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Abstract

The definition of nitrogen (N) use efficiency (NUE) for lactating dairy cows
traditionally is milk N divided by N intake. The NUE of dairy cows is associated
negatively with N pollution and positively with economic results of dairy producers.
The N pollution from dairy cows refers to N from manure and urine, which are mainly
produced from undigested protein from the feed. Protein is the most expensive
component of dairy cattle feed, and its loss reduces the profits of dairy farms.
Therefore, measuring and improving the NUE of dairy cows can promote the
sustainable economic development of dairy production and strengthen its social
acceptability. Although the NUE in dairy cows can be affected by many factors, the
economic importance of genetic improvement for efficiency traits in cattle is
recognized by dairy producers.

The ultimate objective of this study was to contribute to the breeding of dairy cows
that are both more economical and more respectful of the environment. However, the
NUE is difficult to measure, which is why few studies have been conducted on genetic
selection for NUE in dairy cows. So, the use of proxies of NUE to conduct genetic
selection could be a good choice for its ease to be measured on a large scale. Different
proxies of NUE were genetically analyzed in this thesis and their genetic relationships
with other already selected traits were explored in Holstein cows in the Walloon
Region of Belgium.

In the first step, milk urea concentration (MU), as the traditional proxy of NUE, was
genetically analyzed, and its genetic correlations with 11 other traits of economic
interest were estimated. The results showed that the average daily heritability and
repeatability of MU in the first 3 parities ranged from 0.19 to 0.22 and from 0.47 to
0.48, respectively. High genetic correlations (0.94 to 0.97) were found among MU in
the first 3 parities. The genetic correlation between MU and the 11 traits of interest
ranged from —0.28 (milk yield) to 0.28 (somatic cell score).

Then, predict NUE (PNUE) and N losses (PNL), as alternative and novel proxies
for NUE, predicted by milk mid-infrared spectra, milk yield, and parity. Genetic
analyses were performed on these two phenotypes and genetic correlations were
estimated between them and 30 other traits of interest. The estimated heritability and
repeatability of PNUE and PNL in primiparous and multiparous ranged from 0.12 to
0.14, and from 0.40 to 0.55, respectively. The approximate genetic correlations
between PNUE and 30 traits of interest ranged from —0.46 (udder depth) to 0.47 (milk
yield). Additionally, the approximate genetic correlations between PNL, lower values



representing less N pollution, and 30 traits of interest ranged from —0.32 (angularity)
to 0.57 (direct calving ease).

Since the genetic correlations estimated between MU and PNUE were very low; the
estimated breeding values (EBV) of the three features (N intake (NINT), milk true
protein N (MTPN), and milk urea N yield (MUNY)) were used to build a new N
efficiency index (NEI), the purpose of which was to quantitatively combine MU and
PNUE. The approximate genetic correlations between the NEI and 37 other traits
(economic indices) of interest were investigated. The NEI showed positive genetic
correlations with production yield traits (0.08 to 0.46), and negative genetic
correlations with the investigated functional traits and economic indices (-0.71 to
—0.07), except for production and functional type economic indices. In addition,
increasing NEI in early lactation favors a reduction in the intensity of methane
emissions and increases dry matter intake but is detrimental to energy balance (given
in general discussion). We then explored the potential impact of genetic selection for
NEI on bulls. The daughters of the bulls with higher NEI had lower NINT and MUNY,
and higher MTPN.

Genomic selection is commonly applied in animal breeding, so whether NEI and its
composition traits can be used for genomic prediction was verified to select at earlier
stage the dairy cows and bulls. The prediction accuracies of the NEI and its
composition traits performed, using single-step genomic best linear unbiased
prediction (ssGBLUP) analyses, varied from 0.48 to 0.66 for genotyped cows, from
0.35 to 0.55 for non-genotyped cows, and from 0.39 to 0.56 for bulls.

Finally, we investigated the genomic background of NEI to understand better its
genetic variability. So, the genomic regions associated with NEI and its composition
traits were identified and the functional annotation of the identified genomic regions
was analyzed. The largest explanatory genomic region of NEI was located at position
1.52-2.09 Mb of Bos taurus autosome 14, which explained 0.58% of the total additive
genetic variance. The 16 key candidate genes were identified as related to NEI and its
composition traits, which are mainly expressed in the milk cells, mammary, and liver
tissues. Annotated quantitative trait loci (QTLS) are mostly reported to be related to
milk, health, and production traits based on the identified genomic regions.

In conclusion, this study showed that it is possible to develop genetic selection for
dairy cows that are both more economical and more respectful of the environment.
Moreover, the developed NEI has the advantage of available phenotypes through
large-scale prediction. Therefore, the NEI has the potential for routine application in
dairy cattle breeding in the future, contributing a novel possibility to reduce N
pollution and improve economic results for dairy producers.



Résumé

L’efficience de I’utilisation de l'azote (NUE) pour les vaches lactantes est
généralement définie comme étant 1’azote du lait divisé par 1'azote ingérée. La NUE
des vaches laitiéres est associée négativement a la pollution azotée et positivement
aux résultats économiques des producteurs laitiers. La pollution azotée des vaches
laiticres est due a 1’azote contenue dans le fumier et 1’urine, azote provenant
principalement des protéines alimentaires non digérées. Les protéines étant
I’ingrédient le plus cofliteux de 1’alimentation des vaches laitieres, leur perte diminue
par conséquent les bénéfices des exploitations laitieres. Dés lors, mesurer et améliorer
le NUE des vaches laitieres permettrait de promouvoir un développement économique
durable la production laitiére tout en renforcant son acceptabilité sociale. Malgré que
de nombreux facteurs affectent la NUE des vaches laitieres, les producteurs laitiers
ont bien conscience de I’importance économique que constitue 1’amélioration
génétique des caracteéres d’efficience.

L'objectif final de cette étude a été de contribuer a la sélection de bovins laitiers a la
fois plus économiques et respectueux de I'environnement. Cependant, vu la difficulté
de mesurer le NUE, peu d’études concernant la sélection génétique de ce caractére ont
été menées. Par consequent, l'utilisation d'indicateurs de la NUE plus faciles a mesurer
a grande échelle pourrait constituer un bon choix pour appliquer une sélection
génétique. Des analyses génétiques de différents indicateurs de la NUE ont été
effectuées et leurs relations génétiques avec d’autres caractéres d’intérét ont été
étudiées parmi vaches Holstein wallonnes.

Dans un premier temps, la concentration en urée du lait (MU), qui est I’indicateur
traditionnel de la NUE, a été analysée génétiquement, et ses corrélations génétiques
avec 11 autres caractéres d'intérét économique ont été estimées. Les résultats ont
montré que I'héritabilité et la répétabilité journaliéres moyennes de MU dans les 3
premiéres lactations varient de 0,19 a 0,22 et de 0,47 a 0,48, respectivement. Des
corrélations génétiques €elevées (0,94 a 0,97) ont été trouvées entre MU dans les 3
premiéres lactations. Les corrélations génétiques entre MU et les 11 caractéeres
d'intérét ont variées de —0,28 (production de lait) a 0,28 (score cellulaire).

Ensuite, en fonction du spectre moyen infrarouge du lait, du rendement laitier et de
la parité, des prédictions de la NUE (PNUE) et des pertes d'azote (PNL) ont été
réalisées afin de produire des indicateurs alternatifs de la NUE. Des analyses
génétiques ont été effectuées sur ces deux indicateurs alternatifs et des corrélations
génétiques ont été estimées entre eux et 30 autres caracteres d'intérét. Les héritabilités
et les répétabilités estimées du PNUE et du PNL chez les primipares et les multipares
se sont situées respectivement entre 0,12 et 0,14, et entre 0,40 et 0,55. Les corrélations
génétiques approximatives entre la PNUE et 30 caracteres d'intérét ont variées de
—0,46 (profondeur du pis) a 0,47 (production de lait). En outre, les corrélations
génétiques approximatives entre PNL - les valeurs les plus basses représentant une



moindre pollution par l'azote - et les 30 caractéres d'intérét ont variées de —0,32
(angularité) a 0,57 (facilité de vélage directe).

Les corrélations génétiques approximatives entre le PNUE et 30 traits d'intérét ont
variées de —0,46 (profondeur du pis) a 0,47 (rendement laitier). De plus, les
corrélations génétiques approximatives entre PNL, les valeurs les plus basses
représentant une moindre pollution par I'azote, et 30 traits d'intérét ont variées de
—0,32 (angularité) a 0,57 (facilité de vélage direct).

Au vu des tres faibles corrélations génétiques estimées entre MU et PNUE, un
nouvel index d’efficience azotée (NEI), permettant de combiner quantitativement MU
et PNUE, a été construit en combinant les valeurs d'élevage estimées de 1’azote
ingérée (NINT), de 1’azote protéique du lait (MTPN) et de 1’azote de 'urée du lait
(MUNY). Les corrélations génétiques approximatives entre le NEI et 37 autres
caractéres d'intérét (dont des index économiques) ont été calculées. Des corrélations
génétiques positives avec les caractéres de production (0,08 a 0,46), et des corrélations
génétiques négatives avec les caracteres fonctionnels et les index économiques étudiés
(-0,71 a —0,07) ont été trouvées, excepté pour les index économiques de production
laitiere (VEL) et de type fonctionnel (VET). De plus, le NEI favoriserait 1’intensité de
la réduction des émissions de méthane ainsi que 1’augmentation de matiére séche
ingérée en début de lactation mais au détriment de la balance énergétique. L’impact
potentiel de la sélection génétique basée sur le NEI sur les taureaux a été investigué
et a montré que les filles des taureaux présentant un NEI élevé possedent des NINT et
des MUNY plus faibles, et des MTPN plus élevées.

La sélection génomique étant devenue une pratique courante au sein des animaux
d’élevage, les prédictions génomiques du NEI ainsi que de ses composants ont été
testées a des fins de sélection précoce. Les précisions de ces prédictions génomiques
en utilisant la méthode « single step genomic BLUP » (ssGBLUP) varient de 0,48 a
0,66 pour les vaches génotypées, de 0,35 a 0,55 pour les vaches non génotypées et de
0,39 a 0,56 pour les taureaux.

Finalement, le contexte génomique du NEI a été étudié afin de mieux comprendre
sa variabilité génétique. Ainsi, les régions génomiques associées au NEI et a ses
composants ont été identifiées et I'annotation fonctionnelle des régions génomiques
identifiées a été analysée. La plus grande région génomique explicative du NEI est
située a la position 1,52-2,09 Mb de I'autosome 14 de Bos taurus et explique 0,58%
de la variance génétique additive totale. Les 16 genes candidats clés identifiés comme
étant liés au NEI et & ses composants sont principalement exprimés dans les cellules
du lait, les tissus mammaires et le foie. La plupart des loci quantitatifs (QTL) annotés
ont été rapportés comme étant liés aux caracteres de production du lait et de la santé
d’apres les régions génomiques identifiées.

En conclusion, cette étude a montré qu'il est possible de développer une sélection
génétique pour des bovins laitiers a la fois plus économiques et respectueux de
I'environnement. En outre, le NEI développé offre l'avantage de phénotypes
disponibles grace a la prédiction a grande échelle. Par conséquent, le NEI a le potentiel
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pour étre appliqué en routine a I’avenir en bovins laitiers, contribuant de la sorte & une
nouvelle possibilité de réduire la pollution azotée et d'améliorer les résultats
économiques des producteurs laitiers.
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Chapter 1: General introduction

1. Introduction to high-efficiency dairy cows

Over the past few decades, the current dairy breeding goals have shifted from
increasing milk production to more balanced breeding and have focused more on
health, welfare, and environmental sustainability (Miglior et al., 2017). Among these
traits, the environmental sustainability status generally refers to increased efficiency
and reduced emissions. The definition of a high-efficiency dairy cow is measured by
different metrics in different fields (e.g., economics, nutrition, and genetics) (de
Ondarza and Tricarico, 2017). High-efficiency lactating Holstein cows in this study
refer to cows with a high ratio of cow products to feed intake. Although efficiency
traits in dairy cattle are affected by a variety of factors, the economic importance of
genetic improvement for efficiency traits in cattle is recognized by the world's cattle
producers (Brito et al., 2020). The used indicators to assess feed efficiency (FE) are
currently dry matter intake (DMI) and residual feed intake (RFI). Brito et al. (2020)
made a good review of the recent genetic research on these FE indicators. The U.S.
genomic evaluation incorporated a new indicator, feed saved, to improve cow
efficiency (Parker Gaddis et al., 2021). The recently completed international project
"Efficient Dairy Genome Project” (https://genomedairy.ualberta.ca/) also promoted
faster addition of FE to current dairy cattle breeding. However, the FE as a real
phenotype is still difficult and expensive to measure, and researchers often use
predictive methods or proxies to study it.

Potential future applications of high-throughput predictors for FE prediction in
breeding programs are summarized by Siberski-Cooper and Koltes (2022). The
authors focus on the application of sensor (leg, ear, rumen), imaging-based, and mid-
infrared (MIR) spectral techniques for FE traits prediction. Cavani et al. (2022)
reported that feeding behavior may be a good proxy for FE. Easier to-measure traits
(milk composition, live weight, and milk MIR) for FE prediction and genetic selection
in developing countries were reported by Madilindi et al. (2022). The FE traits of
lactating dairy cows are usually only considered in the calculation process of DMI,
milk production, and energy maintenance. However, the FE can be further divided
into energy and nitrogen (N) efficiency. The N use efficiency (NUE) of lactating dairy
cows is also an important economic and environmental factor but is often overlooked,
especially in genetic selection.

The NUE is directly related to feed protein use and N pollution from dairy cows.
Protein is the most expensive component of dairy cow's feed, and its loss reduces
farmers profits. The N pollution from dairy cows refers to N from manure and urine,
which enters groundwater as nitrate and is released to the atmosphere as nitrous oxide
(N20) (Rochette et al., 2014). Livestock production contributes to 18% of the global
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human-induced greenhouse gases emissions in the form of carbon dioxide (CO>),
methane (CH4), and N2O (Moran and Wall, 2011). The N emissions from the dairy
industry have been identified as an important factor causing groundwater and surface
water pollution, as well as greenhouse gases emissions (Adenuga et al., 2019).
Reducing no-CO; (CH4 and N2O) would be more beneficial to decrease the rate of
climate change under conditions of limiting temperature increases to 2°C by 2100
(Reisinger and Clark, 2017). The EU has developed a strategy to reduce greenhouse
gases emissions to net-zero by 2050, which also includes specific regulations on N.O
emissions from the agriculture industry (aan den Toorn et al., 2021). The main sources
of N2O production in cattle are deposited urine and manure (Rochette et al., 2014),
which are mainly due to the unused protein in the food. Therefore, measuring and
improving NUE is not only beneficial for the protection of the environment, but also
beneficial to the farms. By doing so, we may promote the sustainable economic
development of dairy production, and strengthen its social acceptability.

Spanghero and Kowalski (2021), based on the 86 N balance experiments, found that
the average NUE in cattle is 27% suggesting that the NUE in dairy cattle may have
great potential for improvement. The NUE, like FE traits, is influenced by many
factors such as feed and management (Jonker et al., 2002; Kidane et al., 2018;
Herremans et al., 2020). The NUE varies widely between individuals (Grelet et al.,
2020; Shi et al., 2022), suggesting that NUE can potentially be improved by genetic
selection with sufficient genetic variation. However, we found fewer studies on
genetic selection for NUE in dairy cattle, except for the use of milk urea nitrogen
(MUN) or milk urea (MU) implemented as proxies (Bastin et al., 2009; Bobbo et al.,
2020). The reason for the lack of genetic studies of NUE, like the FE trait, is that it is
a difficult and expensive phenotype to measure directly. So, the use of proxies of NUE
to conduct genetic selection could be a good choice for its ease to be measured on a
large scale.

2. Nitrogen metabolic processes and potential proxies of
NUE in dairy cows

Before introducing the potential proxies of NUE, it is crucial to understand the
metabolic processes of N in cows (Figure 1-1). Cows consume N mostly in the form
of feed crude protein (CP), which includes rumen degradable protein and rumen
undegradable protein (Aguirre-Villegas et al., 2017). The rumen degradable protein is
degraded into different forms of N (e.g., amino acids and ammonia) by
microorganisms in the rumen. The rumen undegradable protein will be partially
digested in the small intestine, which becomes the direct source of amino acids for the
cow. Ammonia is used for the de novo synthesis of amino acids by rumen microbes.
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The excess of ammonia is, on the other hand, absorbed into the bloodstream through
the rumen wall and converted to urea N in the liver, mostly discharged into milk, urine,
and feces (Spek et al., 2013; Ariyarathne et al., 2019). In cattle, part of the urea
synthesized by the liver also returns to the rumen through saliva and is reused by
rumen microorganisms. Microbial proteins and undegraded proteins are broken down,
in the small and large intestines by digestive enzymes coming from the digestive
system, into amino acids. These amnio acids are absorbed and used by the cow's
organism. The absorbed N is used for maintenance, reproduction, and milk production,
whereas the unused N is eliminated from the body through urine and feces (Aguirre-
Villegas et al., 2017). It is important to note that milk N was also divided into milk
true protein N (MTPN) and MUN. Meanwhile, urea establishes a balance between
various tissues and blood through cell membrane diffusion, resulting in a high
correlation between blood urea N and MUN, which is the basis for predicting urinary
N using MUN (Broderick and Clayton, 1997). We want to reduce N pollution from
dairy cows by reducing MUN, although MUN can also be digested by humans.
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Figure 1-1. Metabolism of nitrogen in cattle (based on Spek et al., 2013). NPN is
defined as non-protein-N except urea; AA is amino acids

Currently, there is only one N metabolism pathway (KEGG: 00910,
https://www.genome.jp/pathway/map00910) in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. The N metabolism pathway consists of six modules: N
fixation (KEGG: MO00175), Assimilatory nitrate reduction (KEGG: MO00530),
Dissimilatory nitrate reduction (KEGG: M00530), Denitrification (KEGG: M00529),
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Nitrification (KEGG: M00528), and Complete nitrification, comammox (KEGG:
M00804). The identified metabolism pathway involves 18 genes CA13, GLUD1, CAS,
CA5A, CA9, GLUL, CA3, CPS1, CA8, CA2, CA4, CA12, CASB, CA7, CAl14, CAL,
LOC784254, and LOC100847874 (https://biit.cs.ut.ee/gplink/l/s-vXmy-3RK). The
genes containing CA are a synthetic series of carbonic anhydrases. Currently, no
genome-wide association studies (GWAS) have been reported for NUE in dairy cattle,
except for MU(N). However, none of the findings for MU(N) was to be significantly
associated with any of the 18 genes mentioned above (Honerlagen et al., 2021; van
den Berg et al., 2022a).

The general NUE of lactating dairy cows is defined as milk N divided by N intake
(Calsamiglia et al., 2010). Milk N can be easily measured by using traits that are
currently recorded (Milk N= Milk yield x Protein Percent / 6.38, WHO and FAO,
2011). For N intake calculations, we need to use individual cow feed intake and N
concentration in her diet; however, measuring for both real traits is expensive and
time-consuming. Therefore, the best solution is to establish an NUE proxy that can be
easily implemented on the farm on a large scale and at a low cost. Lavery and Ferris
(2021) summarized in detail the current methods and new strategies for the detection
of NUE proxies and introduced NUE proxies with blood urea N, MUN, and N isotope
analysis of cow tissues or fluids (plasma, milk, and hair). However, only predicted
MUN or MU, as traditional NUE proxies have been reported in a large number of
genetic analyses (Wood et al., 2003; Bastin et al., 2009; Bobbo et al., 2020), while
other proxies (e.g., Predicted NUE (PNUE) and Predicted N losses (PNL)) have not
been reported in a large number of studies. The main reason why MUN and MU are
used as NUE proxies is that these traits have strong positive linear correlations with
urinary N. However, the relationship between MUN and urinary N is influenced by
various factors, such as dietary protein level, body weight, and water intake (Spek et
al.,2013). Phenotypically, assuming urinary N is reduced, N intake potentially flows
more to Milk N, whereas it is not clear whether genetic selection on MUN or MU
indirectly can improve NUE.

The MUN also expressed as MU [MUN (mg/dL) = MU (mg/dL)/2.14] as reported
by Beatson et al. (2019), is included as a standard part in most milk recording systems.
The MU is usually predicted by milk MIR spectroscopy, which is rapid, cheap, and
can be used in large-scale recording (Soyeurt et al., 2006; Gengler et al., 2016). The
NUE proxies predicted by milk MIR are very promising applications in the genetic
breeding area, and we have compiled the currently reported relevant studies (Table 1-
1), except for MU. Ho et al. (2021) is a follow-up validation study for the study
reported by Luke et al (2019) (Table 1-1). The current procedure of predicted blood
(sera) urea N (BUN or SUN) is used to discern the metabolic status of the cow rather
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than to study NUE (Table 1-1). The PNUE throughout lactation can potentially be
predicted by milk MIR, whereas PNL may only be predicted in early lactation (Grelet
et al., 2020; Shi et al., 2022). However, it is important to note here that PNL is not
really N pollution from cows. Meanwhile, multiple studies have shown that milk MIR
can also be used to predict the DMI of cows (Lahart et al., 2019; Tedde et al., 2021).
However, to calculate N intake, the protein percentage of the feed is required, which
is difficult to popularize in grazing cattle. Therefore, relevant research is not given
here. The basis for milk MIR's ability to predict N efficiency is as follows: the
composition of milk is affected by the animal diet, and milk MIR spectra can reflect
the changes in milk composition, which suggests that MIR can indirectly reflect the
composition of the diet. (Klaffenbock et al., 2017). In addition to MUN (MU), we
have introduced novel proxies of NUE.

It should also be mentioned that MUN yield (MUNY) is generally considered
linearly proportional to the urinary urea-N excretion when defined as a quantity
excreted (Wisconsin Alumni Research Foundation, 2015). So, we expect a decrease
in N pollution by decreasing the MUNY. However, from the definition of NUE
[(MTPN + MUNY) / N intake], lower MUNY may be associated with lower NUE.
As presented in Figure 1-1, the MTPN and MUNY metabolic pathways are different,
which suggests that we may simultaneously increase MTPN and decrease MUNY. By
assuming a constant N intake, and increasing both MTPN and decreasing MUNY,, we
can obtain cattle with higher NUE and lower N pollution. Based on the above ideas,
we proposed a new N efficiency index (NEI) (Figure 1-2) from a genetic point of view,
as explained in Chapter 4 of this thesis.
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Figure 1-2. A new nitrogen efficiency index (NEI) for dairy cow

3. Research objectives and outline

The ultimate objective of this study was to explore the possibility of producing both
more economical and more respectful of the environment cattle through genetic
selection. Hence, the NUE of lactating dairy cows (Holstein in this thesis) was the
target trait to be investigated. The hypothesis is that it is possible to simultaneously
improve the NUE of cows and reduce N pollution through genetic selection. Such a
high NUE herd would increase the economic interests of farmers while reducing N
pollution and slowing climate changes, while meeting government policy
requirements.

The objectives of this study were carried out in three parts (Figure 1-3). In the first
part (Chapter 2), we focused on MU, the traditional NUE proxy, which is directly
related to N pollution (urinary N) and is indirectly related to NUE. We performed a
comprehensive genetic analysis of MU by using a multi-trait random regression model
and estimated its approximate genetic correlations with 11 other traits of interest. In
the second part (Chapter 3), the PNUE and PNL, novel proxies of NUE, were used
for genetic analyses through a multi-trait repeatability model and their approximate
genetic correlations with 30 other traits of interest were estimated. The PNUE and
PNL of cows in early lactation were predicted by milk MIR (Grelet et al., 2020). In
the third part (Chapters 4 to 6), a new NEI was established and the approximate
genetic correlations between NEI and other 37 traits (indices) of interest were
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estimated (Chapter 4). Genomic data may help to have more accurate genomic
predictions for low heritability traits, so genomic predictions for NEI and its
composition traits were verified (Chapter 5). The genomic background of NEI and its
composition traits was also analyzed through genome-wide association studies
(GWAS) and post-GWAS (Chapter 6). Finally, a general discussion and a summary
of the research findings were provided (Chapter 7).

@ Chapter 2 (published @ Chapter 3 (published)

Genetic correlation
low

Novel
(first 50 DIM)

Traditional
(whole lactation)

er 4 (published)

| Chapter 5 manuscrlpt)
Flgure 1-3. Outline of this thesis
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Adapted from: Chen, Y., H. Atashi, S. Vanderick, R.R. Mota, H. Soyeurt, H.
Hammami, and N. Gengler. 2021. Genetic analysis of milk urea concentration and its
genetic relationship with selected traits of interest in dairy cows. J. Dairy Sci.
104:12741-12755. https://doi.org/10.3168/jds.2021-20659.

Foreword

Milk urea concentration (MU) is a traditional proxy to monitor the nutritional status
of dairy cows and reduce nitrogen emissions into the environment. The reason is that
MU and urinary nitrogen are often considered to have a linear relationship. This
thesis begins with a genetic analysis of MU, exploring the possibility and potential
impact of adding a proxy traditional of nitrogen use efficiency to the genetic selection
system in the Walloon Region of Belgium.

The models used in this Chapter were nearly identical to the current genetic
evaluation model used for yield traits in the Walloon Region of Belgium. However,
these models can be further optimized, such as by exploring the use of different orders
of polynomials.
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Abstract

This study aimed to estimate the genetic parameters of milk urea concentration (MU)
and its genetic correlations with milk production traits, longevity, and functional traits
in the first 3 parities in dairy cows. The edited data set consisted of 9,107,349 MU
test-day records from the first 3 parities of 560,739 cows in 2,356 herds collected
during the years 1994 to 2020. To estimate the genetic parameters of MU, data of 109
randomly selected herds, with a total of 770,016 MU test-day records, were used.
Genetic parameters and estimated breeding values were estimated using a multiple-
trait (parity) random regression model. Herd-test-day, age-year-season of calving, and
days in milk classes (every 5 d as a class) were used as fixed effects, whereas effects
of herd-year of calving, permanent environment, and animal were modeled using
random regressions and Legendre polynomials of order 2. The average daily
heritability and repeatability of MU during days in milk 5 to 365 in the first 3 parities
were 0.19, 0.22, 0.20, and 0.48, 0.48, 0.47, respectively. The mean genetic correlation
estimated among MU in the first 3 parities ranged from 0.96 to 0.97. The average
daily estimated breeding values for MU of the selected bulls (n = 1,900) ranged from
—9.09to 7.37 mg/dL. In the last 10 yr, the genetic trend of MU has gradually increased.
The genetic correlation between MU and 11 traits of interest ranged from —0.28 (milk
yield) to 0.28 (somatic cell score). The findings of this study can be used as the first
step for the development of a routine genetic evaluation for MU and its inclusion into
the genetic selection program in the Walloon Region of Belgium.

