Linking inconsistencies in trophic level of marine fauna to fisheries discard consumption

Benjamin Lejeune^{1,2}, Maud Mouchet¹, Sonia Mehault² and Dorothée Kopp²

¹ Centre d'Écologie et des Sciences de la Conservation, National Museum of Natural History, Paris, France ² Laboratoire de Technologie et Biologie Halieutique, Station Ifremer de Lorient, Lorient, France

Fishing activity, fisheries discards and discard bans

Fisheries discards = animals caught, but returned to the sea, **dead** or alive

Global discard rates ~ 7-10 million tons / year ~ 10% of global catches (Kelleher, 2005; Zeller et al., 2018)

But important variation according to geographic zone / fishing activity

North-East Atlantic ocean has been identified as a 'discard hotspot' (Guillen et al., 2018)

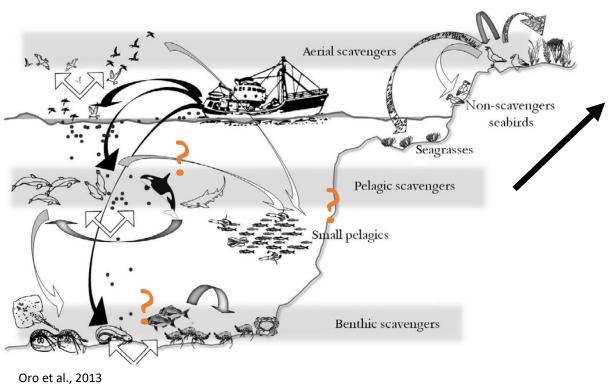
Fishing activity, fisheries discards and discard bans

Fisheries discards = animals caught, but returned to the sea, **dead** or alive

Global discard rates ~ 7-10 million tons / year ~ 10% of global catches

(Kelleher, 2005; Zeller et al., 2018)

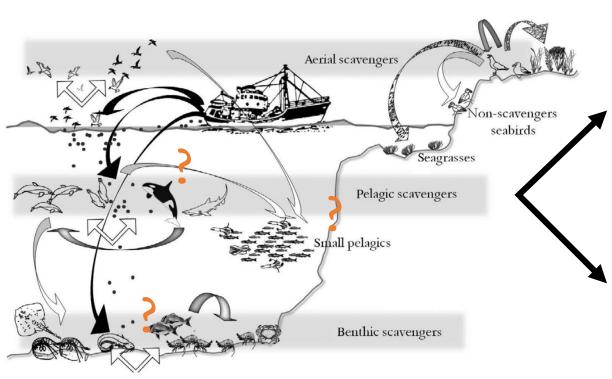
But important variation according to geographic zone / fishing activity


North-East Atlantic ocean has been identified as a 'discard hotspot' (Guillen et al., 2018)

The **EU** adopted a **discard ban** in the form of a **Landing Obligation (LO)** under the reform of its Common Fisheries Policy (Gradual implementation over 2015-2019)

- Essentially aims to stop discarding of species under 'total allowable catches' / quota
- → However, fishing has impacted marine ecosystems since ancient times...
 → Food web consequences of reducing fishing discards ?

What is the fate of discards in marine ecosystems ?


Consumption by seabirds

- = relatively well studied
- → Significant part of the diet

➔ Important impact on population dynamics of some species (e.g.: Sherley et al, 2019)

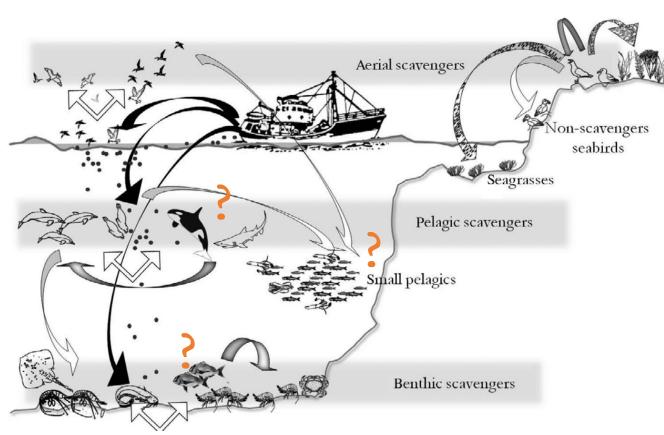
But most discards sink... (e.g.: Depestele et al, 2016)

What is the fate of discards in marine ecosystems ?

