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Abstract—To decrabonise the entire energy system, introduc-
tion of large shares of variable renewable electricity generation
will be needed. Long term energy system planing models are use-
ful to improve the understanding of the decarbonisation pathways
but struggle to take into the account the short term variations
associated with the increased penetration of variable renewables.
This can generate misleading signals regarding the levels of
flexibility required in the system. This paper addresses this gap
by a innovative bi-directional soft-linking methodology between
a long term whole-energy system planing model (EnergyScope)
and a multi-sectoral unit commitment and power dispatch model
(Dispa-SET). The proposed methodology assesses the integration
of short term variability, sizes the flexibility needs and analyses
its strengths, limitations and applicability. Results of this study
show that convergence criteria of the bi-directional soft-linking
are met within two iterations meaning that the newly proposed
system is stable and reliable.

Index Terms—Bi-directional soft-linking, EnergyScope, Dispa-
SET, Integrated energy systems, Low carbon energy systems

I. INTRODUCTION

One important challenge of the transition to a low-carbon
energy system is integration of variable renewable energy
sources (VRES). Capturing the techno-economical challenges
related to a large-scale penetration of VRES, therefore, re-
quires accurate modelling of: i) the variability of renewable
generation ii) the system load variability due to cross-sectoral
interactions, and iii) limited flexibility of thermal units. This
requires models with a high level of technical, temporal
and spatial granularity. According to [1], long-term Energy
System Optimisation Models (ESOM) are frequently applied
to analyse scenarios that check the evolution of the energy
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system, usually over multiple years or decades. However, due
to computational restrictions, the level of technical, temporal
and spatial detail in these models is relatively low (i.e. typical
days approach in combination with limited operational and
geographical constraints). In contrast, operational power sys-
tem models, also known as Unit Commitment and Economic
Dispatch (UCED) models focus on highly detailed short-term
operations of the energy system and do not consider the long-
term evolution. To breach the gap between both paradigms,
two main solutions have been identified: Soft-linking and In-
tegrated modeling [2]. The soft-linking methodology is further
divided into the uni-directional and bi-directional approaches.

The integrated modeling approach, also referred to as hard
linking, directly improves one or more areas of interest inside
the ESOM. According to [3], ESOM models usually overlook
the impact of VRES intermittency on system operations due to
the computational burden associated with large model size and
long planning horizon. In order to address this issue, authors
utilize constraints borrowed from UCED models and integrate
them directly into a long-term system planning model. This
approach does guaranty the spatial and to a certain extent
technical optimality. However, computational tractability still
imposes to keep the number of considered time slices low,
which fails to address the temporal dimension of the problem.

Uni-directional soft-linking is a technique where the out-
puts of ESOM are used as inputs of and UCED model
which post-checks the adequacy and flexibility of the pro-
posed system. A uni-directional soft-linking approach, first
proposed by [4], that investigates the power system in high
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technical and temporal detail for a target year by soft-linking
the PRIMES and PLEXOS models was analysed by [5]. A
similar uni-directional soft-linking framework between the
JRC-EU-TIMES and Dispa-SET models was carried out in
a multi-sectoral context in [6]. This approach provides new
insights into system adequacy which are not possible using
a single model approach. The increased accuracy provided
by such framework relates to VRES generation, curtailment,
congestion, wholesale electricity pricing and capacity factors,
all variables directly impacting the costs and stability of the
system as a whole.

In a bi-directional soft-linking approach (i.e. with feedback
loops), significant differences in dispatch results from both
models are expected. This was illustrated by [7] where system
adequacy of the system proposed by the TIMES, an ESOM
model, was assessed with ANTARES, an power system only
UCED model. Feedback loops were based on capacity credit
estimation and convergence was guaranteed within 7 iterations.
The strengths and limitations of the proposed methodologies
is presented in “Tab. I”.

TABLE I
TABULAR COMPARISON OF MODELLING METHODOLOGIES
Methodology | Strengths Limitations
Uni- Operational costs, fuel | UCED model in addition
directional consumption, emissions to ESOM, does not in-

soft-linking

High temporal and techni-
cal detail

crease the optimality of
the solution

Bi-
directional
soft-linking

Increased optimality of
the solution, lower com-
putational cost than inte-
grated model

UCED model in addi-
tion to ESOM, optimality
and convergence can’t be
guaranteed

Integrated
modeling

Optimality can be guaran-
teed

Hight computational in-
tensity

The novelty of this paper can be summarized as follows:

« Development of a multi-sectoral and
bi-directional soft-linking platform between ESOM
and UCED models and its application to two open-
source models (EnergyScope' [8] and Dispa-SET?)

o Fast convergence of the two models (within 2 iterations)
in both convergence criteria, the energy not served (ENS)
and optimality criterion.

