Fish sounds of photic and mesophotic coral reefs: variation with depth and type of island

Xavier Raick, Lucia Di Iorio, David Lecchini, Cédric Gervaise, Laetitia Hédouin, Under The Pole Consortium, Gonzalo Pérez-Rosales Blanch, Héloïse Rouzé, Frédéric Bertucci & Éric Parmentier

In this document, you will find eleven supplementary tables, seven supplementary figures and a *Supplementary Sound Identification Key*.

Supplementary tables

		Date GPS coordinates		GPS coordinates			Type of
	Day	Month	Year	Lat	Long	Archipelago	island
Bora Bora	$21^{st}-24^{th}$	09	2018	S 16.43658°	W 151.75362°	Society	High Island
Mangareva	$16^{th}-19^{th}$	04	2019	S 23.00102°	W 134.96052°	Gambier	High Island
Moorea	$4^{th}-7^{th}$	09	2018	S 17.47730°	W 149.85138°	Society	High Island
Rangiroa	$30^{th}-2^{nd}$	10-11	2018	S 14.98030°	W 147.61315°	Tuamotu	Atoll
Raroia	$2^{nd}-5^{th}$	03	2018	S 16.02310°	W 142.46327°	Tuamotu	Atoll
Tikehau	$15^{\text{th}}-18^{\text{th}}$	10	2018	S 15.01733°	W 148.28675°	Tuamotu	Atoll

Table SP1 Localisation and period of sampling for each island. See the text for details on the type of island.

	Dur	ation	Peak fr	equency	Numl	per of	Per	riod
Sound type	(1	ns)	(1	Hz)	pul	ses	(n	ns)
	mean	SD	mean	SD	mean	SD	mean	SD
Fast Pulse Trains								
FPT1	774.24	411.30	188.02	39.27	28.80	13.81	27.72	10.45
FPT2	725.42	567.14	326.44	207.42	16.84	10.65	40.24	12.92
FPT3	124.84	60.75	336.80	152.56	7.20	3.91	19.14	4.65
FPT4	171.21	94.18	253.42	105.45	7.43	6.79	32.81	14.03
FPT5	86.04	45.19	761.10	423.34	5.30	4.95	22.76	18.22
FPT6	134.70	48.02	614.20	200.83	4.70	1.89	36.96	16.98
FPT7	250.02	143.63	696.50	417.21	11.78	14.38	37.94	18.58
Slow Pulse Series								
SPS	3244.40	2105.83	422.39	208.39	5.00	2.36	822.53	289.23
Others Pulse Series								
PS1	417.48	155.43	551.25	91.17	5.20	1.69	92.72	16.12
PS2	725.39	328.50	750.22	30.11	8.80	3.58	81.49	6.34
PS3	341.96	33.65	238.70	66.34	3.00	0.00	152.56	23.86
PS4	237.94	33.85	171.50	25.44	3.00	0.00	104.17	14.72
PS5	304.73	154.50	875.55	155.85	3.00	0.00	146.15	76.68
PS6	5683.91	7715.23	639.55	437.92	26.46	23.57	185.21	68.53
PS7	737.39	129.21	261.00	5.59	7.20	1.03	102.74	13.09
PS8	1549.50	12.23	169.82	2.21	9.00	0.00	186.10	2.15
PS9	1766.10	498.42	694.01	225.71	20.34	7.64	92.50	15.15
PS10	1539.19	552.95	220.68	25.29	18.42	6.00	84.68	21.30
PS11	2005.13	1383.01	935.10	198.50	24.50	15.33	81.44	13.55
PS12	975.80	428.63	239.31	201.51	6.60	3.13	186.34	96.17
PS13	1119.96	317.74	246.60	36.48	20.70	6.04	58.44	11.45
PS14	3104.31	2672.38	730.36	312.04	6.30	3.37	573.97	486.11
PS15	1446.60	1289.08	233.95	43.20	6.60	4.25	232.86	112.93
PS16	666.20	399.99	718.43	205.78	6.20	2.20	119.78	16.62
PS17	425.82	124.81	279.07	43.47	4.80	1.62	111.96	22.48

Table SP2 Detail of the Pulse Series *stricto sensu* **sounds.** SD = standard deviation. Hz = Hertz, ms = millisecond.