Consumption by seabirds

- = relatively well studied
- → Significant part of the diet
- ➔ Important impact on population dynamics of some species (e.g.: Sherley et al, 2019)

But most discards sink... (e.g.: Depestele et al, 2016)


Consumption by aquatic species?

- ➔ Food subsidy potentially supporting non typical scavengers
- → Contrasted predictions from ecosystem models... (e.g.: Catchpole and Frid, 2006 vs. Depestele et al, 2019)

Uncertainties:

- Consumption of discards: understudied and certainly underestimated (Guillen et al, 2018)
- Quantification of discards: \uparrow monitoring needed

What are the challenges of studying discard consumption by marine fauna ?

Multiple challenges linked to:

1. Diet assessment techniques

Traditional gut contents → Usually low resolution of diet items identification.

Baited underwater video systems

Does not allow to ponder the importance of discards consumption relative to other items in the diet.

2. Variation in discard rates and ID

- geographic location
- fishery
- season
- ...

3. Impossibility to decipher between diet items ingested as discards (i.e. scavenging) vs. ingested as living prey (i.e. natural predation) 6

Aims of this research

<u>Aims</u>: (1) Quantify discards consumption by marine fauna in a coastal area subject to important discarding activity
 (2) Identify potential pathways through which the LO may propagate changes through the trophic network in such environments.

<u>Complementary approaches</u>: - <u>Stable isotope analysis</u>: Time and space integrative trophic tracers - <u>Gut content DNA metabarcoding</u>: High resolution diet information

Shallow bay (0 to 34m depth)Diverse in substrate typesand species

Sampling: 10.95 m long commercial trawler single bottom trawl used to target multispecies fish assemblages (20 m headline and 70 mm diamond mesh codend).

Captured individuals were directly frozen to be further dissected in the lab.

Stable isotope analysis: 27 consumer taxa (184 individuals)
Metabarcoding: 22 consumer taxa (369 individuals).
Record discard frequency by taxa during the study period.

Hypothesis: If discarding is important and stable over time, discard consumers may depict higher than expected TL

			Global averaged TL		Modelled TL	
Class	Taxon	n	Mean	SE	Median	CI
Actinopterygii	Callionymus lyra	7	3.3	0.4	2.8	2.6-3.1
Actinopterygii	Chelidonichthys lucerna	7	4	0.1	3.6	3.4-3.8
Actinopterygii	Conger conger	6	4.3	0.4	3.6	3.3-4.0
Actinopterygii	Engraulis encrasicolus	7	3.1	0.4	3.1	2.8-3.4
Actinopterygii	Sardina pilchardus	6	3.1	0.1	3.0	2.7-3.4
Actinopterygii	Sprattus sprattus	7	3	0.1	2.9	2.7-3.1
Actinopterygii	Scomber scombrus	7	3.6	0.2	2.8	2.5-3.2
Actinopterygii	Osmerus eperlanus	7	3.5	0.4	3.8	3.6-4.1
Actinopterygii	Belone belone	4	4.2	0.4	3.2	2.5-4.2
Actinopterygii	Trachurus trachurus	7	3.7	0.0	3.8	3.5-4.0
Actinopterygii	Pollachius pollachius	7	4.3	0.3	3.7	3.4-4.0
Actinopterygii	Trisopterus luscus	7	3.7	0.1	3.8	3.4-4.2
Actinopterygii	Merlangius merlangus	6	4.4	0.2	4.2	3.9-4.5
Actinopterygii	Merluccius merluccius	7	4.4	0.0	3.6	3.3-3.9
Actinopterygii	Pagrus pagrus	7	3.9	0.2	3.8	3.5-4.0
Actinopterygii	Spondyliosoma cantharus	7	3.3	0.2	3.7	3.4-4.0
Actinopterygii	Labrus bergylta	4	3.2	0.0	3.3	2.8-3.8
Actinopterygii	Solea solea	7	3.2	0.2	3.3	3.1-3.6
Chondrichthyes	Raja undulata	7	3.5	0.4	4.1	3.8-4.5
Chondrichthyes	Scyliorhinus canicula	7	3.8	0.3	4.3	3.9-4.7
Cephalopoda	Alloteuthis sp.	7	3.5	0.4	4.4	3.7-5.2
Cephalopoda	Sepia officinalis	7	4.3	0.7	4.2	3.7-4.8
Decapoda	Atelecyclus undecimdentatus	9	> 2.8	NA	3.2	2.9-3.6
Decapoda	Cancer pagurus	7	3.1	NA	3.8	3.4-4.4
Decapoda	Necora puber	7	2.6	NA	3.5	3.1-4.0
Decapoda	Maja brachydactyla	7	3.2	0.2	3.6	3.2-4.2
Decapoda	Pagurus sp.	7	3.6	0.2	3.4	3.1-3.9
Decapoda	Crangon sp.	7	3.2	0.5	3.8	3.5-4.4
Gasteropoda	Buccinum undatum	7	3.4	0.4	3.7	3.3-4.4
Polychaeta	Aphrodita aculeata	6	3.2	0.4	3.8	3.3-4.5