II. METHODOLOGY

This section describes the bi-directional soft-linking
methodology that aims to better capture the techno-economic
challenges related to the integration of high shares of VRES.
It highlights the strengths and limitations of individual models
and builds upon them.

In the proposed approach, the energy system designed by
the ESOM is used as input for UCED model, which then
recomputes system operation using a higher level of technical,
temporal and spatial detail. The output data from the UCED
model is used to readjust certain parameters of interest or/and

2EnergyScope https://energyscope.readthedocs.io/en/latest/
’Dispa-SET http://www.dispaset.eu/en/latest/

to add additional constraints to the ESOM. Both models
are executed in an iterative procedure until a certain level
of convergence between them is obtained. According to [5],
this methodology poses additional difficulties, i.e., modellers
expertise, but the final outcome moves closer to the global
optimum, i.e., the solution that could have been found if the
ESOM was solved with higher spatial, technical and temporal
resolution. The added value of a bi-directional soft-linking is
the increased accuracy of the results. Literature suggests [9]
that the discrepancy between the ESOM and UCED models
is higher with the increased penetration of VRES. Hence, the
more emissions are reduced, the more essential this coupling
approach becomes.

The developed bi-directional soft-linking methodology re-
lies on a rather long list of variables continuously exchanged
between the models. The upcoming sections only describe
the most important set of rules and variables. The step-by-
step (SBS) bi-directional soft-linking methodology used in this
analysis is presented as follows:

1) Definition of a shared database, i.e., common inputs used
by both ESOM and UCED models, such as time series
in form of VRES availability, power/heating and other
demands, and overlapping costs.

2) Selection of ESOM parameters (time-horizon, pathway,
image) and scenario definition (green house gas (GHG)
limit, renewable targets, resources availability etc.).

3) Execution of ESOM.

4) Extraction of the capacity mix, fuel and carbon prices
to populate the UCED model. Inclusion of technical
parameters such as start-up and shut-down times and
costs, ramping rates, minimum on and off times, partial
load etc.

5) Executing the UCED model in an iterative loop with the
stop condition trigger.

6) Compare results between both models and identify dif-
ferences in terms of adequacy and flexibility of the
system.

7) Compute the modelling accuracy and modelling errors
and check if the stop condition is satisfied. If not,
continue to the next step, otherwise, stop the iterative
process and save the results.

8) Use the insights gained from the results comparison to
introduce additional constraints (i.e. additional reserve
requirements, capacity margin, VRES curtailment etc.)
into the ESOM. Repeat the procedure starting from point
3) and continue until the stop condition is met.

A simplified summary of the proposed bi-directional soft-
linking methodology is presented in “Fig. 1”.

The stop conditions of the iterative is defined by the
following rule: the convergence error between both models
is lower than the numerical accuracy of the UCED model.
This accuracy is arbitrarily defined as the one provided by the
Optimality Gap of the MILP method:

Accuracy, = OptimalityGap - ObjectiveFunction, (1)
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Fig. 1. Bi-directional soft-linking between ESOM and UCED models. During
the initialization, only model A is executed. During the iterative procedure
models B and C are executed consecutively until the stop condition is met
(i.e. system adequacy lies within the initially-defined targets)

where OptimalityGap represents the difference between
the incumbent solution in mixed integer programming and a
value that bounds the best possible solution of the objective
function (%), and ObjectiveFunction, stands for the total
operational system costs of the rolling optimization horizon z
of the UCED model (EUR).

The convergence error between both models can be captured
through several variables relating to system adequacy. First, the
amount of ShedLoad; (i.e. the reduction of demand when the
offer is insufficient), accompanied by LostLoad; (i.e. a purely
mathematical high cost variable used to avoid optimization
infeasibilities in the UCED model when load shedding is
bounded) and SlackLoad; (analogous variable to lost load,
but for non-electricity sectors such as gas and heating). ENS is
equal to the sum of these three variables. Since these variables
are null in the ESOM model, the modelling error in rolling
horizon z of the UCED model is defined as follows:

Error, = Z ShedLoad; - CostLoadShedding

7

+ Z LostLoad; - CostLostLoad )
+ Z Slack; - CostSlack

where CostLoadShedding is the price of load shedding
(= 103 EUR/MWh), CostLostLoad is an arbitrarily high
price of lost load (=~ 10> EUR/MWh) and CostSlack is an
arbitrarily high price for unserved energy in other sectors than
electricity (= 105 EUR/MWh). The price of slack is set to
be the highest to force the lack of energy in the electricity
sector only. This modelling approach ensures that the volumes
in non-electricity sectors are the same in both ESOM and
UCED models. This lumps various system adequacy indicators
into one single variable used as the objective function of the
iterative process. The stop condition is defined as follows:
J+1
stop,

>
StopCondition = { Error% = Accuracys
otherwise
3

where j indicates the active loop inside the iterative proce-
dure.