Table SP3 Detail of the frequency modulated and arched sounds. SD = standard deviation. Hz = Hertz, ms = millisecond.* These three sound types are similar in terms of temporal and frequential features and constitute a variation (downsweeping, upsweeping and arched) of the same pattern. ** Sometimes, these sounds were followed by an(some) additional peak(s), not included in the table. *** Sometimes, this sound had a harmonic-interval twice as large than usual, not included in the table.

	Dura	ation	Peal fi	requency	Number	r of pulses	Pe	eriod
	(n	ns)	(Hz)			(ms)
	mean	SD	mean	SD	mean	SD	mean	SD
Downsweeping s	sounds							
DS1	109.41	50.78	239.10	62.93	13.29	5.65	8.43	3.57
DS2	177.10	123.92	742.30	412.47	15.87	5.91	11.07	4.30
DS3 *	137.04	47.94	246.58	24.79	31.00	14.65	4.76	1.19
DS4 **	546.98	131.40	858.43	56.89	6.10	1.37	103.09	10.32
DS5	200.73	106.14	248.39	95.60	40.50	25.03	5.25	0.93
DS6	215.03	114.24	194.00	101.43	23.42	10.06	10.00	5.58
DS7	214.64	32.45	886.79	128.54	2.00	0.00	162.93	16.13
DS8 **	454.87	29.03	715.75	51.17	4.00	0.00	138.75	9.40
Upsweeping sou	nds							
US1 **	334.69	79.50	224.80	48.88	32.24	6.07	10.78	0.24
US2	87.85	39.31	345.90	220.84	18.50	6.96	4.70	0.72
US3 *	111.56	21.88	214.40	31.61	23.60	4.95	4.77	0.60
Arched sounds								
AS1	172.99	118.92	211.10	80.57	11.38	6.51	15.74	5.53
AS2 ***	546.25	190.47	69.30	1.55	38.20	13.86	14.37	0.29
AS3 *	126.50	21.04	231.00	55.73	19.22	2.11	6.45	0.94
AS4 = kwa-like	182.85	7.27	846.90	147.61	12.30	1.16	14.95	1.06
AS5	110.33	38.31	643.84	113.98	6.90	2.28	16.57	4.02
AS6	57.25	11.56	374.70	225.62	5.30	2.98	14.39	6.37
AS7	141.89	223.16	297.00	75.60	4.00	0.82	20.63	2.81
Complex sounds	8							
CS1 = whoot	940.02	174.39	216.34	21.44	167.96	65.65	4.94	0.29
CS2	401.93	121.78	249.71	51.76	93.50	27.64	4.29	0.57

Table SP4 Number of sound types per 1 min per (pseudo-)replicate, i.e., for each sunset period, for eachdepth and for each island (N= 51). The ten most abundant sounds detailed in Fig. SP5 are highlighted inyellow.

	min	max	median	mean	SD
Fast Pulse Trains					
FPT1	0	1.83	0	0.16	0.41
FPT2	0	1.42	0.17	0.35	0.42
FPT3	0	1.00	0	0.08	0.18
FPT4	0	2.58	0.75	1.05	0.74
FPT5	0	10.42	0.92	1.41	1.91
FPT6	0	4.42	0.08	0.30	0.66
FPT7	0	0.67	0	0.05	0.13
Slow Pulse Series					
SPS	0	0.33	0	0.031	0.067
Others Pulse Series					
PS1	0	0.92	0	0.02	0.13
PS2	0	0.83	0.016	0	0.12
PS3	0.08	5.83	0.92	1.62	1.48
PS4	0	2.42	0.08	0.16	0.36
PS5	0	1.67	0.08	0.31	0.41
PS6	0	0.42	0	0.02	0.07
PS7	0	0.33	0	0.02	0.06
PS8	0	5.25	0	0.21	0.91
PS9	0	0.42	0	0.06	0.09
PS10	0	0.33	0	0.04	0.07
PS11	0	5.50	0	0.32	0.92
PS12	0	2.25	0.33	0.42	0.42
PS13	0	0.42	0	0.04	0.10
PS14	0	1.50	0.17	0.24	0.30
PS15	0	1.83	0	0.16	0.32
PS16	0	10.08	0.83	1.96	2.56
PS17	0	5.67	1.17	1.66	1.43
Downsweeping sounds					
DS1	0.08	2.08	0.42	0.53	0.39
DS2	0	1.25	0	0.14	0.26
DS3	0	0.83	0	0.11	0.23
DS4	0	6.00	0	0.42	1.29
DS5	0	0.33	0	0.07	0.09
DS6	0	0.33	0	0.03	0.07

