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1) What is deep learning ?

* Artificial Intelligence vs Machine Learning vs Deep Learning

(http://wiki.pathmind.com/ai-vs-machine-learning-vs-deep-learning)

- pile of if-then statements

" ~~ — — — — ARTIFICIAL INTELLIGENCE =
« o0 . ~ - A technique which enables machines
- statistical model mapping raw sensory Artificial Intelligence _ - to mimic human behaviour
. . -~
data to symbolic categories - -
) Machine Learning
MACHINE LEARNING
__________ Subset of Al technique which use
statistical methods to enable machines
to improve with experience
Deep Learning
~
S~ — DEEP LEARNING
S~

Subset of ML which make the
computation of multi-layer neural
network feasible
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2) How it is used nowadays ?

* Self-driving cars (Tesla, Google)
- Lots of data to process (camera, LIDAR, RADAR,

GPS, various sensors, ...)

Deep Learning Deep Learning Al-based Tencminebaed =
(or Classical) (or Classical) (or Classical) N (ea.1 glng- 'as;e N Autonomous —
- Lots of action to take (breaking tuming prediction of Perception and High-Level Path Behavior Arbitration M t('” Cass,tml)l Vehicle
’ ’ Localization Planning (low-level path planning) it
A A A A
human and vehicle behavior, ...) Sufety Monitor

)

(b)

Figure 3: Examples of scene perception results. (a) 2D object detection in images. (b) 3D bounding box detector applied on
LiDAR data. (c) Semantic segmentation results on images.

©Google self-driving car Source : https://arxiv.org/pdf/1910.07738
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2) How it is used nowadays

* Face recognition

Input Low Intermedium High

Li, Xiang et al. Computer Methods in Applied Mechanics and
II‘!PMI Image Leﬂ Eve Right Eve ﬁmse frjfﬂ.u.i‘}l- Engineering. 347. 10.1016/j.cma.2019.01.005. (20]9).

Paul Debevec. A Neural Network for Facial Feature Location.
UC Berkeley CS283 Project Report, December 1992.
http://www.debevec.org/FaceRecognition/
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2) How it is used nowadays ?

* Recommendation systems (Netflix, Amazon, Spotify, ...)

Data
Recommendation1
m m —
Movie2 | Rating Recommendation2
Movie3 Rating Recommendation3
Movie4 | Rating i
>
oooo
Movies &
Rating
User

"75% of what people are watching on Netflix comes

from recommendations” McKinsey & Company

SEe o 7 oL
é}’%&;’ gj’gj "f 0101100 i
e T NI e —
®
You listen to and Spotify users oo :
save songs create billions of L g
J{ f playlists T
Spotify identifies similar ]
Develops your songs that appear on {22p
“taste profile” those playlists L
Spotify finds songs that
fit your profile, but that
you haven't listened to
Discover
Weekly
| 2|
.
.
P4
>
»
Source: https://qz.com/571007 /the- >
. . . ’ .
magic-that-makes-spotifys-discover-
weekly-playlists-so-damn-good/
5/33
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2) How it is used nowadays ?

* Self-learning robots

This robot dog has an Al brain and taught itself to

walk in just an hour, University of California, Berkeley

Atlas robot (Boston Dynamics) performing a sequence

of dynamic maneuvers that form a gymnastic routine
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https://youtu.be/xAXvfVTgqr0
https://youtu.be/_sBBaNYex3E
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2) How it is used nowadays ?

* Automatic detection of fruits/vegetables ..... and metal waste ! "

Al camera recognizes more than 120 fruits and
vegetables with a 97% precision (Robovision)

In ... Courtrai/Kortrijk, Belgium !!! & COMET Group

World first: metals sorted by robots. GeMMe laboratory
(Faculty of Applied Sciences at ULIEGE) & Citius engineering
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https://youtu.be/7c1lKFFF6dM

3) Why it will become vital in the future

* Sensors are everywhere, data keep growing !

Combo Sensor Thrattle  HVAC Steering
Steering- Position  Sensor Sensor

Differential torque Sensor =

Fuel Level  #

Sens&

Non-Contacting
Angle Sensor

Motor f% e
Position { O p

Sensor

&

<y
C{mss}s Whgel Speed
eve ensor
Sensor . Mirror
Sensor
Accelerator Pedal
Angle Sensor
Headlight =
Range ’ IL’yl Transmission
Sensor . 4 Sensor

ap F Ed

==

DIFFERENT TYPES OF SENSORS
Proximity Sensor %

LDR

Color Sensor Gas Sensor {Light Sensor)

4
2 By o O‘E:L:iif ®

LM35 Alcohol Sensor Snicke Senior =
(Temperature Sensor)

Thermistor
(Temperature Sensor)
o

T % L

" “w Ulfrasonic Sensor

Ed

1 \ IR Receiver
Rain Sensor  PIR Sensor Water Flow Sensor
Heartbeat Sensor = 5 E\ A *~
e et ' idi S R
f ”1 } Humidity Sensor Gyroscope ~
IR Sensor IR Sensor Touch Sensor Photo Transistor Soil Moisture Sensor
(Transmissive Type) (Reflective Type) (Light Sensor)
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3) Why it will become vital in the future

* Performance achieved by Al in many domains is now state-of-the-art

& I
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Medical diagnosis Security Camera
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Cybersecurity )~ ‘ oy
« B i
Rn=4
y

Application of artificial intelligence in traffic jams monitoring

Traffic management

Protein folding | o

DeepMind

Books digitalization
@ ua :|5| 10/33
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4) Objectives of this course

* This course is only an introduction but you should be able to...

- understand most of the key words/jargon of ML and DL &

- be able to criticize papers in your field where deep learning is used

- understand problems that can happen during NN training

- create and train basic networks (both on tabular data, time series and images)
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4) Objectives of this course

GradCAM
* The deep learning jargon...

Batch size "R

Overfitting >< underfitting
Convolution ]ayers

Vanishing gradients
Loss function

Transfer learning

RNN

Learning rate

Normalization

Transposed convolution

Gradient descent

Fully-connected
ReLU

Initialization

12/33
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4) Objectives of this course &
* My pyramid of deep learning levels.... :
"R

=

o

GOD —> o, \)i

|$'
Create new architecture, rethink basic
.. . Yoshua Bengio Geoffrey Hinton Yann LeCun
principles (Google, Microsoft, ...) € Experts
Can manipulate neural networks
Advanced _— P ,
and adapt them to their need
Understand basic concepts
and can implement simple &~ Amateurs
neural networks
. = Black box doing amazing things
Fanatics 8 & hing

Terminator, iRobot,

o

self-driving cars, ...

General public

ﬂa u?
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4) Objectives of this course

* My pyramid of deep learning levels....

GOD —>

|$'
Create new architecture, rethink basic
.. . Yoshua Bengio Geoffrey Hinton Yann LeCun

principles (Google, Microsoft, ...) € Experts

Can manipulate neural networks

Advanced —_— P ,

and adapt them to their need
Understand basic concepts
and can implement simple e Amateurs You can reach this level !
neural networks

Fanatics = Black box doing amazing things

Terminator, iRobot,

— General public

self-driving cars, ...

@ RS 2% 13/33
W& °Q =



10,
&5
823
Hid

4) Objectives of this course ; @

* You will be able to do AND understand... ‘:
AT

1 0 0
0 1 0 0 =0}
0 0 1 0 o
0 0 0 1
1 0 0 0
10
\
0.8 1 ",."
I\-‘\
|
06 1 Wy
I\
i W
04 Inhlll(\
\
02 W
—— validation loss v"._‘i, "'-‘-.\'I"
0.0 training loss L AT P R

0 5 s 75 W00 125 150 175
epoch num
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4) Objectives of this course

* You will NOT be able to do this...
» | /-t

Robot dancing

(Boston dynamics)

Faces created by using ProGAN.
These people do not exist.

Simulate and find
laws of physics
(Google DeepMind,
2min55)
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https://youtu.be/BFK9lkez32E
https://arxiv.org/abs/1710.10196
https://youtu.be/2Bw5f4vYL98

& o 1§
5) From linear regression to neural network ™ @

* Let us settle a very simple problem: linear regressior . . . 1 o

40 - = ®‘i [
- You have N data points with coordinates (x,y)

30 - : .
- You want to fit a line to these data .%q
- AND predict new y for new x coordinates >20r Vad 1

il / i
* Model : y = w*x + b or | | | | N

0 2 4 6 8 10

* Parameters: w and b x

Graph taken from Grégory Baltus thesis

* To find the best w and b, we need a mathematical expression to assess how close is our
model with respect to the existing data :

N
L:Zef:
=0

N
i —

N
(yz — yp-‘r'r:d,i)2 — Z(yl — ('EL-‘ T; + b))Q

=0 =0

DiE % o0es 16/33
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5) From linear regression to neural network ™ @

* The problem becomes an optimization problem ! o
il
N g, (7]
. - o 2 . . . {25}
- find w and b such that L = Z(yi — (wax; + b)) is minimal. =
/ﬁ% I
* We can solve this problem with a 3D graph SRR
00 /\ / /‘ TG
g ?\\X 3 /\ 5 ” 5"4,}« ]
- Out of any possible combination of w and b, only 1 SRR "' ' '” ”’”’4’

\'.>"'.....~_' \
s O ’ ' Z7 ’
3&/\%&2@@(@@ Q2 “ ' é&ll" 7
:1
e

SIS SG N 0
>>>%§> 22/‘(:\2 R

gives the minimum of the function. S \<: S5 %?gi,%
FANI >

22 "‘ﬁ’ &
;.'%4/%'&

_§‘: §3§§ =

IS A e é 2
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- Local minimum = g]oba] minimum

T
s

- This is the ordinary least square regression for which

analytical solutions exist (for polynomial regression)

g
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5) From linear regression to neural network

* Let us rewrite our problem... with some adaptations
- You now have N data points with coordinates (x,, x, x,, y)

- You want to predict new y from new (x,, x, x,) couples

* Let us write our model :  y = woxg+ wy Ty +woTo + b

—WT X +b

* The graph can be summarized as :
& ™
- ()
®

)
&
D

22

& G

Adapted from Louppe, G.
Deep Learning

add —)@

1) Definition of the problem
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° ° 1) Definition of the problem )
5) From linear regression to neural network &
* Let us rewrite our problem... with some adaptations o
"R
- You now have N data points with coordinates (x,, x, X,, Yo ¥, Y2)
- You want to predict new (y,, v, y,) from new (x,, x, x,) couples %

- Every y might need the input from all x (namely x,, x, and x,)

* The model becomes: Y =W! X + B
- fu"y linear

- some inputs (x) might be useless for some outputs (y)

(e.g. y, depends only on x, and x,)

* How can we learn more complex relation between the data ?

