
Graphical Loop Invariant Based Programming

Géraldine Brieven1[0000−0003−1410−1470], Simon Liénardy1[0000−0001−9081−4726],
Lev Malcev1[0000−0002−5259−4336], and BenoitDonnet1[2222−−3333−4444−5555]

Université de Liège, Montefiore Institute, Liège, Belgium

Abstract. This paper focuses on a programming methodology relying
on an informal and graphical version of the Loop Invariant for building
the code. This methodology is applied in the context of a CS1 course in
which students are exposed to several C programming language concepts
and algorithmic aspects. The key point in the course is thus to imagine a
problem resolution strategy (the Graphical Loop Invariant) prior to writ-
ing the code (that becomes, then, reasonably easy once relying on the
Graphical Loop Invariant). This paper exposes the rules for building a
sound and accurate Graphical Loop Invariant as well as the programming
methodology. As such, our programming methodology might be seen as
a first step towards considering formal methods in programming courses
without making any assumption on students mathematical background
as it does not require to manipulate any mathematical notations. The
paper also introduces an integrated learning tool we developed for sup-
porting the Graphical Loop Invariant teaching and practice. Finally, the
paper gives preliminary insight into how students seize the methodology
and use the learning tools for supporting their learning phase.

Keywords: Loop Invariant · Graphical Loop Invariant · Graphical Loop
Invariant Based Programming · Glide · Café

1 Introduction

This paper proposes and discusses a graphical methodology, based on the
Loop Invariant [13,17], to help students in efficiently and strictly programming
loops. This methodology is applied in the context of an Introduction to Program-
ming (i.e., CS1) course alternating between specific C programming language
concepts and algorithmic aspects. In particular, the course aims at introducing
to first year students basic principles of programming. The concept of a correct
and efficient algorithm is highlighted, in the context of a strict programming
methodology. Typically, an algorithm requires to write a sequence of instruc-
tions that must be repeated a certain number of times. This is usually known
as a program loop. The methodology we teach for programming a loop is based
on an informal version of the Loop Invariant (a program loop property verified
at each iteration – i.e., at each evaluation of the Loop Condition) introduced by
Floyd and Hoare [13,17]. Our methodology consists in determining a strategy
(based on the Loop Invariant) to solve a problem prior to any code writing and,
next, rely on the strategy to build the code, as initially proposed by Dijkstra [11].

2 G. Brieven et al.

As such, the Loop Invariant can be seen as the cornerstone of code writing.
However, the issue is that it relies on an abstract reflection that might confuse
students who may not have the desired abstract background, specially if the Loop
Invariant is expressed as a logical assertion. This is the reason why, according to
Astrachan [1], Loop Invariants are usually avoided in introductory courses.

That statement is consolidated by much research [20,22] showing that teach-
ing CS1 is known to be a difficult task since, often, students taking a CS1 class
encounter difficulties in understanding how a program works [27], in designing
an efficient and elegant program [10] (conditionals and loops have proven to be
particularly problematic [8]), in problem solving and mathematical ability [22],
and in checking whether a program works correctly [5]. Morever, in our context,
due to the large variety of students entering the CS1 program in Belgium1, we
cannot make any assumptions about a first year student’s background.

To ensure students follow a strict programming methodology despite their
(potential) gaps, we propose a Graphical Loop Invariant (Gli). The Gli in-
formally describes, at least, variables, constant(s), and data structures handled
by the program; their properties; the relationships they may share, and that
are preserved over all the iterations. The goal behind is to generalize what the
program must have performed after each iteration. In addition to natural advan-
tages of drawings [15,25,26], the Gli allows the programmer to visually deduce
instructions before, during, and after the loop. That approach forges abstraction
skills without relying on any mathematical background and lays the founda-
tions for more formal methods where the Gli stands as an intermediate step
towards a final formal Loop Invariant (being a logical assertion). Our program-
ming methodology is supported by an integrated tool called Café.

The remainder of this paper is organized as follows: Sec. 2 presents the Gli
and how to construct it; Sec. 3 discusses the programming methodology based
on the Gli; Sec. 4 introduces the integrated tool for supporting the Gli teaching
and practice; Sec. 5 presents preliminary results on how students seize the Gli;
Sec. 6 positions this paper with respect to the state of the art; finally, Sec. 7
concludes this paper by summarizing its main achievements and by discussing
potential directions for further researches.