- 1. TL modelling using bayesian mixing models 'tRophicPosition' (Quezada Romegialli et al 2018)
- 2. Comparison with global averaged TL from fishbase and sealifebase

Hypothesis: If discarding is important and stable over time, discard consumers may depict higher than expected TL

			Global averaged TL		Modelled TL	
Class	Taxon	n	Mean	SE	Median	CI
Actinopterygii	Callionymus lyra	7	3.3	0.4	2.8	2.6-3.1
Actinopterygii	Chelidonichthys lucerna	7	4	0.1	3.6	3.4-3.8
Actinopterygii	Conger conger	6	4.3	0.4	3.6	3.3-4.0
Actinopterygii	Engraulis encrasicolus	7	3.1	0.4	3.1	2.8-3.4
Actinopterygii	Sardina pilchardus	6	3.1	0.1	3.0	2.7-3.4
Actinopterygii	Sprattus sprattus	7	3	0.1	2.9	2.7-3.1
Actinopterygii	Scomber scombrus	7	3.6	0.2	2.8	2.5-3.2
Actinopterygii	Osmerus eperlanus	7	3.5	0.4	3.8	3.6-4.1
Actinopterygii	Belone belone	4	4.2	0.4	3.2	2.5-4.2
Actinopterygii	Trachurus trachurus	7	3.7	0.0	3.8	3.5-4.0
Actinopterygii	Pollachius pollachius	7	4.3	0.3	3.7	3.4-4.0
Actinopterygii	Trisopterus luscus	7	3.7	0.1	3.8	3.4-4.2
Actinopterygii	Merlangius merlangus	6	4.4	0.2	4.2	3.9-4.5
Actinopterygii	Merluccius merluccius	7	4.4	0.0	3.6	3.3-3.9
Actinopterygii	Pagrus pagrus	7	3.9	0.2	3.8	3.5-4.0
Actinopterygii	Spondyliosoma cantharus	7	3.3	0.2	3.7	3.4-4.0
Actinopterygii	Labrus bergylta	4	3.2	0.0	3.3	2.8-3.8
Actinopterygii	Solea solea	7	3.2	0.2	3.3	3.1-3.6
Chondrichthyes	Raja undulata	7	3.5	0.4	4.1	3.8-4.5
Chondrichthyes	Scyliorhinus canicula	7	3.8	0.3	4.3	3.9-4.7
Cephalopoda	Alloteuthis sp.	7	3.5	0.4	4.4	3.7-5.2
Cephalopoda	Sepia officinalis	7	4.3	0.7	4.2	3.7-4.8
Decapoda	Atelecyclus undecimdentatus	9	> 2.8	NA	3.2	2.9-3.6
Decapoda	Cancer pagurus	7	3.1	NA	3.8	3.4-4.4
Decapoda	Necora puber	7	2.6	NA	3.5	3.1-4.0
Decapoda	Maja brachydactyla	7	3.2	0.2	3.6	3.2-4.2
Decapoda	Pagurus sp.	7	3.6	0.2	3.4	3.1-3.9
Decapoda	Crangon sp.	7	3.2	0.5	3.8	3.5-4.4
Gasteropoda	Buccinum undatum	7	3.4	0.4	3.7	3.3-4.4
Polychaeta	Aphrodita aculeata	6	3.2	0.4	3.8	3.3-4.5

- 1. TL modelling using bayesian mixing models 'tRophicPosition' (Quezada Romegialli et al 2018)
- 2. Comparison with global averaged TL from fishbase and sealifebase

TL potentially higher than expected in crabs and ray TL potentially lower than expected in some fish