"3 b ¢

oo
E[31]
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5) From linear regression to neural network. .

* How can we learn more complex relation between the data ?

* First guess : add more layers ?

~aP composition of linear functions = linear function

20/33
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5) From linear regression to neural network. v, @

* How can we learn more complex relation between the data ?
il

’
* Second guess : use polynomial models &)

(=) J ==
L
- Replace the simple linear regression with higher order models T

y = bo-l-b1X1+b2X12+...+anf @ _,@

* Two problems : @

—r-
- require some knowledge of the solution @XL

- computationally more expensive Adapted from Louppe, G.

Deep Learning

T (i .. ' 29% 21/33
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* How can we learn more complex relation between the data ?
ht

5) From linear regression to neural network. .

&

* Third guess : add some non-linearities

~ap Where?

- [-®)

70

* Easy answer : at the output Y = AF(WT X + B)

- we keep a simple linear relation

¥
350

- and add non-linearity at the end

¥

* This non-linear function is called an activation function
Adapted from Louppe, G.

Deep Learning
G N 5 22/33
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5) From linear regression to neural network gl @

* Simplest activation function

ST
Step function Rectified Linear Unit (ReLU) NG
1%'
1.0- 3
2
0.5-
1
0.0
- - - - -3 -2 -1 0 1 2 3
-5.0 25 0.0 2.5 5.0

* These simple functions, added to a linear model, can lead to impressive results !

"3 b ¢

oo
E[31]
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5) From linear regression to neural network ®

5.3) Towards MLP

* The unit we have built is the basic mathematical formulation of a neuron G

I wo

*® synapse %

axon from a neuron e ‘%’
woo

impulses carried

toward cell body

/4 branches cell body f (V wix; 4 h)
dendrites ’ t/' 74 of axon w1 %
\, q€ ) =< F}"‘ i output axor
nucleus ———_g o — e~ arminals activation
y ' > WoTo function
7 &\ '\ impulses carried N\

1)

away from cell body

* The activation function allows to cancel the contribution from some neurons

~=P Information is sometimes not relevant

v . 24/33
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5) From linear regression to neural network ®

\I:r-n

5.3) Towards MLP

* Even if our model is better than the multilinear model, it still cannot handle the underlying
. . . . it
complexity of the relationship between inputs and output

- Let us consider the output of our model as intermediate features o

- We can repeat this pattern and build new layers, with different weights (and activation ?)

1 &

Input Layer Hidden Layers Output Layer

|
220

e

l; 25/33
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5) From linear regression to neural network ®

5.3) Towards MLP

|

* We have built our first neural network, called the multi-layer perceptron (MLP) o
"

It is mad f i
® It 1s made up of : =
- simple model to tune —_ // \ :

' \/ . \ o Y YN
- non-linearities AKS - i,/ <
X )\

- multiple layers (fully-connected or \, /' / X V' _/l/ f ‘
linear layers) :
9 ¢ @

* Disclaimer 1 : all the neural networks do not fit the template described above

* Disclaimer 2 : once defined, the model still need to be fitted (optimization)

3 @
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=
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6) Analogy with the polynomial regression

* Let us consider a set of points that you want to fit with a polynomial o
"R
) . '\

- you don’t know the exact relation between the data — glx) &

80— @ y=glx)+¢

60 -
- you decide to go for "trial and error" and solve the least

: : : 40 -

square regression with a polynomial of degree d

20 -
- your final choice is based on the total error 0-
20

@} -100 -75 -50 -25 00 25 50 75 100
) Taken from Louppe, G. Deep Learning
i

o, Elg s S 27/33
53 (u@? g



ID-' -

3 @

ﬂ.

= b=

6) Analogy with the polynomial regression

* Fit and total error for some polynomial degrees

degree = 1, A(F d) = 640.80 degree = 2, R(f, d)=428.87

0 - 80 -
— gix) — gix)
. | — y=fix)
o y =fix) 60 -
® y=glx)+e ® y=gix)+e

degree =5, R(f d)=29.75

degree = 4, fi(f, d)=37.69

80 -
— gix)
— y=1flx)
60 -
® y=glx)+&
40 -
20 -
0-
=20 -

- i | | | | I
-100 -75 =50 =25 0.0 25 50 75 10.0 —160 —7’5 —5‘,0 —2l5 00 25 50 75 10.0

Taken from Louppe, G. Deep Learning

&
q;ﬂ

of o7
73
u
i

& g @

degree = 3, .‘i(f, d)=43.05

— gix)

—_ y=fix)

® y=glx)+e

|
10.0

degree = 10, R(f, d) = 14.23

— glx)

— y=fix)

® y=gix)+e

100

0101100 il
00N010==
0101100 i

—
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6) Analogy with the polynomial regression

* The best solution seems achieved when d=10

Total error

107 -

- training error

| | '
4 6 8

Degree of the polynomial

10

Taken from Louppe, G.
Deep Learning

& G
o= O—=0-
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6) Analogy with the polynomial regression ®

* But when you add data points that were left aside...

- = training error 2.3}
test error

10° -

Total error

Taken from Louppe, G.

102 - Deep Learning

Degree of the polynomial
o

30/33



6) Analogy with the polynomial regression

* Capacity is the ability to find a good model
- polynomial regression : degree d

- neural network : number of layers, number of training steps, regularization terms, ...

Error

* Underfitting >< overfitting A

Underfitting zone Overfitting zone
* Separate training and testing data

Write code ———> Train ——> Test ——> Paper

training
error

I generalization
: error

optimal
capacity

RO
17
"
It

R
NG
27
. optimism
Y
e
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6) Analogy with the polynomial regression

* You always have to test your model ONCE the training is completed

- this will help you to understand

what your network is doing

- you will learn how to interpret both

training and testing curves

- Ry i1 &

|
]
T
]

ZA

Write code ———> Train —> Validation —> Test ——> Paper

~~—

— Train ——> Te

32/33



* The deep learning jargon... GradCAM

Batch size
Overfitting >< underfitting

Convolution layers Pooling (2.9}

Vanishing gradients
Loss function

Transfer Iearning
RNN
Learning rate
Normalization

Optimizer

Transposed convolution

@ Backpropagation Gradient descent

Fully-connected ’

ReLU

R YOLO o

& Initialization

VLI o fo% N 33/33
E (a5l = N\




% * LIEGE
b universite Course 1 : The end

Ak! With my programming skills,
I will always hawe a job!

Breaking News: Machine Learning researchers
managed to get an Al to write cote

Vincent Boudart, PhD student
vboudart@uliege.be
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Course 2 : Table of contents

1) How neural networks learn ?
1.1) Gradient descent
1.2) Backpropagation
2) A word about activation functions
3) How to train neural networks ?
3.1) Optimizers
3.2) Initialization
3.3) Normalization
4) How to choose the loss function ?
4.1) Regression or classification ?

4.2) Interpretation of the loss
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1) How neural networks learn ? o

* The learning phase of a neural network is an iterative process based on gradient descent &
"R
. . '\

* Let us consider a loss function L(f) defined over model parameters ¢ =

- We will use the local information to iteratively find the minimum

- Let us define a starting point g

- For a small perturbation €  of this starting point, the loss can 2-

be written : 01

. 1 5
L(€;60) = L(6) + € VoL (b)) + %HEH?

where 7Y is a constant that has been added T 0 2 a 6

Taken from Louppe, G.

"3 b ¢

Deep Learning
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]) How neural networks Iearn D 1) Gradient descen

* The learning phase of a neural network is an iterative process based on gradient descent

A 0,
* To minimize the loss approximation, one has to solve : V. L(¢;6;) = 0 =

1
VQ[,(Q(]) + ;E =0
which happens when ¢ = —~V,L(0))

* By repeating this "small step” process, the update rule for the model parameters is thus :

01 =0 — ’}’Veﬁ(‘?t)

F Ry 1 &

|
]
T
]

ZA

3/47



? 11) Gradient descent

1) How neural networks learn :

* The learning phase of a neural network is an iterative process based on gradient descent &
"R
. . '\

* We know how to update model parameters iteratively : 0,1 = 0, — vV oL (6;) &

- B are the initial parameters of the model

7Y is called the learning rate

* Both parameters are critical for the convergence of

the update rule !