Another important part of the coupling methodology is the
integration of new adequacy constraints inside the ESOM. A
new fictive demand, i.e. reserve or system balance demand,
is added on top of the existing electricity demand. The
operational constraints inside ESOM, i.e. constraints related
to the power balance and state of charge of storage units, are
duplicated and solved at each time step without additional
operational costs. This forces the model to install new assets
whose capacity is high enough for covering the fictive demand.
This demand is imposed to the model exogenously during the
initialization phase. Once the iterative procedure is executed,
the feedback from the UCED model improves the design and
adequacy of the whole energy system. This adapted version
of EnergyScope and the data used can be found on Github?.

III. CASE STUDY

The proposed bi-directional soft-linking methodology is
applied on a low-carbon Belgian energy system for the target
year 2035 as proposed by [10]. For the purpose of this
study, the extended and updated version of EnergyScope which
includes the non-energy demands was used [11]. Majority
of input data was revised to account for the latest develop-
ments inside the Belgian energy system. Increased techno-
economical and operational detail of individual generation
technologies (i.e. partial load, ramping rates, minimum on/off
time, start-up/shut-down time, CHP-type and associated costs)
which complement the outputs from EnergyScope are included
into Dispa-SET and are elaborated in more detail in [6].
Reserve sizing is based on the probabilistic methodology used
by various European TSO’s and is further elaborated in [12].

Convergence of the soft-linking between EnergyScope and
Dispa-SET models will be tested under three cases: a reference
scenario and two carbon constrained scenarios. In the refer-
ence scenario, the evolution of the Belgian energy system is
unconstrained (i.e. commodities such as oil and gas can be
imported and no carbon emission policies are considered). In
the first low-carbon scenario the carbon emission reduction of
70% compared to 2015 is analysed (i.e. 37.5Mtco, ., /y)- In
the second low-carbon scenario a reduction of 90% compared
to 2015 (i.e. 12.5Mtco, ., /y) is analysed. All three scenarios
underline the iterative evolution of the system design.

IV. RESULTS AND DISCUSSION

The results from the second low-carbon scenario are anal-
ysed and discussed in this section. The entire analysis revolves
around comparing the outputs from the stand alone version of
EnergyScope model (No Reserve), with the version where an
exogenous reserve demand is included (Initialization) and the
different soft-linking iterations (Iteration x). The accuracy of
the proposed bi-directional soft-linking methodology, includ-
ing the stop-condition is presented in “Fig. 2”. The accuracy
of the modelling framework as well as the overall system
reliability increases with each iteration until final convergence
between both models is reached. The proposed modelling

3https://github.com/energyscope/EnergyScope_coupling_Dispa_set/tree/ES-
DS_PAC2022
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Fig. 2. Evolution of modelling accuracy of Dispa-SET model inside individual rolling horizon loop (top left) and ENS (bottom left) over each iteration and
accompanying shadow prices in the No Reserve and Iteration 2 step of the soft-linking framework

framework ensures a quick convergence between the two
models within two iterations. The total computation time,
No reserve and Initialization steps included, on an Intel(R)
2.90GHz Xeon(R) E-2186M with RAM 32GB took around 45
min. 87% of the CPU time was spent on the dispatch model
with a rolling horizon (The optimization problem is split into
smaller ones that are run recursively throughout the year) of
3 days.

The proposed framework reaches convergence after 2 it-
erations. At the end, the whole-energy system has a total
cost of 49.68 Bn.EUR/y which represents an increase of
0.46% compared to initial EnergyScope run (emission costs
included). This increase is mainly due to increased size of
Combined Cycle Gas Turbine (CCGT) and seasonal thermal
storage in the district heating network zone (ES_DHN). The
annualized investment and maintenance cost increases by 232
Mil.LEUR/y and 25 Mil.EUR/y respectively.

Fig. 3 presents the evolution of installed capacities and
capacity factors of different power generation technologies.
As the emission cap is very low, renewable technologies are
always installed to their maximum potential. They produce
58.8% of the electricity mix, knowing that the mobility and
heat demands are electrified inducing at total electrical demand
of 177.7 TWh.

