

TECHNISCHE

UNIVERSITÄT DAR MSTADT

Mixed Finite Element Formulations for Systems with Superconductors and Ferromagnetic Materials

J. Dular, C. Geuzaine, B. Vanderheyden

September 1, 2022

Introduction

We model eddy current problems for high-temperature superconductors (HTS) and ferromagnetic materials (FM).

Coated HTS tape

[Solovyov, Supercond. Sci. Technol., 2013]

Magnetic levitation

[Huang, Supercond. Sci. Technol., 2015]

Trapped-field magnet

Magnetic cloak

[Capobianco-Hogan, Nucl. Instrum. Methods Phys. Res., 2018]

[Philipe, Physica C Superconductivity, 2014]

Context

Coupled formulations offer many advantages for HTS-FM modeling:

- improved efficiency for nonlinear system resolution,
- reduced number of DOFs,
- increased flexibility...

However, they enter the framework of mixed formulations, thus requiring to be extremely careful regarding function spaces.

Otherwise, non-physical results must be expected:

Strong form

Magnetodynamic (quasistatic) equations

div
$$\boldsymbol{b} = 0$$
, curl $\boldsymbol{h} = \boldsymbol{j}$, curl $\boldsymbol{e} = -\partial_t \boldsymbol{b}$.

Constitutive relationships

High-temperature superconductors (HTS):

$$\boldsymbol{e} =
ho(\|\boldsymbol{j}\|)\boldsymbol{j}$$
 and $\boldsymbol{b} = \mu_0 \boldsymbol{h},$

with the power law $\rho(\|\boldsymbol{j}\|) = \frac{e_c}{j_c} \left(\frac{\|\boldsymbol{j}\|}{j_c}\right)^{n-1}$.

Ferromagnetic material (FM):

$$\boldsymbol{b} = \mu(\boldsymbol{b}) \boldsymbol{h}$$
 and $\boldsymbol{j} = \boldsymbol{0}$.

Dual formulations

Two classes of formulations with the finite element method:

- h-conform, e.g. h-formulation ,
 - enforces the continuity of the tangential component of h,
 - involves $\boldsymbol{e} = \rho \boldsymbol{j}$ and $\boldsymbol{b} = \mu \boldsymbol{h}$,
 - with curl h = 0 in non-conducting domain ("h- ϕ "+cuts),

$$\left(\partial_t(\mu \boldsymbol{h})\;, \boldsymbol{h}'\right)_\Omega + \left(\rho \operatorname{\mathbf{curl}} \boldsymbol{h}\;, \operatorname{\mathbf{curl}} \boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}} - \left\langle \boldsymbol{e} \times \boldsymbol{n}\;, \boldsymbol{h}'\right\rangle_{\Gamma_e} = 0.$$

b-conform, e.g. *a*-formulation ,

enforces the continuity of the normal component of b,

• involves $\mathbf{j} = \sigma \mathbf{e}$ and $\mathbf{h} = \nu \mathbf{b}$, $(\sigma = \rho^{-1}, \nu = \mu^{-1})$

$$\left(\nu \operatorname{\mathbf{curl}} \boldsymbol{a} \;, \operatorname{\mathbf{curl}} \boldsymbol{a}'
ight)_{\Omega} + \left(\sigma \; \partial_t \boldsymbol{a} \;, \boldsymbol{a}'
ight)_{\Omega_{\mathrm{c}}} - \left\langle \boldsymbol{h} imes \boldsymbol{n} \;, \boldsymbol{a}'
ight
angle_{\Gamma_h} = 0.$$

Nonlinear constitutive laws involved in opposite ways \Rightarrow very different numerical behaviors are expected... and observed.

Best choice for HTS only

Cycles in iterations:

In the *a*-formulation, the diverging slope associated with $\mathbf{j} = \sigma \mathbf{e}$ for $\mathbf{e} \rightarrow 0$ is really difficult to handle.

 \Rightarrow Among the two simple formulations, the <u>*h*-formulation</u> is much more efficient for systems with HTS:

- with an adaptive time-stepping algorithm,
- solved with a Newton-Raphson method.

Dular, J., et al. (2020) TAS 30 8200113.

Ferromagnetic materials

The nonlinearity is in the magnetic constitutive law.

• *h*-formulation the involved law is $b = \mu h$.

$$\mu$$
 \approx σ

 \Rightarrow Often enters cycles with Newton-Raphson.

OK with fixed point, or N-R with relaxation factors but slow.

 $| a - formulation | the involved law is <math>h = \nu b.$

 \Rightarrow Efficiently solved with Newton-Raphson.

The <u>a-formulation</u> is more appropriate for dealing with the nonlinearity, whereas for HTS, the <u>h-formulation</u> is best.