2 Graphical Loop Invariant

2.1 Overview

A Loop Invariant [13,17] is a property of a program loop that is verified (i.e.,
True) at each iteration (i.e., at each evaluation of the Loop Condition). The
Loop Invariant purpose is to express, in a generic and formal way through a
logical assertion, what has been calculated up to now by the loop. Historically,
the Loop Invariant has been used for proving code correctness (see, e.g., Cormen
et al. [9] and Bradley et al. [6] for automatic code verification). As such, the Loop
Invariant is used “a posteriori” (i.e., after code writing).
1 in which open access to Higher Education is the general rule, with some exceptions.

Graphical Loop Invariant Based Programming 3

On the contrary, Dijkstra [11] proposed to first determine the Loop Invariant
and then use it to deduce the code instructions. The Loop Invariant is there-
fore used “a priori”. Our methodology differs from Dijkstra’s as we propose to
represent the Loop Invariant as a picture: the Graphical Loop Invariant (Gli).
This picture must depict the variables, constants, and data structures that will
appear in the code, as well as the constraints on them; the relationships they
may share, and that are conserved all over the iterations. To illustrate the Gli,
a very simple problem is taken as example throughout the paper :

Input : Two integers a and b such as a < b
Output : the product of all the integers in [a, b]

Fig. 1a shows how the problem should be solved through the corresponding Gli.
We first represent the integers between the boundaries of the problem (a and b)
thanks to a graduated line labelled with the integers symbol (Z). It models the
iteration over all the integers from a to b. Then, to reflect the situation after a
certain number of iterations, a vertical red bar (called a Dividing Line) is drawn
to divide the integer line into two areas. The left area, in blue, represents the
integers that were already multiplied in a variable p (p is thus the accumulator
storing intermediate results over the iterations). The right area, in green, covers
the integers that still have to be multiplied. We decide to label the nearest integer
at the right of the Dividing Line with the variable i that plays the role of the
iterator variable in the range [a, b]. Of course, the variables i and p must be
used in the code. In the following, based on seven rules (see Fig. 2) and pre-
defined drawing patterns (see Sec. 2.3), we provide a methodology for easing the
building of a correct Gli (see Sec. 2.2). Then, Sec. 3 details how to deduce code
instructions from a Gli manipulation, based on this example.

Z

a a+ 1 . . . i− 1 i . . . b b+ 1

already multiplied in p to be multiplied

(a) Graphical Loop Invariant.

a ≤ i ≤ b+ 1 ∧ p =

i−1∏
j=a

j.

(b) Formal Loop Invariant.
Fig. 1. Loop Invariant for an integer product between two boundaries.

It is worth noticing here that playing with a graphical version of the Loop
Invariant allows students to learn applying formal method programming without
manipulating mathematical notations. Indeed, Fig. 1b provides the formal Loop
Invariant corresponding to the Gli depicted in Fig. 1a (with the same color
code). Producing such a predicate may appear harder to students as it requires
to use Mathematical notations (such as

∏
) with free (i, a, and b) and bound (j)

variables. Therefore, the Gli and its usage in code construction might be seen
as a first step towards learning and using formal methods in programming.

2.2 Constructing a Graphical Loop Invariant

Finding a Loop Invariant to solve a problem may appear as a difficult task.
There are multiple ways to discover a Loop Invariant: e.g., by induction, by

4 G. Brieven et al.

Fig. 2. Designing a Gli step-by-step, from the problem output.

working from the precondition, or by starting from the postcondition. For our
course, we rather explain to students how to apply graphically the constant
relaxation technique [14], i.e., replacing an expression (that does not change
during program execution – e.g., some n) from the postcondition by a variable
i, and use i = n as part or all of the Stop Condition. To help students across
that abstract process, we provide seven rules they should apply when searching
for a sound and accurate Gli, as illustrated through Fig. 2. Those rules are
categorized into two main categories: (i) syntax (i.e., focusing on the drawing
aspects only – Rule 1→ Rule 4), (ii) semantic (i.e., focusing on the explanations
added to the drawings – Rule 1 and Rule 5 → Rule 7).

In particular, Fig. 2 shows that it first starts by drawing the program output
thanks to a pre-defined pattern (Rule 1 – the different possible patterns are
described in Sec. 2.3) and by explaining the program goal (blue arrow and text).
This rule recommends to draw an accurate representation of the data or the data
structures relevant for the given problem. Rule 1 also recommends to properly
label each drawn data structure (e.g., with variable name). It is essential if
several data structures are handled by the program, as they could be mistaken
during the code writing. Then, boundaries must frame each structure (Rule 2).
Applying Rule 2 prevents some common mistakes, when building the code (see
Sec. 3) such as array out of bound errors or overflow. These errors would indeed
be more unlikely if the the data structure length is properly mentioned in the
Gli.