Key words: heritability, genetic correlation, random regression, milk urea
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1. Introduction

Milk urea nitrogen, also expressed as milk urea concentration (MU) [MUN (mg/dL)
= MU (mg/dL)/2.14] as reported by Beatson et al. (2019), is included as a standard
part in most milk recording systems. Regardless of the expression used, MUN or MU
are indicators used to monitor the nutritional status of dairy cows and reduce nitrogen
emissions to the environment (Samor¢ et al., 2007; Spek et al., 2013). Feed proteins
are decomposed by rumen microorganisms into ammonia and branched-chain fatty
acids. The ammonia is then used for de novo synthesis of amino acids by rumen
microbes, whereas excess ammonia is absorbed into the bloodstream through the
rumen wall and converted to urea nitrogen in the liver, which is then discharged into
milk, urine, and feces (Spek et al., 2013; Ariyarathne et al., 2019). Among them, urine
and feces urea N contribute to water pollution and gaseous N emissions (Hristov et
al., 2019). Although it is difficult to assess urine urea N in routine dairy farming
operations, MUN is a normal milk component (Gengler et al., 2016) that can be easily
measured (Beatson et al., 2019). Even if there is not a total consensus, previous studies
(e.g., Jonker et al., 1998) considered MUN as a valid predictor of urine urea N
excretion. Kauffman and St-Pierre (2001) reported a linear relationship between
urinary N and MUN in dairy cows. Some studies showed that MUN can reflect the
efficiency of protein metabolism of dairy cows (e.g., Bastin et al., 2009), and the
balance between CP and energy in the diet (e.g., Roy et al., 2003).

The MU varies between individuals and is affected by many factors. Literature
reported among others, the factors of feed compositions (Correa-Luna et al., 2019),
milking time (Bendelja et al., 2011), age at calving (Wood et al., 2003), stage of
lactation and season of milking (Fatehi et al., 2012; Yin et al., 2012), herd and parity
(Cobanovié et al.,, 2017; Siatka et al., 2020), and genetics (Bendelja et al., 2011;
Mucha and Strandberg, 2011; Rzewuska and Strabel, 2013).

Inclusion of a given trait into a breeding program is based on the identification of
its potential contribution to the breeding goal. For MU, its potential contribution can
be explained as follows. First, some researchers demonstrated the direct interest in
breeding for lower MU, or MUN, to reduce the environmental effect (Bobbo et al.,
2020; Marshall et al., 2020). Lower MU (or MUN) could also be linked to improved
N use efficiency but under the hypothesis that reduced MU (or MUN) does not affect
the amount of protein produced (Jonker et al., 1998). In addition, to reduce potential
unfavorable correlated responses, correlations of MU and traits included in the
breeding goal have to be considered. Previous research showed that MU (or MUN) is
correlated with yield traits (e.g., milk, protein, and fat yields; Yin et al., 2012; Beatson
et al., 2019; Ariyarathne et al., 2021), type traits (Satola et al., 2017b), BW (Hojman
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et al., 2005), SCC (Bobbo et al., 2019), and reproductive performance (Siatka et al.,
2020; Kananub et al., 2020). However, the results did not all indicate similar direction
and strength of correlations. Therefore, more studies are needed to make the right
decisions about the position of MU in the future breeding programs in the Walloon
Region of Belgium.

Although MU has been included in the regular milk recording of dairy cows in the
Walloon Region of Belgium since 1994, its use is restricted to management
recommendations. In this context, Bastin et al. (2009) used advanced modeling (e.g.,
Mayeres et al., 2004) of test-day MU records in the first parity in the Walloon Region.
Their study included also genetic effects but did not use EBV and did not investigate
genetic correlations of MU with other economically important traits. Therefore, the
present study can be considered also being a complement and follow-up of this
previous research in the same environment but more than 10 yr ago.

This study had 3 purposes: (1) estimating the genetic parameters of MU in the first
3 parities of Walloon dairy cows using a random regression animal model, (2) using
the estimated parameters to perform a genetic evaluation for MU, and (3) estimating
approximate genetic correlations between MU and 11 traits of interest currently
evaluated in the Walloon Region of Belgium.

2. Materials and methods

2.1. Data

Following previous research reported by Bastin et al. (2009) and the usual trait
definition in the Walloon Region of Belgium, expression as MU was preferred to
MUN. The MU records were generated by the official milk recording in the Walloon
Region of Belgium using mid-infrared spectrometry and commercially available
instruments and calibrations from FOSS (Foss Electric A/S). Data used in this study
were extracted from the generated database to create a genetic evaluation data set.
Records from only the first 3 lactations were kept. Hereafter we will call the MU in
the first 3 lactations MU1, MU2, and MU3, respectively. Further standard edits made
were the same as for routine genetic evaluations for yield traits. Therefore, records
from DIM lower than 5 and greater than 365 d were excluded. The value for MU was
restricted between 2 and 70 mg/dL. Finally, the 9,107,349 test-day records of the first
3 parities on 560,739 cows in 2,356 herds collected from 1994 to 2020 were kept.
More than 95% of cows included were Holstein. Pedigree data were extracted from
the database used for the official Walloon genetic evaluations and contained 814,023
animals (43,162 males and 770,861 females).
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2.2. (Co)variance Component Estimation

Data Set. The size of the original data set and the expected complexity of the used
model required that (co)variance component estimation (VCE) was done on
subsamples extracted from the whole genetic evaluation data set. We decided to repeat
VCE 10 times, requiring 10 independent subsamples. Sampling was based on herds.
Even if we identified a large number of herds in the data (2,356), due to the specificity
of Walloon data, many herds did not record milk over a longer period, or stopped and
started milk recording over the years. Therefore, a threshold of at least 5,000 available
test-day records taken over the considered period of time was defined. These
earmarked 629 herds are to be available for the next step. Ten times, herds were
randomly drawn from the pool of 629 herds until 3,000 cows with records were
obtained. This was achieved for 9 subsamples with 11 herds, and in one case with 10
herds, leading to 10 subsets of a total of 109 herds randomly drawn from the 629 herds.
To create independent subsamples, herds could only be drawn once. Moreover,
calving age for the first, second, and third parity was restricted to 22 to 37, 34 to 51,
and 46 to 65 mo, respectively.

Model. Basic models used for VCE and genetic evaluation were nearly identical and
based on the current genetic evaluation model used for yield traits in the Walloon
Region of Belgium (Croquet et al., 2006). The following multiple-trait random
regression model was used where records in each lactation were considered as
separate traits:

y = Hh + Xb + Dd + Q(Cc + Wp + Za) + e, [1]

where y is the vector of MU records in the first 3 lactations (traits MU1, MU2, and
MU3), h is the vector of fixed herd x test-day classes, and b is the vector of fixed age-
year-season of calving classes (4 seasons were de-fined: December to February,
March to May, June to August, and September to November), d is the vector of fixed
lactation stage classes (72 classes, DIM was divided by into 5-d classes, except from
DIM 360 to 365 which was considered as one class), c is the vector of herd x year of
calving common environmental random regression coefficients, p is the vector of
permanent environmental random regression coefficients, a is the vector of additive
genetic random regression coefficients, e is the vector of random residuals effects, H,
X, D, C, W, and Z are incidence matrices assigning observations to the corresponding
effects, Q is the covariate matrix for second-order modified Legendre polynomials
associated with DIM d with

doa) = 1.0,
Qi) = 3.0%°x,
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Q) = G)O'S (3.0x* — 1),

where x = —1 + 2 (3‘;5__11).

The modified Legendre polynomials referred to the formula proposed by Gengler et
al. (1999), but the DIM range was changed following the current practice in the routine
genetic evaluation in the Walloon Region of Belgium.

The expected values and (co)variances associated with this model were defined as
follows:

E(y) = Hh + Xb + Dd,
E(c) = E(p) = E(a) = E(e) = 0,

The following (co)variance structures were assumed:

Cc C*®IC 0 0 0
Var p _ 0 P®I, 0 0
a 0 0 G®A 0
e 0 0 0 R

where C* contained the coefficients of the herd x year of calving (co)variance function
(9 x 9 matrix); P contained the coefficients of the permanent environment
(co)variance function (9 x 9 matrix); G contained the coefficients of the genetic
(co)variance function (9 x 9 matrix); I,was an identity matrix of dimension ¢ (number
of herd x year of calving classes); I,, was an identity matrix of dimension w (number
of cows with records); A was the additive genetic relationship matrix among all
animals in the pedigree; R was a diagonal matrix of dimension n (total number of MU
records across the 3 lactations) with diagonal elements equal to oﬁ(t) which was the
residual variance for trait t (lactation) in which MU was recorded (MU1, MU2, MU3);
and ® represents the Kronecker product function.

Computations were done using the BLUPF90 family of programs (Misztal et al.,
2018). Variance components were estimated using REML by EM algorithm as
implemented in REMLF90 (version 1.84) program.

After estimating the (co)variance components separately for each subset, values
were averaged and the standard deviation (SD) of each (co)variance component was
computed as the approximate sampling error. Homogeneity of residual variance was
checked visually by computing and plotting the SD of observed residuals (difference
between observed and predicted values) for each class of DIM in the first 3 parities.
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2.3. Genetic Parameter Calculation

Based on estimated (co)variance components, several genetic parameters were

computed. For each trait of MU1, MU2, MU3 (t), heritability (hfd) and repeatability
(rep,,) were estimated for individual DIM (d) between 5 and 365 as follows:

oz(td)

a
(oﬁ(mo AR Ui(z))
Oty YOt Teaa))
(03way + Tpeay T Toeay T Ty,

and

Genetic (co)variance for average 305-d MU was obtained by using Giact = SGS?,
where Giact Was the 3 x 3 (co)variance matrices among average 305-d lactation MU
for the three traits (MU1, MU2, and MU3); G was a covariance matrix (9 x 9) of
genetic additive effect; and S was a 3 x 9 summation matrix that averaged the
contributions of a given test-day to the 305-d MU for the three traits (MU1, MU2, and
MU3). The same approach was used to derive Ciact and Piact matrices, which represent
the herd x year of calving and permanent environmental (co)variances for average
305-d MU. Heritability for average 305-d MU was computed as the ratio of the genetic
variance to the sum of the genetic, permanent environmental, herd x year of calving,
and residual variances. Correlations for average 305-d MU between parity i and j were
computed as the ratio of the average covariance-305 cov(i, j) to the square root of the
products of the average variances-305 of MU in parity i and j. The residual variance
was the same for the whole lactation in each parity.

2.4. Genetic Evaluation

The model used for calculating EBV was the same as that used for (co)variances
estimation. Breeding values for the included animals were estimated according to the
algorithm implemented in the BLUP90I0OD2 (version 3.81;
http://nce.ads.uga.edu/wiki/doku.php?id=readme.pcg2) program. Preparation of
different types of EBV was done following the example of yield traits in the routine
evaluations. Daily EBV was calculated using the following equation:
EBV;y, = q'm@aktm , Where EBV,,;4 was the EBV of cow k for trait t (here MU1, MU2,

and MU3) in DIM of d, for DIM 5 to 365; ay;,, were the 3 solutions m (additive
genetic random regression coefficients) of cow k for trait t by BLUP90IODZ; q;qa)

was the same as the Q in the equation (1), in which d ranged from 5 to 365. Following
the example of reported EBV for yield traits that are average lactation EBV of the first
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three parities, the average daily EBV value of MU in the first three parities was also
calculated. The formula for average daily EBV was:

EBV, = Z?=1 23():51 q,mj(d)aktmj /(3 % 305),

where j is the number of parity, and the rest parameters are the same as the formula of
daily EBV. The reliability (REL) of average daily EBV for MU was calculated based
on the INTERBULL calculation method proposed by Stranden et al. (2000) as used
in the Walloon routine genetic evaluation system for yield traits. This system provides
also directly expected daughter contributions (EDC) as defined by INTERBULL. In
the subsequent analysis of approximate genetic correlation with traits included, the
MU in the first three parities were combined into one trait. The same idea was also
recommended by Hossein-Zadeh and Ardalan (2011).

2.5. Approximate Genetic Correlations

The approximate genetic correlations between MU and 11 traits of interest were
estimated using the procedure proposed by Blanchard et al. (1983) which is a
generalized version of Calo’s method (Calo et al., 1973) when selected bulls had very
diverse REL. The 11 traits of interest included milk yield (MY), fat yield (FY), protein
yield (PY), SCS, fat percentage (FP), protein percentage (PP), longevity, female
fertility (FF), BCS, direct calving ease (DCE), and maternal calving ease (MCE). The
calculation model and algorithm of EBV for the 11 traits of interest can be found in
the documents (Belgium) submitted to Interbull (https://interbull.org/ib/geforms) or
reports by Vanderick et al. (2020). To use those bulls that were commonly used in
Walloon, in the first step bulls had to have at least 100 descendants registered. Then,
a total of 1,900 bulls were identified as having REL for average daily EBV of MU
that was greater than 0.50 associated with at least 5 daughters with MU records. Based
on the data obtained for the traits included, 2 different strategies were used to calculate
the approximate genetic correlations.

2.6. Correlations Based on Daily EBV of MU, Yield Traits, and
SCS

Even if they are not provided in routine, daily EBV of MY, FY, PY, and SCS (4
traits) for each DIM can be generated using the genetic evaluation system of dairy
cows in the Walloon Region of Belgium. In this study, we used those EBV obtained
during the routine run of August 2020. As REL of daily EBV are not calculated in
routine, the following procedure was used to get reasonable approximated REL
associated with daily EBV. First lactation based REL (REL3,5) were transformed to
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EDC using the lactation heritability for each trait (h§05), EDC representing the
information content:

In the second step, the EDC was back transformed to Daily-REL.:

EDC

2

EDpC+ -1
h

d

REL,;=

where REL, and h3 were, respectively, the REL and heritability at DIM d for each
trait. The needed hf, was calculated using the official (co)variance matrix of the
corresponding traits. Based on the EBV of the studied traits and the corresponding
REL in the given test day, the approximate genetic correlations between MU and MY,
FY, PY, and SCS were calculated, for DIM 5 to 365.

2.7. Correlations based on Selected daily EBV of MU and EBYV of
Fat and Protein Percentages Longevity, and Selected Functional
Traits

For 7 traits (FP, PP, Longevity, FF, BCS, MCE, and DCE) evaluated in Walloon that
are not defined across a longitudinal lactation scale, the following method was used
to calculate their approximated genetic correlations with MU at different lactation
stages (25, 125, 225, and 325 DIM). The EBV and REL of the 7 traits examined for
1,900 previously selected bulls were published on the ELINFO website
(https://www.elinfo.be/telechargerEN.html). First among the 1,900 previously
selected bulls, based on reliabilities for the 7 traits examined with REL greater than
0.50, a total of 1,317 bulls were selected. Then, based on the Daily-EBV of MU at
selected DIM (25, 125, 225, and 325). and their REL, the EBV of the 7 traits examined,
and their corresponding REL, the approximate genetic correlations between them
were calculated. Standard errors of the estimated approximate genetic correlation
were calculated using 1,000 bootstrapped replicates (Chen et al., 2021).

In addition, the genetic trends were analyzed by year of birth for all 12 traits
included based on the selected bulls. For genetic trend analysis of MU, the average
Daily-EBV of selected bulls (n = 1,900) was used; while for the other 11 traits
examined the EBV of selected bulls (n= 1,900 or n=1,317) from the ELINFO website
were used. The EBV of all traits had been standardized (mean = 0, SD = 1) because
the values vary greatly. According to the birth year, the bulls were divided into the
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following 7 groups: < 1992, 1992-1995, 1996-1999, 2000-2003, 2004-2007, 2008-
2011, and 2012-2015. The number of bulls in each group was more than 100. The data
preparation and processing were done using R (R Core Team, 2020).

3. Results and discussion

3.1. Descriptive Statistics

The description of the final edited data set (n = 9,107,349) used for genetic
evaluation and the sampled data sets for VCE (n = 770,016) is presented in Table 2-1.
The average and SD of MU for the sampled VCE data sets were slightly lower than
those found for the final edited data set. The average MU in each of the first 3
lactations ranged from 24.80 to 26.19 mg/dL, which were similar to those reported by
Bastin et al. (2009) for the first-parity average MU (25.51 mg/dL) of dairy cows in
Walloon. These values were also consistent with those reported in previous studies
(Cobanovic’ et al., 2017; Lopez-Villalobos et al., 2018; Ariyarathne et al., 2019).
However, Satota et al. (2017b) reported a lower value for MU in Polish Holstein-
Friesian cows. The differences observed for average MU can partly be attributed to
different feeding management and the studied populations. The average value of MU
found in this study is within the range (15.0 to 30.0 mg/dL) recommended for cattle
management in Germany, France, and Austria (Glatz-Hoppe et al., 2020). The
coefficient of variation (CV%) of MU ranged from 35.08 to 40.80%with a mean of
40.51%, which is slightly lower than that (42%) reported by Bastin et al. (2009).

Table 2-1. Descriptive statistics of milk urea concentration (mg/dL) of the final edited and
the used data set

No. of No.of

Parity Minimum Maximum Mean SD CV(%)
records COWS

Genetic evaluation dataset
1 3,933,442 500,352 2 70 26.01 10.40 39.99
2 3,020,958 387,040 2 70 26.19 10.67 40.73
3 2,142,949 276,624 2 70 26.08 10.64 40.80
All 9,107,349 560,739 2 70 26.10 10.57 40.51

(Co)variance component estimation dataset
1 261,906 29,548 2 70 25,70 929 36.15
2 265,709 29,389 2 70 2530 911 36.01
3 242,401 29,449 2 70 2480 8.70 35.08
All 770,016 30,090 2 70 2528 9.03 3574
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Figure 2-1 shows the curves of average MU over DIM classes for the first 3 parities.
The value of MU was slightly higher in the first few weeks (lowest value around DIM
23), but it quickly increased to higher levels. However, at the end of the lactation, a
decreasing trend was found especially for multiparous cows. The lactation curves
observed for MU during the first 305 DIM were the same as those reported by Wood
et al. (2003) and Bastin et al. (2009); however, in the extended part of the lactation
(i.e., after 305 DIM), the trend showed a gradual decrease. In comparison, based on a
limited number of records (n = 5,576), Stoop et al. (2007) reported an increase
followed by a decreasing trend for MU. Their curve was similar to the lactation curve
for milk yield but with a high level of MU maintained post-lactation peak. The MU
reached its lowest value in the early lactation, indicating that dairy cows have a higher
N use efficiency at this time. It is well documented that dairy cows are in a negative
energy balance state in the early stage of lactation because the feed intake of dairy
cows cannot meet their requirements. During this time, it can be assumed that cows
use N as efficiently as possible which can explain, at least in part, the obtained results.
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Figure 2-1. Lactation curves for milk urea concentration within classes of DIM (represented
by their average DIM) for the first 3 parities (n = 9,107,349)

3.2. Genetic Parameters

The estimated variances for all random effects of MU were for all parities higher at
the beginning and the end of the lactation, lower in the middle, and reached their
maximum levels at 365 DIM (Figure 2-2). Figure 2-2C shows that the additive genetic
variance of MU reached its minimum level at around 50 DIM, whereas its maximum
value was found at DIM 365. Our results were in agreement with those reported
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previously (Bastin et al., 2009; Rzewuska and Strabel, 2013; Ariyarathne et al., 2019).
The addition of the herd x year of calving random effect in the model helped to avoid
an excessive border effect of the additive genetic variance exceeding 305 DIM (Figure
2-2A).
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Figure 2-2. Variance components estimated for milk urea concentration over DIM for the
first 3 parities

Table 2-2. Mean (approximate SE computed from SD of the 10 sampling subsets) of daily
heritability (h?), repeatability, herd x year of calving variance (¢%c), permanent environmental
variance (0%), additive genetic variance (%), and total variance (c%otar) Of milk urea
concentration for each parity throughout the lactation

Parity h? Repeatability % % c?a otal

1 0.19+0.02 048+£0.08 270+2.73 657+3.06 552+0.86 29.92+6.41
2 0.22+0.02 048x+0.08 251+3.36 607256 6.55+£0.78 30.69+6.58
3 0.20+£0.02 047x0.07 211+252 6.72+£235 6.05+£061 30.73+5.30

The estimated variance components for MU in the first 3 parities averaged over the
lactation period (DIM 5-365) along with their SD are presented in Table 2-2. The
additive genetic variances for the first, second, and third parity accounted for 18.45,
21.34, and 19.69% of the total phenotypic variance, respectively. Furthermore, the
calculated SD of the observed residuals accumulated across the 10 VCE subsets for
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each DIM class were nearly horizontal except for the beginning (first 15 DIM) and
the end (last 30 DIM) of the lactation (Figure 2-3). The higher residual variance
observed at the beginning of lactation could also be attributed to larger changes in
body metabolism during this period (e.g., negative energy balance) that could not be
perfectly described by our model. There are at least 2 potential explanations for the
decrease at the end of the lactation. First, the observed environmental variances tended
to be very high at the end of the lactations, the slight decrease could be compensation.
The lower residual variance observed at the end of lactation may also be due to the
decrease in the amount of data available in this period (half compared with the
previous classes). As illustrated in Figure 2-3, based on the visual inspection, despite
these very slight deviations, the overall horizontal nature of the residual SD curves
can be confirmed. This strengthens the assumption that modeling homogeneous
residuals across the lactation is a valid assumption that simplified the used model.
Especially for genetic evaluations, a simpler model is advantageous in avoiding
preadjustment or weighting records to correct for heteroscedasticity. The average (SD)
residual variances across the 10 VCE subsets for MU1, MU2, and MU3 were 15.13
(0.87), 15.56 (0.92), and 15.86 (1.01), respectively.
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Figure 2-3. The standard deviation (SD) of the observed residual within classes of DIM
(represented by their average DIM) for milk urea concentration of the first 3 parities in the
sampled data set (n = 770,016) used for (co)variance component estimation (MUx: milk urea
concentration in parity x, where x is 1, 2, or 3)

The heritability and repeatability estimate of MU by DIM are presented in Figure 2-
4. The heritability estimates showed an increasing phase from the beginning of the
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lactation, reached its maximum level at around 215 DIM, then decreased to the end of
the lactation (from 0.13 to 0.23), which is in a close agreement with that reported by
Yin et al. (2012). However, the trend of heritability reported by Rzewuska and Strabel
(2013) was different, which may be, at least in part, due to different models used or
different populations studied. The MU heritabilities averaged across lactation were
0.19, 0.22, and 0.20, for the first, second, and third parity, respectively (Table 2-2),
which are in a close agreement with those reported by Mitchell et al. (2005), Mucha
and Strandberg (2011), and Lopez-Villalobos et al. (2018). However, these values
were higher than those reported by Konig et al. (2008) and Bastin et al. (2009), and
lower than those reported by Miglior et al. (2007) and Ariyarathne et al. (2019). The
average 305-d heritabilities of MU were 0.52, 0.60, and 0.54, respectively, in the first
3 parities (Table 2-3), which were similar to the maximum average heritability of
MUN (0.59 in the second parity) reported by Wood et al. (2003). The trend of
repeatability for MU over DIM resembled a “U” shape (from 0.40 to 0.72) and reached
its maximum at 365 DIM, which is in agreement with Ariyarathne et al. (2021). The
repeatability estimates of MU averaged over lactation were 0.48, 0.48, and 0.47,
respectively, for the first, second, and third parities (Table 2-2), which are in line with
those reported in previous studies (Ariyarathne et al., 2019, 2021; Beatson et al., 2019).
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correlation (D) of milk urea concentration over DIM in the first 3 parities

3.3. Correlations Among the First 3 Parities

The genetic and phenotypic correlations of MU among the first 3 parities are
presented in Figure 2-4C and D, respectively. The genetic correlations of MU among
the first 3 parities were lower at the beginning and at the end of the lactation, whereas
their maximum levels were found in the middle of the lactation. The average genetic
correlations of MU calculated among the first 3 parities during DIM 5 to 365 ranged
from 0.92 to 0.96. The obtained results are similar to those reported by Hossein-Zadeh
and Ardalan (2011) and Rzewuska and Strabel (2013), but higher than those reported
by Satota et al. (2017a). The 305-d genetic correlation of MU among the first 3 parities
ranged from 0.96 to 0.97 (Table 2-3), which is in a close agreement with that found

between the first and second parity by Mitchell et al. (2005).
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Table 2-3. Average (+ SE) 305-d heritabilities (diagonal), average 305-d genetic correlations
(above diagonal), and average 305-d phenotypic correlations (below diagonal) of milk urea
concentration among the first 3 parities in Walloon dairy cows computed from the 10
sampling subsets (approximate SE computed from observed SD)

Parity 1 2 3

1 0.52+0.08 0.97+0.01 0.96 +0.02
2 0.84 +0.03 0.60 +0.07 0.97 £ 0.07
3 0.76 £ 0.03 0.85+0.02 0.54 +0.07

The phenotypic correlations of MU among the first 3 parities increased with
increasing DIM and ranged from 0.32 to 0.37 in agreement with those reported by
Hossein-Zadeh and Ardalan (2011). The 305-d phenotypic correlations of MU among
the first 3 parities were relatively high and ranged from 0.76 to 0.85 (Table 2-3).