DS7	0	0.33	0	0.06	0.08
DS8	0	1.25	0	0.04	0.19
Upsweeping sounds					
US1	0	5.67	0.08	1.01	1.76
US2	0	0.33	0	0.04	0.08
US3	0	0.92	0	0.05	0.17
Arched sounds					
AS1	0	0.50	0.08	0.10	0.12
AS2	0	1.42	0	0.06	0.27
AS3	0	1.25	0	0.11	0.26
AS4	0	40.42	7.75	10.65	10.03
AS5	0	1.75	0.25	0.37	0.40
AS6	0	1.42	0.08	0.12	0.23
AS7	0	0.58	0	0.03	0.11
Complex sounds					
CS1	0	4.08	0.17	0.51	0.84
CS2	0	0.75	0	0.03	0.14

	Bora Bora	Mangareva	Moorea	Rangiroa	Raroia	Tikeahau	
-20 m							
Most abundant type	FPT5	PS16	ő	А	S4 = kwa-li	ike	
Total%	38.27	25.05	18.03	38.10	22.54	27.68	
SS1%	23.95	14.17	15.63	24.55	31.02	32.81	
SS2%	52.30	27.92	20.81	44.04	17.23	25.06	
SS3%	39.16	33.06	17.65	45.70	19.37	25.17	
-60 m							
Most abundant type	AS4 = kwa-like	PS17	AS4 = kwa-like				
Total%	63.12	20.88	34.34	77.53	44.14	47.45	
SS1%	53.64	11.58	24.73	74.26	46.06	51.72	
SS2%	63.41	25.19	40.44	80.29	37.56	46.98	
SS3%	72.29	25.87	37.86	78.05	48.81	43.65	
		-120 m					
Most abundant type	AS4 = kwa-like			AS4 = b	<i>kwa</i> -like		
Total%	39.68		46.31	55.16	48.18	66.28	
SS1%	27.06		34.58	45.86	47.88	69.33	
SS2%	37.79		56.36	62.50	46.54	59.25	
SS3%	54.19		47.97	57.12	50.11	70.26	

Table SP5 Most abundant type of fish sounds for each depth and each island. Total% corresponds to the mean of the three temporal replicates. SS = sunset.

Table SP6 Median and Interquartile range (IQR) of the acoustic fish α -diversity (Shannon) per depth and per island.

Island	Acoustic fish α-diversity (Shannon)						
		-20 m	-60 m	-120 m			
Bora Bora	Median	1.76	1.57	1.69			
	IQR	0.30	0.28	0.27			
Mangareva	Median	2.27	2.60				
	IQR	0.22	0.05				
Moorea	Median	2.77	1.93	1.92			
	IQR	0.03	0.04	0.18			
Rangiroa	Median	2.11	0.99	1.70			
	IQR	0.31	0.11	0.13			
Raroia	Median	2.54	2.10	2.02			
	IQR	0.07	0.18	0.10			
Tikehau	Median	2.33	1.89	1.41			
	IQR	0.04	0.07	0.19			

Table SP7 Acoustic fish Shannon diversity, overlap and results of the variance model per depth and type of island (upper part of the table) and results of the linear model to test the influence of benthic cover features on Shannon diversity. Df = degree of freedom. Sum Sq = sum of squares. Mean Sq = mean squares. SD = standard deviation. IQR = interquartile range.