→ <u>But: potentially complex interaction</u> between discard consumption (↑TL) and consumption of small benthic fauna displaced by trawling (↓TL)

Hypothesis: If discarding is important and stable over time, discard consumers may depict higher than expected TL

			Global averaged TL		Modelled TL	
Class	Taxon	n	Mean	SE	Median	CI
Actinopterygii	Callionymus lyra	7	3.3	0.4	2.8	2.6-3.1
Actinopterygii	Chelidonichthys lucerna	7	4	0.1	3.6	3.4-3.8
Actinopterygii	Conger conger	6	4.3	0.4	3.6	3.3-4.0
Actinopterygii	Engraulis encrasicolus	7	3.1	0.4	3.1	2.8-3.4
Actinopterygii	Sardina pilchardus	6	3.1	0.1	3.0	2.7-3.4
Actinopterygii	Sprattus sprattus	7	3	0.1	2.9	2.7-3.1
Actinopterygii	Scomber scombrus	7	3.6	0.2	2.8	2.5-3.2
Actinopterygii	Osmerus eperlanus	7	3.5	0.4	3.8	3.6-4.1
Actinopterygii	Belone belone	4	4.2	0.4	3.2	2.5-4.2
Actinopterygii	Trachurus trachurus	7	3.7	0.0	3.8	3.5-4.0
Actinopterygii	Pollachius pollachius	7	4.3	0.3	3.7	3.4-4.0
Actinopterygii	Trisopterus luscus	7	3.7	0.1	3.8	3.4-4.2
Actinopterygii	Merlangius merlangus	6	4.4	0.2	4.2	3.9-4.5
Actinopterygii	Merluccius merluccius	7	4.4	0.0	3.6	3.3-3.9
Actinopterygii	Pagrus pagrus	7	3.9	0.2	3.8	3.5-4.0
Actinopterygii	Spondyliosoma cantharus	7	3.3	0.2	3.7	3.4-4.0
Actinopterygii	Labrus bergylta	4	3.2	0.0	3.3	2.8-3.8
Actinopterygii	Solea solea	7	3.2	0.2	3.3	3.1-3.6
Chondrichthyes	Raja undulata	7	3.5	0.4	4.1	3.8-4.5
Chondrichthyes	Scyliorhinus canicula	7	3.8	0.3	4.3	3.9-4.7
Cephalopoda	Alloteuthis sp.	7	3.5	0.4	4.4	3.7-5.2
Cephalopoda	Sepia officinalis	7	4.3	0.7	4.2	3.7-4.8
Decapoda	Atelecyclus undecimdentatus	9	> 2.8	NA	3.2	2.9-3.6
Decapoda	Cancer pagurus	7	3.1	NA	3.8	3.4-4.4
Decapoda	Necora puber	7	2.6	NA	3.5	3.1-4.0
Decapoda	Maja brachydactyla	7	3.2	0.2	3.6	3.2-4.2
Decapoda	Pagurus sp.	7	3.6	0.2	3.4	3.1-3.9
Decapoda	Crangon sp.	7	3.2	0.5	3.8	3.5-4.4
Gasteropoda	Buccinum undatum	7	3.4	0.4	3.7	3.3-4.4
Polychaeta	Aphrodita aculeata	6	3.2	0.4	3.8	3.3-4.5

- 1. TL modelling using bayesian mixing models 'tRophicPosition' (Quezada Romegialli et al 2018)
- 2. Comparison with global averaged TL from fishbase and sealifebase

TL potentially higher than expected in crabs and ray TL potentially lower than expected in some fish

→ <u>But: potentially complex interaction</u> between discard consumption (↑TL) and consumption of small benthic fauna displaced by trawling (↓TL)

Diet contributions of potential discards (cumulated means) using mixsiar mixing models (Stock et al 2018):

- **Ray: 26%** (pelagic + high TL fish)
- Squid: 19% (high TL fish)
- Crabs: 7-30% (pelagic + high TL fish)
- Buccinum and Aphrodita: 35-40% (fish and crustaceans)

0 (very low DPS)

2 (medium DPS) 3 (high DPS)

1 (low DPS)

