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Abstract: Ecosystem accounting is based on the definition of the extent and the status of an ecosys-
tem. Land cover maps extents are representative of several ecosystems and can therefore be used to 
support ecosystem accounting if reliable change information is available. The dataset described in 
this paper aims to provide land cover information (13 classes) for biodiversity monitoring, which 
has driven two key features. On one hand, open areas were described in more details (5 classes) 
than in the other maps available in the study area in order to increase their relevance for biodiversity 
models. On the other hand, monitoring means that the time series must consist of comparable layers. 
The time series integrate information from existing high quality land cover maps that are not fully 
comparable, as well as thematic products (crop type, road network and forest type) and remote 
sensing data (25 cm orthophotos, 0.8 pts/m2 LIDAR and Sentinel-1&2 data). Because of the high 
spatial resolution of the data and the fragmented landscape, boundary errors could cause a large 
proportion of false change detection if the maps are classified independently. Buildings and forests 
were therefore consolidated across time in order to build a time series where these changes can be 
trusted. Based on an independent validation, the overall accuracy was 93.1%, 92.6%, 94.8% and 
93.9% +/− 1.3% for the years 2006, 2015, 2018 and 2019, respectively. The specific assessment of forest 
patch change highlighted a 98% +/− 2.7% user accuracy across the 4 years and 85% of forest cut 
detection. This time series will be completed and further consolidated with other dates using the 
same protocol and legend. 

Dataset: The dataset (vx18) can be visualized and downloaded from the following web portal 
https://maps.elie.ucl.ac.be/lifewatch. 

Dataset License: CC-BY 

Keywords: land cover; map; landscape; remote sensing; biodiversity 
 

1. Summary 
This paper describes four 2 m raster land cover maps, which were designed for the 

characterization of the Lifewatch ecotope database [1]. The dataset was produced in the 
frame of the Belgian contribution to Lifewatch-ERIC, the European Research Infrastruc-
ture Consortium for biodiversity and ecosystem research. This set of maps, version vx18, 
resulted from remote sensing image analysis (orthophotos and Sentinel-1&2) consoli-
dated and enriched by ancillary data in order to provide relevant land cover information 
for biodiversity models. It distinguishes four classes of open landscapes often grouped in 
a single “grassland” category in other land cover maps: intensively managed grasslands, 
dry open areas of biological interest, inundated herbaceous cover and post-disturbance 
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herbaceous vegetation. The temporal consistency of the data was a major concern of the 
processing chain, and therefore also of the validation framework, because change infor-
mation is an important component of the temporal analysis. The quality of the map was 
assessed with state-of-the-art sampling design, response design and analysis. It achieved 
a maximum overall accuracy of 94.8 in 2018, and 98% user accuracy of forest change across 
the different epochs. The consolidation process will continue when new dates are added. 

2. Data Description 
2.1. Data Format 

The data are a set of four single band raster images at 2 m resolution. The total area 
mapped is 16,902 km2. It is stored in compressed cloud optimized GeoTIFF format with 
georeferencing information (Belgian Lambert 2008 projection, EPSG:3812). Pyramids with 
modal resampling and color tables were added using the GDAL library so that it can be 
easily opened and visualized in any Geographic Information System or Image Analysis 
Software. The land cover classes are stored in byte (unsigned 8 bits integers) to minimize 
the size of the data on disk. These classes are further described in Section 2.2, and the data 
are illustrated in Figure 1 for the year 2018, showing its full extent, and in Figure 2, which 
is a spatial subset with the four different dates. 

 
Figure 1. Wallonia’s land cover map 2018 displayed with its 13 classes. 
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Figure 2. Subset of the time series illustrating different types of land cover change. 

2.2. Land Cover Legend 
Land cover is defined as the physical and biological cover of the land surface, includ-

ing artificial surfaces, agricultural areas, forests, (semi-)natural areas, wetlands and water 
bodies. The legend of this data series includes 13 classes. Table 1 provides the numeric 
code of each class as well as the percentage that it covered over Wallonia in 2018. 

Table 1. Land cover classes of the Lifewatch land cover map and their percentage of land area based 
on the 2018 classification. The total mapped area is 16,902 km2. 