Coupled materials - *h-a*-formulation

Use the best formulation in each material

Decompose the domain $\Omega,$ for example into:

- $\Omega^h = \{\text{HTS, Air}\}$
- $\Omega^a = \{\text{Ferromagnet}\}$

and couple via $\Gamma_{\text{m}}=\partial(\text{FM})$:

$$egin{aligned} &ig(\partial_t(\mum{h})\;,m{h}'ig)_{\Omega^h} + ig(
ho\; \mathbf{curl}\;m{h}\;,\mathbf{curl}\;m{h}'ig)_{\Omega^h_{\mathbf{c}}} + ig\langle\partial_t a imes m{n}_{\Omega^h}\;,m{h}'ig
angle_{\Gamma_{\mathsf{m}}} = 0, \ &ig\langlem{h} imes m{n}_{\Omega^a}\;,m{a}'ig
angle_{\Gamma_{\mathsf{m}}} - ig(
u\;\mathbf{curl}\;m{a}\;,\mathbf{curl}\;m{a}'ig)_{\Omega^a} = 0. \end{aligned}$$

Dular, J., et al. (2020) TAS 30 8200113. See also: Brambila R. et al, (2018) TAS 28, 5207511.

Perturbed saddle point problem

$$\begin{split} \left(\partial_t(\mu \boldsymbol{h}) \ , \boldsymbol{h}'\right)_{\Omega^h} + \left(\rho \operatorname{\mathbf{curl}} \boldsymbol{h} \ , \operatorname{\mathbf{curl}} \boldsymbol{h}'\right)_{\Omega^h_c} + \left\langle\partial_t \boldsymbol{a} \times \boldsymbol{n}_{\Omega^h} \ , \boldsymbol{h}'\right\rangle_{\Gamma_m} &= 0, \quad \forall \boldsymbol{h}' \in \mathcal{H}, \\ \left\langle \boldsymbol{h} \times \boldsymbol{n}_{\Omega^a} \ , \boldsymbol{a}'\right\rangle_{\Gamma_m} - \left(\nu \operatorname{\mathbf{curl}} \boldsymbol{a} \ , \operatorname{\mathbf{curl}} \boldsymbol{a}'\right)_{\Omega^a} &= 0, \quad \forall \boldsymbol{a}' \in \mathcal{A}. \end{split}$$

It is a perturbed saddle point problem:

$$\begin{cases} a(u,v) + b(v,p) = \langle f, v \rangle, & \forall v \in V, \\ b(u,q) - c(p,q) = \langle g, q \rangle, & \forall q \in Q, \end{cases} \quad \text{or} \quad \begin{pmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & -\mathbf{C} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{g} \end{pmatrix}.$$

 \Rightarrow Compatibility conditions for numerical stability, otherwise...

First-order functions for *h* and *a*:

D. Boffi, F. Brezzi, et al., Mixed FE methods and applications, Springer, 2013.

Compatibility conditions

$$\begin{pmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & -\mathbf{C} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{g} \end{pmatrix}$$

The solution is stable, i.e., $\|\boldsymbol{u}\|_{V} + \|\boldsymbol{p}\|_{Q} \leq C(\|\boldsymbol{f}\|_{V'} + \|\boldsymbol{g}\|_{Q'})$, if $\exists \alpha, \beta, \gamma > 0$ (strictly) such that

$$\begin{split} \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{v} &\geq \alpha \|\mathbf{v}\|_{V}^{2}, \ \forall \mathbf{v} \in \ker(\mathbf{B}) & (\text{coercivity of } \mathbf{A}), \\ \mathbf{q}^{\mathsf{T}} \mathbf{C} \mathbf{q} &\geq \gamma \|\mathbf{q}\|_{Q}^{2}, \ \forall \mathbf{q} \in \ker(\mathbf{B}^{\mathsf{T}}) & (\text{coercivity of } \mathbf{C}), \end{split}$$

$$\inf_{\boldsymbol{q} \in (\ker(\mathbf{B}^{\mathsf{T}}))^{\perp}} \sup_{\boldsymbol{\nu} \in V} \frac{\boldsymbol{q}^{\mathsf{T}} \mathbf{B} \boldsymbol{\nu}}{\|\boldsymbol{q}\|_{\mathcal{Q}} \|\boldsymbol{\nu}\|_{V}} \ge \beta > 0 \qquad (\text{inf-sup condition}).$$

In our case, the inf-sup condition is the most restrictive.

D. Boffi, F. Brezzi, et al., Mixed FE methods and applications, Springer, 2013.

Inf-sup test

The inf-sup condition is not easy to check analytically.

 \Rightarrow We perform a numerical inf-sup test.

On progressively refined meshes, for given function spaces:

- 1. Define suitable norms.
- 2. Extract matrices \mathbf{B} , \mathbf{N}_V , and \mathbf{N}_Q , from the FE assembly, with

$$\|\boldsymbol{v}\|_{V}^{2} = \boldsymbol{v}^{\mathsf{T}} \mathbf{N}_{V} \boldsymbol{v},$$
$$\|\boldsymbol{q}\|_{Q}^{2} = \boldsymbol{q}^{\mathsf{T}} \mathbf{N}_{Q} \boldsymbol{q}.$$

3. Solve the eigenvalue problem

$$\left(\mathbf{B}\mathbf{N}_{V}^{-1}\mathbf{B}^{\mathsf{T}}\right)\boldsymbol{q} = \lambda\mathbf{N}_{Q}\boldsymbol{q}.$$

Lowest non-zero eigenvalue = square of the inf-sup value β^{δ} . \Rightarrow How does β^{δ} behave when the mesh is refined?