C. pagurus

brachydactyla

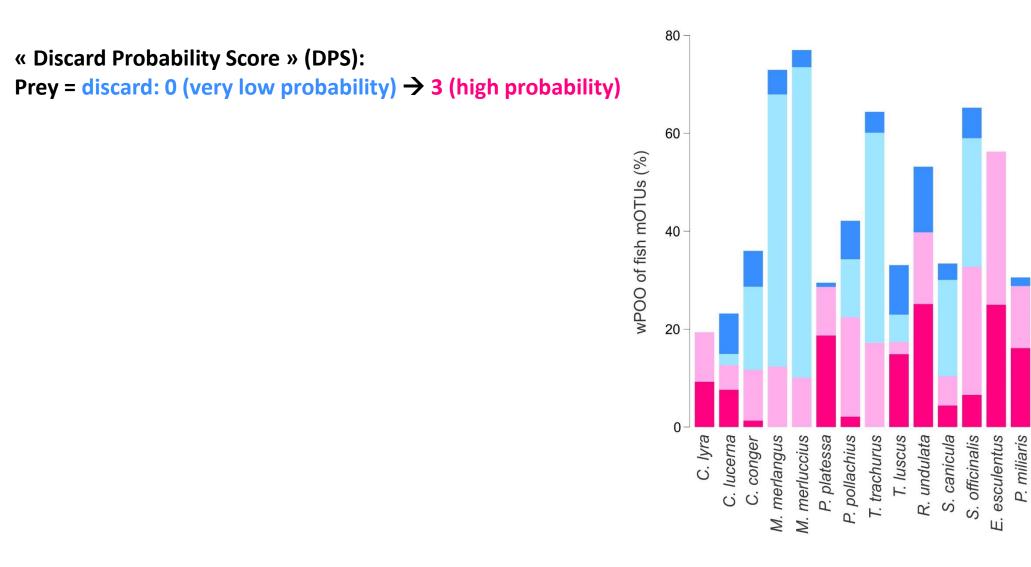
N.

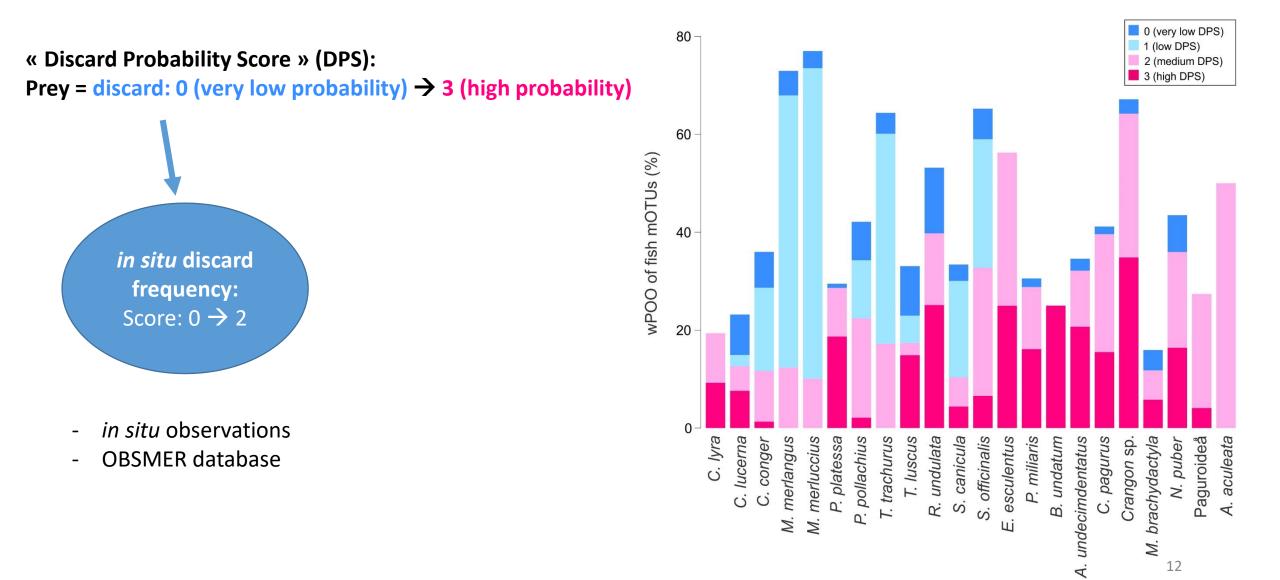
Crangon sp.