3.4. Genetic Evaluation and Trend

The Figure 2-5 showed the distribution of standardized average daily EBV of MU
and their associated REL for the selected bulls (mean =0, SD = 1). The average daily
EBYV of 1,900 bulls and the corresponding REL ranged from —9.09 to 7.37 mg/dL and
0.50 to 0.99 (mean = 0.90), respectively. The relatively high REL found for average
daily EBV may be attributed to the high 305-d heritability of MU. In addition, only
bulls with at least 100 daughters in the pedigree were selected in this study which also
can explain the relatively high REL found for average daily EBV.
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Figure 2-5. Distribution of standardized average daily EBV (A) and its reliability (B) for
milk urea concentration of the selected bulls (n = 1,900)
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Figure 2-6. Genetic trend of milk urea concentration (MU), milk yield (MY), fat yield (FY),
protein yield (PY), SCS, fat percentage (FP), protein percentage (PP) in figure A, and
longevity, female fertility (FF), BCS, direct calving ease (DCE), maternal calving ease

(MCE) in figure B by year of birth of selected bulls (n = 1,900 for MU, FY, PY, SCS, and n

= 1,317 for FP, PP, longevity, FF, BCS, DCE, MCE)

Figure 2-6 shows the genetic trends for the MU, production, longevity, and
functional traits involved in this study. The genetic trend of MU gradually decreased
from the first to the third group (1996-1999), which reached its minimum level, then
gradually increased to the last group (2012-2015) to reach the maximum level. It has
been also shown that the N use efficiency of the local cattle population decreased
gradually in the past 20 yr. The observed rapid increase in longevity, DCE, and MCE
and their positive genetic correlations with MU (the results shown in the next section),

32



Chapter 2: Genetic analysis of milk urea concentration

may explain a part of this finding. Only SCS showed a declined trend during the last
20 yr; however, indicating that genetic selection has also improved the udder health
of the studied cattle population. Moreover, decreasing SCS can be associated with a
lower rate of mastitis and therefore higher longevity.

3.5. Approximate Genetic Correlations with Other Traits of
Interest

The approximate genetic correlations between MU and MY, FY, PY, and SCS were
estimated based on the daily EBV of the traits. The mean (SD) of the REL (5 to 365
DIM) of daily EBV of 1,900 selected bulls for the examined traits ranged from 0.91
(0.04) to 0.95 (0.07). The mean (SD) of the REL of EBV of 1,317 bulls selected for
the rest of the traits included (FP, PP, longevity, BCS, FF, DCE, MCE) ranged from
0.72 (0.05) to 0.92 (0.09).
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Figure 2-7. Approximate genetic correlation estimated between milk urea concentration
(MU), milk yield, fat yield, protein yield, and SCS evaluated by EBV of selected bulls (n =
1,900) over DIM

As shown in Figure 2-7, the range of approximate genetic correlations between MU
and production traits (MY, FY, and PY) was found to be from —0.25 to —0.01,
indicating that selection for decreasing MU is also associated with increasing milk
production traits. Low negative genetic correlation was found between MU and MY,
which is in agreement with Samor¢ et al. (2007). However, Lopez-Villalobos et al.
(2018) and Ariyarathne et al. (2021) reported that MU had a moderately positive
genetic correlation with milk yield in dairy cows in New Zealand. Only grass-based
diets are very common in New Zealand, but not in Belgium, where complementing
grazing by energy-rich feedstuff is rather standard. These important differences may
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cause genetic x environmental interaction that could explain the observed differences.
The differences found among the results reported in different studies may be attributed
to the difference in the genetic background of the populations studied, and different
procedures used. The trait MU was weakly correlated with FY and PY (—0.19 to
—0.01). Mucha and Strandberg (2011) reported weak negative to the weak positive
genetic correlation between MUN and PY and FY. However, there are studies (e.g.,
Wood et al., 2003; Stoop et al., 2007) that reported positive genetic correlation
between MU and FY or PY. The approximate genetic correlation found between MU
and SCS ranged from —0.20 to 0.28 (Figure 2-7). Rzewuska and Strabel (2013)
reported a negative genetic correlation between MU and SCS in Polish dairy cattle.
Miglior et al. (2007) also found a negative genetic correlation between MUN and SCS
for the first 3 parities of Canadian Holstein cows. It is well documented that the N use
efficiency in dairy cows decreased (increased MU), but the probability of suffering
from mastitis increased (increased SCS) in the late lactation. We speculate that this
could be one of the reasons why the genetic correlation between MU and SCS
increased from a negative genetic correlation at the beginning of the lactation to a
positive genetic correlation in the late part of the lactation.

Table 2-4. Approximate genetic correlation! and associated SE between milk urea
concentration and selected functional traits evaluated in the selected bulls (n = 1,317)

Trait DIM 252 DIM 125 DIM 225 DIM 325
Milk composition
Fat Percentage 0.23+0.03 0.14+0.03 0.15+0.03 0.22+0.03
Protein Percentage 0.20+0.03 0.15+£0.03 0.19+0.03 0.26+0.03
Longevity and other functional traits
Longevity 0.27 £0.03 0.27 £0.03 0.18+0.03 -0.02+0.03
Female Fertility 0.15+0.03 0.12+0.03 0.09+0.03  0.05+0.03
Body condition score -0.03+0.03 -0.08+0.03 -0.01+0.04 0.18+0.04
Direct Calving Ease 0.20 £0.03 0.25+0.03 0.17+0.03 -0.05+0.03
Maternal Calving Ease 0.21+0.03 0.23+0.03 0.14+0.03 -0.08+0.03

L approximate genetic correlation was estimated using the procedure proposed by Blanchard et al.
(1983).
2 EBV of milk urea concentration in corresponding days in milk: 25, 125, 225, or 325

The approximated genetic correlations found between MU and traits including FP,
PP, longevity, FF, BCS, DCE, and MCE are presented in Table 2-4. Moreover, we
found that the genetic correlations between MU and FP, and PP slightly changed
during the lactation. The MU had a positive approximated genetic correlation with FP
and PP, which is in agreement with Miglior et al. (2007). However, Bobbo et al. (2020)
reported that genetic correlations of MUN and FP or PP were negative, which may be
due to the different genetic backgrounds of the breeds considered in their study (i.e.,
Brown Swiss cows).
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The approximated genetic correlation between MU and longevity ranged from
—0.02 to 0.27, which is in agreement with Miglior et al. (2006), which used phenotype
data to estimate the correlations. Miglior et al. (2006) using 1,568,952 MUN records,
reported that an increased MUN was associated with decreased risk of culling in
Holstein cows. The approximated genetic correlation found between MU and FF
ranged from 0.05 to 0.15, which was consistent with Mucha and Strandberg (2011)
and Rzewuska and Strabel (2015). Mucha and Strandberg (2011) used 6, and
Rzewuska and Strabel (2015) used 5 indicators for measuring FF, whereas in our study,
FF was defined as pregnancy rate (Vanderick et al., 2020). The slightly positive
genetic relationship found between MU and FF may be due to the slightly negative
correlation between MU and MY and the relatively strong expectation that there is a
negative correlation between FF and MY. Siatka et al. (2020) reported that MU had a
significant negative effect on the fertility of high-yielding dairy cattle. Moreover, the
approximate genetic correlation found between MU and FF was lower at the end of
the lactation (325 DIM). In summary, it turns out that MU, longevity, and functional
traits (except for BCS) were positively genetically related in the early stage of
lactation, and gradually weaken in the later stage.

The approximate genetic correlation found between MU and BCS was close to zero
in early and mid-lactation, but a stronger correlation was found in late lactation. Loker
et al. (2012) reported that the genetic correlation between MUN and BCS was
relatively high in the early and late stages of lactation. High levels of MU in late
lactation may indicate excessive protein in the feed, which may improve the BCS of
cows. A weakly positive genetic correlation was found between MU and calving ease
(direct and maternal) in early lactation.

This research leads to several issues to be considered in future research. First, more
than 95% of the cows in this study were Holstein. Strictly speaking, because the
phenotypic means of MU and its genetic parameters were reported to be different for
specific cattle breeds (e.g., Brown Swiss; Doska et al., 2012; Bobbo et al., 2020), our
results can only be considered representative of the Holstein breed in the Walloon
Region of Belgium. Therefore, complementary research for dual-purpose Belgian
Blue, the second most common breed milked in dairy farms in the Walloon Region, is
ongoing simultaneously. Second, genomic selection is now commonly used in dairy
cattle, and this is also the case in the Walloon Region. Therefore, we will extend this
research toward the use of genomic tools. Finally, this study did not solve the question
about the link between MU and N use efficiency. As reported by Chen et al. (2021),
we have defined novel predicted N use efficiency traits based on mid-infrared spectral
data. Because of the availability of a historical spectral database in the Walloon
Region, we are investigating the link between MU and these novel traits. These results
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will also be useful to develop strategies on how MU EBYV should be defined and how
they should be used to be useful for reducing environmental impact and improving N
efficiency.

4. Conclusions

The genetic parameters of MU were estimated using a random regression model for
the first 3 parities. The average daily heritability of MU from DIM 5 to 365 in the first
3 parities ranged from 0.19 to 0.22. High genetic correlations were found among MU
in the first 3 parities, so we recommend combining the 3 traits into 1. The
approximated genetic correlation found between MU and SCS ranged from —0.20 to
0.28, and the corresponding genetic correlation found between MU and production
traits (MY, FY, and PY) ranged from —0.25 to —0.01, indicating that selection for
increasing milk production traits and decreasing SCS should lead to decreasing MU.
Observation of genetic trends revealed more complex relationships. Genetic
correlations between MU and longevity, FF, DCE, and MCE were weakly positive in
early lactation (0.12—0.27). The findings of this study can be used as the first step in
developing a routine genetic evaluation for MU and its inclusion into the genetic
selection program in the Walloon Region of Belgium.
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Gengler. 2021. Estimation of genetic parameters for predicted nitrogen use efficiency
and losses in early lactation of Holstein cows. J. Dairy Sci. 104:4412-4423.
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Foreword

While the previous Chapter discussed the traditional proxy (milk urea concentration)
for nitrogen use efficiency (NUE), this Chapter presented a genetic analysis of two
novel proxies - predicted NUE (PUE) and nitrogen losses (PNL). The PNUE and PNL
are directly related to NUE and nitrogen pollution, respectively, and may be more
representative of the real situation of dairy cows. These results provide the first
references for PNUE and PNL to inform breeding and management strategies to
improve farmers' profits and reduce environmental pollution.
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Abstract

The objective of this study was to estimate genetic parameters of predicted N use
efficiency (PNUE) and N losses (PNL) as proxies of N use and loss for Holstein cows.
Furthermore, we have assessed approximate genetic correlations between PNUE,
PNL, and dairy production, health, longevity, and conformation traits. These traits are
considered important in many countries and are currently evaluated by the
International Bull Evaluation Service (Interbull). The values of PNUE and PNL were
obtained by using the combined milk mid-infrared (MIR) spectrum, parity, and milk
yield—based prediction equations on test-day MIR records with days in milk (DIM)
between 5 and 50 d. After editing, the final data set comprised 46,163 records of
21,462 cows from 154 farms in 5 countries. Each trait was divided into primiparous
and multiparous (including second to fifth parity) groups. Genetic parameters and
breeding values were estimated by using a multi-trait (2-trait, 2-parity classes)
repeatability model. Herd-year-season of calving, DIM, age of calving, and parity
were used as fixed effects. Parity (within-parity permanent environment), nongenetic
cow (across-parity permanent environment), additive genetic animal, and residual
effects were defined as random effects. The estimated heritabilities of PNUE and PNL
ranged from 0.12 to 0.14, and the repeatabilities ranged from 0.40 to 0.55, respectively.
The estimated genetic correlations between PNUE and PNL were negative and high
(from —0.89 to —0.53), whereas the phenotypic correlations were also negative but
relatively low (from —0.45 to —0.11). At a level of reliability of more than 0.30 for all
novel traits, a total of 504 bulls born after 1995 had also publishable Interbull
multiple-trait across-country estimated breeding values (EBV). The approximate
genetic correlations between PNUE and the other 30 traits of interest, estimated as
corrected correlations between EBV of bulls, ranged from —0.46 (udder depth) to 0.47
(milk yield). Obtained results showed the complex genetic relationship between
efficiency, production, and other traits: for instance, more efficient cows seem to give
more milk, which is linked to deeper udders, but seem to have lower health, fertility,
and longevity. Additionally, the approximate genetic correlations between PNL, lower
values representing less loss of N, and the 30 other traits, were from —0.32 (angularity)
to 0.57 (direct calving ease). Even if further research is needed, our results provided
preliminary evidence that the PNUE and PNL traits used as proxies could be included
in genetic improvement programs in Holstein cows and could help their management.

Key words: genetic correlation, heritability, indirect selection, repeatability model,
mid-infrared spectrum
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1. Introduction

The concept of efficiency of dairy cows has to be put in a holistic perspective, as
efficiency might enter a tradeoff with the health status and the ability of the cow to
reproduce (Figure 3-1). Therefore, efficiency is also linked to the well-being,
robustness, and longevity of the cows. Moreover, efficiency is not only feed efficiency
(Hayes and Ageeb, 2002) but also nitrogen use efficiency (NUE), which is considered
one of the most important indicators of ruminant feed utilization (Wheadon et al.,
2014). The protein in the feed is the most expensive raw material, so the increase in
NUE is beneficial to the interests of farmers (Cantalapiedra-Hijar et al., 2018).
Nitrogen emissions from the dairy industry have been identified as important factors
causing groundwater and surface water pollution, and greenhouse gas emissions
(Adenuga et al., 2019). The reduction of N emissions would protect the environment,
and we might expect that environmental losses are also linked to efficiency (Figure 3-

—

Efficiency N partition Environmental losses

Body reserves, maintenance, growth

(Rate of loss of body fat, protein)

Health status Ability to reproduce

Risk of disease Reproductive problems

Well-being Robustness Longevity

Figure 3-1. Holistic view of the concept of efficiency in the context of N (in red) and
relationship between N in milk and N intake (N loss shown in orange boxes) in dairy cows.
(Modified from Gengler et al., 2018.)

In this research, we studied 2 traits: NUE, defined as the ratio of grams of N in milk
per grams of N intake, and nitrogen loss (NL), defined as grams of N intake minus
grams of N in milk (Phuong et al., 2013; Grelet et al., 2020). It has to be noted that
the concept of NL used hereafter is a simple difference between N intake and N in
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milk. Therefore, it does only reflect imperfect environmental losses (Figure 3-1).
Concerning NUE, ratio traits are not preferred in genetics because of 2 issues: a
potentially problematic, non-normal, distribution of records, and the difficulty of
attributing changes to the numerator (here output grams of N in milk) or the
denominator (here input grams of N intake). However, we studied both traits because
NUE is often preferred for management purposes. As already stated, the improvement
of the utilization of N in cattle may have an adverse effect on their health and longevity
because it affects also N available for body reserves, maintenance needs, and even
growth for young animals (Figure 3-1). Therefore, we also tried to study the genetic
relationships between N efficiency traits and other important traits such as milk yields
and composition, health, longevity, other functional traits, and conformation traits.

Literature has reported that NUE shows large variability between individuals and
herds, with values between 8% and 42% (Castillo et al., 2001). This suggests potential
opportunities to improve NUE under the condition of sufficient genetic variance, by
genetic selection. To our knowledge, genetic parameters and the correlation between
NUE and NL, and with other traits in Holstein cows, have not yet been analyzed.
However, the efficiency of crude protein utilization (ECPU, CP in milk divided by CP
intake), as reported by Lopez-Villalobos et al. (2018), was a trait that can be
considered similar to NUE (ratio of grams of N in milk derived from CP in milk and
grams of N intake derived from CP intake). Alternatively, *°N has been used to study
the NUE and NL of cows (Cantalapiedra-Hijar et al., 2016, 2018; Nasrollahi et al.,
2019). Because of its high cost and complicated operation, it is impossible to collect
the large amount of data needed for genetic evaluation or even genetic research.
Therefore, obtaining large numbers of direct NUE and NL, as well as ECPU records,
is difficult, and the largest study, by Lopez-Villalobos et al. (2018), estimated the
heritability (h?) of ECPU, using only 2,896 records. These facts highlight the urgent
need for large-scale and easy-to-measure proxies for N (or protein) efficiency traits.

Recently, Grelet et al. (2020) established models to obtain proxies for NUE (PNUE)
and NL (PNL) based on their prediction by mid-infrared (MIR) spectra. The use of
spectra from the routine MIR analysis of milk is fast and simple, and allows traits to
be predicted on a large scale. Predictions can be redone whenever new or better
equations become available (Gengler et al., 2016). As emphasized by many recent
papers (e.g., Vanlierde et al., 2015; Gengler et al., 2016), the goal of using MIR is to
establish predictors that can be used as proxies for the unavailable direct traits, not the
perfect replacement of a direct trait. For our traits, the correlations of 0.82 for PNUE
and 0.77 for PNL observed by Grelet et al. (2020) in their validations, and defined as
the square root of these validation coefficients of determination (R?), can be
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considered as being approximations of the level of phenotypic correlations expected
between direct and our proxy traits.

The equations developed by Grelet et al. (2020) to predict PNUE and PNL were
applied to a much larger data set. The objectives of this study were (1) to estimate
genetic parameters of PNUE and PNL for Holstein cows in this data set and (2) to
assess approximate genetic correlations between PNUE, PNL, and important traits, as
milk yield and composition, health, longevity, and other functional traits, and
conformation traits (30 traits).

2. Materials and methods
2.1. Data Collection and Editing

The data used in this study were collected by the Genotype Plus Environment
(Gpluse) FP7-Project (http://www.gpluse.eu). The initial data set, including milk
MIR, parity, and milk yield, comprised a total of 52,065 records from 154 herds from
5 partner countries of the GpluskE project. This specific population was also studied
because the cows used in this study were genotyped during GplusE, a fact that will be
important in genomic follow-up studies.

The original data were edited to select records between 5 and 50 DIM, and observed
during the first 5 parities. This allows us to keep the data similar to those used for the
reference population. All milk MIR spectra were standardized according to Grelet et
al. (2015). The PNUE and PNL of each cow were predicted by the equations based
on the models established by Grelet et al. (2020), with milk MIR spectra, milk yield,
and parity as additional predictors, using support vector machine regression. The
determination coefficients and root mean square errors of validation were 0.68 and
5.01% for the PNUE model, and 0.59 and 0.07 kg/d for the PNL model, respectively.

Allowed minimum and maximum age depended on parities. For parity 1 the range
was from 22 to 36, for parity 2 from 34 to 50, for parity 3 from 46 to 64, for parity 4
from 58 to 78, and for parity 5 from 70 to 92 mo of age at calving were included.
Finally, the final data set contained 46,163 records of 21,462 cows from 154 farms.
The distribution of the final data across 5 organizations and universities was as follows:
Royal Veterinary College (London, UK; n = 666), Walloon Breeders Association
(Ciney, Belgium; n = 20,144), Irish Cattle Breeding Federation Society Limited
(Bandon, Ireland; n = 3,543), Huazhong Agricultural University (Wuhan, China; n =
188), and CRV (Arnhem, the Netherlands; n = 21,622). The records were divided into
2 parity classes according to lactation numbers 1 and 2 through 5. Hereafter, these 4
traits are identified as PNUE1, PNL1, PNUE2+, and PNL2+. The pedigree related to
the data sets comprised 75,700 animals.
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As stated by Grelet et al. (2020), the use of MIR equations in other populations than
the ones used for calibration is dangerous. Because of the lack of feeding data, we
could not directly validate the predictions obtained using the equations in our
population. However, by applying 2 filters, one on the MIR data and one on the values
of the predictions, we acted very prudently. First, the population where the prediction
equations are used should also be spectrally similar to the calibration population. A
widely used strategy is to compute the global H parameter, which is based on the
standardized Mahalanobis distance between the MIR record to be used and the
calibration data sets (Whitfield et al., 1987). The global H is therefore a
multidimensional generalized measure of how many standard deviations (SD) away a
MIR record is from the mean of the corresponding calibration population. By using
only spectra with a global H < 3, we have limited the use of the equations to MIR
records close to the calibration population, and therefore we have minimized the risk
of using equations improperly. In addition, the means and SD of the values predicted
for the 4 traits PNUEL, PNL1, PNUE2+, and PNL2+ were established, and records
were kept only when they were inside a < 3 SD range. Even if these 2 measures cannot
guarantee the applicability of the equations, these measures not only established that
our spectra were very close to the calibration spectra but also that the predicted values
stayed in a range compatible with the trait definitions of Grelet et al. (2020)—that is,
inside the range of the values used for calibration.

2.2. Model

A multitrait (4 traits; 2 traits, 2 parity classes) repeatability model was used for
estimating variance components and breeding values. The model was fitted as follows:

y = Hh + Xb + Qq + W;c + W,p + Za + e,

where y was the vector of 4 traits PNUE1, PNL1, PNUE2+, and PNL2+. For each
trait, h was the vector of fixed herd-year-season of calving classes (4 seasons from
December to February, March to May, June to August, and September to November);
b was the vector of fixed regression coefficients for DIM, after standardization, and
its quadratic; q was the vector of fixed regression coefficients of the age of calving,
after standardization, defined as a constant (parity effect), linear, and quadratic
regression, defined within parities (1-5); ¢ was a vector of the nongenetic cow (across-
parity permanent environment) random effects; p was a vector of nongenetic cow x
parity (within-parity permanent environment) random effects, modeled only for
PNUE2+ and PNL2+, as they allowed us to distinguish records for the same cow
occurring during different parities (second to fifth parity); a was a vector of random
additive genetic effects; and e was a vector of random residual effects. Additionally,
H, X, Q, W1, W», and Z were incidence matrices assigning observations to effects.
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The expected values and variances associated with this model were defined as
follows:

E(y) = Hh + Xb + Qq,

E(c) = E(p) = E(a) = E(e) = 0,

The matrices V(c) and V(a) contained blocks of 4 x 4 elementary (co)variances
between the 4 traits. For V(e), off-diagonals were modeled as being zero, these
elements representing residual covariances between the respective traits. By this
approach, environmental covariances between traits were concentrated in permanent
environmental effects. For V(p) the elementary (co) variance matrix was reduced to a
2 x 2 matrix, because only the (co)variances associated with PNUE2+ and PNL2+
were present; hereafter, we have to emphasize that this (co)variance does not exist for
PNUE1 and PNL1.

2.3. Variance Components, Heritabilities, and Repeatabilities

Computations were performed using the BLUPF90 family of programs (Misztal et
al., 2018). Variance components were estimated by using first the REMLF90 (version
1.84) program and then, at convergence, approximate standard errors of all calculated
parameters were obtained according to the algorithm of Meyer and Houle (2013) as
implemented in the AIREMLF90 (version 1.144) program. For each trait PNUE1 and
PNL1, h? was defined as 62 /(02 + o2 + 62) and for PNUE2+ and PNL2+, h? was
defined as 05 /(04 + o + o + 0Z) where o was the additive genetic variance; o2
was the across-parity permanent environment (non-genetic cow) variance; for
PNUE2+ and PNL2+, ag was the within parity permanent environment (non-genetic
cow X parity) variance and o2 was the residual variance again defined for each trait.
Permanent environmental covariance between test-day records of a cow was assumed
to be o across parities and o7 + o7 inside a given parity for traits PNUE2+ and
PNL2+. As traits PNUEL1 and PNL1 were defined inside the first parity only, the
associated permanent environmental covariance was limited to 6. For PNUE1 and
PNL1, repeatability within the first parity was defined as constant parameters across
the range of DIM in early lactation as (62 + 62)/(cZ + 62 + 02). For PNUE2+ and
PNL2+, within parity repeatability was defined as a constant parameter across the
range of DIM in early lactation, as (o7 + o + 0;5) /(04 + of + 0f + 0&).
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2.4. Genetic, Phenotype, and Approximate Genetic Correlations

Genetic correlations were computed directly, using the estimated genetic
covariances and variances, as the ratio of the covariance to the square root of the
product of the corresponding variances. Phenotype correlations were computed
similarly. Required phenotypic covariances and variances were obtained as the sum
of relevant (co)variance components.

Breeding values were estimated by using the BLUPF90 (version 1.68) program, and
reliabilities were computed from extracted diagonal elements of the inverted
coefficient matrix. The approximate genetic correlations between PNUE, PNL, and
other traits of interest were estimated using the strategy presented by Blanchard et al.
(1983), which is a generalization of Calo's method when groups of bulls had very
diverse reliability. We identified bulls born after 1995 (included) in the pedigree,
having reliabilities for all 4 novel traits that were above 0.3 and having also publish-
able International Bull Evaluation Service (Interbull) multiple-trait across-country
evaluation—based EBV on Walloon scales
(https://www.elinfo.be/telechargerEN.html). Based on a suggestion by A. Legarra
(INRAE, Toulouse, France, personal communication) SE of these approximate
genetic correlation estimates were estimated using 1,000 bootstrapped replicates. In
the bootstrap procedure, we used the number of selected bulls to sample from all
selected bulls with replacement.

Additional data preparation and processing were done using R (R Core Team, 2020;
version 3.6.3), data. table package (Dowle and Srinivasan, 2019; version 1.12.8), and
boot package (Canty and Ripley, 2019; version 1.3-24). The graphs were made using
the ggplot2 package (Wickham, 2016; version 3.30).

