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Abstract

BRD4 is part of a multiprotein complex involved in loading the cohesin complex
onto DNA, a fundamental process required for cohesin-mediated loop extrusion
and formation of Topologically Associating Domains. Pathogenic variations in this
complex have been associated with a growing number of syndromes, collectively
known as cohesinopathies, the most classic being Cornelia de Lange syndrome.
However, no cohort study has been conducted to delineate the clinical and molecu-
lar spectrum of BRD4-related disorder. We formed an international collaborative
study, and collected 14 new patients, including two fetuses. We performed pheno-
type and genotype analysis, integrated prenatal findings from fetopathological
examinations, phenotypes of pediatric patients and adults. We report the first
cohort of patients with BRD4-related disorder and delineate the dysmorphic fea-
tures at different ages. This work extends the phenotypic spectrum of

cohesinopathies and characterize a new clinically relevant and recognizable pattern,

KEYWORDS

1 | INTRODUCTION

Bromodomain and extra-terminal domain (BET) proteins are chromatin
readers with an important role in cell cycle progression.? BRD4 binds to
hyperacetylated genomic regions that encompass promoters and
enhancers, and BRD4 levels are particularly high at super-enhancers.® A
recent study highlighted a novel interaction-mediated cooperation
between BRD4 and NIPBL, including ChIP experiments supporting the
co-location and mutual stabilization of these two proteins at the pro-
moters of co-regulated genes, and transcriptome analysis indicating that
NIPBL and BRD4 regulate a common set of genes.! Interestingly, Linares-
Saldana et al. demonstrated that the role of BRD4-NIPBL on transcription
is separate from its role on genome folding and loop extrusion.*

Pathogenic loss of function variants in NIPBL are the major cause
of Cornelia de Lange Syndrome (CdLS).>® NIPBL is part of a protein
complex involved in loading of the cohesin complex onto DNA, a fun-
damental process required for cohesin-mediated loop extrusion and
formation of Topologically Associating Domains (TADs).”® Pathogenic
variants in this complex have been associated with a growing number
of syndromes, collectively known as cohesinopathies, the most classic
being CdLS. However, even though certain overlaps exist, the clinical
spectrum of cohesinopathies is very broad.’

Olley et al. recently reported the first three patients with BRD4 sin-
gle base-pair variants: two de novo frameshift variants and one de novo
missense variant. They performed functional genomic analysis,
suggesting that BRD4 haploinsufficiency is associated with a CdLS-like
condition.” These three first patients had a similar phenotype to previ-
ously reported patients with large deletions encompassing BRD4, con-

sistent with the clinical spectrum associated with cohesinopathies.*>

distinguishable from the other cohesinopathies.

BRD4, BRD4-related syndrome, cohesinopathy, Cornelia de Lange syndrome, NIPBL

In this work, we report 14 new patients with BRD4-related disor-
der, to better define the phenotypic and molecular characteristics of

this new syndrome.

2 | MATERIAL AND METHODS

To collect a cohort of patients with BRD4 point variants or deletions
encompassing this gene, we have organized an international collabo-
rative project with the European Reference Network Ithaca (www.
ern-ithaca.eu), reinforced by the collaboration of the French Cytoge-
netic Society network (ACLF, http://www.eaclf.org/). Eight patients
with pathogenic or likely pathogenic point variants and six with large
deletions were collected. All patients' families have agreed to a writ-
ten consent after being informed during a specialized clinical genetics
consultation, and all procedures performed for this study were done
in accordance with the ethical standards of the institutional research
committee and the Declaration of Helsinki.