Map Class Map Code Related EAGLE Code 

Percentage of 
Land Area [%] 
Based on 2018 

Product 
Water 10 LCC-3 0.73 

Natural Material Surfaces with less than 10% vege-
tation 

15 LCC-1_2 0.32 

Artificially sealed ground surface 20 LCC-1_1_1_3 5.75 

Building, specific structures and facilities 21 LCC-1_1_1_1 || 
LCC-1_1_1_2 

1.99 

Herbaceous in rotation during the year (e.g., crops) 30 LCC-2_2 23.94 
Grassland with intensive management 35 LCC-2_2 27.57 

Grassland and scrub of biological interest 40 LCC-2_2 1.82 
Inundated grassland and scrub of biological inter-

est 45 
LCC-2_2 & 
LCH-4_4_2 0.22 

Vegetation of recently disturbed area (e.g., clear 
cut) 48 

LCC-2_2 & 
LCH-3_8 2.64 

Coniferous trees (≥3 m) 50 
LCC-2_1_1 & 
LCH-3_1_1 11.24 

Small coniferous trees (<3 m) 51 
LCC-2_1_2 & 
LCH-3_1_1 0.40 

Broadleaved trees (≥3 m) 55 
LCC-2_1_1 & 
LCH-3_1_2 21.63 

Small broadleaved trees (<3 m) and shrubs 56 
LCC-2_1_2 & 
LCH-3_1_2 1.75 
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Classes are described at their upper level according to a strict land cover point of 
view. The definition of the classes is compatible with the guidelines of the European En-
vironment Information and Observation Network (EIONET), which is a partnership net-
work of the European Environment Agency (EEA) and its 38 member and cooperating 
countries. More precisely, the legend matches the EAGLE (EIONET Action Group on 
Land monitoring in Europe) guidelines [2] for land cover component mapping (EAGLE 
matrix 3.1.2). The EAGLE concept is a framework for the integration of land cover and 
land use information from various data sets in one single data model. However, the defi-
nition of the classes of the Lifewatch land cover legend has been adapted at a finer level 
in order to account for management practices that have a strong impact on the biodiversity 
potential of otherwise similar vegetation types. The choices were also guided by the fea-
sibility of the implementation of the classification, the compatibility with other legends 
and their importance for biodiversity models. Finally, the label structure differs in order 
to stress the similarities in terms of land cover and functional traits: 
• Natural Material Surfaces (LCC-1_2) and water (LCC-3): This group includes open 

water bodies and rivers as well as natural material surfaces such as rocks in cliffs or 
geological layers exposed by extraction activities. Those surfaces should not be cov-
ered with more than 10% of vegetation. 

• Artificial Surfaces and Constructions (LCC-1_1): This group includes artificially 
sealed soils such as roads, parking areas or compacted soils in industrial areas, as 
well as all types of man-made above-ground buildings. The two subtypes are sepa-
rated based on their height above the ground, except for bridges that are set on the 
ground. 

• Woody vegetation (LCC-2_1): This group includes trees and shrubs, either needle-
leaved (coniferous) or broad-leaved (angiosperm). They are first separated based on 
the leaf type because it is more discernable than structure. It is worth nothing that 
most of the coniferous trees in the region are sempervirens, while most of the broad-
leaved trees are deciduous. However, there are some rare exceptions in both cases, 
such as larches (Larix sp.) for the deciduous coniferous and box-tree (Buxus semper-
virens) for the sempervirens broadleaved. Each tree type class is further subdivided 
based on the height observed by photogrammetry. The small trees (less than 3 m) 
include hedgerows, young forest regrowth and small tree or shrub plantations, such 
as Christmas trees (coniferous), vineyard (broadleaved) or low-stemmed orchards 
(broadleaved). 

• Herbaceous vegetation (LCC-2_2): This class regroups all vegetation cover domi-
nated by non-ligneous species, i.e., forbs or graminoids in the study area. They are 
primarily distinguished based on the temporality of the vegetation (presence or ab-
sence of bare soil during the year), which in fact reflects the management practice 
(ploughing of crop fields) or recent land cover disturbance, such as clear cut. When 
the vegetation cover remains during the whole season, a further distinction is per-
formed to highlight biodiversity difference. Dry and inundated herbaceous covers of 
high biodiversity are separated from more intensively managed grasslands, such as 
intensive pastures, high productive meadows, sport fields, urban park, private gar-
dens, etc. 