3. Results and discussion

3.1. Descriptive Statistics

The distribution of PNUE and PNL are shown in Figure 3-2. Under visual inspection,
the range of values was acceptably normally distributed. Within the same parity, the
variability of PNUE and PNL remained large. Mean values for multiparous cows
increased 14.86% and 12.41% over the primiparous Holstein cows, respectively. As
explained previously, based on observed means and SD, observations outside 3 SD
from the means for each trait were considered as outliers and were not used in the
study. For PNUEL, PNL1, PNUE2+, and PNL2+ we eliminated only 40, 161, 69, and
166 records, respectively. This restricted the range of values for PNUE1 and PNUE2+
to between 13.6 and 63.5%, which is inside the values used by Grelet et al. (2020) in

49



Genetic analyses of different nitrogen use efficiency proxies for Holstein cows

the calibration process (individual daily NUE ranging from 9.7 to 81.7%, with an
average of 36.9% and SD of 10.4%).
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Figure 3-2. Distribution of predicted N use efficiency (A and B) and predicted N losses (C
and D) of Holstein cows. PNUE1 = predicted N use efficiency in first-parity Holstein cows;
PNL1 = predicted N losses in first-parity Holstein cows; PNUE2+ = predicted N use
efficiency in second- to fifth-parity Holstein cows; PNL2+ = predicted N losses in second- to
fifth-parity Holstein cows

As shown in Figure 3-3, we found that as the parity (the first 5 parities) increases,
the average PNUE gradually increases, and the PNL increases first, before becoming
stable and then showing a slight tendency to decrease after parity 3. For PNL within
each parity, we found a downward trend with the increase of calving age. All these
results suggest that even if cows in higher parities tend to be more efficient (higher
PNUE), for PNL later parities compared with the first parity showed higher N losses.
Also, although older calving ages inside a given parity were not good for efficiency
in the first parity, older animals inside a given parity showed lower losses. These
results supported the idea that although the definitions of PNUE and PNL may
indicate similarities, they do not describe the same biological background.
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Figure 3-3. Changes in average predicted N use efficiency (PNUE) and predicted N losses
(PNL) with calving age (A and C) and parity of Holstein cows (B and D)

3.2. Variance Components, Heritabilities, and Repeatabilities

The variance for each component, h?, and repeatability of the four traits are shown
in Table 3-1. The h? of the four traits ranged from 0.115 to 0.144. Given these
intermediate levels of h?, which are similar to h? found for SCS, the hypothesis
considering PNUE or PNL as traits that could be selected, can be defended (Montaldo
et al., 2010). Repeatability ranged between 0.395 and 0.550. It can be seen that the h?
and repeatability of PNUE and PNL increased slightly from the first to the later parity
and that values for PNUE tended to be higher than PNL. Because we are the first to
report the genetic parameters of PNUE and PNL, there is no directly comparable
literature. However, as there were studies that used ECPU for protein efficiency
(Hayes and Ageeb, 2002; Ariyarathne et al., 2019), so we compare them with our
results. Recently, Ariyarathne et al. (2019) estimated the average h? of ECPU to be
0.16, which was similar to our results (from 0.12 to 0.14), but their mean repeatability
tended to be lower (0.38 vs. 0.55).
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Table 3-1. Heritability (h?), repeatability, additive genetic variance (o%), across-parity
permanent environment (nongenetic cow) variance (o%), within parity permanent
environment (non-genetic cow x parity) variance (¢2,) (only for second and later lactations),
and residual variance (¢%) of the proxies for N use efficiency (%) and losses (expressed as
dekagram/day) in primiparous (n = 16,456) and multiparous (n = 29,707) Holstein cows

Trait? h? Repeatability 6% 0% 6% 6%
PNUE1 0.131 +0.019 0487 +0.011 3.42+052 9.31+0.55 NAZ? 13.39 £ 0.26
PNL1 0.115 +0.017 0.395+0.012 1.94+030 4.71+0.34 NA 10.17 £ 0.19

PNUE2+  0.144+0.015 0.550+0.007 4.82+052 180+053 11.72+043 15.02+0.23
PNL2+ 0.129+0.013 0.430+0.009 319+034 068+036 676033 14.12+0.20

PNUEL = predicted N use efficiency in first-parity Holstein cows; PNL1 = predicted N losses in first-
parity Holstein cows; PNUE2+ = predicted N use efficiency in second- to fifth-parity Holstein cows;
PNL2+ = predicted N losses in second- to fifth-parity Holstein cows.

2NA = not applicable.

A total of 504 bulls were used in the estimation of approximate genetic correlations.
Because Ireland and Belgium are currently importers of a lot of Holstein semen, many
important semen-exporting countries were present (e.g., the USA, Canada, Italy,
Germany, and France). In the Netherlands, many local bulls are traditionally used,
adding to the strong presence of bulls born in this country. The precise distributions,
according to the countries of origin and year of birth of the bulls, are shown in Table
3-2. Breeding values used in this study showed averages and SD for the reliability of
PNUEL, PNL1, PNUE2+, and PNL2+ that ranged from 0.47 to 0.52 and from 0.14 to
0.16. The averages and SD of reliability for EBV of all multiple-trait across-country
evaluation traits ranged from 0.75 to 0.96 and from 0.03 to 0.14, respectively.
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3.3. Genetic and Phenotype Correlations

As explained previously, even if NUE and NL are somewhat related, they do not
represent exactly the same biological background. Therefore, genetic and phenotypic
correlations between PNUE and PNL were computed, and the results are reported in
Table 3-3. As expected by their definition, PNUE and PNL showed negative
correlations between them. Inside the same trait group, the correlations were positive.
The genetic and phenotypic correlation ranged between —0.89 and 0.72, and —0.45
and 0.16, respectively. Additional features appeared. First correlations were, in
absolute values, stronger among different traits in the same parity groups. We found
that PNUE1 had the largest genetic negative correlation with PNL1 (—0.89) and the
lowest with PNL2+ (—0.53). Meanwhile, PNL2+ had the lowest negative phenotypic
correlation with PNUEI (—0.11) and the largest with PNUE2+ (—0.45). This supported
the hypothesis that first and later lactations are different traits. For both PNUE traits,
even with a very high genetic correlation of 0.68, the phenotypic correlation between
them was as low as 0.16. Similarly, for both PNL traits, the genetic correlation was
0.72, and the phenotypic correlation between them was as low as 0.13. Based on these
results, we cannot say that PNUE and PNL are genetically similar traits. Each one is
also slightly genetically different, comparing first and later lactations. Phenotypically,
large differences also appeared among all studied traits.

Table 3-3. Genetic correlations (above the diagonal) and phenotype correlations (below the
diagonal) among reported N use efficiency and loss traits in primiparous (n = 16,456) and
multiparous (n = 29,707) Holstein cows

Trait! PNUE1 PNL1 PNUE2+ PNL2+
PNUE1 -0.89 £ 0.04 0.68 £ 0.08 -0.53 £ 0.08
PNL1 -0.42 £ 0.01 -0.63 + 0.08 0.72 +0.07
PNUE2+ 0.16 +0.01 -0.13+£0.01 -0.79 £ 0.04
PNL2+ -0.11+0.01 0.13+0.01 -0.45+0.01

IPNUEL1 = predicted N use efficiency in first-parity Holstein cows; PNL1 = predicted N losses in first-
parity Holstein cows; PNUE2+ = predicted N use efficiency in second- to fifth-parity Holstein cows;
PNL2+ = predicted N losses in second- to fifth-parity Holstein cows.

3.4. Approximate Genetic Correlations

Results obtained so far indicate that the PNUE and PNL traits show potential for
genetic improvement; however, it is also necessary to assess how these novel traits
correlate to other traits already under selection in most Holstein populations. Table 3-
4 describes approximate genetic correlations between PNUE, PNL, and 30 traits of
interest using Blanchard's approach by EBV. Estimating genetic relationships among
traits under selection may reflect genetic trends for selected traits instead of real
genetic correlations. Therefore, to evaluate the suitability of this approximate
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approach, we calculated the approximate genetic correlations of milk yield with other
traits using the same approach (Table 3-4). Results showed that the approximate
genetic correlations between milk yield and other traits were similar to genetic
correlations found in other studies (Campos et al., 2015; Zhao et al., 2015). These
results supported our hypothesis that the use of Blanchard's approach in our context
can yield reasonable approximate correlations.

As shown in Table 3-4, the approximate genetic correlations of PNUE and yield
traits (milk, fat, and protein) ranged from 0.04 to 0.47. In particular, milk and protein
yields showed relevant positive correlations, indicating that their improvement may
have increased NUE in the past, as expressed by PNUE. Milk fat percentage showed
negative correlations (—0.19 and —0.14), and protein percentage nearly zero
correlations, indicating that the correlations between yields and PNUE might
essentially be due to the high correlations with milk yield. Results for PNL have to be
considered always bearing in mind that lower PNL values are associated with better
efficiency. When considering PNL, current selection favoring higher fat and protein
yields, as in the Walloon selection index VEG, would increase PNL and therefore
decrease N efficiency. Based on these results we can again argue that PNUE and PNL
seem to be genetically very different traits.
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As explained previously, efficiency traits may be in opposition to health and other
functional traits. As shown in Table 3-4, more favorable PNUE genetically decreased
other important traits such as udder health, female fertility, longevity, and calving ease
(direct and maternal). The effect on BCS was less clear. For most traits, the effects
were as expected because of their links to milk yield, except for the effects on
longevity and calving ease, which were clearly stronger than expected, indicating a
specific direct link. To clarify why such strong correlations were observed for calving
ease, approximate genetic correlations were computed between calving ease traits and
all other traits (detailed results not shown). A common rationale is that sires
transmitting bigger size also generate more direct calving difficulties. This was only
partially confirmed, as correlations between direct calving ease and body development
traits were only between —0.15 and —0.31. For maternal calving ease, except stature
(0.22), correlations were very close to zero. However, for direct calving ease
correlations with health and other functional traits were all positive and rather strong
between 0.28 for udder health and 0.53 for longevity. For maternal calving ease, the
corresponding correlations were all positive but lower. Except for BCS, with a
correlation that was very close to zero, the correlations ranged from 0.13 for udder
health to 0.27 for longevity. This finding might indicate that animals that are more
efficient are unfortunately less robust and show lower longevity. Findings also
indicate that all health and other functional traits are similarly affected, including
calving ease traits. The results for PNL were as expected, nearly equivalent to those
for PNUE except for BCS, where we observed a much stronger negative association
with N efficiency, expressed through PNL. This could indicate that selecting for direct
reduced N loss does not only affect N excreted to the environment but also leads to
less N available to maintain body condition, probably through reduced N intake. All
our results rather strongly support the hypothesis that feed efficiency traits, here N,
are in opposition to health and other functional traits.

For conformation traits, correlations were only reasonably high between udder traits,
or udder-related traits and PNUE. By comparing with the correlations between these
traits and milk yield, it appeared that, with a high likelihood, the observed correlations
are due to the strong links between milk yield and PNUE. It is difficult to interpret
other correlations, most being very small. Future studies could confirm some
indications, such as the negative effect on stature, which may be part of the reduction
in the availability of N for body growth (Figure 3-1). In addition, cattle with large
stature consume a lot of energy for maintenance. For PNL the results were rather
diverse, with a less strong association with udder traits. As expected by the results
from BCS, animals that were genetically more efficient for N, expressed through
lower PNL values, tended to be more angular.
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In short, increasing PNUE seems to have a favorable selection response for yield
traits, but not favorable ones for udder health, longevity, and reproduction. According
to the definition of PNL, lower PNL may be beneficial and reduce environmental
pollution. By correcting for the desired direction of selection (i.e., lower PNL values),
most traits (19 traits) showed the same trend in their genetic relationship with PNL as
with PNUE (Table 3-4). However, even if most correlations made perfect sense, the
biological links are not always clear. Moreover, we should not forget that we studied
here the proxies (PNUE and PNL) and not the underlying direct traits NUE and NL.
The same situation (i.e., working on proxies based on imperfect predictions and not
the direct traits) has appeared in many other studies (e.g., Zaalberg et al., 2020) that
estimated approximate genetic correlation between the MIR predicted trait and other
traits.

However, a feature of MIR-based predictions is that, when prediction equations with
improved prediction accuracy become available, we can easily recalculate improved
proxy phenotypes PNUE and PNL. Because we cannot expect direct NUE or NL to
become available on a large scale, we have to rely on the use of PNUE or PNL to
select cows. This means that NUE or NL could become part of the breeding goal that
contains the traits we want to improve. The traits PNUE or PNL would then be part
of the index traits. This situation is very similar to the current selection against mastitis:
the breeding goal trait is the incidence of mastitis, but the index trait is very often SCS.
Furthermore, this study showed several other directions where future research is
required. First, the well-known issue of using DMI versus residual feed intake
parallels our situation, where the components of NUE and NL are the N content of
DMI and the N content of protein yield, the difference between those (i.e., NL)
mirroring residual feed intake. All of these warrants additional research. Second, the
design of this study did not allow the investigation of the relationship between PNUE
(PNL) and other direct measures of N (e.g., milk urea nitrogen) that might be easier
to comprehend.

4. Conclusions

In summary, our study showed first estimates of genetic parameters for PNUE and
PNL traits and approximate genetic correlations between PNUE, PNL, and other traits
currently reported by Interbull. The estimated heritabilities of PNUE and PNL ranged
from 0.12 to 0.14, and the repeatabilities ranged from 0.40 to 0.55, respectively. These
results seem to suggest that selection of N efficiency-related traits is possible. Our
results also showed that N efficiency traits could impair health and other functional
traits when only NUE is selected. It should be noted that the data we studied were
only from the early lactation (the first 50 DIM). Finally, if validated for their link to
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N excretion, PNUE and PNL could also be used to aid N management in dairy farms
to improve farmer's profits as well as to reduce environmental pollution.
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Adapted from: Chen, Y., H. Atashi, C. Grelet, S. Vanderick, H., Hu, and N. Gengler.
2022. Defining a nitrogen efficiency index in Holstein cows and assessing its potential
impact on the breeding program of bulls. J. Dairy Sci. 105: 7575-7587.
https://doi.org/10.3168/jds.2021-21681.

Foreword

Genetic analyses of the traditional and novel proxies of NUE are shown in Chapters
2 and 3, respectively. However, the genetic correlations between milk urea
concentration (MU), predict nitrogen use efficiency (PNUE) and nitrogen losses (PNL)
are very low (shown in the 1.3 section of Chapter 7). In this Chapter, three NUE-
related features were integrated into the nitrogen efficiency index (NEI), which
considered both NUE and N pollution at the same time. Furthermore, the impacts of
adding NEI to the genetic selection program in the Walloon Region of Belgium were
explored.
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Abstract

The purposes of this study were to 1) explore the relationship between three milk
mid-infrared (MIR) predicted features including nitrogen (N) intake (NINT), milk true
protein N (MTPN), and milk urea N yield (MUNY); 2) integrate these three features
into an N efficiency index (NEI) and analyses approximate genetic correlations
between the NEI and 37 traits (indices) of interest; 3) assess the potential impact of
including the NEI into breeding programs of bulls. The edited data were 1,043,171
test-day records on 342,847 cows in 1,931 herds and 143,595 test-day records on
53,660 cows in 766 herds used for estimating breeding values (EBV) and variance
components, respectively. The used records were within 5 to 50 days in milk (DIM).
The records were grouped into primiparous and multiparous. The genetic parameters
for the included MIR features and EBV of the animals included in the pedigree were
estimated using a multiple-trait repeatability animal model. Then, the EBV of the
NINT, MTPN, MUNY were integrated into the NEI using a selection index assuming
weights based on the N partitioning. The approximate genetic correlations between
the NEI and 37 traits (indices) of interest were estimated using the EBV of the selected
bulls. The bulls born from 2011 to 2014 with NEI were selected and the NEI
distribution of these bulls having EBV for the eight selected traits (indices) was
checked. The heritability and repeatability estimated for NINT, MTPN, and MUNY
ranged from 0.09 to 0.13, and 0.37 to 0.65, respectively. The genetic and phenotypic
correlations between NINT, MTPN, and MUNY ranged from —0.31t0 0.87, and —0.02
to 0.42, respectively. The NEI ranged from —13.13 to 12.55 kg/d. In total, 736 bulls
with reliability > 0.50 for all included traits (NEI and 37 traits or indices) and at least
10 daughters distributed in at least 10 herds were selected to investigate genetic
aspects of the NEI. The NEI had positive genetic correlations with production yield
traits (0.08 to 0.46), and negative genetic correlations with the investigated functional
traits and indices (—0.71 to —0.07), except for the production economic index and
functional type economic index. The daughters of bulls with higher NEI had lower
NINT and MUNY, and higher MTPN. Furthermore, 26% of the bulls (n = 50) with
NEI born between 2011 to 2014 had higher NEI and global economic index than the
average in the selected bulls. Finally, the developed NEI has the advantage of large-
scale prediction and therefore has the potential for routine application in dairy cattle
breeding in the future.

Key words: N intake, genetic correlation, health, mid-infrared spectrum
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1. Introduction

The economic importance of genetic improvement for efficiency traits in cattle is
recognized by the world's cattle producers (Brito et al., 2020). Measuring and
improving efficiency is not only beneficial to the protection of the environment, but
also beneficial to the farm, can promote the sustainable economic development of
dairy production (Chen et al., 2021c), and strengthen its social acceptability. In the
process of studying efficiency, researchers put forward various indicators representing
dairy cow efficiency which can be defined very broadly. In the context of direct
efficiency of a given animal, efficiency is often linked to feeding efficiency (FE) that
can be divided further, i.e. into energy and nitrogen efficiency. Often FE is associated
with the energy (e.g., energy intake (El), energy balance (EB)) and an expression as
residual trait compared to expectations, e.g. residual feed intake (RFI), is used. Many
works for FE and energy have been done (McParland et al., 2015; Brito et al., 2020),
especially FE has started being used in the dairy cattle breeding system in some
countries (e.g., Australia, the US) (Pryce et al., 2014; Parker Gaddis et al., 2021).
However, there are relatively few studies on N use efficiency (NUE) of dairy cows,
except for those addressing milk urea concentration (MU) or milk urea nitrogen
(MUN) as implicit proxies (Bobbo et al., 2020; Chen et al., 2021b). To our knowledge,
only we have recently performed the genetic analyses of predicted NUE for dairy
cows in early lactation (Chen et al., 2021c). Moreover, the NUE by cattle is very low
(20% to 44%) and could be improved (Cantalapiedra-Hijar et al., 2018; Grelet et al.,
2020). For example, recently Spanghero and Kowalski (2021) conducted a meta-
analysis of 86 N balance experiments carried out in the past 20 years, and found that
the average NUE in cattle was 27% and more than half of the feed N is excreted
through urine and feces.
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Figure 4-1. A new N efficiency index was built based on EBV from N intake, milk true
protein N, and milk urea N yield.

As often for novel traits, the definition of NUE can be very different. Based on
Calsamiglia et al. (2010), Grelet et al. (2020) defined NUE as milk N divided by the
N intake (NINT). This definition has several shortcomings. First, from a mathematical
point of view changes in ratios are highly unpredictable as they can come from
changes in the denominator or the numerator. Moreover, as mentioned by Grelet et al.
(2020), this definition for NUE does not account for the actual N losses through urine
and feces, making it impossible to calculate the N balance. Consequently, early
lactation cows having limited intake capacities and producing high quantities of milk
may experience a negative N balance on top of the negative energy balance. Looking
only at N intake and milk N, the NUE would be artificially high. There is then a risk
of confusing artificially high NUE with negative N balance, and trying to improve
NUE may increase the difficulty induced by severe mobilization of body reserves.
Additionally, our previous study found that the genetic correlation between predicted
NUE and MU was close to 0 (Chen et al., 2021a). Based on the above reasons, we
aimed to build a new N efficiency index (NEI) considering the NUE and N losses at
the same time to avoid these shortcomings (Figure 4-1). The NEI and its composition
both differ from the predicted NUE trait of our previous study. The MUN yield
(MUNY) is linearly proportional to the urinary urea-N excretion when defined as a
guantity excreted (Wisconsin Alumni Research Foundation, 2015). So the NEI index
can be built based on NINT, milk true protein N (MTPN), and MUNY. Among these
three features, the MTPN and MUNY can be easily measured using traits that are
currently recorded as explained later. However, the NINT is a feature that is difficult
and expensive to measure in routine. The composition of milk is affected by the
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animal diet, and milk mid-infrared (MIR) spectra can reflect the changes in milk
composition, which suggests that MIR can indirectly reflect the composition of the
diet. (Klaffenbock et al., 2017). Grelet et al. (2020) developed a NINT prediction
equation for dairy cows based on milk MIR spectra which have been already applied
to the Walloon Region of Belgium dataset (Chen et al., 2021a). The MIR spectra is an
inexpensive method for predicting features, and it has been applied to predict various
traits in dairy cows (Grelet et al., 2021). At the same time, if a new trait (or index) is
added to the breeding program, it is necessary to know its potential effects on other
traits included in the selection index and proxies of NUE (e.g., MU).

The purposes of this research were to 1) estimate the genetic parameters and EBV
of NINT, MTPN, and MUNY; 2) integrate these three features into an NEI based on
the selection index and investigate the approximate genetic correlations between the
NEI and 37 traits (indices) of interest based on EBV of selected bulls; and 3) assess
the potential impact of including the NEI into breeding programs of bulls.

2. Materials and methods

2.1. Data

All data were collected from 2001 to 2019 as the official milk recording in the
Walloon Region of Belgium. The milk samples were analyzed by mid-infrared
spectrometry (commercial instruments from FOSS) to assess milk compositions
(among which MU) and generate MIR spectra. Daily milk yield (MY), protein
percentage (PP), and MU were restricted to the range of 1 to 90 kg, 1 to 7%, and 2 to
70 mg/dL, respectively. The filtering procedure used for NINT was the same as that
explained by Chen et al. (2021c). In brief, two criteria are considered in the filtering
procedure: 1) the standardized Mahalanobis distance between the new predicted
spectrum and the calibration dataset is < 3; 2) the predicted value of NINT is within
the range of 3 standard deviations (SD) of the mean. The formulas used to compute
MTPN = [(MY x PP/ 6.38) — MUNY]; and MUNY = [(MU / 2.14) x MY] (WHO
and FAO, 2011) allowed to transform the concentration to yield. Furthermore, the
range of days in milk (DIM) was restricted between 5 and 50, lactation number was
restricted between first and five, and calving age was restricted between 22 to 39, 34
to 53, 47 to 68, 59 to 83, and 71 to 98 months for the first to fifth parity, respectively.
At least two of the three included features had to be available. Finally, 1,043,171 test-
day records on 342,847 cows in 1,931 herds collected between 2001 and 2019
remained. The pedigree related to the dataset comprised 504,333 animals (17,573
males). Besides, each feature was divided into primiparous (n = 404,312) and
multiparous (n = 638,859) (including second to fifth parity) classes. Hereafter, the
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features for NINT, MTPN, and MUNY are identified as NINT1, MTPN1, MUNY1
for primiparous cows, and NINT2+, MTPN2+, and MUNY 2+ for multiparous cows.

Milk MIR spectra of 53,660 cows in 776 herds were used leading to 143,595 NINT
records. All milk MIR spectra were standardized according to Grelet et al. (2015). The
NINTSs of each cow were predicted by the equation developed based on the models
established by Grelet et al. (2020) using milk MIR spectra, MY, and parity as
additional predictors, through support vector machine regression. The determination
coefficient (R?) and root mean square error (RMSE) of validation of the NINT model
were 0.71 and 0.07 kg/d, respectively.

2.2. (Co)variance Components and Genetic Parameters

In total, 143,595 records (NINT1, MTPN1, MUNY1, NINT2+, MTPN2+, and
MUNY2+) on 53,660 cows were used to estimate (co)variance components. The used
pedigree included 132,056 animals (7,340 males). A six-trait (six traits including three
features in two parity classes) repeatability animal model was used to estimate the
(co)variance components. The used model was based on that presented by Chen et al.
(2021c) to a different set of six traits:

y =Hh+Xb+Qq+W1lc+W2p+Za+e [1]

where y was a vector of NINT1, MTPN1, MUNY1, NINT2+, MTPN2+, and
MUNY2+. In each trait, all effects in this model were the same as Chen et al. (2021c).
In brief, h was a vector of fixed effect of Herd-Year-Season of calving; b was a vector
of fixed regression coefficients for standardization DIM and its quadratic; g was a
vector of fixed regression coefficients of the standardization age of calving, defined
as a constant, linear and quadratic regression defined inside parities (from first to fifth
parity); ¢ was a vector of non-genetic cow random effect; p was a vector of non-
genetic cow x parity random effect, this effect was only modeled for NINT2+,
MTPN2+, and MUNY 2+, as they allowed to distinguish records for the same cow but
occurring during different parities (from second to fifth parity); a was a vector of the
random additive genetic effect; e was a vector of random residual effect. In addition,
H, X, Q, W1, W2, and Z were incidence matrices assigning observations to effects.

The expected values and variances in Equation [1] were defined similarly to Chen
et al. (2021c) but applied to a different set of six traits. The matrices of V(c) and V(a)
both contained a block of 6 x 6 (co)variance matrices. For V(e), the diagonal and off-
diagonal elements of the matrix were non-zero and zero, respectively. For V(p) the
elementary (co)variance matrix was reduced to a 3 x 3 matrix, because only the
(co)variances associated with NINT2+, MTPN2+, and MUNY 2+ were present.

All computations were performed in the BLUPF90 programs (Misztal et al., 2018).
The (co)variance components for NINT, MTPN, and MUNY were estimated by Gibbs
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sampling in THRGIBBS1F90 (version 2.118) through Equation [1], and posterior
convergence was analyzed by POSTGIBBSF90 (version 3.14). Among them, the
posterior means of (co)variances, heritabilities (h?), repeatability (REP), genetic and
phenotypic correlations were obtained using 40,000 samples, which is from a single
chain of 220,000 after a burn-in of 20,000, and 1 in every 5 samples was saved. The
formulas used to calculate the later four parameters were the same as those used by
Chen et al. (2021c). Approximate standard errors (SE) of all calculated parameters
were obtained using the POSTGIBBSF90 (version 3.14) program.

