
Old and new algorithms
for polynomial unconstrained optimization problems

in binary variables

Yves Crama
HEC Management School, University of Liège, Belgium

Numa Research Day 2023, Ghent

1 / 67

Polynomial 0-1 optimization

Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0,1}n → R, that is, a real-valued
function of 0− 1 variables.

Multilinear polynomials

Every pseudo-Boolean function can be represented – in a unique way – as a
multilinear polynomial in its variables.

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

(Note: x2 = x .)

Example:

f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4 − 13x1x2x3x4

3 / 67

Polynomial 0-1 optimization

Some advertising...

Connections with Boolean functions:

BOOLEAN FUNCTIONS
Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER
Cambridge University Press, 2011
710 pages

with contributions by C. Benzaken, E. Boros,
N. Brauner, M.C. Golumbic, V. Gurvich,
L. Hellerstein, T. Ibaraki, A. Kogan, K. Makino,
B. Simeone

4 / 67

Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Numerous applications in various fields, e.g,
Satisfiability and maximum satisfiability.
Facility location.

5 / 67

Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Numerous applications in various fields, e.g,
Image restoration: given a blurred image, produce a “better” version of it.
Modeled as energy minimization problem: pixels (B&W) are binary
parameters pj (initial image) or variables xj (deblurred image).

minEw (x1, . . . , xn) =
∑
j∈P

(pj − xj)
2 +

∑
w∈W

hw (x1, . . . , xn)

where hw (x1, . . . , xn) measures the “deficiency” of the assignment
(x1, . . . , xn) in a small window w of fixed size (based on smoothness,
purity,...)
If the window size is 16, then Ew is a polynomial of degree 16.

6 / 67

Polynomial 0-1 optimization

7 / 67

Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Numerous applications in various fields, e.g,
Telecommunications and statistical mechanics.
Compute {−1,+1} sequences x = (x0, . . . , xn) with low auto-correlations.
Given r ≤ n, find x to minimize

En,r (x) =
n−r∑
i=0

r−1∑
d=1

i+r−1−d∑
j=i

xjxj+d

2

.

En,r is a polynomial of degree 4.
Very hard as soon as n, r ≥ 40.

8 / 67

Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Complexity

PUB is NP-hard if f a multilinear polynomial f of degree 2 or more.

Naturally models MAX CUT, MAX 2SAT, MAX STABLE SET, simple
computer vision models, implementation of quantum computing...

9 / 67

Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Some classical approaches:
Linearization.
Quadratization.
Variable elimination.

Old ideas, new twists.
Frequent connections with combinatorial structures.

10 / 67

Variable elimination

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Some classical approaches:
Linearization.
Quadratization.
Variable elimination.

12 / 67

Variable elimination

Basic algorithm

A dynamic programming algorithm based on variable elimination
(Hammer, Rosenberg and Rudeanu 1963)
Revisited by Crama, Hansen and Jaumard (1990)
Re-revisited in 2022!

J.V. Clausen, Y. Crama, R. Lusby, E. Rodriguez-Heck and S. Ropke, Solving
unconstrained binary polynomial programs with limited reach, Working paper,
2023.

13 / 67

Variable elimination

Basic algorithm

Central idea:
Let f 1(x1, . . . , xn) := f (x1, . . . , xn).
Eliminate x1, that is, produce an expression of the function

f 2(x2, . . . , xn) , min
x1

f 1(x1, . . . , xn).

How? Write f 1(x1, . . . , xn) = x1g(x2, . . . , xn) + h(x2, . . . , xn).
(Straighforward if f is in polynomial form.)
For any (x2, . . . , xn), minimize f 1 with respect to x1:

if g(x2, . . . , xn) > 0, then x1 = 0;
if g(x2, . . . , xn) ≤ 0, then x1 = 1.

So: f 2(x2, . . . , xn) = min{0,g(x2, . . . , xn)}+ h(x2, . . . , xn).

Repeat until all variables are eliminated.

14 / 67

Variable elimination

Basic algorithm

Crucial step:
f 2(x2, . . . , xn) = min{0,g(x2, . . . , xn)}+ h(x2, . . . , xn).