Taken from Louppe, G.

Deep Learning
WE i 4/47
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? 11) Gradient descent

1) How neural networks learn : &

* The learning phase of a neural network is an iterative process based on gradient descent = &
R
* When the learning rate has the right value :
Taken from Louppe, G. Deep Learning .
8;= —0.50, y=0.50 6,=-0.78,y=0.50 ;= —1.19,y=0.50 .%‘].

8l | | | | | i
-6 -4 =2 1] 2 4 6

6s= —3.06,y=0.50 85 = —3.33,y=0.50
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? 11) Gradient descent ’
1) How neural networks learn : &

* The learning phase of a neural network is an iterative process based on gradient descent = &

* When the learning rate is too high :

6= —2.00,y=1.30 6, = —3.80,y=1.30 2

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4

Taken from Louppe, G.

6,=-239,y=130

8;= —4.02,y=130 Deep Learning
4 -
2-
@ 0 1
-2 -
= -4
-6 -
Ommo
l’ A 8 -8 1 |
- A ' | U | | I | ' | ' |
A -6 -4 -2 0 2 + 6 -6 -4 -2 0 2 4 6

m " 9_9 6/47



]) How neural networks Iearn D 1) Gradient descen

* The learning phase of a neural network is an iterative process based on gradient descent

Xl
* How do we know if the feedback from the gradients is accurate ? -1 = 0 — vV L(0;) &
- training a NN means finding the minimum of your loss function over your data

~aP Ideal solution : compute the loss over all the samples in the training set

A practice you have thousands/millions of samples, leading to memory overload !

- Solution 1 : evaluate the loss over every single sample : stochastic gradient descent

- Solution 2 : evaluate the loss over a small subset : mini-batch gradient descent

"3 b ¢

oo
E[31]
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1) How neural networks learn

* The learning phase of a neural network is an iterative process based on gradient descent

* Comparison between stochastic and mini-batch gradient descent

& ap (@ [EE
G Epe= i ==

? 11) Gradient descent

&
p Batch GD A Stochastic GD
- impracticable [*,% - computationally cheap
" - costly in time
Cost Cost 1:,;‘
T
g
# Iterations ] # Iterations .
A Mini-batch GD
g - computationally heavier
Cost L - faster
\"\—/xz
# Iterations ]
Bea &1

RO
17
"
It
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]) How neural networks learn ? vetme

* The learning phase of a neural network is an iterative process based on gradient descent

~aP We will use mini-batch gradient descent as a good compromise

* At this point, we know how to update the model parameters 0, =0, — yV,L(6;)

* How do we evaluate the gradients ?

dL
- gradient for one parameter: VL = a0
sradicnt for il urameters s 2~ | 96580 |
i

=
]
o
HED
H..Oln
75
I
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1) How neural networks learn ? ...

* The procedure to evaluate partial derivatives in a NN is called backpropagation

il
* To introduce this concept, let us define a very simple NN with 2 hidden layers
- &
X1
* Let us define the forward pass )
1 .._.- : 'j-\.‘-. 2 .__.- - “l'z-\.‘..
- First layer : hl=Wla + bt &y & \
X s
(Ll _ f(hl) /
hz? —1'-**121 h? —Fﬁzz
- Second and third layer : »* =W?a' +b° ~ | |
X3 wl bl wZ b2 w3
a’® = f(h?)
S =W?a L =loss(y, S)

ofe o o 10/47
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1) How neural networks learn ? ... &

* The procedure to evaluate partial derivatives in a NN is called backpropagation

il
* The forward pass expressions and matrices :
g, 1]
hi wr  wi, wi b o
1 1 1 Rl — |1 wi— 11 Wip Wis pl— V1
2 21 Wap Wa3 2
1
1 1 _
a = f(h") a [ 1]
as
2 PR 2 2
. 9 h 2 wi; Wis b
h* = W?a' +b* h® = ,;% W= = { 3 5 b= |1
13 w5, Wi b3
a = f( ! ) aa == %
as
3 3 3
S =W3a? W = [wl wg] Total : 16 parameters
g gy

o 11/47
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1) How neural networks learn ? ... &

* The procedure to evaluate partial derivatives in a NN is called backpropagation

s
* Let us try to evaluate the partial derivative of the loss with respect to one parameter
X
- The chain rule of partial derivatives D &)
O

8Xt 8)(15 thfl

= hy —l“ﬁf_;ﬂ11n:ﬁ hy —Hﬁf_‘rﬁ1
8){0 8Xf_1 8}(0
h ~ - - o S N
recursive case [ X2 | 5 |
ox; 0x; 1 0xy 0% hp1 —l“ﬁ'_fﬂziﬁﬁ h? —H'_‘ﬂzzxﬁ/'

B 8}{{[_1 8xt_2 Y 8—x1 8x0

X3

- A neural network is a composition of very simple functions !

S — W3 ( f(w? FOWVL 2 +bY) + &:2))

ot o o ]2/47
-gnl .G)‘i ’ =
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1) How neural networks learn ? ... &

* The procedure to evaluate partial derivatives in a NN is called backpropagation o
"a@q
s ‘ll
. | or
Let us try to evaluate - .

Wa2 X1 | 2
oL L Oh} = =
2 ARz A2
ows,  Oh; Ows, D /D >

hq —H daq hq —H aq oL
OL da3  Oh3 \ a3
— ¢ ‘ o (o0 SR -
C)a.% dh% dw%z (X2 ) I da} a2 % } L
oL 9S 0a3  Oh3 |

E)S 8@% 8}}% (‘}w%z

oL
‘Z \ known
depends on the  known  ¢€asy to
loss function compute

) & 13147



& G

1) How neural networks learn ? ... &
* Gradient descent and backpropagation are the core of deep learning algorithms o
"R
~) O =0, — Y VeL(0 oL W P
t+1 =0y — 7 VoL (0;) — 95 L2 fiihy)  ay 29
* What have we learned ?
- Backpropagation is cheap since we know some of the terms thanks to the forward pass !
- The other terms are easy to compute if we choose activation and loss functions adequately
- The weights cannot be initialized to zero -
X1
hy? —Fﬁ11
@}. * What is left ? B
% - How to choose the loss function ? < __
. - How to initialize the weights ? 12 &
@ 22 .
e ]
s 4/47
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1) How neural networks learn ? ...

* Let us have a look at the values of the different terms ror

= sigmoid
= derivative

- sigmoid as the activation function L Bl

- weights are initialized randomly from a Gaussian N (0, 1) *l

o oL .

: 1712 1
- = — w h a et

1<w<1 <o025 <j &

* Gradients shrink to zero as the number of layers grows ! ()

~=) vanishing gradient problem

Xs ! wl bl w2 b2 w3

"3 b ¢

-0

Oaro
]
“wlo

15/47
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2) A word about activation functions &
* Activation function brings non-linearities to neural networks Sigmoid f
_ 1
- they help constraining the output of neurons 70 = e i
- they influence the network's capacity to learn and converge tanh |
tanh(x) o
o . ReLU m
* To be a good activation function (AF), you need to : max(0, z)
- be efficient : an AF should reduce the computation time ) m
Leaky RelLU
- be differentiable (almost everywhere) max(0.1z, z)
lgt 1 = Qt — 7Y VQE 915 . : o
~=P Consequence of backpropagation * ! (6:)
Maxout

max(w! x + by, wl x + by)

* This is ok ! In practice, the values never reach exactly zero ! E'-U

x>0
ale —1) <0

"3 b ¢

-0

16/47

Oaro
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2) A word about activation functions

* Bounded activation functions are prone to vanishing gradient

- That is why the ReLU has been introduced !

oL oL
dws, ~ S wg f ’(h% *’lé

- This is a useful property to induce sparsity

- Other activation functions have been proposed to solve sparsity

Leaky ReLU ) ELU
max(0.1x, x) z
Ju— . a(e” —1)

RelLU

max (0, x)

Sigmoid
o(z) = H%

tanh
tanh(z)

x>0 J
z<0 - y 0

D

17/47



3) How to train neural networks 2" &
* Training a NN consists in applying a strategy to update the weights of your NN
Or+1 =0 —yVoL(0) 8?:;%2 = gg wy  f'(h3) a3 E]
* Why do we need a strategy ?
ldeal surface Surface valley Real surface

8
7
6 — =
5
4
3 w2
2
0 | SN Path taken by
R :;‘ T~ Gradient Descent
OE ;-"‘ Ideal Path
Ommo
"
1
a - an "5! ]8/ 47
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3.1) Optimizers

3) How to train neural networks

* The learning rate chosen in the beginning of the training might not be adequate later on! %
"R
* One trick to solve this problem is called momentum =

- Momentum adds inertia in the choice of the step direction

- The new variable is called the velocity ¢

ur = aug—1 — Y VoL(0s)
Ory1 =0 —yVoL(0:) 4

Ori1 = 01 + uy

* Properties :

- 1t can go through barrier walls a1

- It accelerates when the gradient does not change much

- 1t dampens oscillations in narrow valleys

. ,, % 19/47
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° 3.1) Optimizers
3) How to train neural networks ? &
* Particular case of momentum : Nesterov momentum o
"R
- simulate a step in the direction of the velocity, then calculate the gradient and make a correction
o
we = aui—1 — v VeoL(6y) ur = aui—1 — Y VoL(0r + aup—1) =
Or i1 = 0 + uy Or+1 = 0 + wy