2.3. Estimated Breeding Value

A total of 1,043,171 records were used to estimate EBV for the included six traits
based on the estimated (co)variance components. The EBVs of the included traits
were estimated according to a precondition conjugate algorithm implemented in the
BLUP90IOD2 (version 3.81, http://nce.ads.uga.edu/wiki/doku.php?id=readme.pcg2)
program using Equation [1]. Multi-trait reliability (REL) of EBV could not be
calculated directly for the six included traits, therefore we divided the six included
traits into two-trait models (all effects were the same as Equation [1]) according to
NINT, MTPN, and MUNY. This allows calculating the REL of EBV separately by
direct inversion of the coefficient matrix for the NINT, MTPN, and MUNY. The two-
trait models were then solved using the BLUPF90 (version 1.70) program to extract
diagonal elements of the inverted coefficient matrix allowing to compute REL in this
way hereafter called RELs. From this point, selection index theory was used based on
a strategy proposed by VanRaden et al. (2018) to calculate REL. First, we restore the
six-trait REL as RELw, the RELm assuming that the six-trait solutions could have been
obtained as index traits combing the two-trait solutions. Needed regression
coefficients were calculated using selection index theory:

B=GG"1
where G was the full 6 x 6 matrix of the estimated genetic (co)variance of the
explained six-trait model, G* was equal to the G excluding the covariances between
NINT, MTPN, and MUNY that were put to zero, and B was a 6 x 6 matrix of
regression coefficients. Reliabilities of the six solutions were computed as the ratios
between explained variances and total or maximum variances. Maximum
(co)variances of six-trait solutions were computed as follows:

Vy = BGB’

In the next step, for each animal i, the matrix R; was obtained by multiplying each
element of B by the square root of the relevant element of RELs for this animal. This
allowed us to compute the (co)variances explained for this specific animal:

Vs; = R;GR;’
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Finally, only the variance ratios being relevant the following formula was used to
obtain RELw for animal i.
RELy; = diag(Vs;)diag(Vy)™"

2.4. Nitrogen Efficiency Index

The NEI was calculated as follows:
NEI = a'u
where u was a vector of EBVs for the six included traits (NINT1, MTPN1, MUNY1,
NINT2+, MTPN2+, and MUNY2+), and a was a vector of relative weights. Selection
index theory for desired selection response was used to obtain the a coefficients by
computing a = Gc_lrorg, where G¢ was the 6 x 6 matrix of the genetic correlations
for the six included traits, and r,.g Was the selection response vector of the six
included traits. We assumed that the selection responses (r) for NINT, MTPN, and
MUNY were 0, 1, -1 (r = [0 1 —1]’), respectively, which means keeping NINT
unchanged, increasing MTPN, but decreasing MUNY. All traits were expressed in the
same unit (kg/d); therefore, selection responses were defined in the original scale. As
the r was defined for the three combined features across the 2 parity classes, a

transformation matrix T was needed to convert G¢ to G-
05 0 0 05 0 O
T=]0 05 0 0 05 0
0 0 05 0 0 05

GCt = TGC T
a; = rGg!
a=aT
The REL of NEI was calculated using the method given by VVanRaden et al. (2018):
wGew'
RELyg = Tca'

where RELyg; was the REL of NEI, w was obtained by multiplying the elements of a
by the square root of RELy, for the EBV of the six traits.
When we define P as the 6 x 6 matrix of the summed (co)variances for the six

traits, h¥g; was the h? of NEI can be computed as:
aGa’

!

hig =
NEI aPa

where a and G were explained previously.
2.5. Approximate Genetic Correlations

The approximate genetic correlations between the NEI and 37 traits (indices) of
interest were estimated using the procedure proposed by Blanchard et al. (1983) based
on the EBV of selected bulls. Those bulls that had NEI and had at least 10 daughters
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distributed in at least 10 herds, and their reliability of EBV for the NEI and 37 traits
(indices) was at least 0.50, were selected. The SE of the estimated approximate genetic
correlations was estimated using 1,000 bootstrapped replicates (Chen et al., 2021c).
At the same time, the selected bulls were used to perform the same computation for
the six traits included in the NEI; however, the reliability of the EBV of these six traits
was required to be greater than 0.30 (Chen et al., 2021c).

In this study, we used EBV and its REL of 36 traits or indices (except for the MU)
obtained by the national genetic evaluation system of dairy cows in the Walloon
Region of Belgium in April 2021 (published in
https://www.elinfo.be/telechargerEN.html). The model and algorithm used for
calculating EBV of the 36 traits (indices) of interest can be found in documents
(Belgium) submitted to INTERBULL (https://interbull.org/ib/geforms) or reported by
Vanderick et al. (2020). The EBV of MU and its REL were reported by Chen et al.
(2021b), and we used the average daily EBV of the first three parities, which was
expressed on a standardized scale with a mean of 100 and an SD of 10.

The 37 traits (indices) of interest were as follows: MU, MY, fat yield (FY), protein
yield (PY), fat percentage (FP), PP, udder health (UH, which represents the opposite
somatic cell score), longevity (LONG), female fertility (FF), direct calving ease
(DCE), maternal calving ease (MCE), production economic index, member economic
index, capacity economic index, udder economic index, functional type economic
index, functional economic index, global economic index, stature, chest width, body
depth, rump angle, rump width, foot angle, rear leg set, rear leg rear view, udder depth,
udder support, fore udder, front teat placement, teat length, rear udder height, rear teat
placement, angularity, overall feet and leg score, overall udder score, and overall
conformation score (OCS). The definitions of all indices and their proportions to the
V€G have been explained by Vanderick et al. (2020).

2.6. Potential Impact of the Selected NEI in Bull

Two different approaches (phenotypes and genetic values) were taken to check the
potential impact and possibility of selecting NUE in Bull.

In the first approach, we checked the phenotypes of cows. Based on EBV computed
in the previous section, bulls with bottom 5% and top 5% NEI values were selected.
Based on the newly selected bulls, their daughters were screened. The means and SD
for the traits (MY, PP, MU, NINT, MTPN, MUNY) of these daughters were obtained
by groups of bulls. The t-test was used to detect differences between the 2 groups for
these 6 traits.

In the second approach, we showed the distribution between NEI and 8 traits or
indices in bulls. Bulls born from 2011 to 2014 with reliability >0.50 for 8 selected
traits or indices (MU, MY, PY, UH, and member, udder, functional, or global
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economic indices) from 37 traits (indices) and at least 10 daughters distributed in at
least 10 herds were selected. The distribution between the NEI of the selected bulls
and the new 8 selected traits (indices) was investigated. The paired trait distribution
map was divided into 4 regions based on the average value of the traits (indices) of
the selected bulls. The bulls that fall into the upper right corner are considered to be
better bulls, except for MU (needed in the bottom right).

To make the NEI comparable to the selected traits (indices), NEI was standardized
as follows:
NEI; — Meanygs

SD2015

where NEI;s and NEI; were, respectively, the standardized and not-standardized NEI
of i individual, Mean, ;5 and SD, ;5 Were the average and SD of NEI from the cows
born in 2015 (n = 17,597), respectively. Then, the NEI;; was expressed on a
standardized scale with a mean of 100 and an SD of 10, which is the same as the
LONG and other included functional traits (Vanderick et al., 2020). Additional data
preparation and processing were done using R (R Core Team, 2021).

NEI, =

3. Results and discussion

3.1. Descriptive Statistics

The descriptive statistics of the traits involved in this study are presented in Table
4-1. The average, SD, and coefficient of variation (CV) of the included six traits in
the primiparous were lower than those in the multiparous cows (parity2+), except for
the CV of NINT. The MUNY has the largest CV in primiparous and multiparous. The
average of MTPN (0.13 kg/d) is about one-third of NINT (0.42 kg/d), which indicates
that the NUE of the animals included in this research is about 33%. This value is
within the range of 20% to 44% reported by Cantalapiedra-Hijar et al. (2018) and
Grelet et al. (2020).
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Table 4-1. Mean, SD, and CV of related features in genetic evaluation and (co)variance
component estimation data sets

MY? PP MU NINT  MTPN MUNY

H 1
Parity class (kg/d) (%) (mg/dL)  (kg/d)  (kg/d) (kg/d x 1000)

Genetic evaluation dataset (total n = 1,043,171)
1 (n=404,312)

Mean 25.46 3.14 22.92 ° 0.12 2.73
SD3 5.72 0.33 8.42 / 0.03 1.17
CVv* 22.49  10.40 36.75 / 22.68 43.05
2+ (n = 638,859)
Mean 33.37 3.23 22.84 / 0.16 3.57
SD 8.11 0.39 8.85 / 0.04 1.63
cv 2430 12.14 38.74 / 23.81 45.82
(Co)variance component estimation dataset (total n = 143,595)
1(n=44,321)
Mean 26.60 3.15 23.40 0.42 0.13 2.92
SD 5.43 0.31 7.21 0.06 0.03 1.08
cVv 20.41 9.75 30.81 14.84 20.31 36.99
2+ (n=99,274)
Mean 35.50 3.20 22.30 0.49 0.17 3.73
SD 7.80 0.36 7.87 0.07 0.04 1.57
CcVv 2197 11.19 35.29 14.27 21.74 42.09

Parity class: the parities (from 1 to 5) were divided into 2 classes based on primiparous (class 1) and
multiparous (class 2+).

2MY - Milk Yield; PP - Protein percentage; MU - Milk urea concentration; NINT - N intake; MTPN -
Milk true protein N; MUNY — Milk urea N yield
33D: standard deviation

4CV: coefficient of variation

5 NINT has 143,595 records

3.2. Genetic Parameter for Six Traits

The variance components, h?, and REP estimated for NINT1, MTPN1, MUNY1,
NINT2+, MTPN2+, and MUNY 2+ are presented in Table 4-2. The h? and REP of the

six included traits ranged from 0.09 to 0.13 and 0.37 to 0.65, respectively. The genetic

variances of the six included traits explained 12.30%, 10.52%, 12.95%, 11.21%,
11.48%, and 9.22% of the corresponding total variances. For the six traits examined,
as far as we know, this is the first report on their h? and rep. We compared the genetic
parameters of these traits with those used for the efficiency of different nutrition
factors. Compared with MUNY, the MU(N) has higher h? and REP (Bobbo et al.,
2020; Chen et al., 2021b). The NINT is similar to El (energy efficiency) and DMI
(FE). McParland et al. (2015) showed that h? and rep of El predicted by MIR
spectroscopy were 0.20 and 0.33, respectively. Li et al. (2016) reported that h? and

REP of DMI in the first four weeks of lactation in Holstein cows were 0.26 and 0.68,
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respectively. The estimated h? of NINT was lower than that reported for El and DMI,
but the REP was somewhere in between.

Table 4-2. Heritability (h?), repeatability, additive genetic variance (¢%), across-parity
permanent environment (non-genetic cow) variance (%), within parity permanent
environment (non-genetic cow X parity) variance (¢2,) (only for second and later lactations),
and residual variance (0%) of the proxies for predicted N intake (NINT, expressed as 100
g/day), milk true protein nitrogen (MTPN, expressed as 100 g/day), and yield of milk urea N
(MUNY, g/day) in primiparous (n = 44,321) and multiparous (n = 99,274) Holstein cows

Trait! W Repeatability 0% 0% o’ 0%

NINT1 0.12+0.01 037+001 0.03+0.00? 0.06+0.00 NA3 0.14 £ 0.00
MTPN1  0.11+0.01 0.60+0.00 0.01+0.00 0.02+0.00 NA 0.02 £ 0.00
MUNY1 013+0.01 041+0.01 010+001 0.21+0.01 NA 0.45+0.01

NINT2+ 0.11+0.01 045+0.00 0.04+0.00 003+0.00 0.08+0.00 0.18+0.00
MTPN2+ 0.11+0.01 065+0.00 0.01+0.00 0.01+0.00 0.04+0.00 0.03+0.00
MUNY2+ 0.09+0.01 042+0.00 0.15+0.01 0.13+0.01 041+0.01 0.93+0.01

Trait: NINT1 - N intake in primiparous cows; MTPN1 — Milk true protein N in primiparous cows;
MUNY1 - Milk urea N yield in primiparous cows; NINT2+ - N intake in multiparous cows; MTPN2+ -
Milk true protein N in multiparous cows; MUNY2+ - Milk urea N yield in multiparous cows

2: Standard error is less than 0.005

3NA: not applicable

Genetic and phenotypic correlations among the six included traits are presented in
Table 4-3. As expected, the same feature has high genetic correlations between
primiparous and multiparous (0.82 to 0.89). There were negative genetic correlations
between NINT and MUNY (—0.31 to —0.16), and moderate positive genetic
correlations were found between NINT and MTPN (0.40 to 0.51). The MTPN and
MUNY showed moderate positive genetic correlations (0.37 to 0.54). However, the
phenotypic correlations found between different features in the same parity class were
relatively strong compared to those found for the same features between parity classes.
The phenotypic correlations between NINT and MTPN in the primiparous and
multiparous classes were, respectively, 0.34 and 0.42, indicating that genetic and
phenotype correlations between NINT and MTPN are high. The phenotypic
correlation estimated between MTPN and MUNY in the primiparous and multiparous
were 0.38 and 0.41, respectively. The phenotypic correlations estimated between the
remaining trait pairs were relatively low (-0.02 to 0.20).
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Table 4-3. Genetic correlations (above the diagonal) and phenotypic correlations (below the
diagonal) among reported N-related traits in primiparous (n = 44,321) and multiparous (n =
99,274) Holstein cows

Trait’ NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+

NINT1 048+004 -031+0.06 0.89+003 040+0.05 -025+0.05
MTPN1 0.34 + 0.002 0.54+005 051005 0.82+0.03 0.46+0.05
MUNY1 0.06 £ 0.01 0.38+0.00 -0.16+0.06 0.37+0.05 0.87+0.02
NINT2+ 0.17+0.01 0.13+0.01 0.01+0.01 0.49+0.03 -0.19+0.05
MTPN2+ 0.11+£0.01 0.20%£0.01 0.11+£0.01 042+0.00 0.50 +0.04

MUNY2+ -0.02+0.01 0.09+001 0.15%£0.01 0.14+£0.00 0.41+0.00

Trait: NINT1 - N intake in primiparous cows; MTPN1 — Milk true protein N in primiparous cows;
MUNY1 - Milk urea nitrogen yield in primiparous cows; NINT2+ - N intake in multiparous cows;
MTPN2+ - Milk true protein N in multiparous cows; MUNY2+ - Milk urea nitrogen yield in
multiparous cows

2: Standard error is less than 0.005

3.3. Nitrogen Efficiency Index

The h? of NEI is low (0.06), which is similar to that estimated for the predicted NUE
(Chen et al., 2021c). It has been reported that h2 for RFI, as an indicator of FE, in the
first 60 DIM was 0.10 (Jamrozik et al., 2020) and that reported for from 50 to 250
DIM was 0.14 (Li et al., 2020). It has been shown that h? of RFI varied in different
herds and countries (Tempelman et al., 2015). The NEI and its REL ranged from —
13.13 to 12.55 kg/d, and 0.00 to 0.95. The mean REL of NEI of all animals included
in the pedigree was 0.21 (SD = 0.11), which is similar to the REL of EBV of animals
with RFI phenotype (Li et al., 2020). Li et al. (2020) evaluated the average REL of
EBV for RFI for animals with genotypes and without phenotypes was only 0.13 (n =
1.6 million).

Although NEI has a low average REL, repeated predictions can be done cheaply. In
this way, the REL of the NEI for bulls having more daughters can be increased. For
example, the average REL of NEI for selected bulls in this study (n = 736) used for
estimating the approximate genetic correlation was 0.68 (Figure 4-2).
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Figure 4-2. Distribution of reliability for bulls (n = 736) in nitrogen efficiency index (NEI),
milk urea concentration (MU), production (PROD), udder health (UH), longevity (LONG),
female fertility (FF), direct calving ease (DCE), maternal calving ease (MCE), production
economic index (V€L), member economic index(VEM), capacity economic index (VEC),
udder economic index (VEP), functional type economic index (VET), functional economic
index (V€F), global economic index (VEG) ), stature (STA), chest width (CWI), body depth
(BDE), rump angle (RAN), rump width (RW1), foot angle (FAN), rear leg set (RLS), rear leg
rear view (RLR), udder depth (UDE), udder support (USU), fore udder (FUD), front teat
placement (FTP), teat length (TLE), rear udder height (RUH), rear teat placement (RTP),
angularity (ANG), overall feet and leg score (OFL), overall udder score (OUS), and overall
conformation score (OCS). (Note: production includes milk yield, fat yield, protein yield, fat
percentage, protein percentage)

3.4. Approximate Genetic Correlations between the NEI and 37
Traits (indices) of interest

In total, 736 bulls with REL > 0.50 for NEI and 37 traits (indices) of interest and at
least 10 daughters distributed in at least 10 herds were selected for estimating the
approximate genetic correlations between the NEI and the examined traits of interest.
The distribution of the REL of the examined traits (indices) for the selected bulls is
presented in Figure 4-2 and Table 4-1S (appendix). The average RELs of all traits
(indices) in the selected bulls were greater than 0.63, which guaranteed the reliability
of our subsequent results. The countries of origin of the most bulls were the US (235),
Canada (130), and the Netherlands (123).

The estimated approximate genetic correlations between NEI and the included traits
(indices) are shown in Figure 4-3, and will be referred to as genetic correlations in the
latter part of this article. As expected, the NEI and MU had a strong negative genetic
correlation. This shows that increased NEI is associated with increased NUE and
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decreased N pollution. Positive genetic correlations were observed between NEI and
yield traits (MY, FY, and PY), ranging from 0.08 to 0.46. The genetic correlation
between NEI and FP was negative, but that found between NEI and PP was positive.
This shows that an increased NEI is associated with increased production of N (MY,
and PY), a decreased FP, and an increased PP. This finding is consistent with the
genetic relationships reported between predicted NUE and production by Chen et al
(2021c). This shows that in the current breeding system in the Walloon Region of
Belgium, increasing production traits will increase the NUE of cattle when other traits
are not considered. The former studies also proved that cows with a higher FE had a
higher milk production (Vallimont et al., 2011; Kock et al., 2018).

Unfavorable genetic correlations were observed between NEI and UH (-0.27). The
predicted NUE and UH were reported to have a negative genetic correlation (Chen et
al., 2021c). This means that efficiency traits and UH are negatively genetically
correlated. Increased NEI led to increased milk production, subsequently increased
the intensity of udder use, and reduced its health. The NEI had negative genetic
correlations with LONG (-0.21) and FF (-0.24). The previous study found that cows
with a higher FE had a longer day open (support our results) and a longer production
life (different from our results) (Vallimont et al., 2013). Unfavorable genetic
correlations were found between the NEI and calving ease traits (DCE, MCE). One
explanation is that NEI and yield traits (MY, FY, and PY) were positively genetically
correlated, but yield traits were negatively correlated with DCE.

78



Chapter 4: Nitrogen efficiency index and its genetic analysis

0.46

Trait or Index
(7]
=
>
o
N
b

RLS- -0.09

0OCS- -0.02————
-0.75 -0.50 -0.25 0.00 0.25 0.50
Approximate genetic correlation

Figure 4-3. Approximate genetic correlations between nitrogen efficiency index (NEI) and
other traits based on EBV of selected bulls (n = 736). Other traits included milk urea
concentration (MU), milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP),
protein percentage (PP), udder health (UH), longevity (LONG), female fertility (FF), direct
calving ease (DCE), maternal calving ease (MCE), production economic index (VEL),
member economic index(VEM), capacity economic index (VEC), udder economic index
(VEP), functional type economic index(V€T), functional economic index (VEF), global
economic index (VE€G), stature (STA), chest width (CWI), body depth (BDE), rump angle
(RAN), rump width (RW1), foot angle (FAN), rear leg set (RLS), rear leg rear view (RLR),
udder depth (UDE), udder support (USU), fore udder (FUD), front teat placement (FTP), teat
length (TLE), rear udder height (RUH), rear teat placement (RTP), angularity (ANG), overall
feet and leg score (OFL), overall udder score (OUS), and overall conformation score (OCS).
(Note: black line is the estimated standard error obtained using the bootstrapped replicates
method, and all standard errors of approximate genetic correlation < 0.05)

The genetic correlation found between NEI and production economic index (index
combined of MY, FY, PY, FP, and PP) was close to zero. Unfavorable genetic
correlation was observed between the NEI and member economic index (-0.30,
representing leg and hoof health). Kock et al. (2018) reported positive genetic
correlations between FE (ECM / DMI), energy efficiency (energy in milk/energy
intake), and the incidence of lameness, which is consistent with the findings of this
study. Genetic correlation found between NEI and capacity economic index
(representing body size) was low (-0.05). An unfavorable genetic correlation was
observed between the NEI and udder economic index (-0.34, representing the udder
health), the reason for this correlation is the same as we suggested for UH. The
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functional type economic index is a combination of member economic, capacity
economic, and udder economic indices. But surprisingly, the genetic correlation
estimated between NEI and type economic index was close to zero (0.01). The genetic
correlation between NEI and functional economic index was negative, probably
because functional economic index is a combination of UH, LONG, FF, DCE, and
MCE. The global economic index is a combination of 48% production economic
index, 28% functional economic index, and 24% functional type economic index.
Therefore, the NEI has a negative genetic correlation with global economic index.
This means that the current in the Walloon Region of Belgium used global economic
index will not lead to a favorable correlated response of NUE.

The genetic correlations estimated between the NEI and the conformation traits
ranged from —0.41 to 0.23, which also showed a mutually confirming relationship
with the above results. Like the UH results, negative genetic correlations were found
between NEI and rear udder height and overall udder score, suggesting that increased
NEI is not conducive to improving udder health. The NEI and angularity were
negatively genetically correlated. This result shows that NEI can cause cows to
become fat, which is also consistent with the finding that NEI is not beneficial to the
FF. The estimated positive genetic correlation between NEI and stature (0.23)
combined with the above results suggests that cows with a higher NUE may have
become taller and fatter. The NEI, rump angle, and rump width were negatively
genetically correlated, which was conducive to the relationships between NEI, FF,
and LONG of cattle. However, the genetic correlation found between NEI and OCS
was close to zero (-0.02), indicating that the increasing NEI would not affect
conformation traits.

The genetic correlations between six traits used in the NEI composition and 37 traits
(indices) are shown in Figure 4-1S to Figure 4-3S (appendix). The NINT had negative
genetic correlations with MU, positive genetic correlations with production traits,
functional traits, and global economic index, and its genetic correlations with OCS
were close to zero. The genetic correlations of MTPN with MU were approximately
0, with production traits (except FP), functional traits (except UH and FF) and global
economic index were positive, with OCS were negative. The MUNY had positive
genetic correlations with MU, production traits (except FP and PP), functional traits
(except FF), VEG, and OCS.

In summary, NEI is genetically positively correlated to production traits but
negatively correlated to the health, function, indices (except production economic and
functional type economic indices), and most conformation traits, consistent with our
previous study of the predicted NUE (Chen et al., 2021c¢).
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3.5. Potential Impact of the Selected NEI in Bull

The bottom-5% and top-5% NEI bull groups each had 37 bulls. The mean and SD
for six traits (MY, PP, MU, NINT, MTPN, MUNY) of their daughters were shown in
Table 4-4. The six traits of daughters were significantly different in the two bull
groups (all P < 0.01). Compared to the bottom-5% bull group, the NINT and MUNY
were lower, and MTPN was higher in the top-5% bull group. We got the same result
even after correcting for the herd, test year, and parity effects of the six features. The
results show that if we choose bulls with high NEI, their daughters may have the above
characteristics.

Table 4-4. Mean and standard deviation (SD) of traits* for the daughters with bottom-5%
and top-5% of nitrogen efficiency index sires

Group? MY PP MU NINT MTPN 'E/Ii'(::]J/l(;lI
(kg/d) (%) (mg/dL) (kg/d) (kg/d) 1000)
Bottom-5% (n = 30,818)°
Mean 3130 3.18 24.20 0.48* 0.15 3.55
SD 821 0.36 8.60 0.08 0.04 1.59
Top-5% (n = 43,322)
Mean 3150 324 21.70 0.46 0.16 3.18
SD 8.45 0.37 8.12 0.08 0.04 1.48

IMY - Milk Yield; PP - Protein percentage; MU - Milk urea concentration; NINT - N intake; MTPN -
Milk true protein N; MUNY — Milk urea N yield

2Group: P-value < 0.01 of the t-test between the two groups for all traits

3 The 30,818 records in the bottom-5% group from 9,455 cows, and 43,322 records in the top-5% group
from 13,506 cows

4 The 7,059 records for NINT in the bottom-5% group from 2,633 cows, and 13,389 records in the top-
5% group from 4,683 cows

Distributions between NEI of the selected bulls (n = 50) born from 2011 to 2014
and EBV of the eight selected traits (indices) are presented in Figure 4-4. Because the
NEI has positive genetic correlations with MY and PY, we can easily find bulls with
good NEI, MY, and PY at the same time (such as bull No. 45). NEI has negative
genetic correlations with the remaining six traits (indices), so a small number of bulls
fell in the upper right corner of the distribution map (better bulls). The good news is
that a small number of bulls can have better EBV for most of the traits, including NEI,
at the same time (such as Bull No. 15). Overall, 26% of 50 bulls had both higher NEI
and VEG. This shows that using the NEI in genetic selection is feasible.
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Figure 4-4. Distribution between standardized nitrogen efficiency index (NEI) of bulls (n =
50) born from 2011 to 2014 and EBV of other 8 selected traits or index (VEM - member
economic index, VEP - udder economic index, VEF - functional economic index, VEG -
global economic index) (PS: the dotted line represents the mean of the selection group)

The NEI defined in this study may need further optimization. Although we
considered NINT, MTPN, and MUN (instead of urine and feces N), the N
consumption for maintenance of body metabolism was not included, and the MUNY
is only an indicator of nitrogen losses, with limited accuracy. Therefore, in further
steps we plan to add live weight or body condition score to the existing NEI to improve
it. The data of this study is based only on the first 50 DIM (limit from predicted NINT
mode), which should be extended to the whole lactation. Currently, we only can use
MU as an indicator for the whole lactation to indirectly increase the NUE and directly
decrease the N pollution (Chen et al., 2021b). However, we should note that the
genetic correlation between predicted NUE and MU was very low (Chen et al., 2021a)
maybe because they are working in different processes of the NUE (Figure 4-1). The
advantage of NEI is that it can consider both NUE and N pollution at the same time,
and the genetic correlation was —0.71 between NEI and MU. In addition, dairy cows
in early lactation are in a state of negative energy balance. Because the utilization of
N by dairy cows is deeply dependent on energy availability, the genetic relationship
between NEI and the energy status of dairy cows still needs to be explored.