2.3. Strengths of the LC Map Series 
Apart from its high overall accuracy, the main strength of this land cover time series 

is the consistency of the land cover classification through time in order to preserve bound-
aries on the majority of unchanged pixels. Figure 2 illustrates several land cover changes, 
including forest clear cut, new buildings, switch from year-long grassland to ploughed 
agricultural parcel and bare soil on a construction site. On the other hand, other bounda-
ries remain unchanged, and forest types are consistent despite the different phenological 
stages in the input orthophotos. This consistency is a methodological choice to avoid false 
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change detections due to class similarities or geometric differences along edges. The clas-
sification is indeed driven by change detection before and after the classification so that 
overestimating land cover change proportions is strongly reduced with regards to a sim-
ple comparison of independent maps. The second strength of this map is its thematic pre-
cision in an open area. While this precision does not replace the thematic details from 
field-based biological maps, preliminary studies with the dataset showed that accounting 
for these classes can boost the performance of biodiversity models [3,4]. 

2.4. Accuracy Assessment 
For the validation, good practices in point-based map validation were followed ac-

cording to the state of the art [5]. We used a probabilistic sampling design, fully independ-
ent of the classification process. The primary validation, used to build the confusion ma-
trix, was based on photo-interpretation of the 2015 orthophotos (25 cm resolution) com-
plemented in 2016 with field verification when there was a doubt about the photo-inter-
preted class. In total, 1200 points were visually classified. The uncertain points (121) were 
verified on the field, out of which 64 points were correct. Fifteen of the unsure points could 
not be verified in the field due to accessibility constraints. Those were double-checked by 
a second operator and existing ancillary data, which confirmed the first photointerpreta-
tion. Because of the risk to underestimate the classification accuracy due to positional er-
rors, the spatially closest class in a 5 m radius was also provided by the operator. If a pixel 
label does not match the primary label but does with the secondary label, it is verified on 
the map that the incorrect primary labelling is only due to the spatial mismatching of the 
boundary between the two classes on the map or on the orthophoto. In this case, the sec-
ondary label replaces the primary label in the reference. The same points were verified on 
the orthophotos of 2006/2007, 2015 and 2018 and 2019. 

The samples were selected in a double-stratified probabilistic sampling design in or-
der to get clusters of points and hence potentially reduce the displacements for the field-
based verification stage. The first stratification level was based on five biogeographical 
regions of Wallonia. The second stratification level was 5 km by 5 km grid cells. When a 
grid cell was located across several biogeographical regions, its labels were defined based 
on the location of its centroid. Ten cells were randomly selected for each region. At the 
second stage, a total of 25 points was randomly selected inside each grid cell. Points lying 
out of Walloon region were discarded so that a total of 1200 samples made the validation 
dataset. 

Due to the stratification based on biogeographical areas (Figure 3), the sampling rate 
was not uniform. The proportion of correctly classified pixels was therefore computed for 
each region. Those values were then aggregated for Wallonia with weight that is inversely 
proportional to the sampling probability (in other words, directly proportional to the area 
of the discretized biogeographical region). The uncompletedness due to the cell-based 
coverage of Wallonia is neglected because the matching between the regular grid and the 
true extent is more than 99%: this sample is therefore considered fully representative of 
the sampled area. 

In addition, another sample was taken to check the user accuracy of forest patch (ar-
eas of continuous tree cover of minimum 1000 m2) change detection. This additional sam-
ple consisted of 100 points randomly selected inside forest patches, where at least one 
forest change occurred between 2006 and 2019 based on the time series. 
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Figure 3. Distribution of the sample points selected by stratified probabilistic sampling. The first 
stratification is based on bio-geographical regions of Wallonia. Sets of 25 points are then selected 
inside randomly selected grid cells (white lines). The orthophoto of 2018 is used as background 
(Service Public de Wallonie, 2018). 

