
Activation value

Backpropagated gradients

Credits: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010

i foe% 29/47
(sl @ =

http://proceedings.mlr.press/v9/glorot10a.html

1 &

|
220

mASS

3) How to train neural networks 2

* He initialization (He et al., 2015) vs Xavier's initialization

Vo] = = x V[wl]= b=

_11q
= q1+q

0.95+

0.9
5 \ A
LE l" "\Jnl'.r-l
085} 1
—Eﬁ[‘/ar[wf] =1 ours
0.8}
——e= WVar[w] =1 Xavier
0.75 \ : . , . .
0 0.5 1 15 2 2.5 3
Epoch

RO
Q

-9

"

It

S8 G

30/47

C'/;\ 0101100 4L |
>) 001010==
0101100 i

S = oo
Sre= o=

3) How to train neural networks 2

* Previous initialization strategies rely on preserving the variance across layers

- what about the first layer ? @D
q-1—1 - .ﬁq
= LRl i >{agt) =
VR =V) wihk] e
7=0

hy? _;-{:‘alz \ o
Xz | (s)
qi-1—1 =

\% [hq = q_,V {wl} % [hl_l} X pt 2 b2 s

* For the first layer, we have assumed that the variances of the input features are the same,
that is

Viz] = Vg, £ V[a

1 &

|
220

0 [He

(=5
@
o
496%8

A0

31/47

3) How to train neural networks ?

Normalization

* This constraint is not satisfied in general but can be enforced by normalizing or

Number of households

standardizing the

Full data

inputs through , 1
x =(x-p)o %

5_2_

Before normalization

e
GATS=200)

Number of households

-0.2

& G @ EE
3) How to train neural networks ? ... o

* Another method to normalize your data is called batch normalization :
"a®©@rq
l.
- let us consider a mini-batch of data, where B is the number of data
- a mean and a variance are estimated across the batch BN ?
e
. 2
Hbatch = E Z uy Obatch B Z l«Lbatch
b—1 1
. . . / A
- These estimates will be used to normalize the output : 1, =7 ® (U — flpaten) © + B
Obatch T €
0.8
Model Steps to 72.2% Max accuracy
- il I Inception 31.0-10° 72.2%
BN-Baseline 13.3 - 10° 72.7%
BN-x5 2.1-10° 73.0%
_ BN-x30 2.7-10° 74.8%
B e BN-x5-Sigmoid 69.8%
BN-x5
BN-x30))
. gtl\fl::ifnlwgar?corﬁnception Credits: loffe and Szegedy, Batch Normalization: Accelerating Deep
15M 20M 25M 30M Network Training by Reducing Internal Covariate Shift, 2015.
33/47

https://arxiv.org/abs/1502.03167

3) How to train neural networks ?

* Where are we so far ?

Problem

- classification

- regression

- detection
71
1

0.] ¢ &%

J 3 “'g'" R =

Architecture

-

-

- fu”y—connected |ayers
- activation function

- batch normalization

~

/

I

Weight Initialization

—

Mini-Batch

Normalization

—

- gradient descent
- backpropagation
- momentum

- Iearning rate

010100 abl
010100 i

34/47

3) How to train neural networks ?

* Where are we so far ?

Problem

- classification
- regression

- detection

A7
n
i

—

Architecture

4 N

- fu”y—connected |ayers
- activation function

- batch normalization

. /

—

Mini-Batch

Loss

/\

f

@} k\}wna]ﬁatij
Il

Normalization

—

- gradient descent
- backpropagation
- momentum

- Iearning rate

010100 abl
010100 i

35/47

"3 b ¢

ID-' -I
)
S H i

010100 abl
010100 i

& e 4
4) How to choose the loss function 2=+ o

* The choice of the loss function is critical T
"R

- the best architecture + the best optimizer + the wrong loss = FAIL

- a simple architecture + a random optimizer + the good loss = SUCCESS %

* Most of the problems can be translated into regression OR classification

_ Regression
Area (feet?) | X % What is the temperature going to

. w(be tomorrow?
-y - V///4
A New Data PREDICTION
¢ Bedrooms = X2
.’\’“" Fahrenheit |___
= F % 40 % @ 10 0 10 D 30 40 5 60 N 60 9 00 110 120 130 MO 150 160 10 180 150 W0 210 20 2
s

. >|</>|>
o -2

y Price
Distance to city (Miles) Xz _— "
Model Classification
- Prediction Output i oy
. P Training Will it be Cold or Hot tomorrow?
Past Labeled

Data Age XZO PREDICTION

coto [or

Fanrenheit e - e - - - - -
Input Layer Hidden Layer Output Layer

-0

o S o 36/47

A7
i

"3 b ¢

ID-' -I
£
S H i

& o @ EE
4) How to choose the loss function 2=+ o

* Regression : involves predicting a value that is continuous in nature (temperature, price, ..) :
'®‘.

1 T 5 1 T o
MSE = E E (y'i.,t-r-urf - y-i,p-r"ed-icted) MAFE = E E Yitrue — Yipredicted
Advantages : Drawbacks : Advantages : Drawbacks :
- no local minima - outliers are not - outliers are handled - computationally expensive
- penalizes large errors handled properly better than MSE - there may be local minima
. , 1 - 2 % (yt?"u(ﬂ - yp-r"ed-icted)gz iﬂytr'{.t—e - ypred:icted‘ < 0
MSLE = — E (log(yi:tr“ﬁae) - log(y'f'.,p:r‘ed'i.(:ted)) L5 — ') 1 2 1

n i—1 J ‘yt?'u(ﬂ — yp-r"edfictedl 3 0 ; otherwise
Advantages : Drawbacks : Advantages : Drawbacks :
- relax the penalties on - more expensive than MSE - outliers handled properly - parameter to tune
huge errors - penalizes more underestimates - no local minima - complex

than overestimates
[0,25 X; n?