4. Conclusions

The findings of this study showed low h? for traits of NINT, MTPN, and MUNY,
ranging from 0.09 to 0.13. The genetic correlations found among NINT, MTPN, and
MUNY were positive, except for that found between NINT and MUNY. The NEI
defined based on NINT, MTPN and MUNY has a low h? (0.06) and moderate REL
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(mean 0.21), but according to the range of NEI values (-13.13 to 12.55 kg/d), it has
genetic selection potential. The NEI showed positive genetic correlations with
production traits (e.g., MY, PY), ranging from 0.08 to 0.46. The genetic correlations
estimated between the NEI and MU, UH, LONG, FF, calving ease (DCE, MCE), and
global economic index were negative, ranging from —071 to —0.07. Compared to the
bottom-5% bull group, the NINT and MUNY were lower, and MTPN was higher in
the top-5% bull group. The analyses of the selected bulls born from 2011 to 2014
showed that the bulls can have both higher NEI and global economic index than
average at the same time. Finally, the developed NEI has the advantage of large-scale
prediction and therefore has the potential to be routinely used in dairy cattle breeding
in the future.
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7. Appendix

Table 4-1S. Reliability for bulls (n = 736) for the N intake in primiparous (NINTZ1), milk
true protein N in primiparous (MTPNZ1), milk urea nitrogen yield in primiparous (MUNY1),
N intake in multiparous (NINT2+), milk true protein N in multiparous (MTPN2+), and milk

urea nitrogen yield in multiparous (MUNY2+)

Reliability NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+
Minimum 0.38 0.57 0.60 0.37 0.49 0.54
Maximum 0.94 0.98 0.99 0.96 0.99 0.99
Mean 0.63 0.82 0.85 0.67 0.84 0.84
Standard deviation 0.14 0.10 0.09 0.14 0.11 0.10
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Figure 4-1S. Approximate genetic correlation between nitrogen intake (NINT) and other
traits based on the EBV of selected bulls (n = 736) in primiparous (A, NINT1) and
multiparous (B, NINT2+). Other traits included were milk urea concentration (MU), milk
yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP), protein percentage (PP),
udder health (UH), longevity (LONG), female fertility (FF), direct calving ease (DCE),
maternal calving ease (MCE), production economic index (VEL), member economic
index(VEM), capacity economic index (VEC), udder economic index (VEP), functional type
economic index(VET), functional economic index (VEF), global economic index (VEG),
stature (STA), chest width (CWI1), body depth (BDE), rump angle (RAN), rump width
(RWI), foot angle (FAN), rear leg set (RLS), rear leg rear view (RLR), udder depth (UDE),
udder support (USU), fore udder (FUD), front teat placement (FTP), teat length (TLE), rear
udder height (RUH), rear teat placement (RTP), angularity (ANG), overall feet and leg score
(OFL), overall udder score (OUS), and overall conformation score (OCS). (Note: all standard
errors of the approximate genetic correlations were < 0.05)
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Figure 4-2S. Approximate genetic correlation between milk true protein nitrogen intake
(MTPN) and other traits based on the EBV of selected bulls (n = 736) in primiparous (A,
MTPN1) and multiparous (B, MTPN2+). Other traits included were milk urea concentration
(MU), milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP), protein
percentage (PP), udder health (UH), longevity (LONG), female fertility (FF), direct calving
ease (DCE), maternal calving ease (MCE), production economic index (VEL), member
economic index(VEM), capacity economic index (VEC), udder economic index (VEP),
functional type economic index(V€ET), functional economic index (VEF), global economic
index (VEG), stature (STA), chest width (CWI), body depth (BDE), rump angle (RAN),
rump width (RWI), foot angle (FAN), rear leg set (RLS), rear leg rear view (RLR), udder
depth (UDE), udder support (USU), fore udder (FUD), front teat placement (FTP), teat
length (TLE), rear udder height (RUH), rear teat placement (RTP), angularity (ANG), overall
feet and leg score (OFL), overall udder score (OUS), and overall conformation score (OCS).
(Note: all stand errors of approximate genetic correlation were < 0.05)
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Figure 4-3S. Approximate genetic correlation between milk urea nitrogen yield (MUNY)
and other traits based on the EBV of selected bulls (n = 736) in primiparous (A, MUNY1)
and multiparous (B, MUNY2+). Other traits included were milk urea concentration (MU),
milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP), protein percentage
(PP), udder health (UH), longevity (LONG), female fertility (FF), direct calving ease (DCE),
maternal calving ease (MCE), production economic index (VEL), member economic
index(VEM), capacity economic index (VEC), udder economic index (VEP), functional type
economic index(V€T), functional economic index (VEF), global economic index (VEG),
stature (STA), chest width (CWI), body depth (BDE), rump angle (RAN), rump width
(RWI), foot angle (FAN), rear leg set (RLS), rear leg rear view (RLR), udder depth (UDE),
udder support (USU), fore udder (FUD), front teat placement (FTP), teat length (TLE), rear
udder height (RUH), rear teat placement (RTP), angularity (ANG), overall feet and leg score
(OFL), overall udder score (OUS), and overall conformation score (OCS). (Note: all stand
errors of approximate genetic correlation were < 0.05)
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Adapted from: Chen, Y., H. Atashi, R. R. Mota, C. Grelet, S. Vanderick, H., Hu,
Gplusk Consortium, and N. Gengler. Validating genomic prediction for nitrogen
efficiency index and its composition of Holstein cows in early lactation. J. Dairy Sci.
In review.

Foreword

The new nitrogen efficiency index (NEI) was built in Chapter 4. Genomic prediction
is already used in animal breeding programs. This Chapter showed that NEI and its
composition traits can be used in genomic prediction. The results provide evidence of
the possibility for NEI to inform breeding strategies to improve farmers' profits and
reduce nitrogen pollution.
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Chapter 5: Validating nitrogen efficiency index and its composition

Abstract

Nitrogen (N) use efficiency (NUE) is an economically important trait for dairy cows.
Recently, we proposed a new N efficiency index (NEI), which simultaneously
considers both NUE and N pollution. This study aimed to validate the genomic
prediction for NEI and its composition traits, and to investigate the relationship
between SNP effects estimated directly from NEI and indirectly from its composition
traits. The composition of the NEI included genomic estimated breeding value (GEBV)
of N intake (NINT), milk true protein N (MTPN), and milk urea N yield (MUNY).
The edited data were 132,899 records on 52,064 cows distributed in 773 herds. The
pedigree contained 122,368 animals. Genotypic data of 566,294 SNP was available
for 4,514 individuals. In total, 4,413 cows (of them, 181 were genotyped) and 56 bulls
(of them, 32 were genotyped) were selected as the validation populations. Linear
regression method was used to validate the genomic prediction of NEI and its
composition traits, and it was carried out by using BLUP and single-step genomic
BLUP (ssGBLUP). The mean theoretical accuracies of validation populations from
ssGBLUP were higher than that of BLUP for both NEI and its composition traits,
ranging from 0.57 (MTPN) to 0.72 (NINT). The highest mean prediction accuracies
for NEI and its composition traits were observed for the genotyped cows estimated
under ssGBLUP, ranging from 0.48 (MTPN) to 0.66 (NINT). In addition, the SNP
effects estimated from NEI composition traits multiple by relative weight were the
same as the SNP effects estimated directly from NEI. This study preliminary showed
that genomic prediction can be used for NEI. Moreover, the SNP effects of NEI can
be indirectly calculated by using the SNP effects estimated from its composition traits.
This study provided a basis for adding genomic information to establish and predict
NEI as part of future routine genomic evaluation programs.

Key words: nitrogen use efficiency, SNP effect, mid-infrared spectra
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1. Introduction

Livestock production contributes to 18% of the global human-induced greenhouse
gases emissions in the form of carbon dioxide, methane, and nitrous oxide (Moran
and Wall, 2011). The main sources of nitrous oxide production in cattle are deposited
urine and manure (Rochette et al., 2014), which are mainly due to the protein content
of the undigested feed. Protein is the most expensive component of dairy cows feed
and its loss reduces farms' profits; therefore, improving the nitrogen (N) use efficiency
(NUE) of dairy cows can potentially improve the profitability of dairy herds and
reduce N pollution (Chen et al., 2021). To increase NUE in dairy cows, the
management and breeding systems mainly focus on urinary N using milk urea
concentration (MU) or N (MUN) (Kauffman and St-Pierre, 2001; Spek et al., 2013).
Researchers in New Zealand, a highly grazing country, have recently investigated the
potential consequences of using MUN in the genetic selection program to reduce N
pollution in dairy cows (Correa-Luna et al., 2021; Marshall et al., 2021, 2022). The
results of Marshall et al. (2021, 2022) showed that selection for low MUN breeding
values can reduce urine N in cattle, whereas Correa-Luna et al. (2021) results showed
otherwise. In the Walloon Region of Belgium, practically all cattle, to a certain degree,
are grazing from April to September (Soyeurt et al., 2022). Farmers are looking for
dairy cows that are most suitable for grazing to reduce production costs (Lefévre et
al., 2022). However, the oversupply of N for dairy cows in the grazing system may
result in increased N pollution.

Recently, the results of a large international collaboration showed that predicting N
excretion in dairy cows needs to include N intake (NINT) and MUN to more
accurately predict N pollution, and more region-specific models are needed
(Bougouin et al., 2022). We have proposed a new N efficiency index (NEI) combining
the EBV of NINT, milk true protein N (MTPN), and MUN yield (MUNY) through
the selection index, which considered both NUE and N pollution at the same time
(Chen et al., 2022). The MUNY is proportional to urinary nitrogen excretion
(Wisconsin Alumni Research Foundation, 2015). The NEI can keep NINT constant,
increase MTPN, and decrease MUNY through genetic selection. However, the
genomic information was not included when building the index. Genomic information
is useful for selecting low-heritability traits, and has been widely used in animal
breeding programs. The incorporation of non-genotyped animals into genome
prediction is increasingly common through single-step genomic BLUP (ssGBLUP).

To the best of our knowledge, genomic prediction is currently performed only for
traits but not for indices. The objects of this study were to validate the genomic
prediction for the NEI and its composition traits, and to investigate the relationship
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between the single nucleotide polymorphism (SNP) effects obtained directly from
NEI and indirectly from its composition traits. In this way, it will be possible to verify
whether NEI can be directly genomically predicted and if this index reflects its
composition at the SNP level.

2. Materials and methods
The study framework is shown in Figure 5-1.

1. Genetic evaluation With or without genotype Whole or partial data Index selection
+ The six traits included )
NINT1, MTPN1, MUNY1, Estimated ssGBLUP ,  Estimated Nitrogen
NINT2+, MTPN2+, (co)variance of (G)EBV of six |1 efficiency index

MUNY2+ six traits BLUP traits (NEI)
« Whole data: 2012 — 2019
Partial data: 2012 — 2016

——————————————————

2. Validation [ Validated cows :
+ Number of validated cows H 1 { : : "
4413 ) 1 1 1 1 H Linear regression 1
was 4, . 12004 20152016 2017  Brith | 1 method 1
* Number of validated bulls 1 I Vemmooetnod !
was 55 " Validated bulls I'

___________________

3. Pearson correlation

» SNP effects of NEI _hat (D=1)
were equal SNP effect
of six traits multiplied by

the relative weight
+ Whole data . SNP effects of NEI _hat <:>I SNP effects of NEI i

__________________________________

L

Figure 5-1. Workflow of validating genomic prediction for nitrogen efficiency index and its

composition traits. NINT1 - the N intake in primiparous cows, MTPN1 - milk true protein N

in primiparous cows, MUNY1 - milk urea N yield in primiparous cows, NINT2+ - N intake

in multiparous cows, MTPN2+ - milk true protein N in multiparous cows, and MUNY2+ -
milk urea N yield in multiparous cows.

2.1. Data

Phenotypic Data. As an exploratory study, the data between 2012 and 2019 were
sampled from the official milk recording database in the Walloon Region of Belgium.
The milk samples were analyzed by mid-infrared (MIR) spectrometry (commercial
instruments from FOSS) to assess milk composition (including MU) and generate
MIR spectra. All milk MIR spectra were standardized according to Grelet et al. (2015).
The 3 features including NINT, MTPN, and MUNY were used in this study. The
features were divided into 2 classes: primiparous and multiparous (lactations 2 to 5)
and shown as NINT1, MTPN1, MUNY1, NINT2+, MTPN2+, and MUNY 2+ (Six
traits in total). The formulas used to compute MTPN = [ (Milk yield x Protein percent
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/6.38) — MUNY] and MUNY = [(Milk urea concentration / 2.14) x Milk yield] (WHO
and FAO, 2011). The NINT of each cow was predicted using the equation developed
by Grelet et al. (2020). The determination coefficients and root mean square errors of
validation for the NINT equation were 0.71 and 0.07 kg/d.

The data editing procedure used for all the included traits was the same as explained
by Chen et al. (2022). Briefly, all records were restricted to the first 50 days in milk
(DIM) because of the predicament of the NINT model. The NINT model was built
based on data from the first 50 DIM only. For NINT, two criteria were considered in
the filtering procedure: 1) the standardized Mahalanobis distance of the new predicted
MIR spectra and the calibration dataset is < 3; 2) the predicted value of NINT was
restricted within the range of + 3 standard deviations of the mean. Finally, 132,899
records, observed between 2012 and 2019 from 52,064 cows in 773 herds, were kept.
The pedigree related to the dataset comprised 122,368 animals.

Genotypic data. the genotype data of 4,514 animals included in the pedigree were
extracted from the cattle genetic evaluation system in the Walloon Region of Belgium.
The used chip versions were BovineSNP50 K v1 to v3 (lllumina, San Diego, CA,
USA). The SNPs common between all three chips were kept. Non-mapped SNPs, SNP
located on sex chromosomes, and triallelic SNPs were excluded. A minimum GenCall
Score 0f 0.15 and a minimum GenTrain Score of 0.55 were used to keep SNP (Wilmot
et al., 2022). Then, the genotypes were imputed to HD using FImpute V2.2 software
(Sargolzaei et al., 2014). The SNPs with Mendelian conflicts, and those with minor
allele frequency less than 5% were excluded. The difference between observed
heterozygosity and that expected under Hardy-Weinberg equilibrium was estimated,
and if the difference was greater than 0.15, the SNP was excluded (Wiggans et al.,
2009). Finally, 566,294 out of 730,539 SNPs, distributed on 29 Bos taurus
autosomes, were kept.

2.2. (Co)variance Component Estimation

A six-trait (six traits; 3 features, 2 parity classes) repeatability model was used to
estimate the variance components. All information on the model can be found in Chen
etal. (2022). In brief, herd-year-season of calving, standardized DIM and its quadratic,
and constant, linear, quadratic regression of standardized calving age (nested within
parities) were used as fixed effects in this model, whereas non-genetic cow, non-
genetic cow x parity (only for multiparous traits), additive animal genetic, and
residual were used as random effects. However, to calculate the relationship between
animals, the H or pedigree (A) relationship matrix was used. The H matrix combined
A and genomic (G) based relationships matrices. The inverse of H as defined by
Aguilar et al. (2010) is as follows:
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0

— Az

where A is the numerator relationship matrix for all animals included in the pedigree;
Az is the numerator relationship matrix for genotyped animals; G is the genomic
relationship matrix obtained using the function described by VanRaden (2008). In
addition, the inverse of all matrices considers the coefficient of inbreeding between
individuals (Lourenco et al., 2020).

Computations were performed using the BLUPF90 family of programs (Misztal et
al., 2018). The (co)variance components for NINT, MTPN, and MUNY were
estimated by Gibbs sampling using the models described by Chen et al. (2022). The
posterior means of (co)variances, heritabilities (h?), repeatabilities, genetic and
phenotypic correlations were obtained using a single chain of 130,000 after a burn-in
of 10,000 replicates. The formulas used to calculate the later four parameters have
been previously described by Chen et al. (2021). The posterior convergence and
approximated standard errors of (co)variances and four parameters were analyzed by
POSTGIBBS90 (version 3.14). Repeatability was here referred to as within the 6 traits.
For the traits in multiparous, repeatability was equal to the sum of the variances of the
three random effects in the model (except for the residual) divided by the sum of the
variances of the four random effects.

0
-1 _ A-1
H'=A +[0 G-1

2.3. Estimated Breeding Values and Nitrogen Efficiency Index

By using the estimated genetic variance components, the EBV and genomic EBV
(GEBV) were estimated for the six studied traits through BLUP and ssGBLUP,
respectively. The (co)variance components were estimated for scenarios with
(pedigree + phenotypes + genotypes) and without (pedigree + phenotypes) genomic
data. The (G)EBVs of the six studied traits were estimated using the BLUPF90
program (version 1.71) through the same model used for estimating (co)variance
components (Chen et al., 2022). The reliabilities (REL) of (G)EBVs for the studied
traits based upon the whole data were calculated by the formula:

SE?
o (1+f)
where REL; is the reliability of j trait, SE; is the standard error of prediction for j trait
retrieved from the inverse of the left-hand side matrix of the mixed model equations,
ajj is the additive genetic variance, and f is the mean inbreeding coefficient for all
animals included in the pedigree.

REL; =1 -

97



Genetic analyses of different nitrogen use efficiency proxies for Holstein cows

The calculation methods of the NEI and its reliability were the same as those
described by Chen et al. (2022). In brief, the NEI was defined as a combination of the
(G)EBV of NINT, MTPN, and MUNY through the selection index. The index weights
(a) of the six studied traits were calculated by selection responses, which assumed that
the genetic selection responses for NINT, MTPN, and MUNY were 0O, 1, and -1,
respectively. This assumption allows genetic selection for NEI to keep NINT
unchanged, increase MTPN, and decrease MUNY. The method for the REL of NEI
from VanRaden et al. (2018):

where RELyg; Was the REL of NEI, w was obtained by multiplying the elements of a
by the square root of reliability for the (G)EBV of the six studied traits, G¢ was the
genetic correlation matrix between the six studied traits.

2.4. Nitrogen Efficiency Index and Its Composition Traits
Validation

The theoretical accuracies of NEI and its composition traits in the whole dataset
were calculated first, which was considered the maximum accuracy of genetic
selection in this dataset. The theoretical accuracy is equal to the square root of REL
for NEI and each trait.

To verify the prediction accuracy of the genomic prediction in young animals, the
linear regression method was used in this study (Legarra and Reverter, 2018). The
basic step of the linear regression method is to calculate the evaluation metrics based
on the breeding values from partial and whole datasets. Only the last three years of
records were removed because the whole dataset was small (2012 to 2019, n =
132,899). Therefore, only the data from 2017 to 2019 was set to be missing and this
reduced dataset was called the partial dataset (n = 93,993). Both variance components
and breeding values need to be estimated again in the partial dataset.

The validation population (called the focal individuals) consisted of cows and bulls
(Figure 5-1). Cows (n = 4,413) born after 2015 were used as the focal individuals
(without phenotypes in the partial dataset), of which 181 cows were genotyped. We
verified the cows with and without genotypic data, separately. In the case of
genotyped cows, BLUP validation was also performed to show whether differences
in results could be caused by different validation populations. Bulls (n = 55) were
selected as the validation population under two criteria, of which 35 bulls were
genotyped. The first criterion was bulls only have daughters born after 2015 with
records of six traits. The second criterion was bulls with at least 5 daughters or at least
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1 daughter and genotyped. These 55 bulls have 695 daughters with 872 records in this
dataset. Those with and without genotypes were put together because of the small
number of bulls that met both of the above criteria.

Four following metrics were used to measure prediction validation results in this
study.

The population bias (u,,,) Was expected to be 0 if the evaluation was unbiased,
which was defined as the following:

HUwp = ﬁp — 1,

where @ and 1,, were average (G)EBV of focal individuals in the partial and whole
datasets, respectively.

The dispersion (b,,,) was expected to be 1 if the evaluation showed no dispersion,
which was defined as the following:
_cov(ly, Uy)
Dup = var (i, )
where 1, and 1, were (G)EBV of focal individuals in the partial and whole datasets,
respectively.

The prediction accuracy (dcc) was expected to be 1 if the evaluation was perfect. It
is the predictive accuracy of the breeding values of focal individuals in the partial
dataset, which was defined as the following:

_ cov (i, Uy)
acc = =
(1 = flvar(ay)

where f was the average inbreeding coefficient of the focal individuals in the partial
and whole datasets, respectively. Other parameters were the same as described above.
The relative increased accuracy with added phenotype (incypen; Bermann et al.,
2021) expected to low value (0) if the evaluations stability between the partial and

whole datasets, which was defined as below:
acc,, — accy 1

inc = = -
phen — ~  ~
accy, cor(ily, i)

1

where dacc,, and dacc, were accuracy in the whole and partial datasets, respectively.
Other elements were the same as described above.
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2.5. Relationship between Nitrogen Efficiency Index and Its
Composition Traits

The Pearson correlation coefficients between the direct SNP effects estimated from
NEI and indirect SNP effects estimated from its composition traits were estimated.
The SNP effect (a) for the NEI and its composition traits were estimated using the
POSTGSF90 software (version 1.73; Aguilar et al., 2014). The formula for the (a) is
the same as that described by Wang et al. (2012) but without iteration. The formula
of a was as follows:

A -1
4 = DZy|Z,DZ;]| 1
where D = I, means that the weight for all SNPs is 1; Z, was an incidence matrix of

genotype for each SNP; ti was a vector of GEBV of each trait for genotyped animals
(n=4,514) in the whole dataset.

The SNP effects for the six studied traits were multiplied by a (relative weight) to
calculate the SNP effects of NEI_hat. Then, the Pearson correlations between the SNP
effects of NEI_hat and the SNP effects estimated directly from NEI were calculated.

3. Results and discussion

3.1. Genetic Parameter

The mean, h?, and repeatability for the six studied traits are shown in Table 5-1. The
NUE (MTPN divided by NINT) for primiparous (30.95%) was lower than that for
multiparous (34.69%), which may be, at least in part, due to the more rumen
development in multiparous cows. The average NUE values were within the normal
range reported by previous studies (Cantalapiedra-Hijar et al., 2018; Spanghero and
Kowalski, 2021). The h? and repeatability for the six traits ranged from 0.10 to 0.14,
and 0.40 to 0.67, respectively. These results are similar to our previous results without
using genotypic data (Chen et al., 2022).

Table 2-2 shows the genetic and phenotypic correlations among the six studied traits
in this study. The same feature in primiparous and multiparous showed high genetic
correlations, ranging from 0.85 to 0.96. The NINT showed medium positive genetic
correlations with MTPN (0.45 to 0.53), but low negative genetic correlations with
MUNY (-0.08 to —0.20). These results suggest that NINT may have a greater genetic
influence on MTPN, but less on MUNY. Medium positive genetic correlations were
found between MTPN and MUNY (0.39 to 0.56). Compared to genetic correlations,
phenotypic correlations were relatively lower. In general, genetic and phenotypic
correlations among the six traits are consistent with our previous study (Chen et al.,
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2022). However, lower genetic correlations were estimated between NINT and
MUNY when using genotypic data.

Table 5-1. Description statistics of the six studied traits! and their heritabilities and
repeatabilities were estimated by single-step genomic BLUP in the whole dataset

Parity class? NINT (kg/d) MTPN (kg/d) MUNY (g/d)
1 (n=40,916)
Mean 0.42 0.13 2.93
SD3 0.06 0.03 1.08
Heritability 0.14 £0.01 0.13+0.01 0.14+£0.01
Repeatability 0.45+0.01 0.61+0.00 0.40 £ 0.01
2+ (n=91,938)
Mean 0.49 0.17 3.74
SD 0.07 0.04 1.56
Heritability 0.13+0.01 0.11+0.01 0.10+0.01
Repeatability 0.53 £ 0.00 0.67 £ 0.00 0.43 £0.00

ININT - N intake; MTPN — Milk true protein N; MUNY — Milk urea N yield

2Parity class: Based on the parity, the data were divided into 2 classes including primiparous (class 1)
and multiparous (class 2+)

3SD: standard deviation

Table 5-2. Genetic correlations (above the diagonal) and phenotypic correlations (below the
diagonal) between the six studied traits were estimated by single-step genomic BLUP in the
whole dataset

Traits! NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+

NINT1 048+0.04 -020+0.05 0.87+0.02 050+0.04 -0.16+0.05
MTPN1 0.36 £0.01 0.56+0.04 053+0.04 0.85+0.03 0.46=*0.05
MUNY1 0.06+0.01 0.37+0.00 -0.03+0.04 0.39+0.04 0.89+0.03
NINT2+ 0.17+0.01 0.14+0.01 0.02+0.01 0.61+0.03 -0.08+0.05
MTPN2+ 0.11+001 020+0.01 0.11+001 0.43+0.00 0.45+0.04

MUNY2+ -0.02+0.01 0.09+001 0.16+001 0.14+0.00 0.41+0.00

L NINT1 - N intake in primiparous cows; MTPN1 — Milk true protein N in primiparous cows; MUNY1
- Milk urea nitrogen yield in primiparous cows; NINT2+ - N intake in multiparous cows; MTPN2+ -
Milk true protein N in multiparous cows; MUNY2+ - Milk urea nitrogen yield in multiparous cows

Table 5-2 shows the genetic and phenotypic correlations among the six studied traits
in this study. The same feature in primiparous and multiparous showed high genetic
correlations, ranging from 0.85 to 0.96. The NINT showed medium positive genetic
correlations with MTPN (0.45 to 0.53), but low negative genetic correlations with
MUNY (—0.08 to —0.20). These results suggest that NINT may have a greater genetic
influence on MTPN, but less on MUNY. Medium positive genetic correlations were
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found between MTPN and MUNY (0.39 to 0.56). Compared to genetic correlations,
phenotypic correlations were relatively lower. In general, genetic and phenotypic
correlations among the six traits are consistent with our previous study (Chen et al.,
2022). However, lower genetic correlations were estimated between NINT and
MUNY when using genotypic data.