Compute ψ = min{0,g(x2, . . . , xn)}
Previous attempts: obtain a polynomial expression of ψ
Hammer, Rosenberg and Rudeanu (1963) proceed by algebraic
manipulations - never implemented.
Crama, Hansen and Jaumard (1990) propose a branch-and-bound
algorithm.
Observe: if g(x2, . . . , xn) depends on a bounded number of variables (say,
K variables), then an expression of ψ can be computed in time O(2K).
This happens at all iterations of the basic algorithm if the co-occurrence
graph of f has bounded treewidth.

15 / 67

Variable elimination

Co-occurrence graph

Co-occurrence graph of a function f (x) =
∑

S∈M aS
∏

k∈S xk +
∑n

i=1 aixi :

vertices = variables
{xi , xj} is an edge if xi and xj appear in a same monomial S.

Example:

f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4.
Edges: {x1, x2}, {x1, x3},{x2, x3}, {x2, x4}, {x3, x4}.

16 / 67

Variable elimination

Basic algorithm with bounded treewidth

Crama, Hansen and Jaumard (1990)

When the co-occurrence graph of f has bounded treewidth K , the basic
algorithm can be implemented to run in time O(n2K).

17 / 67

Variable elimination

Low-autocorrelation sequence instances

Low-autocorrelation sequence instances have a special structure.

18 / 67

Variable elimination

Basic algorithm with bounded reach

Low-autocorrelation sequence instances have bounded treewidth.
They even have bounded reach r : if variables xi and xj appear together in
a monomial, then |j − i | ≤ r .
Clausen et al. (2023) propose a variant of the basic algorithm which
computes ψ in tabulated form, rather than polynomial form.
This New BA is a polynomial algorithm for problems with bounded reach.

19 / 67

Variable elimination

Computational results for New BA

Given r ≤ n, find x to minimize

En,r (x) =
n−r∑
i=0

r−1∑
d=1

i+r−1−d∑
j=i

xjxj+d

2

.

Results with New BA:
For the low-autocorrelation binary sequence problem, the New BA
performs much better than linearization, quadratization (with PQCR), or
previous versions of the basic algorithm (Old BA).
10 instances were solved to optimality for the first time. For example:

Instance 40.20: cannot be solved in 3 hours by linearization (gap > 100%)
nor by PQCR (gap = 4%); solved in 460 sec by Old BA and in 9 sec by New
BA;
Instance 50.25: cannot be solved in 3 hours by linearization (gap > 100%)
nor by PQCR (does not obtain a lower bound) nor by Old BA (runs out of
memory); solved in 468 sec by New BA.

20 / 67

Variable elimination

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Some classical approaches:
Linearization.
Quadratization.
Variable elimination.

21 / 67

Standard linearization

Standard linearization (SL)

(PUB) min
x∈{0,1}n

∑
S∈M

aS
∏
k∈S

xk +
n∑

i=1

ai xi ,

Fortet (1959), Glover and Woolsey (1973, 1974), McCormick (1976), etc.

1. Substitute monomials

min
∑

S∈M

aSyS +
n∑

i=1

aixi

s.t. yS =
∏
k∈S

xk , ∀S ∈M

yS ∈ {0, 1}, ∀S ∈M
xk ∈ {0, 1} ∀k = 1, . . . , n

23 / 67

Standard linearization

Standard linearization (SL)

(PUB) min
x∈{0,1}n

∑
S∈M

aS
∏
k∈S

xk +
n∑

i=1

ai xi ,

Fortet (1959), Glover and Woolsey (1973, 1974), McCormick (1976), etc.

1. Substitute monomials

min
∑

S∈M

aSyS +
n∑

i=1

aixi

s.t. yS =
∏
k∈S

xk , ∀S ∈M

yS ∈ {0, 1}, ∀S ∈M
xk ∈ {0, 1} ∀k = 1, . . . , n

2. Linearize constraints

min
∑

S∈M

aSyS +
n∑

i=1

aixi

s.t. yS ≤ xk , ∀k ∈ S,∀S ∈M

yS ≥
∑
k∈S

xk − (|S| − 1), ∀S ∈M

yS ∈ {0, 1}, ∀S ∈M
xk ∈ {0, 1} ∀k = 1, . . . , n

24 / 67

Standard linearization

Standard linearization (SL)

(PUB) min
x∈{0,1}n

∑
S∈M

aS
∏
k∈S

xk +
n∑

i=1

ai xi ,

Fortet (1959), Glover and Woolsey (1973, 1974), McCormick (1976), etc.