: 37/47
“'@'" '% =

3 @

ID-' -I
)
S H i

[' =
& @_ 0101100 4kl
s 00N010==

0101100 1

iLCe

Toes il == —

4) How to choose the loss function 2=+ o

* Classification : involves predicting a discrete class output %
®‘l

1 — 1 <& _ s
BCE = _H Z (y'i,-i'f‘ur: ‘EOg(yi,Prrﬁdicteri) + (1 - yi,t'r'urf) log(l - yi,PT'edzcted)) BOEL = 7; Zl (yi:tmm Jog(a(yi’predi[“ted)) + (1 o yi‘tr'uri) iog(l B O'(yi’pr-edictrid)))
=1 1=
Notes : Notes :
- requires the use of Sigmoid function as the output of - Sigmoid included in the loss (more numerically stable than BCE)
your NN
1 1 0 0 0
Sigmoid S(z) = ———
1+te ™ Dog 0 1 0 0
R Turtle o 0o 1 0
- Z Yij.true 309 Yij.predicte d)) Fish 0 0 0 1
[t ! Cat 1 0 0 0
Notes : .
) . . e
- requires one-hot encoding of labels Softmax o(Z); = -
- requires the use of Softmax function as the output of T ° io Zj:l e
your NN
[0 '. 3 09 ﬂ? 38/47
“'@"’ %‘ ==

»

o
R e
o

4) How to choose the loss function 2.

* Training a NN is long, complex and sometimes confusing

R
- You don't want to use brute force and redo the training 20 times
- Need visualization tools meanwhile the NN is being trained ! gﬂ

~ Pplot your loss curves !
* Once your model is trained, check the loss curves before testing your network !!!

* Workflow : Write code ——> Train —> Validation —» Test ——> Paper

G- gt 39/47

A7
n
i

* First problem : underfitting/overfitting (Jason Brownlee, 2019)

Loss

Problem : flat curve or noisy behavior of
with high values

+1.099 Loss

0.00040 A

0.00035 A

0.00030 -

0.00025 —— train

validation
0.00020 -

0.00015 A

0.00010 1

0.00005 -

CI) 2'0 4IO GYO SIO 160
Epochs
Solution(s) :

- add more data

- increase model capacity (more layers, etc..)

Loss

o

&

G @
S —
<2

4) How to choose the loss function 2.

I

Problem : loss curves can go lower but

halted prematurely

1.075 4

1.050

1.025 4

1.000

0.975 1

0.950 +

0.925

0.900

0.875

Loss

—— train

validation

0

10

Solution(s) :

20 30 40
Epochs

- add more training steps

50

- increase the learning rate if the training is

too long

£da
858
nE,

40/47

3 @

ID-' -I
)
S H i

o

&

»
s> _Tc
7 —
[t

o

4) How to choose the loss function 2.

* First problem : underfitting/overfitting (Jason Brownlee, 2019)

Problem : validation curve increases while

training curve decreases

Loss

1.0 — train

validation
0.9

0.8 1

0.7 1
Loss

0.6 1

0.5 1 \\

0.4 ""'“"-*'-%
0 100 200 300 400 500
Epochs

Possible solution(s) :
- reduce model capacity (less layers, etc..)

- reduce the learning rate if NN learns too fast

Problem : validation curve levels off while

training curve decreases

10 1

i WM
06 1

Loss
04 1
0.2
-~ yalidation loss
0.0 - training loss

0 25 50 75 100 125 150 175
Epochs
Possible solution(s) :
- collect more data (in case of memorization)
- change NN architecture

007

o

&

»
s> —T-o
7 —
[t

o

4) How to choose the loss function 2.

* Second problem : unrepresentative training/validation dataset (Jason Brownlee, 2019)

Loss

1 &

|
220

e

Problem : both losses show improvement

but a large gap remains

Loss

—— train
3.0 validation

1.5 A1

o A
0.5 1 \’\f\\

(I.) 2‘0 4IO GIO BIO 160
Epochs
Solution(s) :

- add more samples in the training set

Loss

Problem : training loss smoothly decreases

while the validation loss oscillates "randomly”

11

1.0 A1

0.9 A1

0.8 1

0.7 A1

0.6 1

0.5 A

0.4 1

0.3

Loss

i\

\

— train
validation

\V‘V"’f‘v'\/\/‘"\—-'vwv‘w\/\ﬁ-\w»__/V\/\-\,._

20 40 60 80 100
Epochs

Solution(s) :

- add more samples in the validation set

42/47

AN

=5

AN

v 3 - o ° -“‘-I Mm#
/ = & op P B

4) How to choose the loss function 2. v @

- use scheduling to reduce the learning rate or change the optimizer

* Third problem : too large momentum _-
®‘|
Problem : Training loss is increasing after some iterations! NG
Momentum . . =
Direction
~ Momentum
o
Direction
Loss
Gradient Gradient
@ 0 500 1000 1500 2000 2500
Iterations
Possible solution(s) :
<
uig
pal

- use another loss function (if possible)

o

o @g . dag \ 43/47
i ‘g? %? N

N\

@% gjﬁ
4) How to choose the loss function 2. &

* Comment : the (mini-)batch size is closely related to the learning rate

R
ldentical learning rate, different batch sizes
|$'
0.600
Batch size : 256
0.400 Batch size : 1024
0.200
e —e
0.00

5.000 15.00 25.00

Naive conclusion : increasing the batch size

leads to worst results

s 44/47
(..g,n ‘ ®‘i . ——

go
rLC}
&
858
nE,

5$r 5
223 T“’ 2(o8?
% T NI e —

%o

4) How to choose the loss function 2. &

* Comment : the (mini-)batch size is closely related to the learning rate %
®‘l

ldentical learning rate, different batch sizes

0.600
Batch size : 256

Batch size : 1024

0.400 |
0.200
O B S —
0.00 ———
5.000 1500 25.00

Naive conclusion : increasing the batch size

1 &

leads to worst results

|
220

e

Different batch sizes AND learning rates
0.600
Batch size : 1024 | Learning rate: 0.1
0.400 Batch size : 1024 | Learning rate: 0.01
0.200
0.00

5.000 15.00 25.00

Correct conclusion : batch size and]eaming rate

have to be adapted together !