3.2. Validated the Nitrogen Efficiency Index and Its Composition
Traits

The mean theoretical accuracies of focal individuals from ssGBLUP were higher
than that of BLUP for both NEI and its composition traits (Table 5-3), which is
consistent with Cesarani et al. (2021). The theoretical accuracy from ssGBLUP is
higher because it has a small prediction error.

Table 5-3. The mean theoretical accuracies in the whole dataset for genotype cows, un-
genotype cows, and bulls of nitrogen efficiency index (NEI) and its composition traits?

NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+ NEI
Genotype cows (n=181)?

BLUP 0.63 0.58 0.61 0.61 0.57 0.59 0.57

ssGBLUP®  0.72 0.67 0.69 0.71 0.67 0.69 0.66
Un-genotype cows (n=4,232)

BLUP 0.62 0.58 0.60 0.60 0.57 0.59 0.57

ssGBLUP 0.63 0.59 0.61 0.61 0.57 0.59 0.58
Bulls (n=55)*

BLUP 0.64 0.60 0.62 0.61 0.58 0.60 0.59

ssGBLUP 0.70 0.66 0.68 0.68 0.64 0.67 0.65

L NINT1 - N intake in primiparous cows; MTPN1 — Milk true protein N in primiparous cows; MUNY1
- Milk urea N yield in primiparous cows; NINT2+ - N intake in multiparous cows; MTPN2+ - Milk true
protein N in multiparous cows; MUNY2+ - Milk urea N yield in multiparous cows

2: Ranges of standard deviation for genotype cows, un-genotype cows, and bulls are 0.06 to 0.10, 0.05 to
0.06, and 0.03 to 0.05, respectively

3: ssGBLUP - Single-step genomic BLUP
4: 35 of 55 bulls had genotype
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The validated results of genomic prediction for NEI and its composition traits in
genotyped cows, non-genotyped cows, and bulls through BLUP and ssGBLUP are
presented in Table 5-4.

Table 5-4. Validated nitrogen efficiency index (NEI) and its composition traits* by linear
regression

NINT1  MTPN1  MUNY1 NINTZ2+ MTPN2+ MUNYZ2+  NEI

Genotype cows (n=181)

bias -0.01 0.00 -0.05 -0.01 0.00 -0.07 0.16
BLUP dispersion 1.05 1.18 1.20 1.07 1.06 1.04 1.06
accuracy 0.40 0.37 0.33 0.41 0.34 0.35 0.45
incenen(%F  76.17  38.91 60.02 64.92 45.54 58.42 32.14
bias -0.01 0.00 -0.07 -0.01 0.00 ~0.11 0.14
ssGBLUP? dispersion 1.06 0.97 1.13 0.89 0.93 0.99 1.02
accuracy 0.63 0.48 0.48 0.66 0.51 0.50 0.59

inconen(%) 2530 30.92 31.42 2345 22.59 30.1 17.43
Un-genotype cows

(n=4,232)
bias 0.00 0.00 -0.03 -0.01 0.00 -0.03 0.01
BLUP dispersion 1.08 1.14 1.10 1.15 1.09 0.96 1.03
accuracy 0.47 0.43 0.33 0.50 0.39 0.35 0.48
iNCghen(%) 52.07 2968 60.44 41.02 33.73 54.36 28.06
bias 0.00 0.00 -0.04 -0.01 0.00 =0.05 0.00
ssGBLUP dispersion 1.13 1.06 1.06 1.16 1.04 0.95 1.00
accuracy 0.53 0.45 0.35 0.55 0.43 0.36 0.52
inCgnen(%) 3542 28.62 57.38 27.88 27.27 52.26 23.14
Bulls (n=55)*
bias 0.00 0.00 -0.08 -0.01 0.00 =0.11 0.10
BLUP dispersion 1.03 1.61 0.89 1.20 1.32 0.68 0.88
accuracy 0.34 0.32 0.33 0.39 0.31 0.33 0.43
iNCghen( %) 86.07 56.43 78.54 55.29 52.27 78.70 55.47
bias 0.00 0.00 -0.11 -0.01 0.00 =0.14 0.06
ssGBLUP dispersion 1.08 1.14 1.02 1.14 0.99 0.67 0.99
accuracy 0.52 0.41 0.42 0.56 0.42 0.39 0.52

inCphen( %) 33.14 50.23 47.04 27.93 49.98 65.37 30.71

L NINT1 - N intake in primiparous cows; MTPN1 — Milk true protein N in primiparous cows; MUNY1
- Milk urea nitrogen yield in primiparous cows; NINT2+ - N intake in multiparous cows; MTPN2+ -
Milk true protein N in multiparous cows; MUNY2+ - Milk urea nitrogen yield in multiparous cows

2: incphen(%) - increase reliability when adding phenotypic

3: ssGBLUP - single-step genomic BLUP

First, the results of BLUP and ssGBLUP were compared. The estimated p,,,, (nearly
0) and b,,,,(nearly 1) for the NEI and its composition traits of BLUP and ssGBLUP in
genotyped cows indicate that bias and dispersion for genomic prediction between the
two methods are similar. Similar results were found for non-genotyped cows and bulls,
except the b,,,, of bulls. Gao et al. (2021) observed similar results when comparing
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BLUP and ssGBLUP, even though they used more genotyped animals than non-
genotyped animals. As expected, the dacc of the NEI and its composition traits
estimated by ssGBLUP in genotyped cows were higher than that estimated by BLUP,
ranging from 0.48 to 0.66. The H relationship matrix, used in the ssGBLUP, may
explain this finding (Cesarani et al., 2021). Even for non-genotyped animals, the acc
of the NEI and its composition traits estimated by ssGBLUP were slightly higher than
that estimated by BLUP, ranging from 0.36 to 0.55. The genotyped individuals are
relatives to a part of non-genotyped animals which can partly explain this finding. The
acc of the NEI and its composition traits estimated by sSGBLUP in bulls were higher
than that estimated by BLUP, ranging from 0.39 to 0.56. Similarly, multiple studies
have shown that the accuracy of sSSGBLUP is higher than BLUP (Bermann et al., 2021;
Cesarani et al., 2021). The incppe, 0f the NEI and its composition traits in genotyped
cows and bulls estimated by ssGBLUP were lower than that estimated by BLUP,
which is in line with Bermann et al. (2021). However, the incppe, of NEI and its
composition traits in non-genotyped animals estimated by ssGBLUP and BLUP were
similar, except for NINT. This suggests that when making genomic predictions for
non-phenotyped cows, providing their own genotypic data is a good predictor.

On the other hand, the obtained results were compared between genotyped cows,
non-genotyped cows, and bulls. The w,,,, of NINT and MTPN estimated by ssGBLUP
(or BLUP) for genotyped cows, non-genotyped cows, and bulls were similar, while
the u,,, of MUNY and NEI estimated by ssGBLUP (or BLUP) for genotyped cows
and bulls were higher than that estimated for non-genotyped cows. The b,,,,, of NEI
and its composition traits estimated by ssGBLUP (or BLUP) were similar between
genotyped and non-genotyped cows. However, the b,,,, of NEI and its composition
traits estimated by ssGBLUP (or BLUP) in bulls were worse than the cows. The dcc
of the NEI and its composition traits estimated by ssGBLUP in genotyped cows were
higher than that in non-genotyped cows and bulls, which can be a consequence of
using extra information available (SNP data) for genotyped cows. This is an advantage
of using genomic selection for low heritability traits (Parker Gaddis et al., 2014).
However, the acc of the NEI and its composition traits estimated by BLUP in
genotyped cows and bulls (already remove genotypic data) were lower than that in
non-genotyped cows, which can be attributed to the smaller number of cows in the
genotyped group (n = 181) and bulls (n = 55) compared with non-genotyped (n =
4,232). The incypen 0f NEI and its composition traits estimated by ssGBLUP (or
BLUP) ranged from 17.43% (32.14%) to 31.42% (76.17%) in genotyped cows, from
23.14% (28.06%) to 57.38% (60.44%) in non-genotyped cows, and from 27.93%
(52.27%) to 65.73% (86.07%) in bulls.
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In short, these findings showed that genomic information benefits genomic
predictions for NEI and its composition traits. The highest mean prediction accuracies
for NEI and its composition traits were estimated for genotyped cows using ssGBLUP.
Furthermore, we need to mention that even for non-genotyped and non-phenotype
animals in the partial dataset, the prediction accuracy of genomic prediction for NEI
was nearly theoretical accuracy by ssGBLUP (0.52 vs. 0.58).

3.3. Relationship between Nitrogen Efficiency Index and Its
Composition Traits

Figure 5-2 shows the 566,294 SNPs effects values of the NEI, ranging from -0.003
to 0.003. The Pearson correlation between SNP effects estimated directly from NEI
and indirectly from its composition traits was 1, and the intercept was 0 (Figure 5-2),
which indicates that indirect genomic prediction can be performed on the NEI index.

0.003-
0.002-
0.001 -

I 0.000-

NEI_hat

-0.001 -

-0.002-

-0.003-

.0.003  -0.002  -0.001 0.000 0.001 0.002 0.003
NEI

Figure 5-2. Relationship between SNP effects is estimated directly from the nitrogen
efficiency index (NEI) and indirectly from its composition traits (NEI-hat).

Over the past few decades, the breeding goal of dairy cattle has gradually shifted
from increasing milk production to balanced breeding (Miglior et al., 2017), which
has resulted in more traits being added to the breeding system. With increasing the
number of traits in a breeding program, breeders usually classify the traits to generate
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an index, and then combine them to generate a total index for breeding. Our results
showed that the SNP effects estimated directly from the generated index are
completely consistent with those estimated from its composition traits (Figure 5-2).
Similarly, if the SNP effects of the total index are obtained, it is more convenient to
perform genomic prediction on young bulls with unknown traits. Indirect genome
prediction can also reduce the computational cost of large-scale genomic selection
(Tsuruta et al., 2021), facilitating the implementation of genomic prediction at the
national level.

Another tentative advantage of indirect genomic prediction of NEI is the potential
reduction in prediction error. There are potential errors in the calculation of breeding
values for each of the six traits, which may lead to a reduction in the accuracy of NEI.
The potential improvement in the accuracy of the NEI can be achieved by reducing
the number of steps in its calculation. However, the theoretical accuracy of indirect
genomics predictions of NEI needs review, as Garcia et al. (2022) did for post-
weaning weight gain. Furthermore, the effectiveness of indirect genomic prediction
for indices needs to be validated on more indices.

3.4. Limitations and Perspectives

The results of this study also require several points of attention. First, the NEI is a
proxy for the NUE of dairy cattle, and therefore not identical to the genetic merit of
direct NUE. Moreover, there were some prediction errors in the NEI calculation
process, such as the prediction models of the MIR-based phenotypes and the
estimation of relevant GEBV. Two approaches (Data section) were adopted in this
study to avoid these problems. Additional reference phenotypes are expected to be
added, improving the prediction models of the MIR-based phenotypes. Furthermore,
Tiplady et al. (2022) recently reported that genetic correlations between directly
measured, and MIR-predicted fatty acid and protein fractions were typically high.
This suggests that MIR-based phenotypes potentially represent still valid estimation
of genetic contributions to directly measured traits. The estimation of relevant GEBV
will also become more accurate with an increasing number of genotyped animals.

This study should be considered an exploration study, also based on a limited dataset.
This implies that before constructing a national-level NEI combining genomic
information and its integration into a global breeding goal additional work will be
required. Although the mean prediction accuracies (0.52-0.59) of NEI in focal
individuals from ssGBLUP are not very high, they are not too far from mean
theoretical accuracies (0.58-0.66). Our results show that the average reliability (square
of theoretical accuracy) of the bulls (n = 736) was 0.68 when establishing NEI
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(without genomic information) (Chen et al., 2022). This suggests that prediction
accuracy for NEI can be improved with the increased number of records.

The small number of records extracted from the official milk recording database is
the main reason for the low accuracy obtained. Especially, NINT data used was still
limited to the first 50 DIM because the currently available MIR prediction equation is
established using only data from the first 50 DIM. However, extending it to the entire
lactation period is planned when relevant reference data will be available. This will
be our focus as the next step, which should also increase the reliability of NEI because
we could use MIR-predicted phenotypes across the whole lactation. Another possible
way to increase the reliability of NEI is to increase the number of genotyped animals.
The number of cows genotyped has increased rapidly in recent years (Wiggans and
Carrillo, 2022), and this is not only the case in the USA but also, to a lesser degree, in
the Walloon Region of Belgium.

The routine use of NEI would start with its integration into a broader breeding goal.
In the context of the Walloon genetic evaluation system, which defines sub-indexes
(Vanderick et al., 2022), it would be relevant to use the NEI as an N efficiency sub-
index or as part of a broader efficiency sub-index. Breeding for improved NUE in
cattle could be initiated by this approach.

4. Conclusions

This study showed that genomic prediction can be used for NEI. Furthermore, even
though animals in the partial dataset were without genotypic and phenotypic data, the
mean prediction accuracy of genomic prediction for NEI was nearly the mean
theoretical accuracy by ssGBLUP (0.52 vs. 0.58). Simultaneously, we considered the
feasibility of the direct and indirect genomic prediction for the NEI index, which may
be more beneficial to the computation of larger datasets at the national level. This
study provided a basis for adding genomic information to establish and predict NEI
as part of future routine genomic evaluation programs.
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Foreword

The new nitrogen efficiency index (NEI) was built in Chapter 4, and its ability to
allow for genomic prediction was confirmed in Chapter 5. Furthermore, the genomic
background of the NEI and its composition traits were analyzed through genome-wide
association analyses in the present Chapter. This provided a better understanding of
the genetic mechanisms of nitrogen use efficiency in dairy cows.
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Abstract

The aims of this study were 1) to identify genomic regions associated with a nitrogen
(N) efficiency index (NEI) and its composition traits; and 2) to analyze the functional
annotation of identified genomic regions. The NEI included N intake (NINT1), milk
true protein N (MTPN1), milk urea N yield (MUNY1) in primiparous cattle, N intake
(NINT2+), milk true protein N (MTPN2+), and milk urea N yield (MUNY2+) in
multiparous cattle (2 to 5 parities). The edited data included 1,043,171 records on
342,847 cows distributed in 1,931 herds. The pedigree consisted of 505,125 animals
(17,797 males). Data of 565,049 SNPs were available for 6,998 animals included in
the pedigree (5,251 females and 1,747 males). The SNP effects were estimated using
a single-step genomic BLUP approach. The proportion of the total additive genetic
variance explained by windows of 50 consecutive SNPs (with an average size of about
240 Kb) was calculated. The top-3 genomic regions explaining the largest rate of the
total additive genetic variance of the NEI and its composition traits were selected for
candidate genes identification and quantitative trait loci (QTLs) annotation. The
selected genomic regions explained from 0.17% (MTPN2+) to 0.58% (NEI) of the
total additive genetic variance. The largest explanatory genomic regions of NEI,
NINTZ1, NINT2+, MTPN1, MTPN2+, MUNY1, MUNY 2+ were Bos taurus autosome
(BTA) 14 (1.52 — 2.09 Mb), 26 (9.24 — 9.66 Mb), 16 (75.41 — 75.51 Mb), 6 (8.73 —
88.92 Mb), 6 (8.73 — 88.92 Mb), 11 (103.26 — 103.41 Mb), 11 (103.26 — 103.41 Mb).
Based on the literature, gene ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and protein-protein interaction (PPI), 16 key candidate genes were
identified for NEI and its composition traits, which are mainly expressed in the milk
cell, mammary, and liver tissues. The number of enriched QTLs related to NEI,
NINTZ, NINT2+, MTPN1, MTPN2+ were 41, 6, 4, 11, 36, 32, and 32, respectively,
and most of them were related to the milk, health, and production classes. In
conclusion, this study identified genomic regions associated with NEI and its
composition traits, and identified key candidate genes describing the genetic
mechanisms of NUE traits. Furthermore, the NEI not only reflects its composition
traits, but also reflects the interaction among them.

Key words: gene, QTL, enrichment analysis
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1. Introduction

High-efficiency dairy cattle are increasingly being pursued by milk producers (Brito
et al., 2020). Cattle consume nitrogen (N) mostly in the form of feed crude protein,
which is then degraded into different forms of N, such as amino acids, ammonia, and
urea, for metabolism in the body (Aguirre-Villegas et al., 2017). The N emissions
from the livestock sector accounted for one-third of current human-induced N
emissions (Uwizeye et al., 2020). Dairy cows with high N use efficiency (NUE) not
only improve the profitability of dairy farms, but also reduce environmental N
pollution (Calsamiglia et al., 2010). The NUE is a complex trait involving multiple
features, such as N intake (NINT), milk true protein N (MTPN), and milk urea
nitrogen (MUN) (Chen et al., 2022). Milk urea concentration (MU) and MUN are the
most commonly used NUE proxies in dairy cattle management and genetic breeding
programs. The reason why MU (MUN) indirectly increases NUE is its strong
correlation with urinary N (Kauffman and St-Pierre, 2001).

The traditional definition of NUE in dairy cows is milk N out divided by NINT,
however, several shortcomings of this definition were shown in our latest article
(Chen et al., 2022). Recently, we proposed a new N efficiency index (NEI) that
considers both NUE and N pollution at the same time (Chen et al., 2022). The NEI is
a combination of NINT, MTPN, and MUN vyield (MUNY) being predicted by milk
mid-infrared (MIR). The genetic correlations between NEI and production yield traits
were positive, while the genetic correlation with the investigated functional traits were
negative (Chen et al., 2022). However, the biological background of NEI is still
missing. Although some studies have explained the biological background of MUNY
(or MUN) (Strucken et al., 2012; Honerlagen et al., 2021; Ariyarathne et al., 2021),
to our best knowledge, the biological backgrounds of NINT and MTPN have yet not
been investigated. In addition, some studies performed genetic analyses on minor N
compounds in milk (such as ammonia) and urinary urea (Pegolo et al., 2018;
Honerlagen et al., 2021). However, these phenotypes are difficult to measure and are
so far too challenging to be applied for dairy breeding purposes.

Multiple studies have shown that single-step genome-wide association study
(ssGWAS) is an efficient method for studying the genomic background of complex
traits (Li et al., 2019; Atashi et al., 2020; Brunes et al., 2021). Indeed, the SSGWAS
algorithm can directly obtain the SNP variance through the genomic EBV (GEBV),
allowing the estimation of the proportion of each SNP in the total additive genetic
variance (Wang et al., 2012). However, the variance effect of a single SNP is often
small, so itis a good way to express the proportion of genomic regions (SNP windows)
of several consecutive SNPs in the total additive genetic variance (Fragomeni et al.,
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2014). The functional analysis of genes inside the identified genomic regions can
better explain the genomic background of the research traits. For example, the gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of genes located in genomic regions associated with a trait can reveal the
biological process and pathway involved. Based on the genetic relationships between
NEI and other traits at different strength levels (Chen et al., 2022), we speculate that
the genetic region identified for NUE-related features may also regulate other traits.
In addition, previous studies reported that the quantitative trait loci (QTLs) of MUNY
were located on different chromosomes, showing the polygenic profile of this trait
(Bouwman et al., 2010; Strucken et al., 2012). Identified genomic regions can be
compared with the QTL (genomic regions) previously reported and checked for the
potential impact of genetic selection of NUE on other traits at the QTL level.

The objectives of this study were to investigate the genomic background of the NEI
and verify whether the NEI can reflect the combined three NUE-related features. In
this regard, ssSGWAS was used to identify genomic regions associated with NEI and
its composition traits; then, functional annotation analyses were performed on the
genomic regions identified for the corresponding traits.

2. Materials and methods
The study framework is shown in Figure 6-1.
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Figure 6-1. Workflow for the N efficiency index (NEI), the N intake in primiparous cows
(NINTZL), N intake in multiparous cows (NINT2+), milk true protein N in primiparous cows
(MTPNL), milk true protein N in multiparous cows (MTPN2+), milk urea N yield in
primiparous cows (MUNY1), and milk urea N yield in multiparous cows (MUNY2+)

117



Genetic analyses of different nitrogen use efficiency proxies for Holstein cows

2.1. Data

Phenotypic Data: the data used in this study was the same as that used by Chen et al.
(2022). Briefly, we used 1,043,171 test-day records, collected from 2001 to 2019 on
342,847 cows distributed in 1931 herds. The range of days in milk (DIM) for all used
records was restricted to between 5 and 50 because of the predicament of the NINT
model. The NINT of each cow was predicted by the equations based on the models
developed by Grelet et al. (2020). The following formulas were used to compute
MTPN = [ (Milk yield x Protein percentage / 6.38) — MUNY] and MUNY = [(Milk
urea concentration / 2.14) x Milk yield] (WHO and FAO, 2011) with protein
percentage and milk urea concentration also predicted by FT-MIR analysis of milk.
In addition, we divided the 3 NUE-related features (NINT, MTPN, MUNY) into
NINT1, MTPN1, MUNY1, NINT2+, MTPN2+, and MUNY2+ traits according to
primiparous and multiparous classes (2 to 5 parities). The pedigree related to the
dataset comprised 505,125 animals (17,797 males). Grelet et al. (2020) used support
vector machine regression to build a NINT prediction model based on milk MIR
spectra, milk yield, and parity. Milk MIR spectra of 53,660 cows from 776 herds were
available, and the number of NINT records was 143,595.

Genotypic data: Genotypic data was available for 6,998 animals (1,747 males and
5,251 females). Individuals were genotyped using the BovineSNP50 Beadchip v1 to
v3 (lllumina, San Diego, CA, USA). Single nucleotide polymorphisms (SNP)
common between all the three chips were kept. Non-mapped SNPs, SNP located on
sex chromosomes, and triallelic SNPs were excluded. A minimum GenCall Score of
0.15 and a minimum GenTrain Score of 0.55 were used to keep SNP (Wilmot et al.,
2022). The genotypes were imputed to HD by using FImpute V2.2 software
(Sargolzaei et al., 2014). One of the common editing steps for marker data (e.g. SNP)
is to check for Mendelian conflicts (Wiggans et al., 2009). A Mendelian conflict
occurs when the genotype and pedigree data of two related animals are in
disagreement. This may result from an error in the recorded pedigree, from genotyping
errors, from mixing up DNA samples and in very rare cases from mutations (Calus et
al., 2011). In this study, SNPs with Mendelian conflicts and those with minor allele
frequency less than 5% were excluded. The difference between observed
heterozygosity and that expected under Hardy-Weinberg equilibrium was estimated,
and SNPs difference greater than 0.15 were excluded (Wiggans et al., 2009). In total,
565,049 SNPs located on 29 Bos taurus autosomes (BTA) were used in the genomic
analyses.
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2.2. (Co)variance Components Estimation

In total, 143,595 test-day records on 53,660 cows for six traits extracted from the
whole dataset were used to estimate (co)variance components (Chen et al., 2022). The
pedigree of (co)variance components data included 133,943 animals (7,879 males),
and 4,563 (1,292 males) of them with genotype. A six-trait (six traits; 3 traits and 2
parity classes) repeatability model was used to estimate the variance components. The
information of the model can be found in Chen et al. (2022). In brief, herd-year-season
of calving, DIM, and calving age (nested within parities) were used as fixed effects in
this model, whereas non-genetic cow, non-genetic cow x parity (only for multiparous
traits), additive animal genetic, and residual were used as random effects. However,
when calculating the relationship between animals, we used the H matrix, which
combined pedigree(A) and genomic (G) relationships. The inverse of H as defined by
Aguilar et al. (2010):

0 0
H™ = A7+ [0 Gl —A;l
where A was the numerator relationship matrix based on the pedigree; Az was the
numerator relationship matrix based on the pedigree for genotyped animals; G was
the genomic relationship matrix which was obtained using the function described by
VanRaden (2008). In addition, it should be noted that the inverse of all matrices
considers the coefficient of inbreeding between individuals (Lourenco et al., 2020).

Computations were performed using the BLUPF90 family of programs (Misztal et
al., 2018). The (co)variance components and parameters for NINT, MTPN, and
MUNY were estimated by Gibbs sampling, which was same as the Chen et al. (2022).
The formulas used to calculate the parameters heritability (h?), repeatability, genetic
and phenotypic correlation) were the same as that of Chen et al. (2021).

2.3. Estimated Breeding Values and Nitrogen Efficiency Index

Using the above estimated genetic variance component and related model (equation
1), GEBV were estimated for 6 traits, according to the precondition conjugate
algorithm implemented in the BLUPF90 (version 1.71) program. The whole dataset
was used for this purpose. The calculation method of NEI was the same as Chen et al.
(2022). In short, The NEI was obtained by combining the GEBVs of the six traits
using the selection index theory. The relative weights of the six considered traits were
calculated by selection responses, which assumed that the selection responses for
NINT, MTPN, and MUNY were 0, 1, and -1, respectively.
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2.4. Genome-wide Association Analyses

The SNP effects for the NEI and six traits were estimated using the POSTGSF90
software (version 1.73; Aguilar et al., 2014). The formula used for estimating SNP
effects was as follows Wang et al. (2012):

a = DZ[Z,DZ;] 'u
where a is the SNP effect, D = I, which means the weight for all SNPs is 1; Z, was
an incidence matrix of genotyped for each SNP; ti was a vector of GEBV for each
trait of genotyped animals. The variance of i SNP is d; = a?2p;(1 — p;), Where a?
is the square of ith SNP solution, and p; is the frequency of allele B at SNP i. The
results were presented by the proportion of variance explained by each window of 50
adjacent SNPs with an average size of 240 Kb. We used 1 SNP as the moving step of
the window, which ensured that we do not miss genomic regions potentially
associated with the trait due to the combination of SNPs. The formula for the additive
genetic variance of each window was as follows:
)y 100 (%) = %00 (%)
a a

where a; is the genetic variance of the ith genomic region (each window combines 50
SNP), 2 is the total genetic variance, Zj is the vector of the SNP content of the jth
SNP for all individuals, and cij is the variance of the jth SNP.