Different chromosomal microarray platforms were used for copy
number variations analysis: CGH 4x44 K, 6x60 K, 8x60 K, 4x180 K,
Agilent microarrays®. Whenever possible, parental blood samples
were obtained to test the inheritance using gPCR analysis and Fluo-
rescence In Situ Hybridization. Single nucleotide variants were
detected using Exome Sequencing, with different strategies
depending on the inclusion center (single or trio analysis). The classifi-
cation of variants was done according to the standards and guidelines
for the interpretation of sequence variants published by the joint con-
sensus of the American College of Medical Genetics and Genomics

and the Association for Molecular Pathology.*®
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FIGURE 1 Single nucleotide variants and copy number variants identified in our study . Localization of missense variants within the tertiary

structure of the BRD4 protein. Il. Localization of missense variants and null variants along the secondary structure of the BRD4 protein. *: null
variants. NET = N-terminal Extraterminal domain. Note the location of the missense variants within the alpha helices of the bromodomains 1 and
2 (A, B, C). Missense variants in alpha helices of bromodomains are a known mechanism of loss of function through decreased binding to
acetylated histones of promoters and superenhancers (Olley et al., 2018). lll. Copy number variants reported in this study. P1, 2, 3, 4, 5, 6:
patients 1, 2, 3, 4, 5, 6 [Colour figure can be viewed at wileyonlinelibrary.com]

3 | RESULTS AND DISCUSSION

3.1 | Molecular features

3.1.1 | Point variants

Detailed molecular results are described in Supporting Information S1.
Among the eight-point variants identified, four were premature trun-
cating variants (patients P7, P8, P10, P13), and four missense variants
(P9, P11, P12, P14). Interestingly, the variant c.1289A > G, p.
(Tyr430Cys) (P9) was already described in another patient by Olley
et al., 2018.”** This variant is located within one of the alpha helices
of Bromodomain 2. Bromodomains 1 (BD1) and 2 (BD2) are responsi-
ble for binding to acetylated histones of promoters and super-
enhancers. Data from functional genomic experiments have
demonstrated that this c.1289A > G, p.(Tyr430Cys) variant is respon-
sible for a loss of function by decreased binding to acetylated histones
of promoters and superenhancers.’

Figure 1 (I and ) indicates the position of our variants on the sec-
ondary and tertiary structures of the BRD4 protein. Interestingly,
three missense variants are located within one of the alpha helices of
BD1 or BD2, including the previously reported missense variant,
whose loss-of-function mechanism has been validated by functional

studies.” Further functional studies are needed to provide insight into

the functional impact and mechanism of the new missense variants.
The last missense variant, c.883A > C, p.(Thr295Pro), is located within
an Intrinsically Disordered Region (IDR) (Figure 1). Recent molecular
dynamics-based studies have explored the mechanism of disease-
causing missense variants on IDRs, and propose that these variants
could have a deleterious effect by reducing the conformational het-
erogeneity of IDRs which is quintessential for their multi-faceted cel-

lular roles.*?

3.1.2 | Copy number variants

The size of the deletions ranged from 46 kb to 2.2 Mb (Figure 1, Ill).
Interestingly, the 46 kb deletion (P3) only overlaps the BRD4 gene,
and includes the exons 1 and 2, where exon 2 codes for part of BD1.
Alesi et al. conducted a comprehensive review to assess the potential
participation of contiguous genes in the phenotype of patients with
microdeletions of the 19p13.12p13.11 region encompassing BRD4.'*
In complement, we specifically investigated the OMIM morbid genes
encompassed by these deletions: CACNA1A1, OMIM 601011,
CC2D1A, OMIM 610055; PRKACA, OMIM 601639; GIPC1, OMIM
605072; TECR, OMIM 610057; ADGRE2, OMIM 606100; CASP14,
OMIM 605848; NOTCH3, OMIM 600276; CYP4F22, OMIM 611495.
We assessed the probability of being a haploinsufficient (pHI) using
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JOURET ET AL.

the classification method described by Huang et al., 2010.1* None of
the nine genes fulfilled the criteria to be classified as high rank (pHI:
0%-10%), with High Rank indicating that a gene is more likely to
exhibit haploinsufficiency. Furthermore, haploinsufficiency of one of
these genes has never been demonstrated in the medical literature:
only investigation of single-gene deletions or point variants associated
with a distinctive phenotype and functional research studies could

clarify the potential contribution of contiguous genes.

3.2 | Clinical features

We report 12 new patients aged from 10 weeks to 32 years (mean
age of 15 years) and two prenatal cases, resulting in medical termina-
tion of pregnancy due to severe intrauterine growth restriction (IUGR)
and microcephaly with evidence of a large deletion by chromosomal
microarray analysis (CMA) on amniotic fluid (Table 1).