45/47

»
o
s>

13' -]

4) How to choose the loss function 2. &

* Most of the problems can be solved by simply looking at the loss curves ! i

- the examples shown should serve as a general rule i

- depending on your architecture, lots of other things can go wrong %
GOD

* You will not get it immediately Experts

- understanding loss curves take time

- ... and failures ! C Advanced

Amateurs

* From "Amateurs” to "Advanced" S
anatics

- interpreting loss curves + adapting your NN training

- be comfortable with other architectures General public

i , % 46/47

"3 b ¢

oo
E[31]

V3 g o o _“‘,I oumoo#
/ = é% gj@? E @ =

The deep learning jargon... CradCAM
Batch size .®“'
Overfitting >< underfitting

Convolution Iayers

Pooling

Vanishing gradients

I
[
/

Loss function

Transfer]earning
RNN
Learning rate
Normalization

Optimizer

Transposed convolution

Gradient descent

Fully-connected
ReLU

Initialization

octs 47147

"y 1l &

lﬂ-‘ -I
EH);
o Lo

¥ LIEGE

université Course 2 : The end

THE #| DEEP LEARNING EXCUSE
FOR LEGITIMATELY SLACKING OFF:

"MY MODEL 15 TRAINING."

HEY! GET BACK
TOWORK!
P A

_ TRAINING!

E SN

OH. CARRY ON.

Vincent Boudart, PhD student

vboudart@uliege.be

Vin cent.

PhD studen__,f

Course 3 : Table of contents

1) Why convolutional neural networks ?

2) How to build a CNN ?

2.1) Parameters of a convolution

4) Tips and tricks to train NN better

4.1) Data augmentation

4.2) Transfer learning

2.2) Ingredients of a CNN
) Ing 5) More advanced networks

2.3) How it really works
5.1) Advanced convolutions

3) Going further with convolutions
5.2) GANs and autoencoders

3.1) Skip connections 5.3) Transformers

.2) Transposed convolutions
32) P 5.4) Recurrent networks

3.3) Upsampling
3.4) Dropout

1/47

& dp P EE
1) Why convolutional neural networks ? &

* For the moment, we know how to process tabular data with the multi-layer perceptron
"
* In lots of domains, data are much different than values in a table
&
5}

Security Camera

@}v Telescopes
&)) .
i Medical diagnosis

2/47

=5
@

oo
KGR

A7
n
i

"Eﬂﬁ@’

X 4

)
E[31]

1) Why convolutional neural networks ?

* Can you process images with the multi-layer perceptron ?

* Let us consider Hubble images captured via the Advanced Camera for Surveys (ACS)
- High Resolution Channel : 1000 pixels square images

- Wide Field Channel : 4000 pixels square image

* You can flatten the images to get 1 dimensional data

~aP millions of pixels leads to billions of parameters to train

X
X

AN AN N
/ ol AP 7 A
NN
Z \ ok NN
¥ ‘:‘x':j - < e
M DEIX

* (Might be ok for small images)

i <

3/47

AN

/ ‘ = & o % [E

1) Why convolutional neural networks ? &
* Why MLP is not didea t i ?
y is not a good idea to process images | I
&
* Do we really need to connect all the pixels together ? =
4+~ - No, resource consuming
* How can you be sure your MLP detects what you want ?
- No visual information, even in the intermediate layers
,
i3 D _:s- — 4/47

(A -\‘ '-I ﬂ
& dp § E

1) Why convolutional neural networks ? &
* What conditions should we fulfill ?

- locality : only look in a small region around the pixel of interest
- invariance to translation : should recognize objects everywhere in the image El

- feature hierarchy : should be composed of layers learning features at different scales

* What can we use to satisfy these conditions ?
- In computer vision, lots of tools make use of kernels

- edge detection, blurring and sharpening operators, template matching, ...

. * Kernels are linear operators convolved with the input image L1 L ; g _;
OE . [x] - E o
~ap Convolution S
.. @ P9 5/47

g

»

o
R e
o

1) Why convolutional neural networks

* A convolution layer applies the same linear transformation locally everywhere

Taken from : Francois Fleuret,
EE559 Deep Learning, EPFL

Output

* Convolutions generalize easily to N dimensions through multi-dimensions tensors

- for a 3D kernel g, it slides across the input image along its height A and width w

- the size h x wis the size of the receptive field

"3 b ¢

Oaro
]
“wlo

@ 9—_9 6/47

https://fleuret.org/ee559/

& G

1) Why convolutional neural networks ?

* Convolutions generalize easily to N dimensions through multi-dimensions tensors

- for a 3D kernel g, it slides across the input image along its height A and width w

- the size A x w is the size of the receptive field

Input

Qutput

Kernel @

Taken from : Francois Fleuret, EE559
Deep Learning, EPFL

o 7147
“,g,n o Q- =

https://fleuret.org/ee559/

& G

1) Why convolutional neural networks ? &
* Convolutions are great BUT do gradient descent and backpropagation still work ? 5
"R

4 6 3
- Example of a very simple convolution: z® u = (8 5 1
2 4 6

D)o (3 2\ _ (69 50\ _, o
o5 1 48 43 an

y . ava
- For this, we can flatten the input : v(z)=(4 6 3 8 5 1 2 4 6)

32 05 1 0 0 00
_ The k 1 b d . 0 3 2 0 5 1 0 0 0
€ Kernel g can pbe expresse das [00033200510
00 0 0 3 2 0 5 1
Tm N g 8/47

=
A
i

1) Why convolutional neural networks ?

y =

D2 C-/;\ gm}:ﬁgg‘é

-) ji °) 0101100 iwint

7 : ?_ gl T
o= 3 O—=0- E

* Convolutions are great BUT do gradient descent and backpropagation still work ? o
"R
3 2 0 5 1 0 0 0 0
T 03 2 0 5 1 0 0 0
. i %
ve)=(4 6 3 8 5 1 2 4 6 000320510 '%
00 0 0 3 2 0 5 1

- The matrix multiplication gives :

Uwv(x)= (69 50 48 43) t = v(h)

* A convolution layer is just a special case of a fully connected layer :

v(h) =Uwv(x)

-

Bt =Wtz +b!