3. Validation Results 
Photointerpretation results were adjusted to take into account errors due to slight 

misregistration (one pixel) and residual parallax errors. Furthermore, small gaps or roads 
under the trees are not visible on the orthophotos and therefore do not appear in the val-
idation dataset. This was managed by trusting LIDAR data for the detection of small forest 
gaps (in addition to the orthophotos) and ancillary vector data for the road network. 

Because of the stratified sampling, a weight (w) is assigned to each point depending 
on the stratum (𝑖) to which the point belongs. The weight is proportional to the area of the 
class (𝑆 ) divided by the total area of the map, and inversely proportional to the number 
of points taken in each class (𝑛) [5]. 

The estimated overall accuracy (OA) with a geometric tolerance of one pixel reaches 
93.1%, 92.6%, 94.8% and 93.9% +/− 1.3%, respectively, for 2006, 2015, 2018 and 2019. This 
is statistically larger than the targeted 90% with a confidence level of 95%. Table 2 shows 
the confusion matrix for the year 2018 along with the user’s and producer’s accuracies. 
The user’s accuracy (UA) is defined as the probability, for each class, that the label of a 
pixel is correct; the producer’s accuracy (PA) is the probability that a field feature is cor-
rectly classified on the map. The mean map UA is 92% and the mean map PA, 86%. The 
confusion matrices, including geometric errors, are provided in the Appendixes A–D for 
2006, 2015, 2018 and 2019 respectively. These geometric errors reduce approximately 4% 
of the overall accuracy. 
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Table 2. Confusion matrix accounting for the stratification for the year 2018. UA stands for user’s 
accuracy and PA for producer’s accuracy. The colors correspond to the legend of the maps. Values 
are rounded. See Table 1 for the complete class and color descriptions.  

Cl 
Ref 

10 15 20 21 30 35 40 45 48 50 51 55 56 PA 

10 14.8             100 
15  3.0 1.5           67 
20   64.3   0.2       0.5 99 
21    24          100 
30     238  0.5       99.8 
35   1.5 1.5 1.5 282 0.5  2.1   3.2 1.5 95.9 
40 1.5     5.1 17.5  0.7 0.7    68.7 
45        1.7      100 
48   0.2   1.7   31.9 2.1  2.3 1.7 80 
50   1.9       164  3.8 0.2 96.5 
51      1.7   1.7 2.1 3.2  3.3 26.4 
55   2.7      1.5 10.5  280 3.3 93.9 
56         1.1    14.4 93.2 

UA 90.7 100 89.1 100 99.4 97.0 95.1 100 82.0 91.4 100 96.8 57.8  

Nine out of thirteen classes have very good (>85%) class-based accuracy values, but 
bare soils, dry herbaceous cover with high biodiversity potential and small trees are less 
good. This is due to a combination of technical and conceptual reasons. On one hand, 
many orthoimages were taken in a leafless period for the trees/shrubs, and therefore, de-
ciduous vegetation was hardly visible. Second, because of the size of the elements, Senti-
nel-2 spatial resolution was insufficient to add the complementary information in these 
cases [6]. On the other hand, some of these classes are part of an ecological gradient with 
fuzzy limits between classes (e.g., between intensively and extensively managed grass-
lands) defined by arbitrary thresholds (height threshold for shrubs, time threshold to con-
sider that a recently disturbed area becomes an open area of biological interest). 

About 13% of the validation samples occurred in areas of observed change. The user 
accuracy of the change detection was 82%, 61% and 73% for 2006–2015, 2015–2018 and 
2018–2019, respectively. Most of the false change detection is due to geometric discrepan-
cies. For statistical analysis of areal land cover change, the rounded confusion matrices of 
the 4 years—not corrected for geometric errors—are provided in the Appendixes A–D for 
2006, 2015, 2018 and 2019 respectively, and the precise confusion matrices are provided 
as Supplementary Materials. 