1. Substitute monomials

min
∑

S∈M

aSyS +
n∑

i=1

aixi

s.t. yS =
∏
k∈S

xk , ∀S ∈M

yS ∈ {0, 1}, ∀S ∈M
xk ∈ {0, 1} ∀k = 1, . . . , n

3. Linear relaxation

min
∑

S∈M

aSyS +
n∑

i=1

aixi

s.t. yS ≤ xk , ∀k ∈ S,∀S ∈M

yS ≥
∑
k∈S

xk − (|S| − 1), ∀S ∈M

0 ≤ yS ≤ 1, ∀S ∈M
0 ≤ xk ≤ 1 ∀k = 1, . . . , n

24 / 67

Standard linearization

Linear relaxation

Recall:
For an optimization problem (P):

Z = min f (x) s.t. x ∈ X ,

a relaxation is another problem (R):

L = min f (x) s.t. x ∈ X̃

such that X ⊆ X̃ .
Trivially, L ≤ Z : the relaxation provides a lower bound on the optimal
value of (P).
We like (R) to be efficiently solvable (say, in polynomial time).
We like L to be as close as possible to Z , i.e., (R) to be as tight as
possible.

25 / 67

Standard linearization

Standard linearization (SL)

(PUB) min
x∈{0,1}n

∑
S∈M

aS
∏
k∈S

xk +
n∑

i=1

ai xi ,

Fortet (1959), Glover and Woolsey (1973, 1974), McCormick (1976), etc.

1. Substitute monomials

min
∑

S∈M

aSyS +
n∑

i=1

aixi

s.t. yS =
∏
k∈S

xk , ∀S ∈M

yS ∈ {0, 1}, ∀S ∈M
xk ∈ {0, 1} ∀k = 1, . . . , n

3. Linear relaxation

min
∑

S∈M

aSyS +
n∑

i=1

aixi

s.t. yS ≤ xk , ∀k ∈ S,∀S ∈M

yS ≥
∑
k∈S

xk − (|S| − 1), ∀S ∈M

0 ≤ yS ≤ 1, ∀S ∈M
0 ≤ xk ≤ 1 ∀k = 1, . . . , n

25 / 67

Standard linearization

Linear relaxation

Standard linearization polytope

PL = {(x , y) ∈ [0,1]n+|M| | yS ≤ xk ∀k ∈ S, yS ≥
∑
k∈S

xk − (|S| − 1) ∀S ∈M}

Much studied in recent years.
A natural question: does PL have fractional vertices?

For a function containing a single nonlinear monomial: No.
For two or more nonlinear terms, Yes! PL is in general very weak!!!
So, when is PL integral?

26 / 67

Standard linearization

Co-occurrence hypergraph

Co-occurrence hypergraph

For

f (x1, . . . , xn) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Hf = ([n],M) is the co-occurrence hypergraph associated with f .

27 / 67

Standard linearization

Co-occurrence hypergraph

Example:

If f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4 − 13x1x2x3x4, then
M = {12,13,234,1234}.

S

TR

1 2

3

4

28 / 67

Standard linearization

Co-occurrence hypergraph

Co-occurrence hypergraph

For

f (x1, . . . , xn) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Hf = ([n],M) is the co-occurrence hypergraph associated with f .

Definition: Berge cycles

For a hypergraph H = (V ,M), a Berge cycle of length p is a sequence

(i1,S1, i2,S2, . . . , ip,Sp, i1),

where
1 i1, i2, . . . , ip are pairwise distinct vertices of V ,
2 S1,S2, . . . ,Sp are pairwise distinct edges ofM,
3 ij , ij+1 ∈ Sj for j = 1, . . .p − 1, and i1, ip ∈ Sp.

29 / 67

Standard linearization

Berge cycles

Alternative definition using the bipartite co-occurrence graph.