X
hyt —yaii
%
hpt —Vﬁ:azi)
X3 wli bl

9/47

. v 2.1) Parameters of a convolution
2) How to build a CNN ¢ ()

N -
(ES2a2)-

* Convolutions allow to process images with less parameters than fully-connected layers
it
* Gradient descent and backpropagation still work 39051000 0
, , 032051000
~=P We can use convolutions in a neural network ! U=10 003205 1 0
00 0 0 3 2 0 5 1
* Can we adjust the convolution operation ?
* What are the ingredients needed to build a CNN ?
@} * How do the layers interact with each other ?
ui
W W 10/47
) 3 (u@? 'C-)li » =

?E@
| |=-o@
582
i

. > 2.1) Parameters of a convolution : -
2) How to build a CNN ()

* Can we adjust the convolution operation ?

320510000 ,
. . 032051000 e

- convolution is a linear combination of values from the input U=100032051 0
- the kernel size is not the only parameter we can tune 000032051 =

* The padding specifies the size of a zeroed frame added around the input

- Padding is useful to control the spatial
dimension of the output map, for example to

keep it constant across layers

o 0®s °p:% Taken from : Dumoulin and Visin, 2016. /47

https://arxiv.org/abs/1603.07285

. v 2.1) Parameters of a convolution
2) How to build a CNN ¢ ()

* Can we adjust the convolution operation ?

320510000 7
- convolution is a linear combination of values from the input p=|Y 3 2051 9 00
000 3 2 0 5 10
- the kernel size is not the only parameter we can tune 000032051 &)

* The stride specifies a step size when moving the kernel across the signal

- Stride is useful to reduce the spatial dimension of

the feature map by a constant factor
Taken from : Dumoulin

and Visin, 2016.

[R 259 12/47

oz
A7
n
i

https://arxiv.org/abs/1603.07285

A “; aul
R G (@ [E
2gve Epe= ===

) H OW to bu]] d a C N N) Parameters of a convolution @

: : —_ vee
* Can we adjust the convolution operation : 390510000 %
- convolution is a linear combination of values from the input [— 8 ?} 3 2 g é 0 [13 g

. E 5 ’
- the kernel size is not the only parameter we can tune 0000320 5 1 F!?l

* The dilation modulates the expansion of the filter without adding weights

- The dilation modulates the expansion of the kernel support

by adding rows and columns of zeros between coefficients

Taken from : Dumoulin
and Visin, 2016.

- Having a dilation coefficient greater than one increases the

units receptive field size without increasing the number of

parameters

rP__s' 13/47

"3 b &

Oaro
=
“ola

https://arxiv.org/abs/1603.07285

i"ﬁﬂﬁ@

) H ow to bu]l d 3 CN N) Parameters of a convolution

* Convolution are defined through 4 parameters : kernel size, padding, stride and dilation

* The output of a convolution layer can be computed via :

stride

W, — r-{-“}w — 1 4+ 2 padding — dilation (kernel — 1) N lJ

- example : input image of size 200x200, kernel 3x3, stride 2x2, dilation 1x1, padding 0x0
- output : image of size 99x99

* The stride is the main parameter to reduce the size of the data !

~=p Can we reduce the size of the image in another way ?

g E B 2

14/47

& Gp

2) H owW to bUiI d 3 CN N .? 2.1) Parameters of a convolution

* Pooling layers)
- When the input image is large, pooling layers can be very useful
- the goal of pooling is to reduce the dimensions of the image but retaining useful features i
- pooling layers do not have trainable parameters Input

Output

* Most used pooling operations :

2 3 2|0 201|328 IS2 SN0

S|-2(2 (8| Pooling | S| 8 5|-2| 2 (8| Pooling | 2 |3 <h

-11-6| 71| 3 il || 4 mE=es 7 | 3 4 | 4 SE—
4(5|4]2 %] 4 | 2

Maximum Pooling Average Pooling
—>
C
Taken from : Francois Fleuret, EE559
. Deep Learning, EPFL
W 0,50 4 u?

R 15/47
u-gnl i 3

A7
n
i

https://fleuret.org/ee559/

2) How to build a CNN 7w o

* Let say we want to classify images that are 200x200 into two categories : cats and dogs oS
"R
. . '\

* Let us apply a first convolution with k = 3x3, s = 2x2, d = 11, p = 0x0 &

- output : 99x99

Applying again a convolution with the same parameters

- output : 49x49

* What are the problems of this procedure ?

Cat !

"3 b ¢

%D
-0

o ¢ 16/47
a5l .@ﬂ| ==

ID-' -I
]
S H i

E\J 'y?
go
2
U
6%
838

nE,

2) How to build a CNN 7w o

* First guess : add more layers ?

1) Convolutions are linear operators

~ap composition of linear functions = linear function

- stacking them do not lead to a more complex relationship e o o
N - . Sele e o — &
- need non-linearities : activation functions ! —0L gt gl — =3
—) =
o O O

2) You cannot choose the output of a convolution layer
- need to tune the parameters accordingly (kernel size, stride, dilation, padding)
- large images require a lot of convolution layers to be reduced by a sufficient factor

- how do you go from 2D images to 1D outputs (the classes "dogs" and "cats") ?