Microcephaly, described as one of the cardinal features in previ-
ously reported patients, was present in 86% of our patients (12/14),
including 100% of patients with large deletions (6/6) and only 75%
(6/8) of patients with single base-pair variants. In particular, patients
with null variants all had microcephaly (4/4) whereas microcephaly
was inconstant in patients with missense variants (2/4).

An initial global developmental delay was present in 100% of the
patients (12/12), but in patients over 3 years of age, intellectual disabil-
ity was identified in only 45% (5/11), while 36% (4/11) had learning dif-
ficulties without intellectual disability, and two had an 1Q within the
normal range without learning difficulties. No correlation was identified
between severity of neurodevelopment delay and type of variant (large
deletion, null variant, missense variant): we report both patients with
normal-range 1Q and patients with ID for each of these alterations.

!CLINICAL _WILEY. 121

A previously unreported finding is the frequency of psychiatric dis-
orders, identified in 46% of patients (5/11). Patient P9, whose neuropsy-
chological assessment reported normal homogeneous |IQ score at
7 years (total 1Q 87) and heterogeneous 1Q profile at adult age (WAIS-
lll: verbal IQ 82, Performance 1Q 67), was first diagnosed with childhood
psychosis from the age of seven, then with a psychotic disorder from
the age of 18 and was subsequently diagnosed with schizophrenia.
Patient P7, a 16-year-old boy with normal range intelligence, was diag-
nosed with disruptive mood dysregulation disorder, intermittent explo-
sive disorder and obsessive-compulsive disorder. Patient P5 developed
hyper-sexualized behavior from adolescence as well as aggression to
property and people, requiring medication. He also developed trichotil-
lomania. Patient P10 was diagnosed with dissociative identity disorder.
We have identified these psychiatric disorders indifferently in patients
carrying large deletions, null variants and missense variants.

The morphological features and facial dysmorphism of the
patients are illustrated in Figure 2 and Supporting Information S2. We
delineated a characteristic and recognizable pattern, consisting of
arched eyebrows, often sparse, sometimes with synophris, with a
frontal upsweep of hair, prominent incisors, and a short nose with
anteverted nostrils, present in 6/7 patients. These dysmorphic fea-
tures seem to evolve with age: patient P9, who developed hyperpha-
gia from 18 years of age, and then truncal obesity with a weight of
124 kg at 29 years, had an adult facial dysmorphism suggestive of
Cohen syndrome, with a Cohen-like grimacing smile with small mouth
and short philtrum, frontal upsweep of hair, and a narrow palate.

Interestingly, none of the 14 patients presented a Classic CdLS
phenotype, neither regarding the facial morphology, nor regarding
extra-facial CdLS findings: in particular growth failure, marked facial
and extra-facial hypertrichosis, radial and limb anomalies, were absent

in our patients.

FIGURE 2 Dysmorphic features. (A) Note the Cohen-like appearance of the smile and the prominent incisors. (B) Note the arched appearance
of the eyebrows, often thick and sparse, sometimes associated with a synophris. Arrow: upswept frontal hair pattern [Colour figure can be viewed

at wileyonlinelibrary.com]
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In several syndromes, the initial phenotype during infancy may be
suggestive of the CdLS-like spectrum, and then evolve into a different
core phenotype: this is especially the case for KMT2A, ANKRD11, or
SETD5-related disorders.8%'! Long-term follow-up of patients and
the identification of new adult cases will allow us to determine
whether this also applies to BRD4, and to further characterize its core
phenotype.

4 | CONCLUSION

This work presents the first cohort of patients with the newly described
BRD4-related disorder through a collection of 14 cases, broadening the
phenotype with particular emphasis on a new clinically relevant and
recognizable core pattern, distinguishable from the other
cohesinopathies and especially different from the Classic CdLS pheno-
type. We report eight-point variants and six deletions encompassing
BRD4. Interestingly, three missense variants are located within one of
the alpha helices of BD1 or BD2, including a previously reported mis-
sense variant, whose loss-of-function mechanism has been validated by
functional studies. This study allows a first clinical delineation of this
new neurodevelopmental syndrome with remarkable clinical expressiv-
ity. Future descriptions of new patients and their molecular data will be
valuable to investigate potential genotype-phenotype correlations.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

PEER REVIEW
The peer review history for this article is available at https://publons.
com/publon/10.1111/cge.14141.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on
request from the corresponding author. The data are not publicly
available due to privacy or ethical restrictions.