Next, Rules 3→ Rule 6 are sequentially applied in order to roll back the final
perspective and visualize the solution under construction through each variable

Graphical Loop Invariant Based Programming 5

state. Applying Rule 3 makes the Dividing Line appear, naturally reducing the
blue zone length (Rule 5) and making room for the green one (Rule 6). The
Dividing Lines are the core of our methodology. They symbolize the division
between what was already computed by the program and what should still be
done to reach the program objective. They enable to graphically manipulate the
drawing in order to deduce the code instructions (see Sec. 3).

Applying Rule 4 requires to decide where to place the iteration variable
around the Dividing Line, i.e., on the left (thus being part of what has already
been achieved by previous iterations) or on the right (as part of the “to do”
zone). Usually, we advice students to place it on the right, so that it references
the current element to process in the Loop Body. Since a Dividing Line separates
what has been done and what is going to be, that means that if we depicted such
a line on the data representation as the program is executed, this line would move
from one position to another: the first position would correspond to the initial
state while the last position would correspond to the final one.

Currently, the application of Rule 5 is partial as it lacks a variable for accu-
mulating intermediate results. It is thus enough to rephrase the sentence below
the arrow by introducing the accumulator (i.e., variable p). Applying Rule 5
helps thinking about the behaviour of the program. In order to determine “what
has been achieved so far”, one should ask the question: “In order to reach the
program goal, what should have been computed until now? Which variable prop-
erties must be ensured?” Most of the time, this reflection phase highlights either
the need for additional variables that contain partial results or relationships be-
tween variables that must be conserved throughout the code execution. On the
other hand, the information about what has been achieved so far is crucial during
the code writing as it helps to decide what are the instructions to be performed
during an iteration, i.e., to deduce the Loop Body (see Sec. 3).

Finally, it is enough to label the drawing with the “to do” zone right to the
Dividing Line, following Rule 6. Naturally, the Gli obtained here is exactly the
same as the one provided in Fig. 1a. Applying Rule 6 appears as the less impor-
tant guideline as it does not bring additional information about the solution. In
fact, if we expressed a Gli as a formal one (i.e., as a predicate), there would be
no logical notation to describe “what should still be done”. Nevertheless, drawing
an area indicating what should still be done is a good way to ease the represen-
tation of the initial and final states of the program. In the initial state, this “to
do area” should span over all the data that is concerned by the program. On the
contrary, In the final state, this area should have disappeared while the only re-
maining area represents what has been achieved by the program. It is then easy
to check if the purpose of the program is met in such a state. Moreover, when
deducing the code instructions (see Sec. 3), this “to do area”helps to deduce the
updates of the variables labelling the Dividing Lines, since the lines have to be
moved in order to shrink the area. Finally, it helps finding a Loop Variant to
show loop termination as the size of the “to do area” is often a good candidate
for the Loop Variant (b+ 1− a on the Gli illustrated in Fig. 1).

6 G. Brieven et al.

var name: dk−1 dk−2 . . . dj dj−1 . . . d1 d0

(a) Number pattern.

0 N-1 N
var name:

(b) Array pattern.
Fig. 3. Pre-defined drawing patterns for Gli.

The last rule is a reminder to check if all the variables identified during that
reflection phase are actually included in the code.

In addition, to help student identifying the various rules and their applica-
tions in a Gli, we adopt a color code (see Fig. 2). This color code is consistent
throughout the course and the developed tools (see Sec. 4) and help students
understanding exposed Gli during classes.

2.3 Graphical Loop Invariant Patterns

This section introduces some standard patterns for graphically representing
common data structures in a CS1 course. Those patterns rely on the first two
rules for a correct Gli with the associated color code (see Fig. 2).

Graduated Line. One of the most basic pattern is the graduated line, al-
lowing to represent ordered sets like subsets of Natural or Integers. The line is
labelled with the set name (e.g., N or Z). Each tick on the line corresponds to a
value and all those values are offset by the same step. The arrow at the far-right
of the line indicates the increasing order of values. That pattern was supporting
the Gli presented in the previous subsection and can be seen as resulting from
from Rule 1 in Fig. 2. Moreover, that line should be framed by boundaries, as
performed by applying Rule 2. That directly illustrates the relation a ≤ b.