Calling the network with the right number of inputs and outputs + Put it on the GPU
N _inputs = batch x.size(1)
N outputs = batch label.size(1)

N hidden 1 = 1000
N _hidden 2 = 100
N _hidden 3 = 100
my network = MLP(ngpu, N _inputs, N_hidden 1, N hidden 2, N _hidden 3, N outputs).to(device)
- o 17/47
~Qy =

(V)

2) How to build a CNN 7w

* What are the ingredients needed to build a CNN ? o
"R
- convolutions
- activation functions (ReLU, Leaky ReLl, ...) %q

- fully-connected layers (FC)
(- pooling layers)

* The most common CNN architectures follow the pattern :

INPUT — [[CONV — RELU|*N — POOL?|*M — [FC — RELU]*K — FC

- usually N < 3 (for basic CNN), M>0and K< 3
- YOLO : N =13, GooglLeNet: N = 22, ResNet50 : N = 48

. n % 18/47

"3 b ¢

oo
E[31]

2) How to build a CNN ? =

* A typical CNN architecture :

— CAR
— TRUCK
— VAN

D]:] — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

FULLY
FLATTEN CONNECTED SOFTMAX

i b

FEATURE LEARNING CLASSIFICATION

- convolution layers are used to learn some features in the input image

- fully-connected layers gather all these features to produce an output

NB : some CNN do not contain fully-connected layers, it is usually the case when the goal is not classification

e B 4

3 @

=5

R G (1% EE
) °o > —o—o A 4 =

19/47

& ap (@ [EE
Gy Ere= =

2) How to build a CNN ?

* What does the depth correspond to ?

2.3) How it really works @
A\

— CAR ==
— TRUCK
— VAN

’ Cralll O [] — eicycte
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN coiquhllézrzo SOFTMAX

FEATURE LEARNING CLASSIFICATION

3 6 20/47
(ugnl .@‘i » =

&R P E
o o= o—0-

2) How to build a CNN ?

2.3) How it really works @

* What does the depth correspond to ? :
"
/

D]:] — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

FULLY
FLATTEN CONNECTED SOFTMAX

i b

FEATURE LEARNING CLASSIFICATION

* The depth of a layer corresponds to the number of different kernels used in that layer

- the more kernel, the more features can be learned

- but the more kernel, the more parameters to train

3 @

=5

= N g 20/47

¢ R = owuooil._L-
220 % g/\ ﬁ_"_') : “7 e =S
’-) °o o= o—0 AN TS

2) How to build a CNN 2 ., .. ()

* To distinguish and classify objects, animals or scenes lots of aspects are useful
"

- shape, color, texture, orientation, companion object, ...
: : 0,
- these aspects are often complex and require to be learned in a couple of steps 'F!?l

~=P That is why multiple kernels are useful !

* Let us consider applying a convolution on a RGB image
- a 2D kernel slides over each channel (R, G and B)
- the resulting images are summed into a feature map

- this is repeated N times with N different kernels, giving

N feature maps for this layer (= depth of the layer)

gz, TEI 5 21/47
E 3 (ugan ' G)‘i » =

5 ey (5 [EEE
& ook @ B

2) How to build a CNN 2 ... @

* A composition of multiple convolutions allows the network to learn a hierarchical _-
°o_ ®‘|
composition of patterns

* Example with the ImageNet feature maps

Low-Level| |Mid-Level| |High-Level Trainable
— — —_
Feature Feature Feature Classifier

- first layers appear to encode direction and color
- the direction and color filters get combined into
grid and spot textures

- these textures gradually get combined into

increasingly complex patterns

Taken from Zeiler & Fergus, 2013

: - 22/47
G TRyy =

& G

==~
3) Going further with convolutions s = &
* So far, we have seen the basic ingredients that compose convolutional networks :
"R
- you can now build simple networks for classification tasks
- if you want to build large network, some additional ingredients will be needed El

* Large networks, even with RelLlU, suffer from vanishing gradients

=]
-0

oL oL

¢, T OL 0L 5 .9]
dw3, oS \/uz f(ha) (Ii dw3, 0S8 uy Fikg)
With Sigmoid With ReLU

23/47

3) Going further with convolutions s -

* Training large neural networks is made possible thanks to skip connections

; || |1| |*| |‘| |1| |*| |[NG 4 :ﬁ

* They allow the gradients to shortcut the layers and

pass through without vanishing
1 . - N lIJ -
oL oL . ReL __ Rew
w2, = Bo 'wg f’(hg) aé

@} Convolution Convolution aum of block input and
l l layer layer conv layer output
OmmQ
g
L1

I :;_'-:" N
G
g2

H
E

24/47

"3 &

D-. -I
=]
"o la”

il

8

3) Going further with convolutions. ...

* For some applications, you do not want to reduce the size of the image, rather you want
to have images as outputs

Image segmentation Super-resolution

* Convolutions are used to downscale the useful information

~=) Can we reverse the convolution operation ¢

25/47

& o

3) Going further with convolutions. ...

* Transposed convolutions
- used to increase the size of the data
- different from deconvolution (that is the exact inverse convolution)

- generally used together with convolutions

Input Kernel Output
0|0 011 o0} 1

011 011
=100 + 213)|+|0]2 + 0|3|=|0|4]|6

213 213

sl

<>
=
é -

~o -

[=
N 010100 abl
o 00N010==
0101100 i

26/47

"3 b &

.n'l -I
)
S H i

& b P E
3) Going further with convolutions. ... &

* Transposed convolutions o

- suffer from checkerboard effects (can be reduced by using a kernel size divisible by the stride)
- can prevent the network to converge (leading to funny images...) El

- sometimes other upscaling strategies are preferred

|

stride =2

. _ kernel_size = 2

[S S Y) |
| I BN B B B OB

stride = 2
kernel_size = 3

%E

stride = 2
kernel_size = 4
N IS 500 0 0 o |
| I B B N = =N N
stride = 2
kernel_size = 5

Taken from Jinsol Kim, 2022 Taken from Odena, et al., 2016

GO gt 27/47
“E' °

o
i

https://distill.pub/2016/deconv-checkerboard/
https://gaussian37.github.io/dl-concept-checkboard_artifact/

3) Going further with convolutions

* Transposed convolutions are not always the best solution to upscale the information

- suffer from checkerboard effects

- involve trainable parameters

* Upsampling methods can be used to this purpose !