1 4
2

3

123

234

1

2

3

4

S

TR

1 2

3

12

23

13

1

2

3

30 / 67

Standard linearization

Perfect standard linearization

(E. Rodríguez-Heck, Ch. Buchheim, Y. Crama, 2016)

All vertices of PL are integral if and only if Hf has no Berge cycles.

Generalizes a result of Padberg (1989) for quadratic functions.
Closely related to a result of Crama (1988,1993) for an “irredundant”
relaxation of PL.
Independently obtained by Del Pia and Khajavirad (2016).
Can be checked efficiently.
Recall: in general, PL is extremely weak.

31 / 67

Standard linearization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Some classical approaches:
Linearization.
Quadratization.
Variable elimination.

32 / 67

Standard linearization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Quadratization.
Idea: can we reduce PUB to the (constrained or unconstrained) quadratic
case rather than to the (constrained) linear case?
Proposed by Rosenberg in 1975

33 / 67

Quadratization

Quadratization

Quadratization

The quadratic function g(x , y), (x , y) ∈ {0,1}n+m is a quadratization of the
pseudo-Boolean function f (x), x ∈ {0,1}n, if

f (x) = min{g(x , y) | y ∈ {0,1}m} for all x ∈ {0,1}n.

The y -variables are called auxiliary variables.

min{f (x) | x ∈ {0,1}n} = min{g(x , y) | (x , y) ∈ {0,1}n+m}.
Does every function f have a quadratization?

35 / 67

Quadratization

Existence

Existence of quadratizations (Rosenberg 1975)

Given the multilinear expression of a pseudo-Boolean function f (x), one can
construct in polynomial time a quadratization g(x , y) of f (x).

Idea: in each term
∏

i∈A xi of f , with {1,2} ⊆ A, replace the product x1x2
by y :

t(x , y) =
(∏

i∈A\{1,2} xi

)
y + M(x1x2 − 2x1y − 2x2y + 3y),

with M large enough.

36 / 67

Quadratization

Example

Example:

minx f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4 − 13x1x2x3x4

Substitute x3x4:
minx,y 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2y34 − 13x1x2y34 +
M (x3x4 − 2x3y34 − 2x4y34 + 3y34)

Substitute x1x2:

min 4− 9x1 − 5x2 − 2x3 + 13y12 + 13x1x3 + 6x2y34 − 13y12y34 + M (x3x4 −
2x3y34 − 2x4y34 + 3y34) + M (x1x2 − 2x1y12 − 2x2y12 + 3y12)

37 / 67

Quadratization

Existence

Existence of quadratizations (Rosenberg 1975)

Given the multilinear expression of a pseudo-Boolean function f (x), one can
construct in polynomial time a quadratization g(x , y) of f (x).

Idea: in each term
∏

i∈A xi of f , with {1,2} ⊆ A, replace the product x1x2
by y :

t(x , y) =
(∏

i∈A\{1,2} xi

)
y + M(x1x2 − 2x1y − 2x2y + 3y).

In every minimizer of t(x , y), x1x2 − 2x1y − 2x2y + 3y = 0, y = x1x2, and
t(x , y) =

∏
i∈A xi .

Potential drawback: introduces many auxiliary variables.

38 / 67

Quadratization

Questions arising...

Many quadratic reformulation procedures proposed in recent years.
How many auxiliary variables are required?
Which reformulations are “best”?
etc.

39 / 67

Quadratization

Bounds

Bounds:
lower and upper bounds on size of quadratizations

M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratization of symmetric
pseudo-Boolean functions, Discrete Applied Mathematics 203 (2016) 1–12.

M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratic reformulations of
nonlinear binary optimization problems, Mathematical Programming 162
(2017) 115-144.

E. Boros, Y. Crama and E. Rodrìguez-Heck, Compact quadratizations for
pseudo-Boolean functions. Journal of Combinatorial Optimization 39 (2020)
687-707.