Shannon diversity					
Depth	mean	S	D	median	IQR
-20 m	2.35	0.2	27	2.38	0.28
-60 m	1.86	0.:	50	1.92	0.61
<u> </u>	1.77	0.	18	1.78	0.18
Type of island	mean	S	D	median	IQR
Atoll	1.93	0.4	44	1.97	0.47
High island	2.10	0.4	41	1.92	0.58
Overlap					
Depth	all	20 vs	60m 2	20 vs 120m	60 vs 120 m
-	61.90	59.	.92	60.09	73.91
Type of island	bot	h	atoll	H	ligh island
	61.9	00	75.22		46.22
Analyses of variance					
t	Df	Sum Sq	Mean Sq	Fvalue	Р
Depth	2	2.49	1.26	8.59	0.00068
Type of island	1	0.083	0.083	0.58	0.45
Residuals	46	3.76	0.082		
Linear model					
Linear model	Df	Sum Sq	Mean Sq	Fvalue	P
Linear model Macroalgae including <i>Halimeda</i> algae	Df 1	Sum Sq 4.93	Mean Sq 4.93	Fvalue < 10 ²⁴	P < 0.0001
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges	Df 1 1	Sum Sq 4.93 0.082	Mean Sq 4.93 0.082	Fvalue < 10 ²⁴ < 10 ²⁴	P <0.0001 <0.0001
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae	Df 1 1 1	Sum Sq 4.93 0.082 0.013	Mean Sq 4.93 0.082 0.013	$Fvalue < 10^{24} < 10^{24} < 10^{24} < 10^{24}$	P < 0.0001 < 0.0001 < 0.0001
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae	Df 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80	Mean Sq 4.93 0.082 0.013 0.80	$\begin{tabular}{ c c c c } \hline Fvalue & <10^{24} & <10^{24} & \\ <10^{24} & <10^{24} & \\ <10^{24} & <10^{24} & \\ \end{tabular}$	P < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble	Df 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020	Mean Sq 4.93 0.082 0.013 0.80 0.00020	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \end{tabular}$	P < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	P < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \end{tabular}$	P < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral	Df 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \end{tabular}$	$\begin{array}{c} \pmb{P} \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \end{array}$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \end{tabular}$	$\begin{array}{c} \pmb{P} \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \end{array}$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae Sand	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \end{tabular}$	$\begin{array}{c} P \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \end{array}$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae Sand Black coral and gorgonians	Df 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \end{tabular}$	$\begin{array}{c} P \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \end{array}$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae Sand Black coral and gorgonians Consolidate substrate	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012 0.56	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012 0.56	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \end{tabular}$	$\begin{array}{c} \label{eq:product} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae Sand Black coral and gorgonians Consolidate substrate Sessile invertebrates	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012 0.56 0.28	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012 0.56 0.28	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < $	$\begin{array}{c} \pmb{P} \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \end{array}$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae Sand Black coral and gorgonians Consolidate substrate Sessile invertebrates Encrusting sponges	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012 0.56 0.28 0.0055	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012 0.56 0.28 0.0055	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < $	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae Sand Black coral and gorgonians Consolidate substrate Sessile invertebrates Encrusting sponges Scleractinian	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.16 0.0012 0.56 0.28 0.0055 0.91	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.036 0.18 0.0012 0.56 0.28 0.0055 0.91	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < $	$\begin{array}{c} \label{eq:product} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
Linear model Macroalgae including <i>Halimeda</i> algae Non encrusting sponges Encrusting algae Fleshy algae Rubble Hydroids Turf Dead coral Anthoathecatae Sand Black coral and gorgonians Consolidate substrate Sessile invertebrates Encrusting sponges Scleractinian Calcifying algae	Df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sum Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.036 0.18 0.0012 0.56 0.28 0.0055 0.91 0.91	Mean Sq 4.93 0.082 0.013 0.80 0.00020 0.24 0.13 0.036 0.18 0.036 0.18 0.0012 0.56 0.28 0.0055 0.91 0.91	$\begin{tabular}{ c c c c } \hline Fvalue \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < 10^{24} \\ < $	$\begin{array}{c} \label{eq:product} \begin{tabular}{lllllllllllllllllllllllllllllllllll$

Table SP8 Output of the permutation based-test of multivariate homogeneity of group variances on the β -diversity.

	Degrees of freedom	Sum of squares	Mean square	F	Pr(>F)
With logarithmic	c standardization				
Groups	2	0.011	0.0054	2.51	0.086
Residuals	48	0.10	0.0021		

 Table SP9 Results of the PerMANOVAstests based on Bray-Curtis dissimilarities for the influence of the

 depth and type of island on acoustic communities composition. Df = degree of freedom.