Ut
aut—1

— Y%

g S 25 20/47
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3) How to train neural networks 27"

e Particular case of momentum : Nesterov momentum

.%
\
: ) d
. Rt - P j
MOMENTUM AND NESTEROV’S

(D ACCELERATED GRADIENT

.

o ¥ 2l
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3) How to train neural networks

* The learning rate chosen in the beginning of the training might not be adequate later

3.1) Optimizers

* Other algorithms implementing momentum-like methods :

Adam
st = p15e-1+ (1 — p1)ge
R S¢
St —
1—pf
re = pari—1 + (1 — p2)gt © gt
. Tt
Tt =
1 - ph
S
011 =9t—75+j/f—
t

- works well with p1 =0.9  p2 = 0.999

- one of the default optimizers in deep learning

RMSProp

re =pri1+ (1 —p)gr © gt

y
0+ /Tt

9t+1 — 91% -

- performs better in non-convex problems

- does not grow unboundedly

on! &
R
&
22/47
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. 3.1) Optimizers L ==
3) How to train neural networks ? o
* Training a NN consists in applying a strategy to update the weights of your NN 5
"R
~aP this means adapting the learning rate and implementing momentum
0, ]
‘@'

* The algorithms that compute the gradients, implement the backpropagation, deal with
the learning rate and the momentum are called optimizers

6014
* Other methods exist to tune the learning rate,

such as the scheduling :

- consists in reducing the learning rate over time

- can be combined with Adam, RMSProp, ... 30l

"3 b ¢

ResNet-18
—ResNet 34 34-layer
2OL ffffffff e e————ee—— -17 —
0 10 20 30 40 50

iter. (1e4)

9_ is' 23/47
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3) How to train neural networks 2 &

e So far, we have learned how to train a neural network
- gradient descent and backpropagation allows to update the weights
- batch size and learning rate are very important

- choosing the right activation and loss functions is critical

* What about the initial values of the weights ?
- we know they cannot be zero
- are there some preferred initialization schemes ?
~aP for convex problems, providing a good learning rate,

convergence is achieved regardless of the initial parameter values

& G

9t+1 = 0 — Y Veﬁ(gt)

oc oL

= - wy  f'(h3) ab

dw3, oS

l

weight's value

24/47
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3) How to train neural networks 2 &
* In practice, most of the problems are non-convex
"R
~a initial values are important
NG
c%n
* First strategy : you want the information to flow in your
network without reducing or magnifying the amplitude of the signals
- deeper layers should receive the information
- a way of stating that consists in preserving the same variance across layers !
S = w3 (f(W2f(W1:s+b1) +62))
T30 25/47




3) How to train neural networks 2 &
* Mathematically, this can be expressed as : - :
X1 Loy
Q11 - o .
\Y% {hi] =V Z wij hfjl] hyt —>{as?) |
7=0

h,? —nﬂlz\ '%'
| ‘Xz ()
g-1—1 - /‘

j gt —>(ag?) )
j=0 -
(X3 ¥ 1 pt W2 b2 Wl
VIR] =gV [w] VIR i
where q; is the width of layer . 1
The only way to ensure the same variance across layersis : V [’wz} — 0 Vi
[-1

Taken from Louppe, G.

3 3 Deep Learning
a1\ @1

L 26/47
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3) How to train neural networks 2

* Second strategy : you want the gradients to flow in the backward pass without vanishing

- this can be enforced by maintaining the variance of the gradient fixed across layers

|=v

* Mathematically, [ d¥
dh!

[qi1—1 -
> o
| =0

(g1 1—1 -
dy
v Z dhlﬂ—l
| J= J
Q'J—llv d:l)
dhiH!

=0 j
dy
dhi+1

[+1
OR!, ]

dhitt Oh;
J t

&8
.
— |%'
X1 o
hyt —HZ:/ﬂ11\:Z h? —H:/lf\:\
X2 ) (s )
hzi _n::/azi\:: hzz _H::/azz\:: /
(X ¥\t pt W2 b2 W3
Taken from Louppe, G.
Deep Learning
27147
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3) How to train neural networks 2

* The variance of the gradients with respect to the activations is preserved across layers if :
dy dy I+1
\% [W] =q 1V [dhm} V [w N5

~ V[wl}:% vl

* A compromise on the conditions for the forward and backward pass is found in Xavier's
initialization, which initializes the weights with a variance :

1 2
V [w!] = —
w] L g +q

* The normalized Xavier's initialization : w!, ~ U

6 6
g1ta \Vai1t+q

"3 b ¢

i
")

ID-' -I
£
S H i
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3) How to train neural networks ? ®

. . . ] . °e_ o . . o 0
* How effective is the Xavier's initialization ? )
"R
15¢ T T T T T T T T I 100 T T 1
—Layer 1 —Layer 1 %
Layer 2 —Layer 2 'i'
10 —Layer 3 —Layer 3
/\ —Layer 4 50 —Layer 4
5! , Layer 5 Layer 5
0 | e S— — | a J ? = d
-1 08 -06 -04 -02 O 0.2 0.4 0.6 0.8 1 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Activation value Backpropagated gradients
2 T T T T . 10 T T T T T I 1
—Layer 1 —Layer 1/ |
- | i |
1.5- m Layer 2 ;J ’ d[w Layer 2
‘.gﬁ.—‘ e Y —Layer3 “I ""., | —Layer 3 |
1 - ] g —Layer 4 5 —Layer 4|
.,|W Layer 5 it % 3 sosis| |
g yer
0.5 Aol * j \ ‘
i o % 1 ' Iﬁk\f |
e e, | s \
0 cnetp 1 1 1 ] M 0 _‘M" i 1 i 1 '“Q‘M Aw. (S
-1 -08 -06 -04 -02 0 02 04 06 08 1 -0.25 -0.2 0.15 -0.1 -005 0 0.05 0.1 0.15 02 025
Activation value

Backpropagated gradients

Credits: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010

i foe% 29/47
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3) How to train neural networks 2

* He initialization (He et al., 2015) vs Xavier's initialization

Vo] = = x V[wl]= b=

_11q
= q1+q

0.95+

0.9
5 \ A
LE l" "\Jnl'.r-l
085} 1
—Eﬁ[‘/ar[wf] =1 ours
0.8}
——e= WVar[w] =1 Xavier
0.75 \ : . , . .
0 0.5 1 15 2 2.5 3
Epoch

RO
Q

-9

"

It

S8 G

30/47
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3) How to train neural networks 2

* Previous initialization strategies rely on preserving the variance across layers

- what about the first layer ? @D
q-1—1 - .ﬁq
= LRl i >{agt) =
VR =V ) wihk ] e
7=0

hy? _;-{:‘alz \ o
Xz | (s )
qi-1—1 =

\% [hq = q_,V {wl} % [hl_l} X pt 2 b2 s

* For the first layer, we have assumed that the variances of the input features are the same,
that is

Viz] = Vg, £ V[a

1 &

|
220

0 [He

(=5
@
o
496%8

A0
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3) How to train neural networks ?

Normalization

* This constraint is not satisfied in general but can be enforced by normalizing or

Number of households

standardizing the

Full data

inputs through , 1
x =(x-p)o %

5_2_

Before normalization

e
GATS=200)

Number of households

-0.2
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3) How to train neural networks ? ... o

* Another method to normalize your data is called batch normalization :
"a®©@rq
l.
- let us consider a mini-batch of data, where B is the number of data
- a mean and a variance are estimated across the batch BN ?
e
. 2
Hbatch = E Z uy Obatch B Z l«Lbatch
b—1 1
. . . / A
- These estimates will be used to normalize the output : 1, =7 ® (U — flpaten) © + B
Obatch T €
0.8
Model Steps to 72.2%  Max accuracy
- il I Inception 31.0-10° 72.2%
BN-Baseline 13.3 - 10° 72.7%
BN-x5 2.1-10° 73.0%
_ BN-x30 2.7-10° 74.8%
B e BN-x5-Sigmoid 69.8%
BN-x5
BN-x30 ) )
. gtl\fl::ifnlwgar?corﬁnception Credits: loffe and Szegedy, Batch Normalization: Accelerating Deep
15M 20M 25M 30M Network Training by Reducing Internal Covariate Shift, 2015.
33/47
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3) How to train neural networks ?

* Where are we so far ?

Problem

- classification

- regression

- detection
71
1

0. ] ¢ &%

J 3 “'g'" R =

Architecture

-

-

- fu”y—connected |ayers
- activation function

- batch normalization

~

/

I

Weight Initialization

—

Mini-Batch

Normalization

—

- gradient descent
- backpropagation
- momentum

- Iearning rate

010100 abl
010100 i

34/47



3) How to train neural networks ?

* Where are we so far ?