40 / 67

Generic quadratic reformulation framework

Generic quadratic reformulation framework
Example f (x) = a1x1x2x3x4 + a2x1x2x3 + a3x2x3x4

1 quadratization scheme:
f (x) = a1(x1x2)(x3x4) + a2(x1x2)x3 + a3x2(x3x4)

2 reformulate into a quadratic problem

QCQP
{

min g(x , y) = a1y12y34 + a2y12x3 + a3x2y34

s. t. xi ∈ {0, 1} ∀i ∈ [n], y12 = x1x2, y34 = x3x4

Convert into penalized unconstrained
QUB (e.g., Rosenberg 75)

min a1y12y34 + a2y12x3 + a3x2y34 +

(|a1| + |a2|)(3y12 − 2x1y12 − 2x2y12 + x1x2) +

(|a1| + |a3|)(3y34 − 2x3y34 − 2x4y34 + x3x4)

s. t. xi ∈ {0, 1} ∀i ∈ [n] y ∈ {0, 1}

or linearize the quadratic constraints

min a1y12y34 + a2y12x3 + a3x2y34

s. t. xi ∈ {0, 1} ∀i ∈ [n]

y12 ≤ x1, y12 ≤ x2,

y12 ≥ x1 + x2 − 1, y12 ≥ 0,

y34 ≤ x3, y34 ≤ x4,

y34 ≥ x3 + x4 − 1, y34 ≥ 0

3 solve by any method for unconstrained or linearly constrained binary
quadratic problems

42 / 67

Generic quadratic reformulation framework

Generic quadratic reformulation framework

Different choices in Phase 1, Phase 2 or Phase 3 give rise to different
exact solution methods.
Different authors use similar methods under different names

(Rosenberg 1975) Iteratively, substitute the product of two variables by a
new one until degree 2 is reached for all monomials. Enforce the
equivalence by a penalty function.
(Buchheim & Rinaldi 2007) Add enough submonomials to obtain a
self-pairwise cover. Build a linear reformulation together with a family of valid
inequalities.
(Anthony et al. 2017) Represent f by a hypergraph and find a pairwise cover.
Enforce the equivalence by a penalty function.
(Lazare 2020) Iteratively partition each monomial (degree >2) into two
(new)submonomials. Build an equivalent binary quadratic problem with
linear constraints.

Our work: Try to unify the three-phase framework and understand the impact
of each choice.
Y. Crama, S. Elloumi, A. Lambert, E. Rodríguez-Heck, Quadratization and
convexification in polynomial binary optimization, Working paper, 2022.

43 / 67

Generic quadratic reformulation framework

Phase 1: Quadratization scheme
Phase 2: Reformulation into a quadratic problem
Phase 3: Solution of the reformulated problem

44 / 67

Generic quadratic reformulation framework Phase 1: The unifying notion of quadratization scheme

Definition (Quadratization scheme of a monomial M)

A quadratization scheme for a monomial M is a rooted directed acyclic graph
GM = (VM ,AM) with the following properties:

i) vertices in VM are subsets of M, and M is the root ;
ii) the leaves are the singletons {i}, i ∈ M ;
iii) when a vertex E ∈ V is not a leaf, it has two children lM(E) and rM(E):

0 < |lM(E)| < |E |, 0 < |rM(E)| < |E |, and E = lM(E) ∪ rM(E).

lM(M) rM(M)

M

lM(lM(M)) rM(lM(M)) lM(rM(M)) rM(rM(M))

Possible non-disjoint scheme

46 / 67

Generic quadratic reformulation framework Phase 1: The unifying notion of quadratization scheme

Definition (Quadratization scheme for a set of monomials)

A quadratization scheme for a polynomialM⊆ 2[n] is a collection of
quadratization schemes

{
GM = (VM ,AM) : M ∈M

}
, where each GM is a

quadratization scheme for the corresponding monomial M ∈M.

Example f (x) = a1x1x2x3x4 + a2x1x2x3 + a3x2x3x4

{1} {2} {3} {4}

{1,2} {3,4}

{1,2,3,4}

{1} {2} {3}

{1,2}

{1,2,3}

{2} {3} {4}

{3,4}

{2,3,4}

47 / 67

Generic quadratic reformulation framework Phase 2: Reformulation into a quadratic problem

Straightforward quadratic reformulation

Rename the initial variables x1 . . . xn into z1 . . . zn

Add a new variable zE per new monomial E in the quadratization scheme
→ get a total of N binary variables