Number. For problems concerning a number representation (whether it is
binary, decimal, hexadecimal, . . .), one can represent this number as a sequence
of digits named dj . The most significant digit is at the right and the least signif-
icant one at the left. Often, the dj are not variables explicitely used in the code
but rather figures that, together, represent the actual variable. If a program must
investigate the values of the digits in a certain order, it is possible to mention in
the picture which is the first and last digits to be handled, as it is, for example,
done in Fig. 3a where the least signifiant digit (in orange) will be used first and
the most significant one (in magenta) will be used last.

Array. Fig. 3b shows the representation of an array containing N elements.
The pattern follows a rectangular shape to depict the contiguous storage of the
elements. Above this rectangle, we indicate indices of interest: at least the first
(i.e., 0 – always on the left of the drawing, whatever the direction in which the
array is processed) and the size N. It is important to see that N is written at the
right of the array’s border to mean that N is not a valid index as it is out of the
array’s bounds that are within [0..N − 1]. The variable name for accessing the
array is written at its left.

Graphical Loop Invariant Based Programming 7

start

Zone 1

Loop Condition Zone 2

Zone 3

end

Input

Output

Loop Invariant

Loop Invariant and
Loop Condition

Loop Invariant and
Stop Condition

yes

no

Fig. 4. Loop zones and logical assertions. Blue boxes are block of instructions, orange
diamond is an expression evaluated as a Boolean, arrows give an indication of the
program flow. Green boxes represent states.

There are other patterns, such as linked lists and files, but those are usually
introduced in a CS2 course in our University.

3 Programming Methodology

Once a Gli meets the rules previously introduced, it can be used to write the
corresponding piece of code relying on an iterative process. The general pattern
of such a piece of code is given in Fig. 4. Input and Output describe the piece of
code input (e.g., a and b such that a < b in the example provided in Sec. 2.1) and
the result (e.g., the product of all the integers in [a, b]). By definition, a Loop
Invariant must be True before evaluating the Loop Condition. The evaluation
of the Loop Condition is not supposed to modify the truth value of the Loop
Invariant2, therefore the Loop Invariant is still True when the Loop Condition is
evaluated at True (Loop Invariant and Loop Condition in Fig. 4) or False (Loop
Invariant and Stop Condition in Fig. 4). Finally, it is up to the programmer to
make sure that the Loop Invariant is True at the end of the iteration, just before
the Loop Condition is evaluated, before the potential next iteration.

One can see appearing, in the pattern, four parts that must be filled to form
the code : Zone 1, Zone 2 and Zone 3 (standing for instruction(s)) and Loop
Condition (standing for a boolean expression). It is worth noting that deducing
each part can be done independently, and this, with the help of the Gli.

To be precise, each part is surrounded, in Fig. 4, by commentaries (in green)
that represent conditions that must be satisfied, i.e., be True (e.g., in Fig. 4,
Zone 1 is surrounded by Input and Loop Invariant). While filling the code of a

2 To make it simple, we do not consider here side effect expressions, e.g., pre- or
post-increment.

8 G. Brieven et al.

Z
a a+ 1 b b+ 1
i

to be multiplied

(a) Zone 1.

Z
a a+ 1 b b+ 1

i

already multiplied in p

(b) Loop Condition and Zone 3.

Z
a a+ 1 . . . i i+1 . . . b b+ 1

already multiplied
in p

to be multiplied

(c) Zone 2 after having multiplied p by
i

Fig. 5. Manipulating the Gli for deducing Zone 1, Loop Condition, Zone 2, and Zone
3 for computing the product of integers between a and b. The corresponding Gli is
provided in Fig. 1.

given part, we must take for granted the information contained in the condition
that precedes it and find instructions that will ensure that the condition that
follows it is True. The following details these four steps : (i) Deducing variables
initialisation (Zone 1) from the drawing of the initial state; (ii) Deducing the
Stop Condition (and thus the Loop Condition) from drawing the final state; (iii)
Deducing the Loop Body (Zone 2) from the Gli; (iv) Deducing the instructions
coming after the loop (Zone 3) from drawing the final state. These four steps
can be achieved in any order, except the Loop Body determination that may
require to know the Loop Condition. Both initial and final states are obtained
from the Gli through graphical modifications. Those steps are detailed below,
illustrated by the example introduced in Sec. 2.1.