More specifically, forest change detection proved to have a large user accuracy 
(98/100) based on the additional point sample of forest change pixels. The two errors were 
due to the false detection of “non forest” to “forest” while all the “forest” to “non forest” 
changes were correct. Considering the large user and producer accuracy of the forest class 
as a whole (95.8 and 96.8), forest ecosystem monitoring with this dataset can be seen as 
highly reliable. The points used to build the confusion matrix were screened to estimate 
the producer accuracy of the forest change detection. Amongst the 569 points that were 
forest at some stage, 85% of the tree loss were correctly detected. It is worth noting that 7 
out of 8 omissions consisted in clear cuts between the year 2006 and 2015, while the re-
maining one was a thinning between 2018 and 2019. 

4. Methods 
Because of the good quality of other land-cover-related data in the Walloon region 

(91.5% for Walous 2018 [7] and 90.7% for WalousMàJ 2019 [8]), the overall approach of 
this research focused on the consistency of the land cover mapping through time. The 
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upgrade of the initial classification (done in the year 2015) therefore applied to all un-
changed pixels of each year. 

4.1. Input Data 
The main imagery source is a set of 2.5 Tb mosaic of orthorectified aerial images ac-

quired in 2006/2007, 2015 and 2018 at 25 cm of resolution. The images are collected from 
the end of winter to the end of summer, with a majority of the acquisitions occurring in 
early spring. There are therefore large differences in terms of vegetation phenology be-
tween and within the years of the three mosaics. 

Using photogrammetry, a digital surface model (DSM) is built from each orthophoto. 
By subtracting the digital surface model (DSM) based on a 1 m resolution DEM from LI-
DAR data of 2013, it is then possible to derive a digital height model (DHM). The DHM is 
unfortunately not usable for vegetation height when the photographs are captured during 
the leafless period, but it is otherwise a reliable source to detect major land cover changes. 

In addition to the airborne datasets, time series from the Sentinel-1 and -2 satellites 
provide information about temporal dynamic LC features (grassland in rotation, differ-
ence between broadleaved and coniferous trees). Sentinel-1 10 m resolution images are 
acquired every 2 to 6 days by C-Band SAR instrument, while the Sentinel-2 instrument 
records multispectral reflectance at 10 and 20 m resolution every 3 (on overlapping scenes) 
or 5 days (in non-overlapping areas). These images were not available in 2006. 

Walous 2018 and WalousMàJ 2019 and additional thematic information was used for 
specific land cover classes. A forest type map was used to consolidate the discrimination 
of broadleaved and coniferous trees. The anonymized Land Parcel Identification System, 
a parcel level database including crop type information declared by farmers in the frame-
work of the Common Agricultural Policy of the European Union, was used for the agri-
cultural areas. Finally, the NATURA 2000 database was used to identify some of the areas 
of high biodiversity interest. 

4.2. Data Processing 
Most of the image processing used the Orfeo Toolbox library [9]. Image classification 

was performed as a combination of random forest and deep learning with locally trained 
models. The deep learning was a U-Net model focusing on buildings, for which geometry 
plays a major role in the identification. The grassland of potential high biodiversity was 
screened based on late mowing detection with Sentinel-1 and Sentinel-2 satellites, as de-
scribed in [10], as well as a specific multiyear random forest classification of the orthopho-
tos. The anonymized LPIS data were used to discriminate crop fields as temporary grass-
land ploughed during the year based on the class of the previous year. The different da-
tasets were resampled at 2 m resolution because it was a good compromise between clas-
sification accuracy and geometric precision. 

For the temporal consistency, pixel-based change detection with iterative trimming 
was used to identify areas of potential change [11] and focus the classification only on 
these areas. Forest types and open area types were forced based on the majority rule for 
all years when change was unlikely. Furthermore, in order not to contaminate change 
detection with geometric errors, a single stable boundary was selected for each feature 
with a vertical dimension. It is indeed well-known that uncomplete orthorectification 
overestimates the area of tall objects due to the parallax effect when they are viewed from 
an oblique angle by the airborne camera. Therefore, a set of morphological mathematics 
tools was used to clean the boundaries of buildings and trees. 