- It tends to zero \Rightarrow unstable,
- It is bounded from below \Rightarrow stable.

D. Chapelle, K.-J. Bathe, The inf-sup test, C&S 47, 1993.

h-a-formulation Unstable choices

Linear or quadratic elements for both h and $a \Rightarrow$ Unstable.

h-a-formulation Stable choices

One way to stabilize the problem:

 \Rightarrow Increase the discretization order of one field (*h* or *a*).

Increasing the order on the coupling interface only is sufficient.

h-a-formulation Stabilization

First-order functions for *h* and *a* (inf-sup KO):

Second-order for *a*, first-order for *h* (inf-sup OK):

Application 1: HTS bulk magnetization model (3D)

HTS bulk magnetization with a coil, on top of a FM pellet.

	# DOFs	# iterations	Time/it.	Total time
h-formulation	12,172	3,937	1.4s	1h33
a-formulation	26,964	3,147	2.1s	1h48
h-a-formulation	15,776	1,108	2.1s	0h39
h-b-formulation	20,821	1,104	3.2s	0h58

Application 2: magnetic shield model (2D and 3D) Magnetic shield made up of a stack of tape annuli.

Inner radius: 13 mm. Outer radius: 22.5 mm. Height: 14.9 mm.

- Number of tapes: N = 183. One tape: HTS layer + FM substrate.
- Filling factor of the FM: f = 0.92.
- Temperature: 77K.

S. Hahn, 2011. A. Patel, 2016.

Shielding configurations

Magnetic shielding application

h-b-formulation

h-φ in Ω and auxiliary *b* field in the FM domain Ω_m.
 Volume coupling in Ω_m:

$$\begin{split} \left(\mu_0 \partial_t \boldsymbol{h} \ , \boldsymbol{h}'\right)_{\Omega_{\mathrm{m}}^{\mathrm{C}}} &+ \left(\rho \operatorname{\mathbf{curl}} \boldsymbol{h} \ , \operatorname{\mathbf{curl}} \boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}} + \left(\partial_t \boldsymbol{b} \ , \boldsymbol{h}'\right)_{\Omega_{\mathrm{m}}} = 0 \\ & \left(\boldsymbol{h} \ , \boldsymbol{b}'\right)_{\Omega_{\mathrm{m}}} - \left(\nu \boldsymbol{b} \ , \boldsymbol{b}'\right)_{\Omega_{\mathrm{m}}} = 0 \end{split}$$

- If Ω_m is non-conducting, inf-sup condition satisfied with piecewise constant elements for b.
- Much more robust than <u>h-formulation</u>.
- More efficient than <u>h-a-formulation</u> because of large coupling surface:

Homogeneous model: anisotropy

Replace the detailed stack by one homogeneous material.

- Introduce the average h and j fields.
- Introduce anisotropic $\tilde{\rho}(j)$ and $\tilde{\mu}(h)$ tensors.
- Modified *h*-formulation :

$$\left(\partial_t(\tilde{\boldsymbol{\mu}}\,\boldsymbol{h})\;,\boldsymbol{h}'
ight)_\Omega+\left(\tilde{\boldsymbol{
ho}}\,\mathrm{curl}\;\boldsymbol{h}\;,\mathrm{curl}\;\boldsymbol{h}'
ight)_{\Omega_{\mathrm{c}}}=0$$

Not optimal: how to apply the <u>*h-b*-formulation</u> with anisotropy and conducting Ω_m domain?

Conclusion

Coupled formulations help to model HTS and FM efficiently

- Surface coupling \Rightarrow *h*-*a*-formulation
- Volume coupling \Rightarrow *h-b*-formulation
- Thin HTS tapes \Rightarrow *t-a-formulation* (not presented here).

These formulations are mixed \Rightarrow Inf-sup condition for stability.

References

- Life-HTS website: http://www.life-hts.uliege.be/
- Mixed and hybrid finite element methods,
 F. Brezzi, M. Fortin, Springer Science & Business Media (2012).
- On the Stability of Mixed Finite-Element Formulations for High-Temperature Superconductors,
 J. Dular, M. Harutyunyan, L. Bortot, S. Schöps, B. Vanderheyden, and
 C. Geuzaine, TAS 32 (6), 1-12 (2021).
- What Formulation Should One Choose for Modeling a 3D HTS Motor Pole with Ferromagnetic Materials?,

J. Dular, K. Berger, C. Geuzaine, and B. Vanderheyden, TM 58 (9), 1-11 (2022).

20/20