- only one parameter to tune : upsampling factor

- no trainable weights

10

20

2x

10

10

20

20

Bilinear Interpolation

10

10

20

20

10

20

2x

& G

3.3) Upsampling

10 | 12

17

20

15 | 17

22

25

30

40

2x2

A7
i

L J

30

30

40

40

30

40

30

30

40

40

4x4

2x2

A J

25 | 27

32

35

30 | 32

37

40

4x4

010100 abl
010100 i

28/47

3) Going further with convolutions 2 i &

* Another upsampling method : unpooling o
"R
- exact inverse of pooling
X
- used together with pooling layers in two-sided network &

Max Pooling

. Max Unpoolin
Remember which element was max! P 9

Use positions from

1121613 pooling layer olol2lo

35|21 115 Tl e
> 5|6 IR .

22| 718 Rest of the network 3|4 0o|(0|0]|0O

T13]4]8 3|0o0]4

Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

upsampling layers

——— Corresponding pairs of
E downsampling and
771

1

DIE) 2% 29% 29/47

0101100 il
00N0I0 ==
0101100 i

3) Going further with convolutions 33 ®

* Increasing the depth of your CNN can lead to overfitting = :
validation .®‘i
0.9 A1
- because you increase the capacity of your network
0.8
- for some tasks, it can learn the statistical noise in your data L o] '?
0SS =
- this improves the training curves but fails on the validation curves 061
0.5 \
‘\.\
0.4 1 b -,*,_4%

* Dropout has been introduced to solve this problem

0 100 200 300 400 500

- dropout consists in "dropping” out some nodes

- each node has a probability p to be dropped

- for a layer of 1000 nodes, if p=0.5, 500 nodes will be dropped

/

,.\
y
\

3

',
[

A
\/

N
§
Yo
\\\
N

>

N
A}\\' .
Y f.}é:” A

e

/

o

\

A

Q

K7
A
L/

- dropout is activated only during the training phase

A

AT
AN

7

AN

<
ok
‘&"o}f'
XA
LA
(ORI
‘\\E

)
(&
/

Taken from :
Srivastava, N. 2014 (a) Standard Neura

[0 - 259 30/47

=
Z,
Q
[

(b) After applying dropout.

3) Going further with convolutions

* Dropout is part of the regularization methods

3.4) Dropout

- regularization consists in discouraging the learning of a more complex model to prevent overfitting

- bring sparsity in the network layers

- the nodes focus more on learning the generalized features

Mean Activation Activation
< — 10 T T 1200 co TR
y ’ olr.
o G4 L7 17 sl
-2' = = ~ - - 1000
» 8
: e * L4
- T 800
- = , A e £ o4
-~ -3 -
o’ ’ - > |/ . 600
)4 L) -
N 2 A
. -~ ~ -
» L4 - LI . 400
\’ o 11\ 2
— ' I’ =% ’ \ 7
,) » 200
- [/1. Y
FPA T, - : o .- .‘
- ’ _- ® ~ . 0

4 5

012 3 45 6 7 8 9

Without dropout

With dropout Without dropout

"3 b &

Taken from : Srivastava, N. 2014

n-' 0

14

Mean Activation

Activation

10000 ———— 0
8000
| 6000
1 a000

2000

50012345678

With dropout

31/47

1 &

|
220

e

o
]
=l

(;% g@
4) Tips and tricks to train NN better - @

* The lack of data is the biggest limit to the performance of deep learning models o
"R

- collecting more data is usually expensive and laborious

- synthesizing data is sometimes complicated and may not represent the true distribution El

* How can we create larger datasets in a simple and efficient way ?

- convolutions are translation invariant, they are translation equivariant) o

- but they are not equivariant to other transformations >

W i
* Data augmentation consists in applying transformations e . Jrlth = vl »
to your data to create an artificially larger dataset T ' T

Taken from Divyanshu M. 2020

9_ is' 32/47

https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a

AN

N . N @
T 4) Tips and tricks to train NN better -

* Some of the transformations used

- rotation, flipping and cropping are the most used "
. >oa
- noise can also be added to the weights, gradients or activations ¢
g 07
.5 06
- i
s |

Geometry based

o
s

vertical-flip horizontal-flip crop crop-and-pad Perspective- Elastic- —— with non-aug. data

h “ with aug. data (by deepaugment)

03
transform transformation T T T T T T T T
0 i3 50 s 100 125 150 175 200
f;" epoch
Color based S
/,/ [Y 25
M .l‘l '«.; / e
sharpen brighten Gamma- invert
contrast 20
Noise / occlusion a
E 15
" 9 1.313
gaussian-blur additive-gaussian- trans|ate -X translate-y coarse-salt super-pixel emboss -
noise g
v "_; 10
.y A)
3 ,)f‘ rw >
[r——) eat er e 1t e 4
Weath g
clouds fog snow-flakes Fast -snowy- WAAAA = nscs
landscape VAN M e A A~ A AN A caaaa| 0.19
’G’-O 0 3 50 3 100 125 150 175
2 epoch
= Taken from DeepAugment, 2020. 3

.ﬂ'| -I
)
i

Wg 00 N
ugﬁj §§? g

N\

https://github.com/barisozmen/deepaugment

& G §
4) Tips and tricks to train NN better......... ®

* Training deep models from scratch on millions of images can take days or weeks :
®‘I
- sometimes you do not have the resources required to train large models for a long period

- or you lack experience to build deep networks 22

* Why can't you take advantage of the resources of others ?
- many trained models are publicly available

- they can be used as features extractors for your own problem !