It is worth noting that Fig. 4 and the various zones pave the way for a
more formal approach in code construction that relies on Hoare’s triplet [13,17],
with respect to a strongest postcondition code construction approach [11]. For
instance, the Loop Body (i.e., Zone 2) may be seen as {Inv ∧ B} Zone 2 {Inv},
where Inv stands for the formal Loop Invariant and B for the Loop Condition.
In addition, graphical manipulation of the Gli corresponds to logical assertions
describing states between instructions.

Zone 1. First, the Gli provides information about the required variables.
In our example, we need four variables: a, b, i, and p. a and b are provided
as input to the piece of code. It is worth noticing that the drawing provides a
clue about the variables type: they are all on a graduated line labelled with Z,
meaning they are of type int.

The initial values of the variables can be obtained from the Gli by shifting
the Dividing Line (in red) to the left in order to make the blue zone (i.e, the zone
describing what has been achieved so far by previous iterations) disappear. The
variable labelling the Dividing Line (i) is also shifted to the left accordingly and
stays at the right of the Dividing Line. By doing so, as seen in Fig. 5a, the initial
value of i must be a (i.e., the particular value just below i in Fig. 5a). With
respect to the variable p, we know from the Gli (see Fig. 1a) that it corresponds
to the product of all integers between a and the left-side of the Dividing Line (i.e.,
i-1). As this zone is empty, we deduce the initial value of p as being the empty
product, i.e., 1. The following piece of code sums up the deduced instructions
for Zone 1:

1 int i = a;

Graphical Loop Invariant Based Programming 9

2 int p = 1;

Stop Condition and Loop Condition. Determining the Loop Condition
requires to draw the final state of the loop, i.e., a state in which the goal of the
loop is reached. Since the purpose of our problem is to compute the product
of the integers between a and b, we can obtain such a representation from the
Gli (Fig. 1a) by shifting the Dividing Line (in red) to the right, until the green
zone (i.e., “to do” zone) has totally disappeared. In the fashion of Zone 1,
the labelling variable i is shifted at the same time as the Dividing Line. This
graphical manipulation leads to Fig. 5b where we can see that the goal of the
loop is reached when i = b+ 1 and the iterations must thus be stopped. The
loop Stop Condition is therefore i = b+ 1. As the Loop Condition is the logical
negation of the Stop Condition, it comes i 6= b+ 1. However, We recommend, in
order to properly illustrate the relationship between i and b, to use a stronger
condition, i.e., i < b+ 1 or i ≤ b that is, of course, equivalent. The following
piece of code sums up the deduced instructions for the Loop Condition:

1 while(i <= b)

Zone 3. As we just depicted the final state (see Fig. 5b), we can see that
the variable p holds the product of the integers between a and b, meeting the
program goal. Nothing remains to be done after the loop in this case. However,
Zone 3 is not necessarily empty. For example, in a program that computes the
average of a certain numbers of values, the loop would sum and count the values
and Zone 3 would be the division of the sum by the number of counted values.

Zone 2. Determining the Loop Body is often the most difficult step. We
start from what we know: both the Loop Condition and the Gli are True (See
the general loop pattern in Fig. 4). We must find instructions such that it will
progress the situation towards the program goal. In other words, make the blue
zone increase and the green zone decrease. As the blue zone represents the in-
tegers that are already multiplied in p (thus from a to i-1), we can make this
zone grow by multiplying the next integer to p. This next integer is read in the
Gli at the right of the Dividing Line: i.

After having multiplied p by i, the situation in Fig. 5c is obtained. It must
be noted that is not the Gli anymore since the variable i is now at the left of
the Dividing Line. In this particular situation, the Gli is False, whatever the
particular values of a, b, i, or p. According to the loop pattern (See Fig 4), we
must recover the Gli, i.e., make it True again, before the end of the Loop Body.
By comparing the Fig. 1a and Fig. 5c, we can see that in the Gli, the value
labelling the right side of the Dividing Line is i and in the current situation,
this is i +1. Therefore, by assigning the value i +1 to i (i.e., increasing i),
the Gli is restored. Finally, the following piece of code shows the Loop Body
instructions:

1 p *= i;
2 i++;

10 G. Brieven et al.

4 Learning Tools

This section describes how students can practice the Gli. The main goal is
to provide students with a structured and coherent framework so that they do
not start their loop design from scratch. To meet that purpose, as early stage,
the Blank Gli method is proposed through the Programming Challenge Activity
(Pca) [18]. The Blank Gli provides a canvas to students. That canvas frames
students’ solutions so that the semantic of a given solution can be automati-
cally corrected and commented. That Gli correction is handled through a tool
called Café [19]3. Besides this, Café also supports Glide, a sketching module
dedicated to the Gli. Those different components are detailed below and their
interaction is illustrated in Fig. 6.