For buildings and roads, Walous 2018 was selected as a geometric reference because 
it was consolidated with official vector datasets [7]. Buildings or roads that exist in 2018 
and at another date are identified using the intersection of 2-pixel dilation of their extent. 
If the intersection with 2018 is not void, the geometry of 2018 is used. Otherwise, newly 
detected geometries are used. 
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For trees, the same leaf type is forced for all dates if the series of labels is not inter-
rupted by a clear-cut detection. The forcing is selected with a majority voting of the dif-
ferent classified orthophotos, Sentinel-2 classification and forest type map of Wallonia. 
The minimum extent of small woody elements (hedges, tree alignments, and isolated 
trees) is used, and the outside pixels are removed within a buffer. A temporal closing is 
also applied on these woody elements to fill gaps in the time series in case a pixel not 
classified as tree on date “t” was classified in “t − 1” and “t + 1”. 

Large areas (>1000 m2) of inconsistencies between the different classifier were visu-
ally checked and manually corrected when the photointerpretation was certain. This con-
solidation phase was necessary to reach the very high overall accuracy of this map, espe-
cially in open areas or with thin forest patches not clearly discriminable with Sentinel-2. 

5. User Notes 
The data described in this paper comprise a biodiversity-oriented land cover map 

series with a spatial resolution of 2 m. It is provided as a GeoTIFF file supported in any 
GIS software. Its legend is enriched with subclasses of shrubs and grasslands. Even if the 
discrimination amongst those classes remains less accurate than for the other classes, they 
provide a strong added value for ecosystem and habitat mapping. 

Improving the temporal consistency of the LC series is a major challenge at 2 m res-
olution because of the prevalence of geometric errors from year to year. In order to reduce 
false change detection in fragmented areas, where the relative impact of geometric dis-
crepancies is maximal, a conservative approach was used for the representation of small 
woody features. As a result, it is worth noting that the smallest woody features are likely 
to be underestimated. This is not highlighted in the quantitative results due to the small 
area covered by these land cover features. On the other hand, despite the consolidation, 
some classification errors still contaminate the change detection of some classes. It is there-
fore important to take the confusion matrices (provided in the Supplementary Material as 
Tables S1–S4 into account for further diachronic analysis based on the time series. 

Gradients naturally occur between various classes. At the spatial resolution of the 
dataset, mixed pixels are proportionally less problematic than at a coarse resolution. How-
ever, there is no strict boundary between the intensive grasslands. In this case, there is a 
gradient that is a combination of different land use intensities (fertilization level, mowing 
frequency, and pasture intensity). Most of the grasslands in the study area belong to one 
of the two extremes: they are either strongly artificialized (intensively managed agricul-
tural lands, and residential grasslands) or natural grassland. Some private gardens could 
be of great interest for biodiversity, but this could not be captured in this map because of 
their small size on average. 

Land cover only reflects one component of the landscape. Users interested in more 
thematic details are therefore invited to cross this dataset with the land use and biotope 
information, which already exist on the territory. This information and the proportions 
described in this paper are integrated in the Lifewatch ecotopes database [1]. 

Supplementary Materials:  The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/data8010013/s1:Table S1: unrounded values of the confusion 
matrix for the year 2006, Table S2: unrounded values of the confusion matrix for the year 2015, Table 
S3: unrounded values of the confusion matrix for the year 2018 and Table S4: unrounded values of 
the confusion matrix for the year 2019. 

Author Contributions: Conceptualization, J.R., M.D. and P.D.; Formal analysis, J.R.; Methodology, 
J.R., M.D.V., T.C., A.B., M.D. and P.D.; Project administration, J.R., M.D. and P.D.; Resources, J.R., 
T.C., M.D.V. and M.D.; Software, J.R.; Supervision, M.D. and P.D.; Validation, T.C. and J.R.; Visual-
ization, J.R.; Writing—original draft, J.R.; Writing—review and editing, All. All authors have read 
and agreed to the published version of the manuscript. 
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Appendix A 

Table A1. Confusion matrix for the year 2006. The overall accuracy is 89.4%. Color and class de-
scriptions are available in Table 1. Unrounded values are provided as supplementary material. 