@5} * There exists two ways : / =
_ - transfer learning E_E ;
o - fine-tuning I g e L
NPUT CONVOLUTION + RELU POOLING c:;vownou,mu PooLING) COM:;D SoFTMAX

FEATURE LEARNING CLASSIFICATION

g, Bl 34/47
Ny & *®Y S

-0

=
@
o

3 @

ID-' -I
)
S H i

4) Tips and tricks to train NN better......... ®

* Transfer learning %
®‘i

- consists in taking a pre-trained network, remove the last layer(s) and take the rest of the network as a fixed
feature extractor N

- the only trainable weights are in your own layers at the end
- generally better than training from your own data only

- requires sometimes to adjust your data (resizing, resampling, ...)

_trai haxwgexd k
resized centered e ttram:d a € Rta*ta Dimens. f ER : A

maximum pE NpXwpXc networ reduction Classifier | —

square crop on source task S
Taken from Mormont
et al, 2018.

\ I J L I J
Features extraction Classification
W > X, u? 35/4’7
'@‘i =

https://orbi.uliege.be/handle/2268/222511

4) Tips and tricks to train NN better......... ®

* Fine-tuning

- Nearly identical to transfer learning but the weights from the pre-trained network are also fine-tuned
- all or only some of the layers can be tuned &
Source Target 0.94 T T T 1 T
model model oo ot-===f-== Xception
" Random Train from P P LY -—- ResNet50
Output layer initialization ~ ™| Outputlayer } scratch 092 " - InceptionV3 []
1 f " VGG19
~ '/ Scratch-V3
Layer L - 1 ---- copy ----» LayerL-1 = 09 Vi =
Pre-train < T T ; ::
L copy > > Fine-tune é 0.88 - ;_‘.ff:_l::.-.._- -: -:_-_-_-_-_- _-__-__-__-__-__,-__-__-__'__-__-_ 7]
1 T e N
L Layer 1 - copy ----# Layer 1) 0.86 - :- ! -
t f
0.84 —1 . - v :
Source data Target data 0 5 10 15 20 25
Epochs
Taken from Dive Into Deep Learning, 2020. Taken from Matthia Sabatelli et al, 2018.
36/47

https://d2l.ai/
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Sabatelli_Deep_Transfer_Learning_for_Art_Classification_Problems_ECCVW_2018_paper.pdf

& & P E
5) More advanced networks » == @

Fully
Connected

O,

Convolution

* Let us consider a problem where you want to classify images :
®‘l

Pooling_‘,,.,r-""_/

- we know how to do it if there is only one object in the image -

in the case of multiple objects, our approach does not work anymore

the ideal goal would be to separate the objects in the image

Feature Extraction Classification

R person : 0.992

To achieve that goal, we can use bounding boxes
- this implies finding the location AND the class of an object

- these two problems are not easy two solve together !

* ... or segmentation !

- it consists in finding a label for every pixel in the image

- can transposed convolutions be useful ?

e - _:s' o : 37/47

3 @

n-' 0

& oG P EE
5) More advanced networks » == @

* Bounding boxes : YOLO (You Only Look Once — Redmon et al, 2015.) :
"R

- YOLO is one of the best object detection algorithm

- it considers object detection as a regression problem &)

- from a pre-identified set of bounding boxes and confidence values, it select the best ones

* Many engineering choices :

- the network is pre-trained on the ImageNet dataset

— Boundi +confid
- use Leaky ReLUs for all layers : % ouneing hoxes T eonncence

- data augmentation with scaling and color transformation

S xS grid on input a9 Final detections

- normalize the bounding box parameters in [0,1]

D

- dropout after the first convolutional layer

Class probability map

- reduce the weight of large bounding boxes by using the square roots of the size in the loss

"3 b &

Fop 38/47

“I =

Oaro
=
“ola

5) More advanced networks ===

* Bounding boxes : YOLO (You Only Look Once — Redmon et al, 2015)

- the input image is divided into a grid (S x S) and for each grid cell, the network predicts B bounding boxes,
a confidence value for each box and C class probabilities

- the loss designed to train YOLO is quite complex and contains many terms achieving different purposes

s2 B
M coor]10hJ P — Az‘ 2 i — Ai 2
Regression ¢ Zogo [(z 2:)° + (ys — i) }
loss s B 2
e 351 (v v+ (Vi - i)]
i=0 j=
S E bj 2
~ 10] =
Confidence | *2 2" (ci-¢&)
loss 2 5 2
+ Anoc)bJ Z Z]111001 ()
i=0 j=
E + Z lzbj Z (pz‘(c) _ ﬁz(C))2
=0 cEclasses
© ==
I
up n?

448

i

448

= e
2 3
14
7 7 7
1024 1024 1024 4096 30

Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
1x1x256 1x1x512 1,5 3x3x1024
3x3x512 3x3x1024 3x3x1024

1x1x512 3x3x1024
3x3x1024 3x3x1024-s2
er Maxpool Layer

2:252 (Redmon et al., 2015)
Via | Wia | hig | G | - | %8 | Yi,B | %i,B | hig | ¢i.B - .
5 B values C values

Taken from : Francois Fleuret, EE559 Deep Learning, EPFL

0101100 il
00N010==
0101100 i

==

39/47

https://fleuret.org/ee559/

5) More advanced networks ===

* Segmentation : UNet (Ronneberger et al, 2015)

- built as a fully convolutional network

- consists in symmetric contraction and expansion paths, with connections from the contracted part to the

expanding part
64
12¢ 1
input Stage 1 out
i put
Imﬁltgillz g hetl el bt segmentation
: map
' 128 :7
: Stage 2 T
> ﬂ’{ -
M Stage 3 - t Expansion
—_— _ "" "l] 3 | "”D*ﬂ conv 3x3, RelLU
%z' R { 615 51, Slaged o t copy and crop
Contraction H‘E"E == ¥ max pool 2x2
¥ 1 4 : # up-conv 2x2
I_I’ Stage 5 ’ me- cOnv 1x1
[&
-
Ll

Taken from Ronneberger
et al, 2015.