Fig. 6. Link between the Blank Gli, Glide, and Café.

Glide. The Graphical Loop Invariant Drawing Editor (Glide) guides stu-
dents in drawing their Gli by using the predefined graphical patterns (see
Sec. 2.3) and following the first six rules (Sec. 2.2). Glide is illustrated in Fig. 7.
On the top-left, you can notice a drop-down list itemizing the different draw-
ing patterns. Once a student has selected the appropriate one, they can start
formally describing their loop mechanism according to the first six rules. The
graphical components the student can use are available on the left. Each of them
is mapped to one/several rule(s).

Once a student considers their Gli is completed, they can submit it and
some basic checks are performed. In particular, syntactic mistakes are detected
(such as the lowerbound being further than the upperbound or some description
of what has been achieved so far that is missing). However, the Gli semantic
is not verified, which means that the solution can be positively assessed by the
Glide while the Gli does not make sense.

Interactive Blank Gli. The Blank Gli consists in providing a canvas the
students have to fill out. The Blank Gli corresponding to the example introduced
in Sec. 2.1 is illustrated as part of Fig. 6. Such a blank drawing depicts only the
general shape a correct and rigorous Gli should follow (i.e., partially Rule 1) in
3 The version of Café discusses in this paper corresponds to an upgrade with respect
to Liénardy et al. [19]

Graphical Loop Invariant Based Programming 11

Fig. 7. Screenshot of Glide.

response to a given problem. Students must then annotate properly the canvas
so that the drawing becomes the figure of their Loop Invariant for their solution
to the particular problem to be solved.

Any Blank Gli always comes with two types of box: (i) red boxes standing
to host expressions (i.e., constants, variables, operations, or left blank) and are
to be completed by students without support; (ii) green boxes standing to host
labels that students must drag and drop from a pre-defined list. That list contains
multiple choices, some of them being the expected answers, others being purely
random. Doing so, we pave the way for an automatic correction of the Gli (with
strong feedback). This can be achieved thanks to the fact each box is numbered.
In this way, when a student’s solution gets corrected, each piece of solution is easy
to be pointed out, allowing to bring a rich feedback while still keeping it clear
and smooth to digest for the student. That process is supported by Café [19].

Programming Methodology with Café. Café [19] is a tool we initially
developed in order to support a remote programming activity (Pca) [18]. Café’s
purpose is to correct students’ work and provide instantaneous personalized
feedback and feedforward, based on their mistakes. Their mistakes are mapped
to error codes classified in a misconception library. That library has been fed
based on previous experiences. Some error codes are defined for each step and
each zone of the Gli. They also cover most of the inconsistencies that may occur
between the Gli and the resulting code to make sure the student really utilizes
the methodology. Also, it is worth noticing Café gives the opportunity to catch
students’ learning behavior by collecting data.

That correction and feedback scope got extended after having led an as-
sessment of Café’s impact on students’ learning [7]. Now, Café embeds Glide
and offers a friendly interface to students when they are solving a given problem.
That interface (illustrated in Fig. 8) structures and sequences the construction of
the solution, aligned with the programming methodology (Sec. 3). In particular,

12 G. Brieven et al.

Fig. 8. Interface supporting the programming methodology.

Fig. 8 adresses the problem consisting in compressing a given array, based on
consecutive elements whose sum is 10.

On Fig. 8, one can see that the Gli and the code are represented through
successive frames. By taking a closer look, it can be noticed that the Gli (in the
upper frame) is divided into four tabs, one for the Blank Gli, one for building
and justifying (by moving the Dividing Line) Zone 1, one for building and
justifying (by moving the Dividing Line) the Stop Condition, and for the Loop
Variant. It is important to notice that a student cannot access the next tab if
the current one has not been filled. That locking path approach also applies at a
higher level, between the Gli and the coding steps. That feature aims to impose
students to sequentially follow the methodology and not directly jump to the
code without any proper design to rely on.

5 Preliminary Evaluation

We surveyed students (N = 70), after the final exam, with the question
"What drives/discourages you in using the Gli?". 36% of students highlighted
the method difficulty, limiting so the advantages of the programming method-
ology. Then, 30% of students were convinced the methodology is useless and
directly coding is manageable. This last opinion may suggest that the problems
difficulty exposed to students should be increased, so that the importance of the
program methodology would be better highlighted. However, a balance must be
found between exercises difficulty and methodology mastering, which requires
starting with easy problems. An alternative is to enforce the guidance over the
Gli construction (like Café does in its most recent version), so that harder
problems can be provided while remaining accessible.