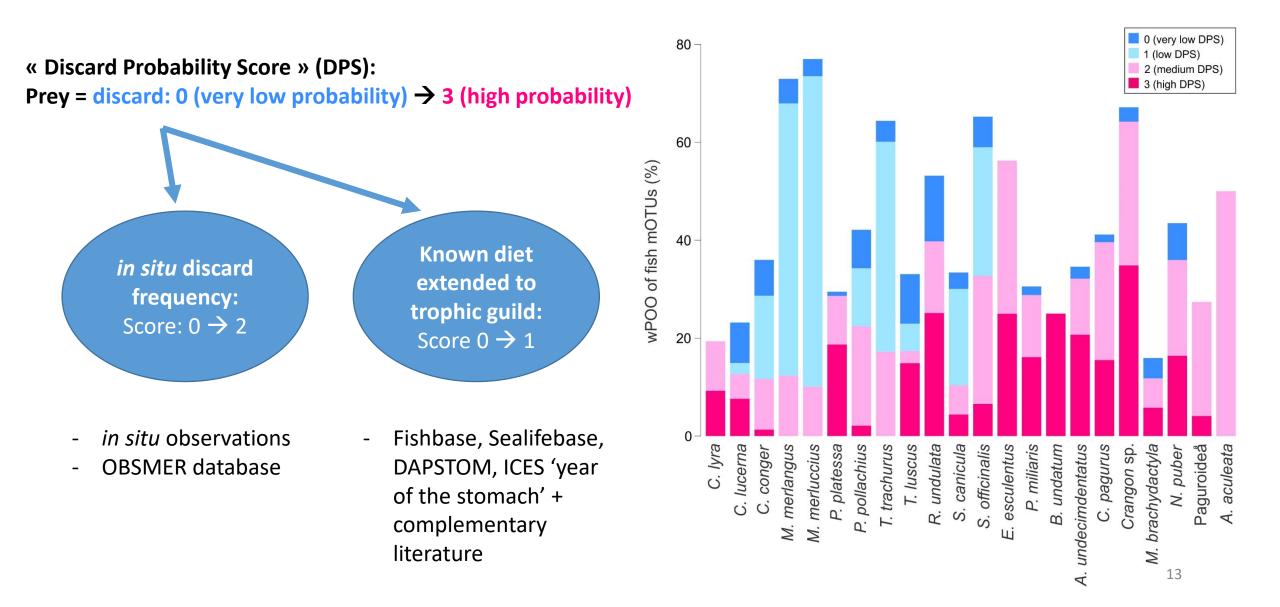
Paguroideå

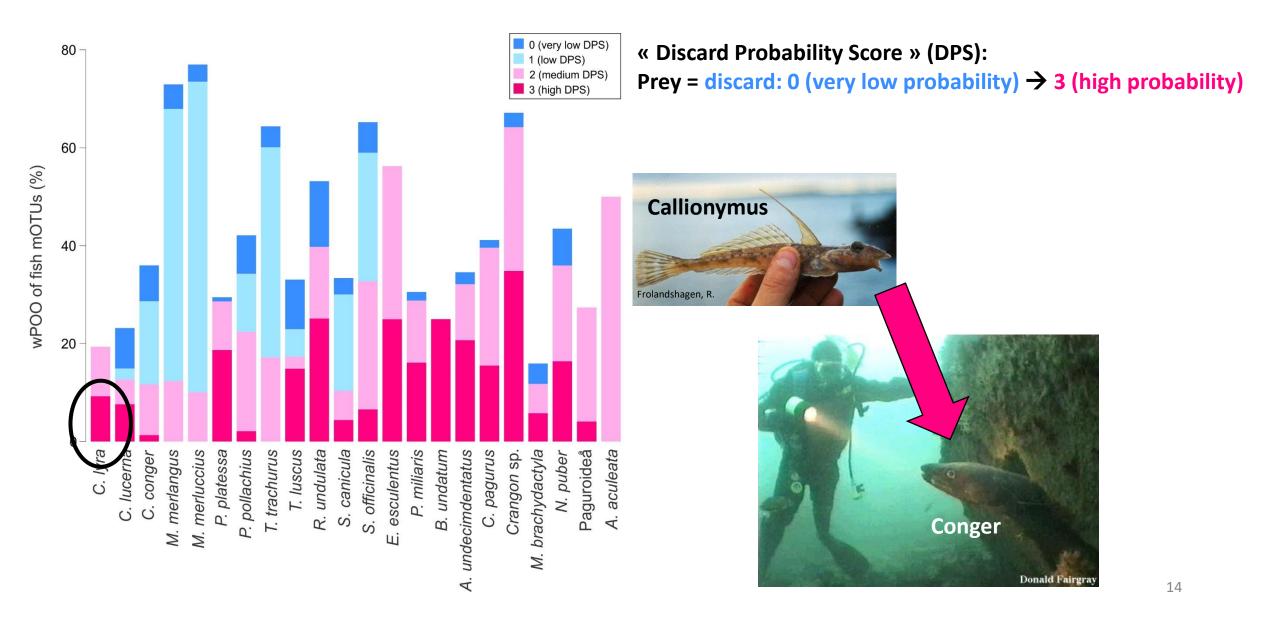