Problem

- classification
- regression

- detection

A7
n
i

—

Architecture

4 N

- fu”y—connected |ayers
- activation function

- batch normalization

. /

—

Mini-Batch

Loss

/\

f

@} k\}wna]ﬁatij
Il

Normalization

—

- gradient descent
- backpropagation
- momentum

- Iearning rate

010100 abl
010100 i
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4) How to choose the loss function 2=+ o

* The choice of the loss function is critical T
"R

- the best architecture + the best optimizer + the wrong loss = FAIL

- a simple architecture + a random optimizer + the good loss = SUCCESS %

* Most of the problems can be translated into regression OR classification

_ Regression
Area (feet?) | X % What is the temperature going to

. w( be tomorrow?
-y - V///4
A New Data PREDICTION
¢ Bedrooms = X2
.’\’“" Fahrenheit |___
= F % 40 % @ 10 0 10 D 30 40 5 60 N 60 9 00 110 120 130 MO 150 160 10 180 150 W0 210 20 2
s

. >|</>|>
o -2

y Price
Distance to city (Miles) Xz _— "
Model Classification
- Prediction Output i oy
. P Training Will it be Cold or Hot tomorrow?
Past Labeled

Data Age XZO PREDICTION

coto [or

Fanrenheit e - e - - - - -
Input Layer Hidden Layer Output Layer

-0

o S o 36/47
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4) How to choose the loss function 2=+ o

* Regression : involves predicting a value that is continuous in nature (temperature, price, ..) :
'®‘.

1 T 5 1 T o
MSE = E E (y'i.,t-r-urf - y-i,p-r"ed-icted) MAFE = E E Yitrue — Yipredicted
Advantages : Drawbacks : Advantages : Drawbacks :
- no local minima - outliers are not - outliers are handled - computationally expensive
- penalizes large errors handled properly better than MSE - there may be local minima
. , 1 - 2 % (yt?"u(ﬂ - yp-r"ed-icted)gz iﬂytr'{.t—e - ypred:icted‘ < 0
MSLE = — E (log(yi:tr“ﬁae) - log(y'f'.,p:r‘ed'i.(:ted)) L5 — ' ) 1 2 1

n i—1 J ‘yt?'u(ﬂ — yp-r"edfictedl 3 0 ; otherwise
Advantages : Drawbacks : Advantages : Drawbacks :
- relax the penalties on - more expensive than MSE - outliers handled properly - parameter to tune
huge errors - penalizes more underestimates - no local minima - complex

than overestimates
[ 0,25 X; n?

: 37/47
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4) How to choose the loss function 2=+ o

* Classification : involves predicting a discrete class output %
®‘l

1 — 1 <& _ s
BCE = _H Z (y'i,-i'f‘ur: ‘EOg(yi,Prrﬁdicteri) + (1 - yi,t'r'urf) log(l - yi,PT'edzcted)) BOEL = 7; Zl (yi:tmm Jog(a(yi’predi[“ted)) + (1 o yi‘tr'uri) iog(l B O'(yi’pr-edictrid)))
=1 1=
Notes : Notes :
- requires the use of Sigmoid function as the output of - Sigmoid included in the loss (more numerically stable than BCE)
your NN
1 1 0 0 0
Sigmoid S(z) = ———
1+te ™ Dog 0 1 0 0
R Turtle o 0o 1 0
- Z Yij.true 309 Yij.predicte d)) Fish 0 0 0 1
[t ! Cat 1 0 0 0
Notes : .
) . . e
- requires one-hot encoding of labels Softmax o(Z); = -
- requires the use of Softmax function as the output of T ° io Zj:l e
your NN
[0 '. 3 09 ﬂ? 38/47
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4) How to choose the loss function 2.

* Training a NN is long, complex and sometimes confusing

R
- You don't want to use brute force and redo the training 20 times
- Need visualization tools meanwhile the NN is being trained ! gﬂ

~ Pplot your loss curves !
* Once your model is trained, check the loss curves before testing your network !!!

* Workflow : Write code ——> Train —> Validation —» Test ——> Paper

G- gt 39/47
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* First problem : underfitting/overfitting (Jason Brownlee, 2019)

Loss

Problem : flat curve or noisy behavior of
with high values

+1.099 Loss

0.00040 A

0.00035 A

0.00030 -

0.00025 —— train

validation
0.00020 -

0.00015 A

0.00010 1

0.00005 -

CI) 2'0 4IO GYO SIO 160
Epochs
Solution(s) :

- add more data

- increase model capacity (more layers, etc..)

Loss

o

&

G @
S —
<2

4) How to choose the loss function 2.

I

Problem : loss curves can go lower but

halted prematurely

1.075 4

1.050

1.025 4

1.000

0.975 1

0.950 +

0.925

0.900

0.875

Loss

—— train

validation

0

10

Solution(s) :

20 30 40
Epochs

- add more training steps

50

- increase the learning rate if the training is

too long

£da
858
nE,

40/47
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4) How to choose the loss function 2.

* First problem : underfitting/overfitting (Jason Brownlee, 2019)

Problem : validation curve increases while

training curve decreases

Loss

1.0 — train

validation
0.9

0.8 1

0.7 1
Loss

0.6 1

0.5 1 \\

0.4 ""'“"-*'-%
0 100 200 300 400 500
Epochs

Possible solution(s) :
- reduce model capacity (less layers, etc..)

- reduce the learning rate if NN learns too fast

Problem : validation curve levels off while

training curve decreases

10 1

i WM
06 1

Loss
04 1
0.2
-~ yalidation loss
0.0 - training loss

0 25 50 75 100 125 150 175
Epochs
Possible solution(s) :
- collect more data (in case of memorization)
- change NN architecture

007
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4) How to choose the loss function 2.

* Second problem : unrepresentative training/validation dataset (Jason Brownlee, 2019)

Loss

1 &

|
220

e

Problem : both losses show improvement

but a large gap remains

Loss

—— train
3.0 validation

1.5 A1

o A
0.5 1 \’\f\\

(I.) 2‘0 4IO GIO BIO 160
Epochs
Solution(s) :

- add more samples in the training set

Loss

Problem : training loss smoothly decreases

while the validation loss oscillates "randomly”

11

1.0 A1

0.9 A1

0.8 1

0.7 A1

0.6 1

0.5 A

0.4 1

0.3

Loss

i\

\

— train
validation

\V‘V"’f‘v'\/\/‘"\—-'vwv‘w\/\ﬁ-\w»\__/V\/\-\,._

20 40 60 80 100
Epochs

Solution(s) :

- add more samples in the validation set

42/47



AN

=5

AN

v 3 - o ° -“‘-I Mm#
/ = & op P B

4) How to choose the loss function 2. v @

- use scheduling to reduce the learning rate or change the optimizer

* Third problem : too large momentum _-
®‘|
Problem : Training loss is increasing after some iterations! NG
Momentum . . =
Direction
~ Momentum
o
Direction
Loss
Gradient Gradient
@ 0 500 1000 1500 2000 2500
Iterations
Possible solution(s) :
<
uig
pal

- use another loss function (if possible)

o

o @g . dag \ 43/47
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4) How to choose the loss function 2. &

* Comment : the (mini-)batch size is closely related to the learning rate

R
ldentical learning rate, different batch sizes
|$'
0.600
Batch size : 256
0.400 Batch size : 1024
0.200
e —e
0.00

5.000 15.00 25.00

Naive conclusion : increasing the batch size

leads to worst results

s 44/47
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4) How to choose the loss function 2. &

* Comment : the (mini-)batch size is closely related to the learning rate %
®‘l

ldentical learning rate, different batch sizes

0.600
Batch size : 256

Batch size : 1024

0.400 |
0.200
O B S —
0.00 ———
5.000 1500  25.00

Naive conclusion : increasing the batch size

1 &

leads to worst results

|
220

e

Different batch sizes AND learning rates
0.600
Batch size : 1024 | Learning rate: 0.1
0.400 Batch size : 1024 | Learning rate: 0.01
0.200
0.00

5.000 15.00 25.00

Correct conclusion : batch size and ]eaming rate

have to be adapted together !

45/47
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4) How to choose the loss function 2. &

* Most of the problems can be solved by simply looking at the loss curves ! i

- the examples shown should serve as a general rule i

- depending on your architecture, lots of other things can go wrong %
GOD

* You will not get it immediately Experts

- understanding loss curves take time

- ... and failures ! C Advanced

Amateurs

* From "Amateurs” to "Advanced" S
anatics

- interpreting loss curves + adapting your NN training

- be comfortable with other architectures General public

i , % 46/47
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The deep learning jargon... CradCAM
Batch size .®“'
Overfitting >< underfitting

Convolution Iayers

Pooling

Vanishing gradients

I
[
/

Loss function

Transfer ]earning
RNN
Learning rate
Normalization

Optimizer

Transposed convolution

Gradient descent

Fully-connected
ReLU

Initialization

octs 47147
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Course 3 : Table of contents

1) Why convolutional neural networks ?

2) How to build a CNN ?

2.1) Parameters of a convolution

4) Tips and tricks to train NN better

4.1) Data augmentation

4.2) Transfer learning

2.2) Ingredients of a CNN
) Ing 5) More advanced networks
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1) Why convolutional neural networks ? &

* For the moment, we know how to process tabular data with the multi-layer perceptron
"
* In lots of domains, data are much different than values in a table
&
5}

Security Camera

@}v Telescopes
& ) ) .
i Medical diagnosis
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1) Why convolutional neural networks ?

* Can you process images with the multi-layer perceptron ?

* Let us consider Hubble images captured via the Advanced Camera for Surveys (ACS)
- High Resolution Channel : 1000 pixels square images

- Wide Field Channel : 4000 pixels square image

* You can flatten the images to get 1 dimensional data

~aP millions of pixels leads to billions of parameters to train
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* (Might be ok for small images)
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1) Why convolutional neural networks ? &
* Why MLP is not didea t i ?
y is not a good idea to process images | I
&
* Do we really need to connect all the pixels together ? =
4+~ - No, resource consuming
* How can you be sure your MLP detects what you want ?
- No visual information, even in the intermediate layers
,
i3 D _:s- — 4/47
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1) Why convolutional neural networks ? &
* What conditions should we fulfill ?