ORCID
Charles Coutton ‘= https://orcid.org/0000-0002-8873-8098
https://orcid.org/0000-0002-1368-1023

https://orcid.org/0000-0002-8986-

Florence Petit
Anne-Sophie Denommé-Pichon
8222

Silvestre Cuinat " https://orcid.org/0000-0002-0763-5661
REFERENCES

1. Luna-Peldez N, March-Diaz R, Ceballos-Chavez M, et al. The Cornelia
de Lange syndrome-associated factor NIPBL interacts with BRD4 ET

domain for transcription control of a common set of genes. Cell Death
Dis. 2019;10(8):548. doi:10.1038/s41419-019-1792-x

2. Wu SY, Chiang CM. The double Bromodomain-containing chromatin
adaptor Brd4 and transcriptional regulation. J Biol Chem. 2007;
282(18):13141-13145. doi:10.1074/jbc.R700001200

3. Vollmuth F, Blankenfeldt W, Geyer M. Structures of the dual
Bromodomains of the P-TEFb-activating protein Brd4 at atomic reso-
lution. J Biol Chem. 2009;284(52):36547-36556. doi:10.1074/jbc.
M109.033712

4. Linares-Saldana R, Kim W, Bolar NA, et al. BRD4 orchestrates
genome folding to promote neural crest differentiation. Nat Genet.
2021;53(10):1480-1492. doi:10.1038/s41588-021-00934-8

5. Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding pheno-
types of cohesinopathies: one ring to rule them all! Cell Cycle. 2019;
18(21):2828-2848. doi:10.1080/15384101.2019.1658476

6. Kawauchi S, Santos R, Muto A, et al. Using mouse and zebrafish
models to understand the etiology of developmental defects in Cor-
nelia de Lange syndrome. Am J Med Genet C Semin Med Genet. 2016;
172(2):138-145. doi:10.1002/ajmg.c.31484

7. Garcia-Gutiérrez P, Garcia-Dominguez M. BETting on a transcriptional
deficit as the main cause for Cornelia de Lange syndrome. Front Mol
Biosci. 2021;8:709232. doi:10.3389/fmolb.2021.709232

8. Newkirk DA, Chen YY, Chien R, et al. The effect of nipped-B-like
(Nipbl) haploinsufficiency on genome-wide cohesin binding and target
gene expression: modeling Cornelia de Lange syndrome. Clin Epige-
netics. 2017;9:89. doi:10.1186/513148-017-0391-x

9. Olley G, Ansari M, Bengani H, et al. BRD4 interacts with NIPBL and
BRD4 is mutated in a Cornelia de Lange-like syndrome. Nat Genet.
2018;50(3):329-332. doi:10.1038/541588-018-0042-y

10. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the
interpretation of sequence variants: a joint consensus recommenda-
tion of the American College of Medical Genetics and Genomics and
the Association for Molecular Pathology. Genet Med. 2015;17(5):405-
423. doi:10.1038/gim.2015.30

11. Alesi V, Dentici ML, Loddo S, et al. Confirmation of BRD4
haploinsufficiency role in Cornelia de Lange-like phenotype and delin-
eation of a 19p13.12p13.11 gene contiguous syndrome. Ann Hum
Genet. 2019;83(2):100-109. doi:10.1111/ahg.12289

12. Seera S, Nagarajaram HA. Effect of disease causing missense muta-
tions on intrinsically disordered regions in proteins. Protein Peptide
Lett. 2021;441554. doi:10.1101/2021.04.26.441554

13. Huang N, Lee |, Marcotte EM, Hurles ME. Characterising and
predicting haploinsufficiency in the human genome. PLoS Genet.
2010;6(10):e1001154. doi:10.1371/journal.pgen.1001154

SUPPORTING INFORMATION
Additional supporting information may be found in the online version
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