N. puber

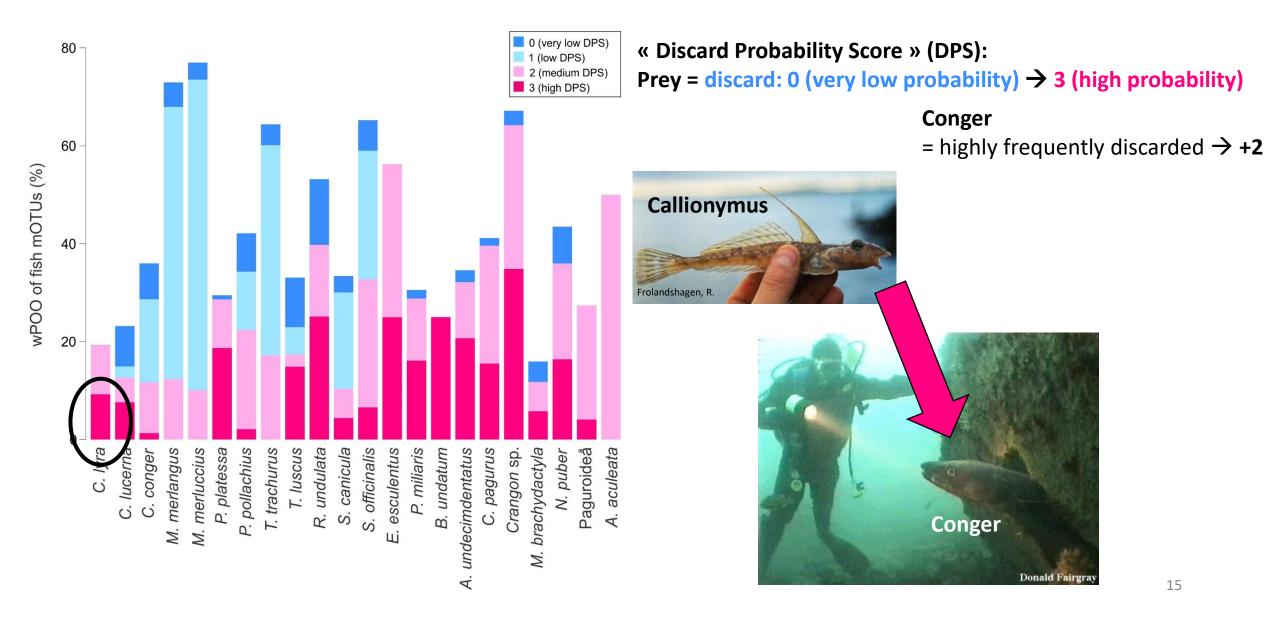
11