- locality : only look in a small region around the pixel of interest
- invariance to translation : should recognize objects everywhere in the image El

- feature hierarchy : should be composed of layers learning features at different scales

* What can we use to satisfy these conditions ?
- In computer vision, lots of tools make use of kernels

- edge detection, blurring and sharpening operators, template matching, ...

. * Kernels are linear operators convolved with the input image L1 L ; g _;
OE . [ x] - E o
~ap Convolution S
.. @ P9 5/47
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1) Why convolutional neural networks

* A convolution layer applies the same linear transformation locally everywhere

Taken from : Francois Fleuret,
EE559 Deep Learning, EPFL

Output

* Convolutions generalize easily to N dimensions through multi-dimensions tensors

- for a 3D kernel g, it slides across the input image along its height A and width w

- the size h x wis the size of the receptive field
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1) Why convolutional neural networks ?

* Convolutions generalize easily to N dimensions through multi-dimensions tensors

- for a 3D kernel g, it slides across the input image along its height A and width w

- the size A x w is the size of the receptive field

Input

Qutput

Kernel @

Taken from : Francois Fleuret, EE559
Deep Learning, EPFL
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1) Why convolutional neural networks ? &
* Convolutions are great BUT do gradient descent and backpropagation still work ? 5
"R

4 6 3
- Example of a very simple convolution: z® u = (8 5 1
2 4 6

D)o (3 2\ _ (69 50\ _, o
o5 1 48 43 an

y . ava
- For this, we can flatten the input : v(z)=(4 6 3 8 5 1 2 4 6)

32 05 1 0 0 00
_ The k 1 b d . 0 3 2 0 5 1 0 0 0
€ Kernel g can pbe expresse das [ 00033200510
00 0 0 3 2 0 5 1
Tm N g 8/47

=
A
i



1) Why convolutional neural networks ?
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* Convolutions are great BUT do gradient descent and backpropagation still work ? o
"R
3 2 0 5 1 0 0 0 0
T 03 2 0 5 1 0 0 0
. i %
ve)=(4 6 3 8 5 1 2 4 6 000320510 '%
00 0 0 3 2 0 5 1

- The matrix multiplication gives :

Uwv(x)= (69 50 48 43) t = v(h)

* A convolution layer is just a special case of a fully connected layer :

v(h) =Uwv(x)

-

Bt =Wtz +b!

X
hyt —yaii
%
hpt —Vﬁ:azi )
X3 wli bl
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. v 2.1) Parameters of a convolution
2) How to build a CNN ¢ ()

N -
(ES2a2)-

* Convolutions allow to process images with less parameters than fully-connected layers
it
* Gradient descent and backpropagation still work 39051000 0
, , 032051000
~=P We can use convolutions in a neural network ! U=10 003205 1 0
00 0 0 3 2 0 5 1
* Can we adjust the convolution operation ?
* What are the ingredients needed to build a CNN ?
@} * How do the layers interact with each other ?
ui
W W 10/47
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. > 2.1) Parameters of a convolution : -
2) How to build a CNN ()

* Can we adjust the convolution operation ?

320510000 ,
. . 032051000 e

- convolution is a linear combination of values from the input U=100032051 0
- the kernel size is not the only parameter we can tune 000032051 =

* The padding specifies the size of a zeroed frame added around the input

- Padding is useful to control the spatial
dimension of the output map, for example to

keep it constant across layers

o 0®s °p:% Taken from : Dumoulin and Visin, 2016. /47
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. v 2.1) Parameters of a convolution
2) How to build a CNN ¢ ()

* Can we adjust the convolution operation ?

320510000 7
- convolution is a linear combination of values from the input p=|Y 3 2051 9 00
000 3 2 0 5 10
- the kernel size is not the only parameter we can tune 000032051 &)

* The stride specifies a step size when moving the kernel across the signal

- Stride is useful to reduce the spatial dimension of

the feature map by a constant factor
Taken from : Dumoulin

and Visin, 2016.
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) H OW to bu ]] d a C N N ) Parameters of a convolution @

: : —_ vee
* Can we adjust the convolution operation : 390510000 %
- convolution is a linear combination of values from the input [ — 8 ?} 3 2 g é 0 [13 g

. E 5 ’
- the kernel size is not the only parameter we can tune 0000320 5 1 F!?l

* The dilation modulates the expansion of the filter without adding weights

- The dilation modulates the expansion of the kernel support

by adding rows and columns of zeros between coefficients

Taken from : Dumoulin
and Visin, 2016.

- Having a dilation coefficient greater than one increases the

units receptive field size without increasing the number of

parameters

rP__s' 13/47
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) H ow to bu]l d 3 CN N ) Parameters of a convolution

* Convolution are defined through 4 parameters : kernel size, padding, stride and dilation

* The output of a convolution layer can be computed via :

stride

W, — r-{-“}w — 1 4+ 2 padding — dilation (kernel — 1) N lJ

- example : input image of size 200x200, kernel 3x3, stride 2x2, dilation 1x1, padding 0x0
- output : image of size 99x99

* The stride is the main parameter to reduce the size of the data !

~=p Can we reduce the size of the image in another way ?

g E B 2

14/47
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2) H owW to bUiI d 3 CN N .? 2.1) Parameters of a convolution

* Pooling layers )
- When the input image is large, pooling layers can be very useful
- the goal of pooling is to reduce the dimensions of the image but retaining useful features i
- pooling layers do not have trainable parameters Input

Output

* Most used pooling operations :

2 3 2|0 201|328 IS2 SN0

S|-2(2 (8| Pooling | S| 8 5|-2| 2 (8| Pooling | 2 |3 <h

-11-6| 71| 3 il || 4 mE=es 7 | 3 4 | 4 SE—
4(5|4]2 %] 4 | 2

Maximum Pooling Average Pooling
—>
C
Taken from : Francois Fleuret, EE559
. Deep Learning, EPFL
W 0,50 4 u?
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2) How to build a CNN 7w o

* Let say we want to classify images that are 200x200 into two categories : cats and dogs oS
"R
. . '\

* Let us apply a first convolution with k = 3x3, s = 2x2, d = 11, p = 0x0 &

- output : 99x99

Applying again a convolution with the same parameters

- output : 49x49

* What are the problems of this procedure ?

Cat !
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2) How to build a CNN 7w o

* First guess : add more layers ?

1) Convolutions are linear operators

~ap composition of linear functions = linear function

- stacking them do not lead to a more complex relationship e o o
N - . Sele e o — &
- need non-linearities : activation functions ! —0L gt gl — =3
—) =
o O O

2) You cannot choose the output of a convolution layer
- need to tune the parameters accordingly (kernel size, stride, dilation, padding)
- large images require a lot of convolution layers to be reduced by a sufficient factor

- how do you go from 2D images to 1D outputs (the classes "dogs" and "cats") ?

# Calling the network with the right number of inputs and outputs + Put it on the GPU
N _inputs = batch x.size(1)
N outputs = batch label.size(1)

N hidden 1 = 1000
N _hidden 2 = 100
N _hidden 3 = 100
my network = MLP(ngpu, N _inputs, N_hidden 1, N hidden 2, N _hidden 3, N outputs).to(device)
- o 17/47
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2) How to build a CNN 7w

* What are the ingredients needed to build a CNN ? o
"R
- convolutions
- activation functions (ReLU, Leaky ReLl, ...) %q

- fully-connected layers (FC)
(- pooling layers)

* The most common CNN architectures follow the pattern :

INPUT — [[CONV — RELU|*N — POOL?|*M — [FC — RELU]*K — FC

- usually N < 3 (for basic CNN), M>0and K< 3
- YOLO : N =13, GooglLeNet: N = 22, ResNet50 : N = 48

. n % 18/47
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2) How to build a CNN ? =

* A typical CNN architecture :

— CAR
— TRUCK
— VAN

D ]:] — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

FULLY
FLATTEN CONNECTED SOFTMAX

i b

FEATURE LEARNING CLASSIFICATION

- convolution layers are used to learn some features in the input image

- fully-connected layers gather all these features to produce an output

NB : some CNN do not contain fully-connected layers, it is usually the case when the goal is not classification

e B 4

3 @
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2) How to build a CNN ?

* What does the depth correspond to ?

2.3) How it really works @
A\

— CAR ==
— TRUCK
— VAN

’ Cralll O [] — eicycte
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN coiquhllézrzo SOFTMAX

FEATURE LEARNING CLASSIFICATION

3 6 20/47
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2) How to build a CNN ?

2.3) How it really works @

* What does the depth correspond to ? :
"
/

D ]:] — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

FULLY
FLATTEN CONNECTED SOFTMAX

i b

FEATURE LEARNING CLASSIFICATION

* The depth of a layer corresponds to the number of different kernels used in that layer

- the more kernel, the more features can be learned

- but the more kernel, the more parameters to train

3 @

=5

= N g 20/47
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2) How to build a CNN 2 ., .. ()

* To distinguish and classify objects, animals or scenes lots of aspects are useful
"

- shape, color, texture, orientation, companion object, ...
: : 0,
- these aspects are often complex and require to be learned in a couple of steps 'F!?l

~=P That is why multiple kernels are useful !