	Df	Sums of squares	Mean squares	F of the model	R ²	Pr (> F)
Not nested in the	season					
Depth	2	1.09	0.54	7.33	0.22	0.001
Type of island	1	0.44	0.44	5.86	0.09	0.001
Residuals	47	3.49	0.07		0.70	
Total	50	5.02			1.00	
Nested in the seas	on					
Depth	5	1.58	0.32	4.79	0.32	0.001
Type of island	2	0.59	0.29	4.46	0.12	0.002
Residuals	43	2.84	0.07		0.57	
Total	50	5.02			1.00	

 Table SP10 Results of the Canonical correspondence analysis testing for a link between acoustic

 communities and cover features. Df = degrees of freedom

	Df	χ^2	F	Р
Macroalgae including Halimeda algae	1	0.14	9.57	0.001
Non encrusting sponges	1	0.081	5.66	0.001
Encrusting algae	1	0.064	4.48	0.001
Fleshy algae	1	0.058	4.05	0.001
Rubble	1	0.048	3.38	0.001
Hydroids	1	0.041	2.83	0.002
Turf	1	0.038	2.64	0.001
Dead coral	1	0.035	2.47	0.004
Anthoathecatae	1	0.033	2.31	0.005
Sand	1	0.032	2.26	0.008
Black coral and gorgonians	1	0.029	2.03	0.024
Consolidate substrate	1	0.028	1.97	0.014
Others sessile invertebrates	1	0.027	1.90	0.006
Encrusting sponges	1	0.031	2.14	0.005
Scleractinian	1	0.026	1.83	0.015
Calcifying algae		0.047	3.26	0.001
Residual	34	0.49		

Table SP11 Biplot information and scores for constraining variables of the Canonical correspondence analysis testing for a link between acoustic communities and cover features.

	CCA1	CCA2
Df	1	1
χ^2	0.18	0.11
F	12.57	7.65
Р	0.001	0.001
	CCA1	CCA2
Macroalgae including Halimeda algae	-0.80	-0.31
Non encrusting sponges	0.75	-0.20
Encrusting algae	-0.23	0.48
Fleshy algae	-0.12	-0.29
Rubble	-0.12	0.25
Hydroids	0.32	-0.21
Turf	0.080	0.29
Dead coral	-0.57	0.067
Anthoathecatae	-0.090	-0.55
Sand	0.62	-0.0071
Black coral and gorgonians	0.38	-0.23
Consolidate substrate	-0.25	-0.35
Sessile invertebrates	0.26	-0.13
Encrusting sponges	-0.043	0.30
Scleractinian	-0.68	0.18
Calcifying algae	-0.34	0.19

Supplementary figures

Fig. SP1 Pictures inside a quadrat of 1 m² in Moorea (left) and Rangiroa (right). A and B -20 m, C and D -60 m, E and F -120 m.

Fig. SP2 Plot of the temperature according to the depth. Bora Bora and Moorea are high islands while the three others are atolls.

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. A PS14

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. B SPS

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. C PS6

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. D PS9

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. E PS11

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. F PS10

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. G PS15

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. H PS8

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. I PS12

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. J PS13

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. K FPT1

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. L FPT2

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. M PS7

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. N PS4

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. O FPT3

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. P FPT4

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. Q PS1

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. R PS3

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. S PS2

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. T PS16

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. U PS17

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. V PS5

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds., W FPT5

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. X FPT6

Fig. SP2 Oscillogram (top) and power-spectrum (bottom) of Pulse Series stricto sensu sounds. Y FPT7

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. A DS3

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. B DS1

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. C DS7

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. D DS8

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. E DS4

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. F DS2

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. G DS5

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. H DS6

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. I US3

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. J US1

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. K US2

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. L AS3

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. M AS4 = *kwa*-like

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. N AS2

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. O AS1

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. P AS5

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. Q AS6

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. R AS7

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. S CS2

Fig. SP3 Oscillogram (top) and power-spectrum (bottom) of frequency modulated and arched sounds. T CS1 = whoot.

Fig. SP4 Spectrograms of a fragment of soundscape between 6:50 and 7:00 PM at Raroia Island. FFT = 256, 40 dB were added at each depth. A depth = -20 m, B -60 m and C -120 m. For better clarity, all the sounds are not annotated in this example.

Fig. SP5 Number of the ten most abundant fish sounds at each depth. Dashed line (AS4 = kwa-like sounds) corresponds to right vertical axis while solid lines (others sounds) refer to left vertical axis. Red lines correspond to sounds with an abundance that that decreased with depth, yellow lines correspond to sounds with no clear pattern and black lines correspond to sounds with an abundance that increases with depth.