Linkage disequilibrium (squared correlation coefficient, r?) was calculated for
SNPs within a window that explained more than 0.5% of additive genetic variance.

2.5. Functional Annotation Analyses

Following Soares et al. (2021), the top genomic regions were selected to investigate
candidate genes and their annotation. However, due to the large number of traits
considered and the small proportion of variance explained by genomic regions in the
current study, only the top-3 genomic regions were selected. Then, candidate genes
and QTL annotations were performed through the GALLO R package (Fonseca et al.,
2020).

Identification of protein-encoding genes located in these selected genomic regions,
using the Bos taurus UMD3.1.94 assembly as the reference map
(http://ftp.ensembl.org/pub/release-94/gtf/bos_taurus/, accessed on October 19, 2021).
The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were carried out on the candidate gene sets obtained for NEI and included
six traits through the clusterProfiler R package (Wu et al., 2021). Furthermore, the
protein-protein interaction (PPI) analysis was performed on the candidate genes
obtained from the analyzed traits through STRING (Szklarczyk et al., 2021) to reveal
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the relationship between the identified candidate genes. The PPI relationship was
based on text mining, experiments, database, co-expression, neighborhood, gene
fusion, and co-occurrence, and the minimum required interaction score was set to 0.4
(Zhou et al., 2019). Then, the Cytohubba in Cytoscape (version 3.8.2) was used to
find the hub genes. Based on the literature, GO, KEGG, and PPI, important candidate
genes were selected, hereafter referred to as key candidate genes. Moreover, we
checked the expression levels of the candidate genes (or key genes) over 100
tissues/cell types in cattle through the cGTEX database (https://cgtex.roslin.ed.ac.uk/;
Liu et al., 2022).

The top-3 genomic regions of the studied traits were annotated with Cattle QTLdb
(UMD3.1, https://www.animalgenome.org/cgi-bin/QTLdb/BT/inde, accessed on
October 19, 2021; Hu et al., 2019). At present, Cattle QTLdb has 158,041 QTLs,
which were divided into six classes including Exterior, Production, Health,
Reproduction, Milk, Meat, and Carcass (https://www.animalgenome.org/cgi-
bin/QTLdb/BT/ontrait?class_ID=1). To avoid the deviation caused by the annotation
richness of the different traits, the hypergeometric test approach was adopted for the
enrichment analysis (Fonseca et al., 2020). In all enrichment analyses (GO, KEGG,
QTL), the Benjamini-Hochberg method was used for multiple testing corrections.
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3. Results and discussion

3.1. Genetic Parameter

The genetic parameters estimated for the studied NUE-related traits were described
in Table 6-1, which were similar to our previous results without using genotypes
(Chen etal., 2022). The h? and repeatability for the six NUE-related traits ranged from
0.10 to 0.14, and 0.38 to 0.64, respectively. Compared with our previous study (Chen
et al., 2022), the change in the variance component ranged from —3.00% to 0.88%;
the absolute value of h? changed from 4.64% (MUNY1) to 8.81% (MUNY2+), and of
repeatability, from 0.36% (NINT2+) to 3.32% (NINT1). Therefore, it can be
concluded that including genotypic data in the variance components analysis showed
a minor impact and the studied NUE-related traits have low h? and medium
repeatability. Although we do expect the genotypes to capture a bit more variance that
increases the h?, especially for complex traits, the genotype population in this study is
small (n < 5,000) (de Los Campos et al., 2018), and substantial changes were not
observed.

Table 6-1. Heritability (h?), repeatability, additive genetic variance (¢2), across-parity
permanent environment (non-genetic cow) variance (¢2), (only for second and later
lactations) within parity permanent environment (non-genetic cow X parity) variance (¢%),
and residual variance (¢2%) of the proxies for predicted N intake (NINT, expressed as 100
g/day), milk true protein N (MTPN, expressed as 100 g/day), and yield of milk urea N
(MUNY, g/day) in primiparous (n = 44,321) and multiparous (n = 99,274) Holstein cows

Trait’ h? repeatability 02, a2 a2, 02
NINT1 0.13+0.01 0.38x0.01 0.03+0.002 0.06+0.00 NA3 0.14 £ 0.00
MTPN1  0.12+0.00 0.59+0.00 0.01+0.00 0.02=%0.00 NA 0.02 +0.00
0.14 +
1

MUNY1 . 0.01 040%£001 0.10+0.01 0.20+0.01 NA 0.45+0.01
NINT2+ 0.12+0.01 045+0.00 0.04+0.00 0.03+x0.00 0.08+0.00 0.17+0.00
MTPN2+ 0.10+0.01 0.64+0.00 0.01+0.00 0.01+0.00 0.03+0.00 0.03+0.00
MUNY2+ 0.10+0.01 043+0.00 0.16+0.01 0.13+0.01 040+0.01 0.93+0.01

Trait: NINT1 - N intake in primiparous cows; MTPN1 - milk true protein N in primiparous cows;
MUNY1 - Milk urea nitrogen yield in primiparous cows; NINT2 - N intake in multiparous cows;
MTPN2 - milk true protein N in multiparous cows; MUNY2 - Milk urea nitrogen yield in multiparous
COWs

2Standard error is less than 0.005

3NA: not applicable
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Figure 6-2. Additive genetic variance was explained by windows of 50 adjacent SNP across
chromosomes for the N efficiency index (NEI, A), the N intake in primiparous cows
(NINTZ1, B), N intake in multiparous cows (NINT2+, C), milk true protein N in primiparous
cows (MTPN1, D), milk true protein N in multiparous cows (MTPN2+, E), milk urea N yield
in primiparous cows (MUNY1, F), and milk urea N yield in multiparous cows (MUNY 2+,
G)
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3.2. Genome-wide Association Analyses

The Manhattan plot for the studied traits were shown in Figure 6-2. The top-3
genomic regions selected for the studied traits were shown in Table 6-2. The genomic
regions identified for NEI, NINT, MTPN, MUNY were in Bos Taurus autosome
(BTA) 11, 14; 8, 16, 22, 25, 26; 6, 14, 13, 18, 19; 6, 8, 11. Although the genomic
regions identified by the same feature in the two parity classes were not the same, the
genomic regions identified were similar, especially for MUNY. Soares et al. (2021)
found a similar situation when they studied clinical ketosis. The genomic regions
identified for NEI were also associated with MTPN and MUNY (except the third
region), which confirmed that NEI is affected by MTPN and MUNY. The identified
genomic regions explained from 0.17% (MTPN2+) to 0.58% (NEI) of the total
additive genetic variance.

The top-3 genomic region combined explained 1.18%, 0.75%, 0.73%, 0.58%,
0.59%, 0.96%, and 1.03% of the total additive genetic variance for NEI, NINT1,
NINT2+, MTPN1, MTPN2+, MUNY1, and MUNY 2+, respectively. Results showed
that most windows explained less than 0.50% of the total additive genetic variance of
the traits, and these low contributing regions spread across the genome for all traits
analyzed. It indicates that NEI and NUE-related traits are moderate to highly
polygenic, in which many regions across the genome contribute to the genetic
variation of the traits. Similar results were reported for MUNY by Strucken et al
(2012). It should be noticed that windows explained more than 0.50% of the total
additive genetic variance identified only for NEI, which means that NEI may reflect
interactive effects between MTPN and MUNY. The linkage disequilibrium for
genomic regions greater than 0.50% of the NEI was shown in Figure 6-3, with 5
blocks shown inside. We found that 38.89% (7/18) of the genes in the nitrogen
metabolism pathway (KEGG:00910) were located in BTA14 (27.63 to 79.73 Mb),
which included CA1, CA2, CA3, CA8, CA13, LOC784254, and LOC100847874. From
this point, only the genomic regions that explained the highest genetic variance of the
studied traits were discussed.
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Table 6-2. Annotated genes within the top-3 genomic regions explaining the biggest
proportion of genetic variance for N efficiency index (NEI)

Trait BTA! Position(bp)? Var® Genes*
ZNF7, COMMD5, ARHGAP39, C14H80rf82, LRRC24,
LRRC14, RECQL4, MFSD3, GPT, PPP1R16A, FOXH1,
KIFC2, CYHR1, TONSL, VPS28, SLC39A4, CPSF1,

NEI 14 1517553: 2089613 0.58 ADCKS5, SLC52A2, FBXL6, TMEM249, SCRT1, DGATL,
HSF1, BOP1, SCX, MROH1, HGH1, WDR97, MAF1,
SHARPIN, CYC1, GPAAL, EXOSC4, OPLAH, SPATCL,
GRINA, PARP10, PLEC

103264921

11 0.33 PAEP, GLT6D1, LCN9, KCNT1

103409247
. GML, LY6K, LY6D, LYNX1, LYPD2, SLURP1, THEMG,
14 2673388: 2978629 0.27 PSCA. ARC, ADGRBL

NINT1 26 9242669:9655433 0.30 PAPSS2, ATAD1, PTEN
8 103696313:103829659 0.24  SNX30, SLC46A2
22 55490915:55638639 0.20 SLC6A11

NINT2+ 16 75405390:75509546 0.28 IRF6, C16H1orf74, TRAF3IP3, HSD11B1
22 55490915:55638639 0.23 SLC6A11
26 9242669:9655433 0.21 PAPSS2, ATAD1, PTEN

MTPN1 6 88732184:88919352 020 GC
13 10175391:10315354 0.19 KIF16B
18  15797080:15884324 0.19 ITFG1

MTPN2+ 6 88732184:88919352 022 GC

19 22594096:22657020 0.20  NXN, MRM3, GLOD4, DBILS5;
ZNF7, COMMDS5, ARHGAP39, C14H80rf82, LRRC24,
LRRC14, RECQL4, MFSD3, GPT, PPP1R16A, FOXH1,
KIFC2, CYHR1, TONSL, VPS28, SLC39A4, CPSF1,

14 1517553:2089613 0.17 ADCKS, SLC52A2, FBXL6, TMEM249, SCRT1, DGATL,
HSF1, BOP1, SCX, MROH1, HGH1, WDR97, MAF1,
SHARPIN, CYC1, GPAAL, EXOSC4, OPLAH, SPATC1,
GRINA, PARP10, PLEC

MUNY1 11 103264921:103409247 0.41 PAEP, GLT6D1, LCN9, KCNT1
103694244:103828116  0.32  INIP, SNX30, SLC46A2
87136725:87296185 0.22  CSN1S1, CSN2, HSTN, STATH, CSN1S2

o o

MUNY2+ 11 103264921:103409247 039 PAEP, GLT6D1, LCN9, KCNT1

6 87145250:87311202 0.32 CSN1S1, CSN2, HSTN, STATH, CSN1S2
8 103696313:103829659  0.32  SNX30, SLC46A2
1. BTA = Bos taurus autosomes
2; Starting and ending coordinates of the genomic region
3: Var = percentage of genetic variance explained by the SNPs within the genomic region
4. Genes: EBSEMBL symbol of annotated genes using the Bos Taurus UMD3.1.94 assembly
(http://ftp.ensembl.org/pub/release-94/gtf/bos_taurus/)
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Figure 6-3. Linkage disequilibrium between 50 SNPs inside the genomic region on BTA14
position 1.52 to 2.09 Mb associated with nitrogen efficiency index

The genomic region between 1.52 to 2.09 Mb on BTA14 explained 0.58% of the
total additive genetic variance of NEI. This region has been reported to be associated
with milk yield by multiple studies (Nayeri et al., 2016; Atashi et al., 2020;
Bakhshalizadeh et al., 2021). At the same time, this region (BTA14: 1.52 to 2.09 Mb)
was also associated with protein and fat yields (Veerkamp et al., 2016; Cai et al., 2019).
This is in line with our prediction of improving NEI through milk true protein N. The
genomic regions between 9.24 to 9.66 Mb on BTA26 and between 75.41 to 75.51 Mb
on BTA16 explained the highest part of the total additive genetic variance of NINT1
and NINT2+, respectively. The SNP inside the genomic region found on BTA26
position 9.24 to 9.66 Mb were associated with milk yield, milk C14 index, and milk
myristoleic acid content (Minozzi et al., 2013; Gebreyesus et al., 2019). The genomic
region identified on BTA16 position 75.41 to 75.51 Mb was associated with the
residual feed intake and feed efficiency in cattle (Brunes et al., 2021). The genomic
region between 88.73 to 88.92 Mb on BTA 6 accounted for the highest total additive
genetic variance of MTPN1 and MTPN2+. This genomic region was associated with
protein yield and its composition (Olsen et al., 2016; Zhou et al., 2019). The genomic
region between 103.26 to 103.41 Mb on BTA11 was associated with MUNY1 and
MUNY2+. This region has been reported to be associated with MU in Brown Swiss
cattle (Pegolo et al., 2018), with MUN in Australian and New Zealand dairy cattle
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(van den Berg et al., 2022a). Ariyarathne et al. (2021), using the 50K SNP chip, found
that the position 100 to 101 Mb on BTA11 was associated with MU in mixed-breed
of cattle (Holstein Friesian (F), and Jersey(F), F x J crossbred). Previous studies
showed that the genomic region on BTA6 position 87 to 88 Mb was associated with
MU (Pegolo et al., 2018; Ariyarathne et al., 2021). This region was among the
identified top-3 genomic regions associated with MUNY. Previous studies reported
the genomic region between 6.12 to 7.15 was associated with MU yield (Honerlagen
et al., 2021; Strucken et al., 2012). The differences observed in the ongoing study can
be explained by the smaller number of cows used in their studies (i.e. 371 and 152,
respectively).

Briefly, the genomic regions identified for the studied traits were located on multiple
BTA and explained a small fraction of the total additive genetic variance, suggesting
these traits are complex quantitative traits controlled by multiple genes. Increasing the
SNP density in these genomic regions of NEI and six considered traits (especially
NINT and MUNY) when making the SNP chip may improve the reliability of
genetically selected for NUE. The NEI may better reflect NUE because it has a
prominent peak at BTA14, which is closer to genes related to nitrogen metabolism
pathways.

3.3. Gene Annotation Analyses

The results of gene annotation analyses are described in Table 6-2 and Figure 6-4.
There were no common candidate genes between NEI and NINT (Figure 6-4), which
is consistent with our hypothesis (keeping NINT unchanged). Surprisingly, there was
no common candidate gene between NEI and MTPN1, which could be that NEI only
increases the NUE of dairy cows through MTPN2+ in the first five parities. The
percent of common candidate genes for NEl and MTPN2+, MUNY ranged from 33%
to 89%.

Among the annotated candidate genes, DGAT1, GRINA, CYHR1, FOXH1, TONSL,
PPP1R16A, ARHGAP39, MAF1, OPLAH, MROH1, ZNF7, SLURP1, MAFA, KIFC2,
GML, PSCA, THEMG6, LYNX1, and ARC have been reported to be associated with to
305-d milk yield (Nayeri et al, 2016; Atashi, et al., 2020). The DGAT1 was also
reported as a gene associated with milk yield, fat, and protein percentages
(Bakhshalizadeh et al. (2021)). The CSN1S1, CSN1S2, CSN2, and PAEP have been
reported to be associated with milk protein composition (Sanchez et al., 2017; Pegolo
et al., 2018; Zhou et al., 2019). The BOP1 was associated with protein yield (Cai et
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al., 2019). Brune et al. (2021) reported that the MAF1 was associated with low animal
feed intake.

MUNY2+ 1 4(0.08) 2(0.33) 0(0) 0(0) 0(0)
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Figure 6-4. The number (percentage) of share genes among N efficiency index (NEI), N
intake in primiparous cows (NINT1), N intake in multiparous cows (NINT2+), milk true
protein N in primiparous cows (MTPN1), milk true protein N in multiparous cows
(MTPN2+), milk urea N yield in primiparous cows (MUNY1), and milk urea N yield in
multiparous cows (MUNY2+). PS: the upper left triangle is the number of candidate genes
for NEI as the denominator and the lower right triangle is the number of candidate genes for
traits as the denominator

The results of the GO enrichment analysis were presented in Supplement file 1. The
candidate genes identified for NINT1, NINT2+, MTPN1, MUNY1, and MUNY2+
enriched 33, 5, 3, 23, 28, and 28 GO terms, however, the candidate genes identified
for NEIl and MTPN2+ enriched no GO term. The 33 GO terms enriched by the NINT
only involve ATAD1, which was also identified as a candidate gene for dry matter
intake (Seré&o et al., 2013). The MTPNL1 got the 3 GO terms by GC, which encodes
the Vitamin D Binding protein. The GC gene was identified as being associated with
milk production, mastitis, and postpartum blood calcium concentration (Olsen et al.,
2016; Cavani et al., 2022). The 28 GO terms enriched of the MUNY through CSN1S1,
CSN1S2, CSN2, HSTN, and STATH. The first three genes (CSN1S1, CSN1S2, CSN2)
belong to CSN@ (casein cluster) family genes, which were identified as related to
o1 -casein, B-casein, and k-casein (Zhou et al., 2019). The HSTN was identified as
related to k-casein (Zhou et al., 2019), which also affected the B-casein and a,-casein
(Elsik et al., 2009). The STATH affected the B-casein (Rijnkels et al., 2003).
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Only MUNY1 and MUNY2 enriched 2 pathways: salivary secretion (bta04970) and
prolactin signaling pathway (bta04917) (Supplemental file 2). These pathways were
enriched by CSN2, HSTN, and STATH, and the 3 genes were explained the same as in
the GO analysis part. The salivary secretion impacts the feed intake in cattle (Taussat
et al., 2020). The salivary secretion also is associated with methane emissions in non-
lactating dairy cows (Pinares-Patifio et al., 2007). The prolactin signal regulates the
milk production and composition of dairy cows (Raven et al., 2014).

The internal gene interaction relationships of the candidate gene sets for NEI and its
composition traits were shown in supplementary file 3 (from Figure 6-S1 to 6-S5).
The PPIs for NEI, NINT1, NINT2+, MTPN1, MTPN2+, MUNY1, and MUNY 2+
were composed of 58 nodes and 188 edges, 11 nodes and 8 edges, 13 nodes and 9
edges, 8 nodes and 15 edges, 49 nodes and 156 edges, 17 nodes and 32 edges, 16
nodes and 41 edges, respectively. And the PPl enrichment P of NEI, MTPN, and
MUNY were less than 4 x 1.0E*. The NEI had a similar PPI to MTPN2+, which was
also similar to the PPI of dairy components (Bakhshalizadeh et al., 2021). This is
possibly caused by the candidate genes annotated in BTA14 1.52 to 2.09 Mb. Both
the PPIs of MUNY1 and MUNY2+ showed the protein network in the STRING
database (CL: 24892), which was composed of CSN1S1, CSN1S2, CSN2, CSN3, and
PAEP. The PAEP encodes B-lactoglobulin, and the first four genes encode casein. The
above 5 genes had been subject to long-term selection and changed their SNP
frequencies in the cattle (Kolenda and Sitkowska, 2021). The TOP-1 of hub genes for
NEI, NINT2+, MTPN1, MTPN2+, MUNY1, and MUNY2+ were MROH1, PTEN,
AHSG, MROH1, CSN1S1, and CSN2. However, the PPI of NINT1 didn’t have hub
genes. The MROH1, CSN1S1, and CSN2 affected the milk protein composition
(Sanchez et al., 2017). The activation of PTEN was not conducive to the lactation of
dairy cows and reduced the production of B-casein (Wang et al., 2014).

In short, NEI and MTPN were affected by genes that control milk yield and milk
production components, such as DGAT1, PPP1R16A, CYHR1, CPSF1, MROH1, GC,
and AHSG. The NINT was affected by ATAD1 and PTEN genes. The MUNY was
affected by genes that control the production of casein (CSN1S1, CSN1S2, CSN2,
CSN3, HSTN, STATH, and PAEP) and was related to the salivary secretion (bta04970).
The expressions of the 16 key candidate genes involved in the cattle tissues were given
in Supplemental file 4, and these genes were mainly expressed in milk cell, mammary,
and liver tissues. The results of these genes and their high-expression tissue locations
can be used for future studies on the genetic mechanisms of NUE.
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3.4. QTL Annotation for Select Genomic Regions
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Figure 6-5. The number (percent) of enrichment QTLs among N efficiency index (NEI), N
intake in primiparous cows (NINT1), N intake in multiparous cows (NINT2+), milk true
protein N in primiparous cows (MTPNZ1), milk true protein N in multiparous cows
(MTPN2+), milk urea N yield in primiparous cows (MUNY1), and milk urea N yield in
multiparous cows (MUNY2+). PS: the upper left triangle is the number of candidate genes
for NEI as the denominator and the lower right triangle is the number of candidate genes for
traits as the denominator

NINT1 0(0)

02

MNEI 0(0) 0(0)
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The number of previously reported QTLs located in the identified genomic regions
for the studied traits were described in Supplemental file 5 (Figure 6-S6). The
proportion of selected QTLs in the QTL classification and the top-10 QTL of the milk
class were in Supplemental file 5 (from Figure 6-S7 to 6-S13). But different traits had
a different number of annotation studies, which made bias for annotation results
(Fonseca et al., 2020). Therefore, based on the annotated QTLs, the enrichment
analyses on NEI and the six studied traits. The number and class of significantly
related QTLs were shown in Figure 6-5 and Figure 6-6. The percentage of common
significant QTLs of NEl and MTPN1, MTPN2+, MUNY1, MUNY 2+ were 3%, 33%,
11%, and 12%, respectively, which is also similar to our results of constructing NEI
and annotating genes. The significant QTLs of NEI and MTPN were only distributed
in milk, health, and production classes, except that the MTPN1 had one QTL in the
exterior class. If the NEI was used in genetic selection, it means that NEI will affect
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these three trait classes, which is consistent with the genetic correlations between NEI
and the traits (Chen et al., 2022). The significant QTLs annotated by NINT were
distributed in the milk and production class. The significant QTLs annotated by
MUNY were distributed in 4 classes of QTL, which may indicate the complexity of
MUNY.

MTPN2+

Figure 6-6. The number of enrichment QTLs class among N efficiency index (NEI), N
intake in primiparous cows (NINT1), N intake in multiparous cows (NINT2+), milk true
protein N in primiparous cows (MTPNZ1), milk true protein N in multiparous cows
(MTPN2+), milk urea N yield in primiparous cows (MUNY1), and milk urea N yield in
multiparous cows (MUNY2+).PS: QTLs classes were defined by cattle QTL database
(https://www.animalgenome.org/cgi-bin/QTLdb/BT/ontrait?class_ID=1)

The top-10 QTLs after QTL enrichment analysis of the studies traits were shown in
Supplemental file 6 (from Figure 6-S14 to 6-S20). The most significant related QTLs
for NEl and MTPN2+ were those reported for milk yield which is located on BTA14.
This genomic region on BTA14 position 1.52 to 2.09 Mb has been reported to be
associated with milk production (Nayeri et al.,, 2016; Atashi et al., 2020;
Bakhshalizadeh et al., 2021). We also found the lifetime profit index was related to
the NEI, which explained the lifetime profit index related to the BTA14 1.6 to 1.8 Mb
genomic regions (Nayeri et al., 2017). The most significant QTL for MTPN1 was also
associated with clinical mastitis and located on BTA6 position 88.73 to 88.92 Mb
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(Olsen et al., 2016, Freebern et al., 2020). The most significant QTL for NINT1 and
NINT2+ has also been associated with the milk C14 index. The C14 index was
identified as related to the genomic region (from 14.9 to 24.9 Mb) on BTA26 (Li et
al., 2015), which was similar to the NINT (BTA26 position 9.24 to 9.66 Mb). The
most significant correlation QTL for MUNY1 and MUNY2+ was milk beta-
lactoglobulin percentage, which may be because BTA11 103.26 to 103.41 Mb was
simultaneously reported to be related (Sanchez et al., 2017). The BTA11 position
103.26 to 103.41 Mb also was associated with MU and milk protein components
(Ariyarathne et al., 2021; Pegolo et al., 2018). The BTA17 identified by MUNY had
also been reported to be related to MU yield and Milk N (Honerlagen et al., 2021).
Other studies had reported that the QTLs of MUNY were located on BTA3, BTAG,
and BTA21 (Bouwman et al., 2010; Strucken et al., 2012).

In summary, the related QTLs of NEI were mainly reported for milk yield, fat, and
protein composition. The related QTL of NINT was reported for the milk C14 index.
The related QTLs of MTPN1 and MTPN2+ were related to clinical mastitis and milk
yield, respectively. The related QTLs of MUNY were reported for protein
composition.

The traits in this study were all related to traits predicted by milk MIR. The effect
of using traits predicted from milk MIR has disadvantages and advantages for the
impact on GWAS results. The disadvantage is that like other predictive traits, the
accuracy of the prediction equation can have a large impact. If the accuracy of the
prediction equation is very low, it may result in GWAS not working on the traits we
want. The advantage of milk MIR prediction traits is that they can be predicted
cheaply and at a large scale. Large-scale data are useful to overcome the problem of
inaccurate GWAS results from small samples. Recently, van den Berg et al. (2022b)
showed that using the blood urea nitrogen predicted by MIR increased the power of
GWAS results. In total, we believe that the use of predictive traits with high accuracy
facilitates the results of GWAS. In addition, there is no effect of weighted ssGBLUP
on the ssGWAS results of this study under the condition of 50K chip data (detailed
results not shown), which is consistent with other recent studies (Aguilar et al., 2019;
Cesarani et al., 2021). One of the explanatory reasons for this result is that no SNP
had a large effect on the traits studied.

4. Conclusions

This study explained the genetic background of NEI and its composition traits that
can be used in dairy cattle breeding, and provides 16 key candidate genes influencing
the genetic mechanism of NUE traits, which are mainly expressed in milk cell,
mammary, and liver tissues. The NEI not only can reflect the six studied NUE-related
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traits but also can reflect the interaction between them, because only the NEI has a
prominent peak at BTA14 explaining more than 0.50% of the total additive genetic
variance. Furthermore, the NEI may be more representative of NUE because the
genomic regions most associated with it are closer to genes in the nitrogen metabolism
pathway.
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