Graphical Loop Invariant Based Programming 13

With respect to Gli construction and tools usage, we can show how much the
blank Gli (practiced through the Pca) and Glide can be relevant in students
learning journey. First, there is a correlation between students’ exam grades and
students’ participation to the Pca (r = 0.57, p < 0.0001). The Gli approach
(supported by the Pca) seems thus to forge students’ ability to construct a
correct and sound Gli from scratch (which is what students are expected to
perform in the exam). This inference gets corroborated by students’ opinion
collected through another survey (N = 79) addressed the year before. More
precisely, from the statement "The Blank Gli is useful to find out the Gli.",
47.4% of students agreed or strongly agreed on, 24.4% disagreed and 25.3%
standed in between.

In addition, we looked at the possible correlation between exam grades and
Glide usage (r = 0.42, p < 0.0001). The lower impact of Glide compared to
the Blank Gli may be due to the fact that some students still lack landmarks
in using Glide while the Blank Gli frames more students’ solution. Now that
the guidance has been enforced in Café’s last version, we expect to see stu-
dents reaching an upper step and being able to better take advantage from their
experience with Glide. That premise is subject to future work.

6 Related Work

While there is an abundant literature on Loop Invariants for code correctness
and on automatic generation of Loop Invariants (see for instance [9] or Bradley
et al. [6]), their use for building the code has attracted little attention from
the research community. With respect to Loop Invariant based programming,
the seminal work has been proposed by Dijkstra [11], followed by Meyer [23],
Gries [16], and Morgan [24]. As such, the program construction becomes a form
of problem-solving, and the various control structures are problem-solving tech-
niques. Those works proposed Loop Invariants as logical assertions.

Tam [28] suggests to introduce students to Loop Invariant as early as possible
in their courses and describes several examples of code construction based on
informal Loop Invariants expressed in natural language. Astrachan [1] suggests
the use of Graphical Loop Invariants in the context of CS1/CS2 courses. How-
ever, his approach is incomplete as the suggested drawing lack of completeness
(e.g., objects manipulated, such as arrays, are not named in the drawing), might
lead to confusion (e.g., variables positions around the dividing line are somewhat
unclear), and the drawing is not explicitly manipulated to derive particular situa-
tions. Back [2,4,3] proposes nested diagrams (a kind of state charts) representing,
at the same time, the Loop Invariant and the code. However, in such a situa-
tion, Loop Invariants are expressed as logical assertions. Since, Manilla [21] has
evaluated the impact of errors in those nested diagrams. Finally, Erkisson et
al. [12] propose a pictorial language for representing Loop Invariants. Their lan-
guage only applies to arrays and is a mix between drawings (the data structure
is drawn and partitions are colored to illustrate universally quantified predicate)
and formal languages (the meaning of partitions is expressed as a predicate).

14 G. Brieven et al.

7 Conclusion

This paper introduced a Gli based programming methodology consisting in
depicting a graphical representation of the Loop Invariant to solve a given prob-
lem prior to writing any piece of code. This methodology is currently taught
in a CS1 course. Some preliminary results showed that many students cannot
embrace it, mainly because they do not perceive its interest and they miss ab-
straction skills. Seing that, when we define a problem, a tradeoff must be found
between its complexity (so that students feel the purpose of the methodology)
and its accessibility (so that students are able to solve it). To reconcile those
characteristics, Café was proposed as an integrated learning tool supporting
the methodology and guiding students in solving more complex statements. In
particular, a resolution framework is provided as well as personalized feedback
so that students are able to refine their understanding. Besides this, it enables
more transparency about individual students’ learning behavior and resulting
performance on the Gli thanks to collected data.

In future work, it is planned to harness that data to accurately assess the
methodology by closely analysing students’ learning path towards mastering the
Gli. In particular, we will capture how much time students spend on the Gli and
the code, respectively to see if they put their effort on the Gli. We will also track
how students construct their solution to confirm they follow the steps suggested
by Café. Finally, a focus will be dedicated to the way students read, integrate,
and take advantage of the feedback to improve their skills in constructing a Gli.
Besides that deeper analysis on the Gli, it is aimed at formalizing the translation
from the Gli into a logical assertion in order to end the bridge towards a formal
method (being the Loop Invariant here).