Fig. SP6 100% stacked column of the abundance of fish sounds for each depth (one column per temporal replicate, three columns per depth). A Bora Bora, **B** Mangareva, **C** Moorea, **D** Rangiroa, **E** Raroia and **F** Tikehau (all the three last islands are atolls).

Fig. SP7 Plot of the acoustic fish β -diversity between the islands. A at -20 m (each colour represents an island) and **B** for all the depths: -20 m (green), -60 m (blue) and -120 m (black). Method = Bray.

Supp spect	plementary Sound Identification Key. Sound identification key for the frequencies bellow 2 kHz trograms. In bold: sound types described in Supplementary Table 1 and 2.	based on
1	The frequency of the sound is not constant along time, i.e., the sound is frequen modulated	ncy 2
1'	The frequency of the sound is constant along time or the variations are very sm	all.39
2	The frequency modulation presents pattern (repetition of frequency modulation	ns). 3
2'	The frequency modulation does not present patterns (no repetition of cycles)	8
3	Peak(s) are visible on the spectrogram.	4
3'	No peak(s) are visible on the spectrogram.	6
4	The difference of frequency between the of the sound beginning (F_{beg}) and the the sound (F_{end}) is higher than 100 Hz (F_{beg} - $F_{end} > 100$ Hz).	end of 5
4'	The difference of frequency between the beginning of the sound (F_{beg}) and the the sound (F_{end}) is smaller than 100 Hz (F_{beg} - $F_{end} < 100$ Hz). CS1 = W	end of V hoot
5	One peak is visible on the spectrogramPeculiar type of CS1 more downs	weeping
5'	Two peaks and one downsweep are visible on the spectrogram Peculiar type of CS1 more downsweeping and more con	nplex
6	Whale vocalization (typically longer than 1 s)	Whale
6'	Not a whale vocalization	7
7	Bandwidth greater than 600 Hz	CS2
7'	Bandwidth < 600 HzRare fish sound or CS2, not used in the	analysis
8	An inflexion point is visible	9
8'	No inflexion point is visible	13
9	Dolphin call (usually peculiar sound with a metallic aspect, with or without inf peaks can be present)D	lexion, olphin
9'	Different from above	10

)	Concave	11
,	Convex	
	The entire sound is above 1 kHzSound of unknown origin with a "hill" form on the	spectrogram
,	The entire sound is under 1 kHz	Whale
	The entire sound is usually above 1 kHzSound of unknown origin with a "valley" form on the	e spectrogram
,	The entire sound is usually under 400 Hz	Whale
	Upsweep	
	Downsweep	
	Rare fish sound made of two US, not used i The sound does not have two upsweeps	in the analysis.
	Peak(s) is(are) visible(s) on the spectrogram Particular type of US1 sound followed by one or	several peaks.
	No peak is visible on the spectrogram	
	The peak frequency is higher than 800 Hz and the bandwidth is usually 200 Hz	shorter than17
	Different from above	
	Fast pulse train aspect high-frequency US sound with an FPT aspect probably produ	ced by dolphin
	No "fast pulse train" aspecthigh-frequency US sound produ	ced by dolphin
	(Pseudo)harmonics are visible on the spectrogram	
	No (pseudo)harmonics are visible on the spectrogram	21

19	The frequency band between two (pseudo)harmonics is greater than 180 Hz	20
19'	Different from above	US1
20	The fundamental frequency appears as longer than the (pseudo)harmonicsUS3 (see also DS2	3 and AS3)
20'	Different from above	US2
21	The sound is long and irregular (with "accidents") without frequencies bello	ow 400 Hz Whale
21'	Different from above	22
22	Fast pulse train aspect	l in the
22'	No "Fast pulse train" aspect	23
23	There is a quick increase in frequency (sound peculiar)	24
23'	Different from above	25
24 24'	The peak frequency is higher than 800 HzFast US sound produced The peak frequency is usually lower than 700 Hz Low-frequency fast US sound produced	by whales by whales
25	All the sound is above 200 Hz (this sound can be very intense compared to sounds)Whale Low-frequency US sound produced	others l by whales
25'	Different from aboveNot	considered
26	The sound contains more than one downsweep	27
26'	The sound only contains one downsweep	31
27	The sound contains more than two downsweeps	28
27'	The sound does not contain more than two downsweeps	30