(QCQP)


min

z∈{0,1}N
g(z) =

∑
M∈M

aMzlM (M)zrM (M)

s.t.
zE = zlM (E)zrM (E) ∀E ∈ E ,∀M ∈M : E ∈ EM

lM(E) rM(E)

E
Proof of equivalence: Iteratively check

zlM (M)zrM (M) =
∏
i∈M

zi =
∏
i∈M

xi

49 / 67

Generic quadratic reformulation framework Phase 2: Reformulation into a quadratic problem

Straightforward quadratic reformulation

Example: min f = a1x1x2x3x4x5 + a2x1x2x3x4

{1}z1{2}z2 {3}z3{4}z4 {5}z5

{1,2}z12 {3,4}z34

{1,2,3,4}z1234

{1,2,3,4,5}

{1}z1{2}z2 {3}z3 {4}z4

{1,2}z12

{1,2,3}z123

{1,2,3,4}


min

z∈{0,1}10
a1z1234z5 + a2z123z4

s.t.
z1234 = z12z34 z12 = z1z2 z34 = z3z4

z123 = z12z3 z12 = z1z2

50 / 67

Generic quadratic reformulation framework Phase 2: Reformulation into a quadratic problem

Handling the quadratic constraints

Goal: enforce the constraints zE = zlM (E)zrM (E) in every optimal solution as
illustrated earlier.

Unconstrained penalized binary quadratic problem (Rosenberg-like)

UPBQ

 min
z∈{0,1}N

∑
M∈M

aM zlM (M)zrM (M) +
∑
E∈E

(∑
M∈M:
E∈EM

|aM |(3zE − 2zE zlM (E) − 2zE zrM (E) + zlM (E)zrM (E))
)

Linearly constrained binary quadratic problem (standard inequalities)

LCBQ


min

z∈{0,1}N

∑
M∈M

aM zlM (M)zrM (M)

zE ≤ zlM (E), zE ≤ zrM (E), zE ≥ zlM (E) + zrM (E) − 1, zE ≥ 0 ∀E ∈ E, ∀M ∈ M : E ∈ EM

51 / 67

Generic quadratic reformulation framework Phase 3: Solution of the reformulated problem

Phase 2- Solution of the reformulated problem

How can we solve UPBQ or LCBQ?
(Note: quadratic terms in the objective function.)

1 Linearize again: add a new variable and standard linear inequalities per
quadratic term→ get an ILP

2 Use Quadratic Convex Reformulation methods→ get a MIQP with a
convex continuous relaxation

1 smallest eigenvalue method
2 "basic" QCR
3 PQCR: QCR improved by valid quadratic equalities

53 / 67

Generic quadratic reformulation framework Phase 3: Solution of the reformulated problem

Quadratic Convex Reformulation methods

(BQP)


min q(x) = xT Qx

s. t.

Ax ≤ b

x ∈ {0, 1}n

Smallest Eigenvalue Method (Hammer and Rubin
1970)

⇐⇒



min xT Qx + |λ1(Q)|
n∑

i=1

(x2
i − xi)

s. t.

Ax ≤ b

x ∈ {0, 1}n convex continuous relaxation

Quadratic Convex Reformulation QCR (Billionnet and Elloumi 2007)



min xT Qx +
n∑

i=1

ui (x
2
i − xi)

s. t.

Ax ≤ b

x ∈ {0, 1}n convex continuous relaxation

for appropriate choices of ui

Best u: equivalent to a semidefinite programming
problem

(SDP)



min < Q,X >

s. t.

Xii = xi

Ax ≤ b(
1 xT

x X

)
� 0

X ∈ Rn×n

.

54 / 67

Generic quadratic reformulation framework Phase 3: Solution of the reformulated problem

Quadratic Convex Reformulation methods

PQCR (Lazare 2020; Elloumi, Lambert, Lazare 2021) introduce valid
quadratic equalities associated with the quadratization scheme to
strengthen the SDP formulation.

zE = zlM (E)zrM (E)

zE zF = zE if F ⊂ E
zE zE′ = zF zF ′ if E ∪ E ′ = F ∪ F ′ (numerous !)