Cl 
Ref 

10 15 20 21 30 35 40 45 48 50 51 55 56 PA 

10 13.3  0.5           89.8 
15  1.7    1.5        50 
20   53.9 2.1  2.8      3.6 0.5 85.7 
21   1.5 21.5          93.4 
30     224 0.7 0.5       98.8 
35  1.1 4.5 2.6 4.1 275   2.6   5.9 3.6 91.9 
40   2.2   7.6 12.8  1.3 1.7  1.5 0.9 45.8 
45        1.7      100 
48     1.7    8.4 0.4 1 0.6 3.2 54.5 
50   1.9      4 166 1.7 3.4 1.1 93.3 
51          0.5 21.4  1.7 91 
55 1.5  6.2  1.5 6.1   3.6 15.8 3.6 241 9.3 83.5 
56      1.1     1.1  32.9 94 

UA 89.8 58.9 76.8 82.1 96.9 92.8 96.6 100 42.2 90.0 74.5 93.6 61.9  

Appendix B 

Table A2. Confusion matrix for the year 2015. The overall accuracy is 88.6%. Color and class de-
scriptions are available in Table 1. Unrounded values are provided as supplementary material. 

Cl 
Ref 

10 15 20 21 30 35 40 45 48 50 51 55 56 PA 

10 14.4  0.5           97.0 
15  1.7 1.5           53.3 
20   57 1.1 2.3       3.6 0.5 88.4 
21   1.5 22.5          93.7 
30     242  0.5       99.8 
35   7.1 2.6 3.0 260 0.5  3.8 1.7 1 6.4 2.6 90.1 
40 1.5 0.5 1.7  1.5 6.7 10.9  0.7 2.3   0.5 41.5 
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45        1.7      100 
48   0.2   1.7   39.9   2.3 1.7 87.2 
50   1.9      2.9 154  3.8 0.2 94.6 
51      1.7   1.7 2.6 2.1  3.3 18.5 
55 1.5  5.5   3.3   3.2 16.4 0.2 265 3.3 94 
56      0.5       14 96.9 

UA 82.6 79.3 74.1 86.2 98.2 94.2 92.3 100 76.5 87.0 62.3 94.3 54  

Appendix C 

Table A3. Confusion matrix for the year 2018. The overall accuracy is 90.7%. Color and class de-
scriptions are available in Table 1. Unrounded values are provided as supplementary material. 

Cl 
Ref 10 15 20 21 30 35 40 45 48 50 51 55 56 PA 

10 14.8             100 
15  3.0 1.5           66.7 
20   57.0 1.1  2.8      3.6 0.5 87.8 
21   1.5 22.5          93.7 
30     238  0.5       99.8 
35   3.5 2.6 3.0 268 0.5  2.1   8.9 2.6 92.0 
40 1.5  2.2   5.6 11.1  0.7 4   0.5 43.5 
45        1.7      100 
48   0.2   1.7   30.3 3.8  2.3 1.7 75.8 
50   1.9      2.9 161  3.8 0.2 94.8 
51      1.7   1.7 2.1 3.1  3.3 26.4 
55 1.5  5.5   3.3   1.1 16.4 0.2 264 3.3 88.7 
56         1.5    14.0 90.7 

UA 83.0 100 77.8 86.2 98.7 94.7 92.5 100 71.4 85.9 93.
7 93.4 53.7  

Appendix D 

Table A4. Confusion matrix for the year 2019. The overall accuracy is 89.4%. Color and class de-
scriptions are available in Table 1. Unrounded values are provided as supplementary material. 

Cl 
Ref 

10 15 20 21 30 35 40 45 48 50 51 55 56 PA 

10 13.3     1.5        89.8 
15  3.0            100 
20   53.9 2.1  2.8      3.6 0.5 85.7 
21   1.5 21.5          93.4 
30     236 1.7 0.5     1.5  98.5 
35  2.6 5.4 2.6 4.7 263   2.1 1.5  10.4 1.1 89.6 
40   2.2   7.1 12.8  2.2 2.1  1.5 0.5 45.1 
45        1.7      100 
48      1.7   19.1 7.3  2.5 3.2 56.4 
50   1.9      2.9 168 1.7 5.5  93.3 
51      1.7   1.7 2.6 2.1  3.3 21.9 
55 1.5  5.7   3.6   5.1 17.5 0.2 259 3.3 87.5 
56         1   1.7 11 79.9 

UA 89.8 54.1 76.3 82.1 98.1 92.9 96.6 100 55.8 84.4 53.0 90.6 52.1  
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