References

1. Astrachan, O.: Pictures as invariants. In: Proc. ACM Technical Symposium on
Computer Science Education (SIGCSE) (March 1991)

2. Back, R.J.: Invariant based programming. In: Proc. International Conference on
Application and Theory of Petri Nets and Other Models of Concurrency (Petri
Nets) (June 2006)

3. Back, R.J.: Invariant based programming: Basic approach and teaching experi-
ences. Formal Aspects of Computing 21(3), 227–244 (May 2009)

4. Back, R.J., Eriksson, J., Mannila, L.: Teaching the construction of correct programs
using invariant based programming. In: Proc. 3rd South-East European Workshop
on Formal Methods (SEEFM) (November/December 2007)

5. Ben-David Kolikant, Y., Mussai, M.: “so my program doesn’t run!” definition, ori-
gins, and practical expressions of students’ (mis)conceptions of correctness. Com-
puter Science Education 18(2), 135–151 (June 2008)

6. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer Science & Business Media (2007)

7. Brieven, G., Liénardy, S., Donnet, B.: Lessons learned from 6 years of a remote
programming challenge activity with automatic supervision. In: Proc. European
Distance and E-Learning Network (EDEN) (June 2022)

Graphical Loop Invariant Based Programming 15

8. Cherenkova, Y., Zingaro, D., Petersen, A.: Identifying challenging CS1 concepts in
a large problem dataset. In: Proc.ACM Technical Symposium on Computer Science
Education (March 2014)

9. Cormen, T.H., Leiserson, C. E .and Rivest, R.L., Stein, C.: Introduction to Algo-
rithms. MIT press (2009)

10. Dale, N.B.: Most difficult topics in CS1: Results of an online survey of educators.
ACM SIGCSE Bulletin 38(2), 49–53 (June 2006)

11. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Inc. (1976)
12. Eriksson, J., Parsa, M., Back, R.J.: A precise pictorial language for array invariants.

In: Proc. International Conference on Integrated Formal Methods (IFM) (Septem-
ber 2018)

13. Floyd, R.W.: Assigning meanings to programs. In: Proc. Symposium on Applied
Mathematics (1967)

14. Furia, C.A., Meyer, B., Velder, S.: Loop invariants: Analysis, classification, and
examples. ACM Computing Surveys 46, 1–51 (January 2014)

15. Ginat, D.: On novice loop boundaries and range conceptions. Computer Science
Education 14(3), 165–181 (2004)

16. Gries, D.: The Science of Programming. Springer (1987)
17. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications

of the ACM 12(10), 576–580 (October 1969)
18. Liénardy, S., Leduc, L., Verpoorten, D., Donnet, B.: Challenges, multiple attempts,

and trump cards – a practice report of student’s exposure to an automated correc-
tion system for a programming challenges activity. International Journal of Tech-
nologies in Higher Education (IJTHE) 18(2), 45–60 (June 2021)

19. Liénardy, S., Leduc, L., Verpoorten, D., Donnet, D.: Café: Automatic correction
and feedback of programming challenges for a CS1 course. In: Proc. ACM Aus-
tralasian Computing Education Conference (ACE) (February 2020)

20. Luxton-Reilly, A., Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott,
L., Paterson, J., Scott, M.J., Sheard, J., Szabo, C.: Introductory programming: a
systematic literature review. In: Proc. Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE) (July 2018)

21. Manilla, L.: Invariant based programming in education – an analysis of student
difficulties. Informatics in Education (INFEDU) 9(1), 115–132 (2010)

22. Medeiros, R.P., Ramalho, G.L., Falcão, T.P.: A systematic literature review on
teaching and learning introductory programming in higher education. IEEE Trans-
actions on Education 62(2), 77–90 (May 2019)

23. Meyer, B.: A basis for the constructive approach to programming. In: IFIP
Congress. pp. 293–298 (1980)

24. Morgan, C.: Programming from Specifications. Prentice-Hall (1990)
25. Nilson, L.B.: The Graphic Syllabus and the Outcomes Map: Communicating your

Course. John Wiley & Sons (2009)
26. Pólya, G.: How to Solve It. Princeton University Press (1945)
27. Schröter, I., Krüger, J., Siegmund, J., Leich, T.: Comprehending studies on pro-

gram comprehension. In: Proc. IEEE/ACM International Conference on Program
Comprehension (ICPC) (May 2017)

28. Tam, W.C.: Teaching loop invariants to beginners by examples. In: Proc. ACM
Technical Symposium on Computer Science Education (SIGCSE) (March 1992)