55 / 67

Generic quadratic reformulation framework Phase 3: Solution of the reformulated problem

Summary

Given a quadratization scheme, we can derive two classes of
reformulations and several solution methods

UPBQ LCBQ
Lin UPBQ + Lin LCBQ + Lin
QCR UPBQ + QCR LCBQ + QCR
PQCR PQCR

How does the quadratization scheme impact the solution methods ?
Some computational observations.

56 / 67

Generic quadratic reformulation framework Practical aspects: how to build quadratization schemes ?

Four quadratization schemes

QA Sort the monomial set in lexicographical order. In this order,
iteratively (i) Select the first product of variables xixj that appears in a
monomial of degree at least 3. (ii) For any monomial M containing i and j ,
set lM(M) to {i , j} and rM(M) to M \ {i , j}. (iii) Add lM(M) and rM(M) to the
sorted monomial set
QB is similar to QA. The most frequent product xixj is selected
QC Split M = {1, . . . ,d} into lM(M) = {1, . . . ,d − 1} and rM(M) = {d}
QD Split M = {1, . . . ,d} into lM(M) = {1, . . . ,d − 1} and
rM(M) = {2, . . . ,d}. Non-disjoint subsets lM and rM .

58 / 67

Generic quadratic reformulation framework Practical aspects: how to build quadratization schemes ?

QA and QB

{i} {j} {...} {...}

{i , j} M \ {i , j}

M

QC

{1} {2} {3} {4}

{1,2}

{1,2,3}

{1,2,3,4}

QD

{1} {2} {3} {4}

{1,2} {2,3} {3,4}

{1,2,3}{2,3,4}

{1,2,3,4}

In our test instances, the number of variables
is on average N = 217, 234, 656, and 885 for
QA, QB, QC, and QD , respectively.

59 / 67

Generic quadratic reformulation framework A few computational results

Settings

Illustration: 8 instances of the Low Autocorrelation Binary Sequence
problem (polynomials of degree 4, up to 35 initial variables)
We use Gurobi as a solver
Time limit 3 hours

61 / 67

Generic quadratic reformulation framework A few computational results

QCR reformulations

gap: QA and QC are best
time: all fail in 3h

gap: QA is best
time: QA is best

62 / 67

Generic quadratic reformulation framework A few computational results

Linear reformulations

gap: QA, QC, and QD are best
time: QA and QC are best

QA and QC perform better than
QB and QD

The initial gaps are huge, but the
running time is improved with
respect to QCR.

63 / 67

Generic quadratic reformulation framework A few computational results

PQCR reformulations

gap: QA is best
time: QA is best

In PQCR, QA and QB perform
tremendously better than QC and
QD

The initial gaps are rather small

PQCR is the best method. When
coupled with QA, the 8 instances
are solved within 3 minutes on av.

Over the four quadratization
schemes, QA is globally best and
QD is worst. Recall N = 217, 234,
656, and 885 variables by QA, QB,
QC, and QD

64 / 67

Generic quadratic reformulation framework A few computational results

Comments and interpretation

Lessons learned:
Three-phase framework for quadratic reformulations.
Unifying view of "quadratization schemes".
Several reformulations and solution methods can be applied with a given
quadratization scheme.
Computational results suggest that quadratization schemes with fewer
variables have best performance.
But the best performing method depends on the type of instances:
PQCR (SDP-based) is best for low-autocorrelation problem (hard), while
successive linearization (ILP-based) is best for image restoration
instances (easy).
In particular: good initial lower bounds (small duality gaps) do not
guarantee small total running times.

65 / 67

Conclusions

Conclusions

Polynomial unconstrained binary optimization problems are very hard
nuts!
Old ideas are still fruitful: linearization (1959), quadratization (1975),
variable elimination (1963).
Algorithms must be tailored carefully, must sometimes be specifically
adapted for the problem at hand.
Still a lot of work to do, both theoretical and computational.

67 / 67

	Polynomial 0-1 optimization
	Variable elimination
	Standard linearization
	Quadratization
	Generic quadratic reformulation framework
	Phase 1: The unifying notion of quadratization scheme
	Phase 2: Reformulation into a quadratic problem
	Phase 3: Solution of the reformulated problem
	Practical aspects: how to build quadratization schemes ?
	A few computational results

	Conclusions