The entire energy system can cope with the intermittency
of renewable energy sources in three different ways: (i) back-
up generation (e.g. a CCGT, a industrial gas cogeneration),
(ii) storage (e.g. pumped hydro storage), and/or (iii) sector-
coupling possibilities from other sectors such as electric vehi-
cle batteries or thermal storage. Fig. 3 and Fig. 4 present the
evolution of the size of those assets participating to flexibility
on the electricity grid.

The size of the CCGT needed is underestimated during
the initial ESOM run (No Reserve in Fig. 3). After soft-

linking, The CCGT capacity increases from 11.4 GW to 14.7
GW. However, its yearly production stays roughly the same
and totals 39.7 TWh which induces a reduction of the load
factor. Hence, this additional capacity is installed only to
ensure reliability of the system and cover extreme events. The
industrial gas cogeneration, on the contrary, doesn’t change in
size. As it is linked with the industrial heat demand, it is less
flexible and behaves more like a baseload load technology.
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Fig. 3. Evolution of the installed capacity (left) and capacity factor (right) of
electricity assets (Abbreviations: Photovoltaic Panels (PV), Combined Cycle
Gas Turbine (CCGT), Industrial (ind.), Cogeneration (Cogen.))

Fig. 4 illustrates the evolution of the installed storage
capacity throughout the iterations. The only seasonal storage
installed is the thermal storage on the ES_DHN. As it is
seasonal, its size is 1 or 2 order of magnitudes larger then
other thermal storage units connected to industrial (ES_IND)
and decentralized (ES_DEC) zones, which are used as daily
buffers. After successful soft-linking the size of seasonal stor-
age increases by 46.7% compared to the initial EnergyScope
run. Seasonal storage related to power-to-gas (i.e. hydrogen
sector) does not seem to be cost-effective and is neglected by
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the models. This is due to the specific case study of Belgium
where the total demand of all energy sectors outscales the
renewable potential. Hence, there is not enough power for
electrolysers to be profitable. This bi-directional soft-linking
methodology will be validated on another case study with
higher renewable energy potential in future works.

Thermal sto. DHN seasonal
Thermal sto. dec.

Electric vehicle batt. I
Thermal sto. high temp.

H2 storage

No reserve
B Initialization
I (teration 1
EEm teration 2

Pumped hydro sto.
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0 500 1000 1500 2000

Capacity [GWh]

2500 3000 3500

Fig. 4. Evolution of the installed capacity of storage assets (Abbreviations:
Storage (sto.), District Heating Network (DHN), Batteries (batt.), Decen-
tralised (dec.), Temperature (temp.))

The framework is set up in such a way that CostShedLoad
is lower than the three ENS cost variables related to the
electricity, heating and Hs sectors. This strategy is designed
to reduce the complexity of the problem and allows easier
and more intuitive monitoring of potential bottle-necks inside
the multi-sectoral energy system. For example, if the initial
installed capacity is undersized in the heating sector, this lack
of capacity will manifest itself in the electricity sector only,
which will activate all the power-to-heat units available, even if
this causes load shedding. Fig. 2 also presents the evolution of
shadow prices (i.e. the dual values of energy balance equations,
also known as marginal heat or electricity prices) in the
initial (No Reserve) and final (Iteration 2) step of the soft-
linking method. In the initial No Reserve iteration, shadow
prices are high in the ES_ELE sector, indicating the potential
lack of capacity. If the proposed system is undersized, the
optimization error is smaller than the optimization accuracy
and total ENS is greater than O the stop condition of the
soft-linking platform is triggered. After the convergence in
Iteration 2, system adequacy is sufficient and Shadow prices
are within the expected range. In the ES_DHN zone, prices
remain exceptionally high, especially during the winter season,
however, as there is enough capacity to cover the heating
demand even during the peak hours, system is adequately sized
and stop condition criterion is met.

V. CONCLUSION

In this article a bi-directional soft-linking framework for
the assessment of sector-coupling options in future energy
system is proposed. It is applied to the Belgian 2035 energy
system with a cross-sectoral representation and high time-
resolution. The proposed data sources, methods and models
are released under the open license to ensure reproducibility

and transparency of the work and can be freely downloaded
from Zenodo repository*. In order to quantify the outcomes of
the bi-directional soft-linking framework, three scenarios were
defined.

Simulation results indicate that the proposed modelling
framework ensures fast convergence within 2 iterations. Fur-
thermore, results also show that, after successful soft-linking,
the system reliability of the proposed system increases and
VRES curtailment decreases.

Future work will extend the spatial coverage of the method-
ology by testing it on a multi-nodal case study where regional
energy systems are allowed to communicate and exchange
commodities. The representation of sector coupling will also
be further improved, allowing higher penetration of renewable
energy which trigger exchanges with other sectors such as
renewable fuels and hydrogen.
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