* Let us consider applying a convolution on a RGB image
- a 2D kernel slides over each channel (R, G and B)
- the resulting images are summed into a feature map

- this is repeated N times with N different kernels, giving

N feature maps for this layer (= depth of the layer)

gz, TEI 5 21/47
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2) How to build a CNN 2 ... @

* A composition of multiple convolutions allows the network to learn a hierarchical _-
°o_ ®‘|
composition of patterns

* Example with the ImageNet feature maps

Low-Level| |Mid-Level| |High-Level Trainable
— — —_
Feature Feature Feature Classifier

- first layers appear to encode direction and color
- the direction and color filters get combined into
grid and spot textures

- these textures gradually get combined into

increasingly complex patterns

Taken from Zeiler & Fergus, 2013

: - 22/47
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3) Going further with convolutions s = &
* So far, we have seen the basic ingredients that compose convolutional networks :
"R
- you can now build simple networks for classification tasks
- if you want to build large network, some additional ingredients will be needed El

* Large networks, even with RelLlU, suffer from vanishing gradients

=]
-0

oL oL

¢, T OL 0L 5 .9 ]
dw3, oS \/uz f(ha) (Ii dw3, 0S8 uy Fikg)
With Sigmoid With ReLU

23/47



3) Going further with convolutions s -

* Training large neural networks is made possible thanks to skip connections

; || |1| |*| |‘| |1| |*| |[ NG 4 :ﬁ

* They allow the gradients to shortcut the layers and

pass through without vanishing
1 . - N lIJ -
oL oL . ReL \__ Rew
w2, = Bo 'wg f’(hg) aé

@} Convolution Convolution aum of block input and
l l layer layer conv layer output
OmmQ
g
L1

I :;_'-:" N
G
g2

H
E
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3) Going further with convolutions. ...

* For some applications, you do not want to reduce the size of the image, rather you want
to have images as outputs

Image segmentation Super-resolution

* Convolutions are used to downscale the useful information

~=) Can we reverse the convolution operation ¢

25/47
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3) Going further with convolutions. ...

* Transposed convolutions
- used to increase the size of the data
- different from deconvolution (that is the exact inverse convolution)

- generally used together with convolutions

Input Kernel Output
0|0 011 o0} 1

011 011
=100 + 213)|+|0]2 + 0|3|=|0|4]|6

213 213

sl

<>
=
é -

~o -

[ =
N 010100 abl
o 00N010==
0101100 i

26/47
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3) Going further with convolutions. ... &

* Transposed convolutions o

- suffer from checkerboard effects (can be reduced by using a kernel size divisible by the stride)
- can prevent the network to converge (leading to funny images...) El

- sometimes other upscaling strategies are preferred

|

stride =2

. _ kernel_size = 2

[ S S Y ) |
| I BN B B B OB

stride = 2
kernel_size = 3

%E

stride = 2
kernel_size = 4
N IS 500 0 0 o |
| I B B N = =N N
stride = 2
kernel_size = 5

Taken from Jinsol Kim, 2022 Taken from Odena, et al., 2016

GO gt 27/47
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3) Going further with convolutions

* Transposed convolutions are not always the best solution to upscale the information

- suffer from checkerboard effects

- involve trainable parameters

* Upsampling methods can be used to this purpose !

- only one parameter to tune : upsampling factor

- no trainable weights

10

20

2x

10

10

20

20

Bilinear Interpolation

10

10

20

20

10

20

2x

& G

3.3) Upsampling

10 | 12

17

20

15 | 17

22

25

30

40

2x2

A7
i

L J

30

30

40

40

30

40

30

30

40

40

4x4

2x2

A J

25 | 27

32

35

30 | 32

37

40

4x4

010100 abl
010100 i
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3) Going further with convolutions 2 i &

* Another upsampling method : unpooling o
"R
- exact inverse of pooling
X
- used together with pooling layers in two-sided network &

Max Pooling

. Max Unpoolin
Remember which element was max! P 9

Use positions from

1121613 pooling layer olol2lo

35|21 115 Tl e
> 5|6 IR .

22| 718 Rest of the network 3|4 0o|(0|0]|0O

T13]4]8 3|0o0]4

Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

upsampling layers

——— Corresponding pairs of
E downsampling and
771

1

DIE) 2% 29% 29/47
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3) Going further with convolutions 33 ®

* Increasing the depth of your CNN can lead to overfitting = :
validation .®‘i
0.9 A1
- because you increase the capacity of your network
0.8
- for some tasks, it can learn the statistical noise in your data L o] '?
0SS =
- this improves the training curves but fails on the validation curves 061
0.5 \
‘\.\
0.4 1 b -,*,_4%

* Dropout has been introduced to solve this problem

0 100 200 300 400 500

- dropout consists in "dropping” out some nodes

- each node has a probability p to be dropped

- for a layer of 1000 nodes, if p=0.5, 500 nodes will be dropped

/

,.\
y
\

3

',
[

A
\/

N
§
Yo
\\\
N

>

N
A}\\' .
Y f.}é:” A

e
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o

\

A

Q

K7
A
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- dropout is activated only during the training phase

A

AT
AN

7

AN

<
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)
(&
/

Taken from :
Srivastava, N. 2014 (a) Standard Neura

[0 - 259 30/47
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3) Going further with convolutions

* Dropout is part of the regularization methods

3.4) Dropout

- regularization consists in discouraging the learning of a more complex model to prevent overfitting

- bring sparsity in the network layers

- the nodes focus more on learning the generalized features

Mean Activation Activation
< — 10 T T 1200 co TR
y ’ olr.
o G4 L7 17 sl
-2' = = ~ - - 1000
» 8
: e * L4
- T 800
- = , A e £ o4
-~ -3 -
o’ ’ - > |/ . 600
)4 L) -
N 2 A
. -~ ~ -
» L4 - LI . 400
\’ o 11\ 2
— ' I’ =% ’ \ 7
, ) » 200
- [ /1. Y
FPA T, - : o .- .‘
- ’ _- ® ~ . 0

4 5

012 3 45 6 7 8 9

Without dropout

With dropout Without dropout

"3 b &

Taken from : Srivastava, N. 2014

n-' 0

14

Mean Activation

Activation

10000 ———— 0
8000
| 6000
1 a000

2000

50012345678

With dropout
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4) Tips and tricks to train NN better - @

* The lack of data is the biggest limit to the performance of deep learning models o
"R

- collecting more data is usually expensive and laborious

- synthesizing data is sometimes complicated and may not represent the true distribution El

* How can we create larger datasets in a simple and efficient way ?

- convolutions are translation invariant, they are translation equivariant ) o

- but they are not equivariant to other transformations >

W i
* Data augmentation consists in applying transformations e . Jrlth = vl »
to your data to create an artificially larger dataset T ' T

Taken from Divyanshu M. 2020

9_ is' 32/47
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T 4) Tips and tricks to train NN better -

* Some of the transformations used

- rotation, flipping and cropping are the most used "
. . . . . >oa
- noise can also be added to the weights, gradients or activations ¢
g 07
.5 06
- i
s |

Geometry based

o
s

vertical-flip  horizontal-flip crop crop-and-pad Perspective- Elastic- —— with non-aug. data

h “ with aug. data (by deepaugment)

03
transform transformation T T T T T T T T
0 i3 50 s 100 125 150 175 200
f;" epoch
Color based S
/,/ [Y 25
M .l‘l '«.; / e
sharpen brighten Gamma- invert
contrast 20
Noise / occlusion a
E 15
" 9 1.313
gaussian-blur  additive-gaussian- trans|ate -X translate-y coarse-salt super-pixel emboss -
noise g
v "_; 10
.y A )
3 ,)f‘ rw >
[r——) eat er e 1t e 4
Weath g
clouds fog snow-flakes Fast -snowy- WAAAA = nscs
landscape VAN M e A A~ A AN A caaaa| 0.19
’G’-O 0 3 50 3 100 125 150 175
2 epoch
= Taken from DeepAugment, 2020. 3
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https://github.com/barisozmen/deepaugment
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4) Tips and tricks to train NN better......... ®

* Training deep models from scratch on millions of images can take days or weeks :
®‘I
- sometimes you do not have the resources required to train large models for a long period

- or you lack experience to build deep networks 22

* Why can't you take advantage of the resources of others ?
- many trained models are publicly available

- they can be used as features extractors for your own problem !

@5} * There exists two ways : / =
_ - transfer learning E_E ;
o - fine-tuning I g e L
NPUT  CONVOLUTION + RELU  POOLING c:;vownou,mu PooLING ) COM:;D SoFTMAX

FEATURE LEARNING CLASSIFICATION

g, Bl 34/47
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4) Tips and tricks to train NN better......... ®

* Transfer learning %
®‘i

- consists in taking a pre-trained network, remove the last layer(s) and take the rest of the network as a fixed
feature extractor N

- the only trainable weights are in your own layers at the end
- generally better than training from your own data only

- requires sometimes to adjust your data (resizing, resampling, ...)

_trai haxwgexd k
resized centered e ttram:d a € Rta*ta Dimens. f ER : A

maximum pE NpXwpXc networ reduction Classifier | —

square crop on source task S
Taken from Mormont
et al, 2018.