28	There is more than one main frequency zone in the spectrogramconse	cutive DS1 s
28'	Different from above	29
29	All the sound is above 200 Hz Rare fish sound made of several DSs, not used in the	e analysis
29'	Different from above <u>rare</u> very-low frequency fish sound made of several DSs, not used in the an	nalysis
30	Peak(s) are visible on the spectrogram	DS8
30'	No peaks are visible on the spectrogram	DS7
31	The peak frequency is higher than 900 Hzhigh-frequency DS produced	by dolphins
31'	The peak frequency is lower than 900 Hz	32
32	The sound is made of at least three (pseudo)harmonics	33
32'	Different from above	36
33	The peak frequency is lower than 400 Hz	34
33'	The peak frequency is higher than 400 Hz	35
34	The sound has a pulsed aspect with very close (pseudo)harmonics	DS6
34'	Different from above	DS5
35	The sound has a frequency downsweep with a high slope and has frequence 400 Hz DS3 (see also US	ies bellow 33 and AS3)
35'	Different from above	DS2
36	The duration is generally longer than 0.5 s and the sound is irregularDS produced b	by whales
36'	Different from above	<u></u> 37

37	The peak frequency is lower than 200 Hzlow D	S of unknow origin
37'	The peak frequency is higher than 200 Hz	38
38	The sound has a pulsed aspectrare DS fish sound with a FPT aspect, not	used in the analysis
38'	Different from above	DS1
39	Peak(s) are visible on the spectrogram	40
39'	Different from above	77
40	More than two peaks are visible on the spectrogram	41
40'	Two peaks (or less) are visible on the spectrogram	not considered
41	Three peaks are visible on the spectrogram	
41'	More than three peaks are visible on the spectrogram	45
42	The peak period is regular	43
42'	The peak period is not regular	not considered
43	The peak frequency is below 200 Hz	PS4
43'	The peak frequency is higher than 200 Hz	44
44	In the sound, there are frequencies bellow 400 Hz	PS3
44'	In the sound, there are no frequencies bellow 400 Hz	PS5
45	The peak period is regular	46
45'	The peak period is not regular	
46	The spectrogram has frequential discontinuities	47
46'	The spectrogram is continuous along all the frequencies of the sou	ınd49

47	The bandwidth is larger than 1 kHz and the sound has frequencies above 1.3 kH rare high frequency fish sound, not used in the ana	z alysis
47'	Different from above	48
48	The bandwidth is larger than 0.5 kHz and the sound has frequencies above 600 rare fish sound, not used in the ana	Hz lysis
48'	Different from aboverare low frequency fish sound, not used in the ana	lysis
49	The peak period is longer than 0.75 s	50
49'	The peak period is shorter than 0.75 s	51
50	The peak frequency is higher than 1 kHzrare high frequency slow pulse series attributed to fish, not used in the a	nalysis
50'	The peak frequency is lower than 1 kHz	SPS
51	The sound is a "fast pulse train", i.e. the pulse period is usually between 10 and	50 ms 52
51'	The sound is not a "fast pulse train", i.e. the pulse period is longer than 60 ms	61
52	There is more than 4 consecutive "fast pulse trains". In addition, their length diminished with time. Two frequency peaks are visible in the spectrogram Rare fish sound made of stereotyped fast pulse trains, not used in the ana	alysis
52'	Different from above	53
53	There is more than one fast pulse trainSound made of two consecutive l	F PT7
53'	Different from above	54
54	There are frequencies above 2 kHz	55
54'	There are not frequencies above 2 kHz	56
55	Duration longer than 0.5 sHigh frequency clicks produced by definition of the second sec	olphins
55'	Duration shorter than 0.5 s	FPT7
56	Duration longer than 0.25 s	57
56'	Duration shorter than 0.25 s	58

57	Bandwidth higher than 500 Hz	FPT1
57'	Bandwidth shorter than 500 Hz	FPT2
58	All the frequencies in the sound are under 700 Hz	FPT4
58'	Different from above	<u></u> 59
59	Sound hardly audible, bad signal-noise ratio	FPT5
59'	Different from above	<u>60</u>
60 comj	Bandwidth usually between 0 and 1 kHz. These sounds are usually very intenspared to others FPT	se FPT3
60'	Bandwidth usually between 0.4 and 1.4 kHz.	FPT6
61 61'	The sound has a period shorter than 0.10 s and contains at least 15 peaks	62 64
62	The sound contains only frequencies under 600 Hz	PS10
62'	Different from above	<u>63</u>
63	The sound contains frequencies above 1 – 1.2 kHz PS11 (do not confound with dolphin's	clicks)
63'	Different from above	PS9
64	The sound contains at least 13 peaks	PS6
64'	The sound contains less than 13 peaks	65
65	Period usually shorter than 0.15 s	66
65'	Period usually longer than 0.20 s	71
66	Only frequencies above 1 kHzHigh-frequency fast pulse series of unknown	n origin