40/47

https://arxiv.org/abs/1505.04597

10
%}

5) More advanced networks »«== .

* To go further... o
"R
o]

* Object detection : &

- Single Shot Multi-box Detector (SSD, Liu et al, 2015) : improves over YOLO by using a fully convolutional
network

- Region-based CNN (R-CNN, Girshick et al, 2014) : instead of producing a large set of bounding boxes,

region proposals are extracted from the image

* Segmentation :

- Mask R-CNN (He et al, 2017) : extends the R-CNN model for segmentation

DiE % o0es 41/47

owuoo.nlnl.

il
T@
\|=,.o@

5) M Ore a dv a n ced n etwork S 5.1) Advanced convolutions @

* How can you be sure your network detects what it is supposed to ? _-
®‘.

sometimes CNNs do not work as expected

Wi Low-Level| |Mid-Level| [High-Level| Trainable
| N L -
Feature Feature Feature Classifier "
Vi e A

a deep network can overfit and learn the statistical noise in the data - BN | &3

you can look at the feature maps to see how the layers are activated

..ot let a neural network do it for you : Grad-CAM .
Taken from Zeiler & Fergus, 2013

- Grad-CAM is a neural network producing heatmaps
Grad-CAM for “Cat” Grad-CAM for “Dog"
- check how the gradients flow through a network to | o 1

trace back the important regions in the input image

- you can trace back the gradients to any feature map

- easily adaptable to any CNN

"3 &

D-. -l
=
“ola

- & 42/47

1 &

|
220

e

o
=
"o la”

%
[P
i
‘|=-n@
582
Ilg"Fg:I

5) More advanced networks &

* Generative Adversarial Networks (GANs) and Autoencoders : oo

- the goal of these networks is both to learn the underlying distribution in the data
AND to produce realistic data

-~ Y 7 Latent space # '%'
. \ e ==

Taken from Francois Fleuret,
gem Deep Learning, UNIGE/EPFL

ol Taken
from Deepak
Birla, 2019.

- they mainly differ by the way they are trained

e Autoencoders

Latent space
Representation

- made of two networks : an encoder and a decoder ‘ ‘

- often used to denoise data I | ‘ |

- the networks can either be MLPs or CNNs

- do not really work as it is

Corrupted (o = 4) Reconstructed
o Ly »w 7271064199200
~=p Variational Autoencoders . -—rre 90)1599%4260%¢5
. . y \) 4740\ 3\3472

43/47

https://medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f
https://fleuret.org/dlc/

3G
e
2
g

& g P E
5) More advanced networks &

* Generative Adversarial Networks _.
®‘l

- the generator is responsible for the generation of new images from a random noise vector (latent space)
- the discriminator tries to discriminate the generated images from the real ones &)

- the training is a competition between these two networks

* GANs are very powerful but very hard to train

Training set él/ / Discriminator
1 N\ _Rea
“ /ijj I @ E —_Fake

Generator Fake image

Taken from Thalles Silva, 2018. Taken from Karras et al, 2018.

B S 44/47

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

5) More advanced networks 9 e @

* How to make sense of sequential data ? :
"R
- examples : activity recognition in videos, text translation, speech recognition, ...
: L 1 (5]
- the analysis of some situations can change with time '?
* Recurrent networks have been designed to address data sequentially
- they maintain a recurrent state, updated at each step
- predictions can be computed at each step _ { [Z;: h” [’:] [:f]
Hidden Units H :
- implement gating, similar to skipped connections h o s
- examples : LSTM and GRU Lavef |)
p) c [N Initial > LSTM LSTM —>Lstm . —>|LSTM > Final
. . 1-1 > G State > BI:)ck =a Blokck > c—) BI?\ck —c} —>»| Block » State
- might be hard to train for long sequences ; - N i r
h;_; —> h, Number of X21 X2 X2 Xas
| Features : : : :
% LSTM block N -
.

TR o1’y Nt 45/47
(lcgan %

5) More advanced networks i

* Transformers are very different from other neural networks

- composed of an encoder and a decoder

- they implement the attention mechanism, consisting in transporting information from parts of the input

signals to parts of the output specified dynamically

- attention layers produce weights that are functions of the inputs

- require input embedding

* Steps :
- The encoders start by processing the input sequence.

- The output of the encoder is then transformed into a set
of attention vectors K and V that will help the decoders focus

on appropriate places in the input sequence.

- Each step in the decoding phase produces an output token,

1 &

until a special symbol is reached indicating the transformer

|
220

decoder has completed its output.

g E B 2

e

Decoding time step: 1(2)3 4 5 6 OUTPUT

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

f

-
(Linear + Softmax

T t

[ENCODERS] [DECODERS

)\

o
f 1 t 7
[ITTT1] [IT1] [T 11

[TT] [0 [TT] [

PREVIOUS
OUTPUTS

[L =
: ,.=,|, Stomoo il

0101100 1

46/47

3 g o o _“ ‘,I mww#
7 = & R P E

* The deep learning jargon... CradCAM @

Batch size %
Overfitting >< underfitting

Convolution layers

Pooling

Vanishing gradients

l
[
/

Loss function

Transfer learning
RNN
Learning rate
Normalization

Optimizer

Transposed convolution

Gradient descent

Fully-connected
ReLU

Initialization

fac 47147

"y 1l &

lﬂ-. -I
EH);
o Lo

Course 3 : The end

Media saying Al will
take over the world

My Neural Network

Vincent Boudart, PhD student
vboudart@uliege.be