\ I J L I J
Features extraction Classification
W > X, u? 35/4’7
'@‘i =
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4) Tips and tricks to train NN better......... ®

* Fine-tuning

- Nearly identical to transfer learning but the weights from the pre-trained network are also fine-tuned
- all or only some of the layers can be tuned &
Source Target 0.94 T T T 1 T
model model oo ot-===f-== Xception
" Random Train from P P LY -—- ResNet50
Output layer initialization ~ ™| Outputlayer } scratch 092 " - InceptionV3 []
1 f " VGG19
~ '/ Scratch-V3
Layer L - 1 ---- copy ----» LayerL-1 = 09 Vi =
Pre-train < T T ; ::
L copy > > Fine-tune é 0.88 - ;_‘.ff:_l::.-.._- -: -:_-_-_-_-_- _-__-__-__-__-__,-__-__-__'__-__-_ 7]
1 T e N
L Layer 1 - copy ----# Layer 1 ) 0.86 - :- ! -
t f
0.84 —1 . - v :
Source data Target data 0 5 10 15 20 25
Epochs
Taken from Dive Into Deep Learning, 2020. Taken from Matthia Sabatelli et al, 2018.
36/47
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5) More advanced networks » == @

Fully
Connected

O,

Convolution

* Let us consider a problem where you want to classify images :
®‘l

Pooling_‘,,.,r-""_/

- we know how to do it if there is only one object in the image -

in the case of multiple objects, our approach does not work anymore

the ideal goal would be to separate the objects in the image

Feature Extraction Classification

R person : 0.992

To achieve that goal, we can use bounding boxes
- this implies finding the location AND the class of an object

- these two problems are not easy two solve together !

* ... or segmentation !

- it consists in finding a label for every pixel in the image

- can transposed convolutions be useful ?

e - _:s' o : 37/47

3 @

n-' 0



& oG P EE
5) More advanced networks » == @

* Bounding boxes : YOLO (You Only Look Once — Redmon et al, 2015.) :
"R

- YOLO is one of the best object detection algorithm

- it considers object detection as a regression problem &)

- from a pre-identified set of bounding boxes and confidence values, it select the best ones

* Many engineering choices :

- the network is pre-trained on the ImageNet dataset

— Boundi +confid
- use Leaky ReLUs for all layers : % ouneing hoxes T eonncence

- data augmentation with scaling and color transformation

S xS grid on input a9 Final detections

- normalize the bounding box parameters in [0,1]

D

- dropout after the first convolutional layer

Class probability map

- reduce the weight of large bounding boxes by using the square roots of the size in the loss

"3 b &

Fop 38/47
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5) More advanced networks ===

* Bounding boxes : YOLO (You Only Look Once — Redmon et al, 2015)

- the input image is divided into a grid (S x S) and for each grid cell, the network predicts B bounding boxes,
a confidence value for each box and C class probabilities

- the loss designed to train YOLO is quite complex and contains many terms achieving different purposes

s2 B
M coor ]10hJ P — Az‘ 2 i — Ai 2
Regression ¢ Zogo [(z 2:)° + (ys — i) }
loss s B 2
e 351 (v v+ (Vi - i) ]
i=0 j=
S E bj 2
~ 10] =
Confidence | *2 2" (ci-¢&)
loss 2 5 2
+ Anoc)bJ Z Z ]111001 ( )
i=0 j=
E + Z lzbj Z (pz‘(c) _ ﬁz(C))2
=0 cEclasses
© ==
I
up n?

448

i

448

= e
2 3
14
7 7 7
1024 1024 1024 4096 30

Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
1x1x256 1x1x512 1,5 3x3x1024
3x3x512 3x3x1024 3x3x1024

1x1x512 3x3x1024
3x3x1024 3x3x1024-s2
er  Maxpool Layer

2:252 (Redmon et al., 2015)
Via | Wia | hig | G | - | %8 | Yi,B | %i,B | hig | ¢i.B - .
5 B values C values

Taken from : Francois Fleuret, EE559 Deep Learning, EPFL
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5) More advanced networks ===

* Segmentation : UNet (Ronneberger et al, 2015)

- built as a fully convolutional network

- consists in symmetric contraction and expansion paths, with connections from the contracted part to the

expanding part
64
12¢ 1
input Stage 1 out
i put
Imﬁltgillz g hetl el bt segmentation
: map
' 128 :7
: Stage 2 T
> ﬂ’{ -
M Stage 3 - t Expansion
—_— _ "" "l ] 3 | "”D*ﬂ conv 3x3, RelLU
%z' R { 615 51, Slaged o t copy and crop
Contraction H‘E"E == ¥ max pool 2x2
¥ 1 4 : # up-conv 2x2
I_I’ Stage 5 ’ me- cOnv 1x1
[ &
-
Ll

Taken from Ronneberger
et al, 2015.
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5) More advanced networks »«== .

* To go further... o
"R
o ]

* Object detection : &

- Single Shot Multi-box Detector (SSD, Liu et al, 2015) : improves over YOLO by using a fully convolutional
network

- Region-based CNN (R-CNN, Girshick et al, 2014) : instead of producing a large set of bounding boxes,

region proposals are extracted from the image

* Segmentation :

- Mask R-CNN (He et al, 2017) : extends the R-CNN model for segmentation
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5) M Ore a dv a n ced n etwork S 5.1) Advanced convolutions @

* How can you be sure your network detects what it is supposed to ? _-
®‘.

sometimes CNNs do not work as expected

Wi Low-Level| |Mid-Level| [High-Level| Trainable
| N L -
Feature Feature Feature Classifier "
Vi e A

a deep network can overfit and learn the statistical noise in the data - BN | &3

you can look at the feature maps to see how the layers are activated

..ot let a neural network do it for you : Grad-CAM .
Taken from Zeiler & Fergus, 2013

- Grad-CAM is a neural network producing heatmaps
Grad-CAM for “Cat” Grad-CAM for “Dog"
- check how the gradients flow through a network to | o 1

trace back the important regions in the input image

- you can trace back the gradients to any feature map

- easily adaptable to any CNN
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5) More advanced networks .......... &

* Generative Adversarial Networks (GANs) and Autoencoders : oo

- the goal of these networks is both to learn the underlying distribution in the data
AND to produce realistic data

-~ Y 7 Latent space # '%'
. \ e ==

Taken from Francois Fleuret,
gem Deep Learning, UNIGE/EPFL

ol Taken
from Deepak
Birla, 2019.

- they mainly differ by the way they are trained

e Autoencoders

Latent space
Representation

- made of two networks : an encoder and a decoder ‘ ‘

- often used to denoise data I | ‘ |

- the networks can either be MLPs or CNNs

- do not really work as it is

Corrupted (o = 4) Reconstructed
o Ly »w 7271064199200
~=p Variational Autoencoders . -—rre 90)1599%4260%¢5
. . y \ ) 4740\ 3\3472
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https://medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f
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5) More advanced networks .......... &

* Generative Adversarial Networks _.
®‘l

- the generator is responsible for the generation of new images from a random noise vector (latent space)
- the discriminator tries to discriminate the generated images from the real ones &)

- the training is a competition between these two networks

* GANs are very powerful but very hard to train

Training set él/ / Discriminator
1 N\ _Rea
“ /ijj I @ E —_Fake

Generator Fake image

Taken from Thalles Silva, 2018. Taken from Karras et al, 2018.
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https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

5) More advanced networks 9 e @

* How to make sense of sequential data ? :
"R
- examples : activity recognition in videos, text translation, speech recognition, ...
: L 1 (5]
- the analysis of some situations can change with time '?
* Recurrent networks have been designed to address data sequentially
- they maintain a recurrent state, updated at each step
- predictions can be computed at each step _ { [Z;: h” [’:] [:f]
Hidden Units H :
- implement gating, similar to skipped connections h o s
- examples : LSTM and GRU Lavef | )
p ) c [ N Initial > LSTM LSTM —>Lstm . —>|LSTM > Final
. . 1-1 > G State > BI:)ck =a Blokck > c—) BI?\ck —c} —>»| Block » State
- might be hard to train for long sequences ; - N i r
h;_; —> h, Number of X21 X2 X2 Xas
| Features : : : :
% LSTM block N -
.
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5) More advanced networks i

* Transformers are very different from other neural networks

- composed of an encoder and a decoder

- they implement the attention mechanism, consisting in transporting information from parts of the input

signals to parts of the output specified dynamically

- attention layers produce weights that are functions of the inputs

- require input embedding

* Steps :
- The encoders start by processing the input sequence.

- The output of the encoder is then transformed into a set
of attention vectors K and V that will help the decoders focus

on appropriate places in the input sequence.

- Each step in the decoding phase produces an output token,

1 &

until a special symbol is reached indicating the transformer

|
220

decoder has completed its output.

g E B 2

e

Decoding time step: 1(2)3 4 5 6 OUTPUT

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

f

-
( Linear + Softmax

T t

[ ENCODERS ] [ DECODERS

)\

o
f 1 t 7
[ITTT1] [IT1] [T 11

[TT] [0 [TT] [

PREVIOUS
OUTPUTS
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* The deep learning jargon... CradCAM @

Batch size %
Overfitting >< underfitting

Convolution layers

Pooling

Vanishing gradients

l
[
/

Loss function

Transfer learning
RNN
Learning rate
Normalization

Optimizer

Transposed convolution

Gradient descent

Fully-connected
ReLU

Initialization

fac 47147
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Course 3 : The end

Media saying Al will
take over the world

My Neural Network

Vincent Boudart, PhD student
vboudart@uliege.be