66'	Different from above	<u></u> 67
67	Only frequencies under 600 Hz	PS17
67'	Different from above	
68 intens	Peak frequency above 0.4 kHz. This sound is usually stereotyped and se than others PSs. Different frequencies appear in the spectrogram "like	could be more a barcode" PS1
68'	Different from above	<u>69</u>
69 sound	The peak frequency diminish with time, all the sound is between 0.6 a l contains 5 to 8 pulses and sound like "a bird song".	nd 1.4 kHz. The 70
69'	Different from above	
70	The sound is followed by paced peaks Variation of DS4 where one or several additional p	eaks are present
70'	The sound is not followed by spaced peaks	DS4
71	The sound contains only frequencies above 1.2 kHz High-frequency pulse series or u	nknown origin
71'	Different from above	
72	Peak frequency around 165 Hz, between 8 and 9 pulses, bandwidth sm Hz. This sound usually do not appear alone.	naller than 55 PS8
72'	Different from above	PS12
73	The period increases with time	74
73'	Different from above	75
74	The first period is around 0.03 s and the peak frequency is between 25	0 and 300 Hz PS13
74'	Different from above	PS7

75	Sound hardly audible, bad signal-noise ratio	Not considered.
75'	Different from above	
76	The bandwidth is usually between 0.3 and 1.8 kHz	PS14
76'	The banddidth is usually between 0 and 1.2 kHz	PS15
77	The sound has at least 3 (pseudo)harmonics	
77'	Different from above	
78	The peak frequency is below 0.5 kHz and all the frequencies in the s 0.7 kHz.	sound are under79
78'	Different from above	
79 harm	H_0 is more intense and longer than the harmonics. The ΔF between to onics is around 70 Hz.	two consecutives
79'	Different from above	
80 ΔF be	All the frequencies are between 100 and 600 Hz. There are 3 to 4 cle etween two consecutives harmonics is around 140 Hz. AS3 (see a Different from above	ear harmonics. The llso DS3 and US3)
80		A51
81	The ΔF between two consecutives harmonics is higher than 300 Hz rare harmonic AS fish sound, not us	sed in the analysis
81'	Different from above	
82	The ΔF s between two consecutive harmonics is smaller than the ΔF harmonics.	F of one
82'	Different from above	
83	Peak frequency above 900 Hz	AS4 = <i>kwa</i> -like
83'	Different from above	

84	Longer than 0.4 s and there are frequencies bellow 400 Hz rare low-frequency AS fish sound with a "pulsed aspect", not used in the analys	is
84'	Different from above	
85	The ΔF between two consecutives harmonics is around 140 Hz. Only some harm appears completely flat in the spectrogram. Sound similar to	onics AS3
85'	Different from above	AS5
86	On the spectrogram, only one flat energetic zone is visible	<u></u> 87
86'	On the spectrogram, two flat energetic zone are visible	92
87	"Coma" shapeSound of unknow or	gin
87'	Different from above	<u>.</u> 88
88	Peak frequency bellow 100 Hz. The fundamental frequency is longer in duration compared to the higher harmonicsPeculiar type of	AS2
88'	Different from above	<u>.</u> 89
89	Duration usually between 45 and 65 ms.	<u>AS6</u>
89'	Different from above	90
90	Longer than 0.5 s	91
90'	Different from above Sound of unknow origin that appears "flat" on the spectrog	gram
91	Shorter than 2 sSound of unknown origin probably produced by whales or hu	mans
91'	Longer than 2 s. The frequency of the sound is not exactly 100% constant. Irregularities are usually observed at the beginningW	hale
92	There are two zones at different frequencies and flatW	/hale
92'	Different from above	
	Sound of unknow origin that appears as a "stair" in the spectro	gram

93	Usually short pulse period (around 81 ms), peak frequency around 750 Hz	PS2
93'	Usually a longer pulse period (around 120 ms)	PS16