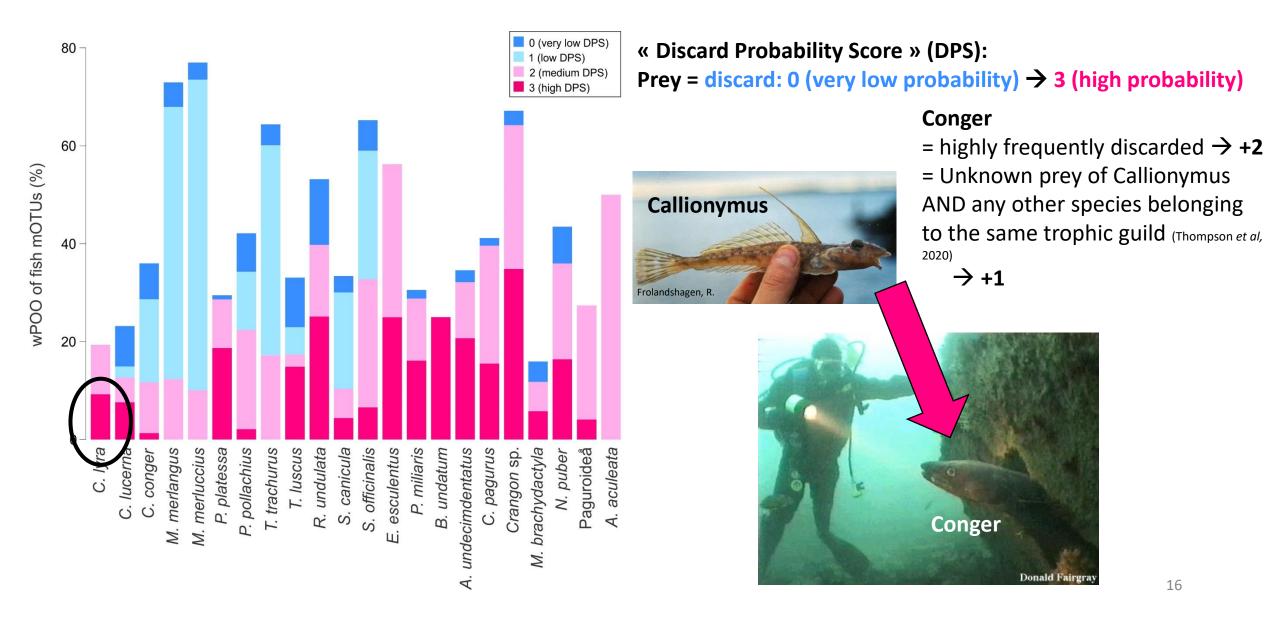

aculeata

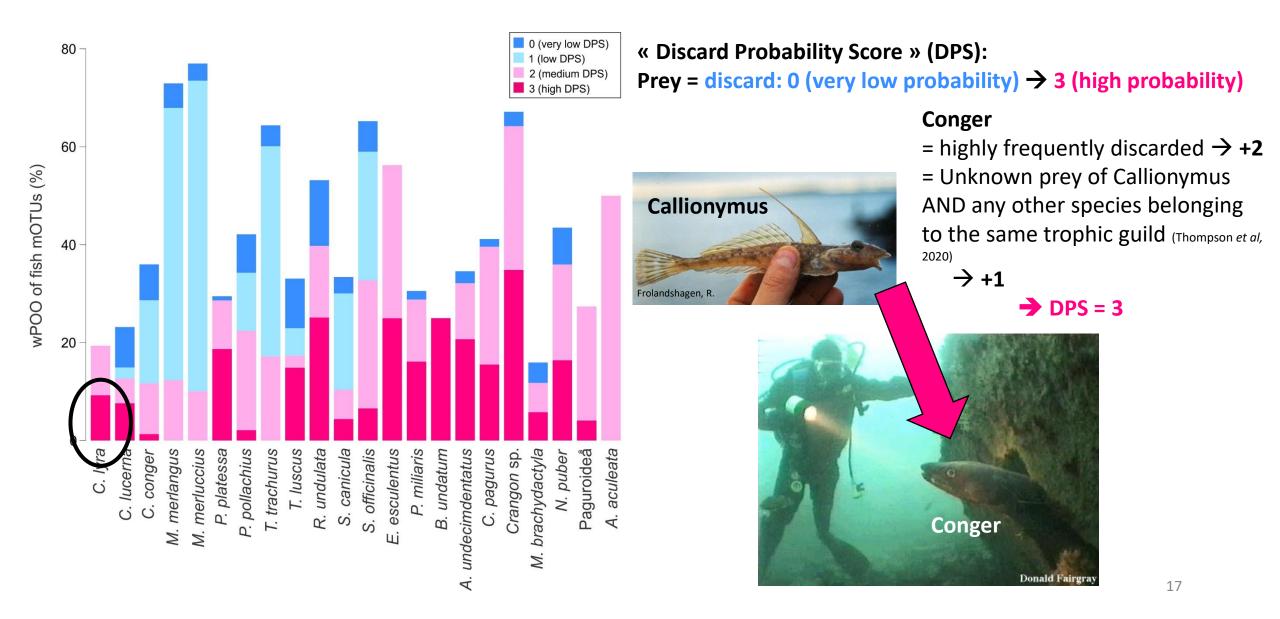

Å.

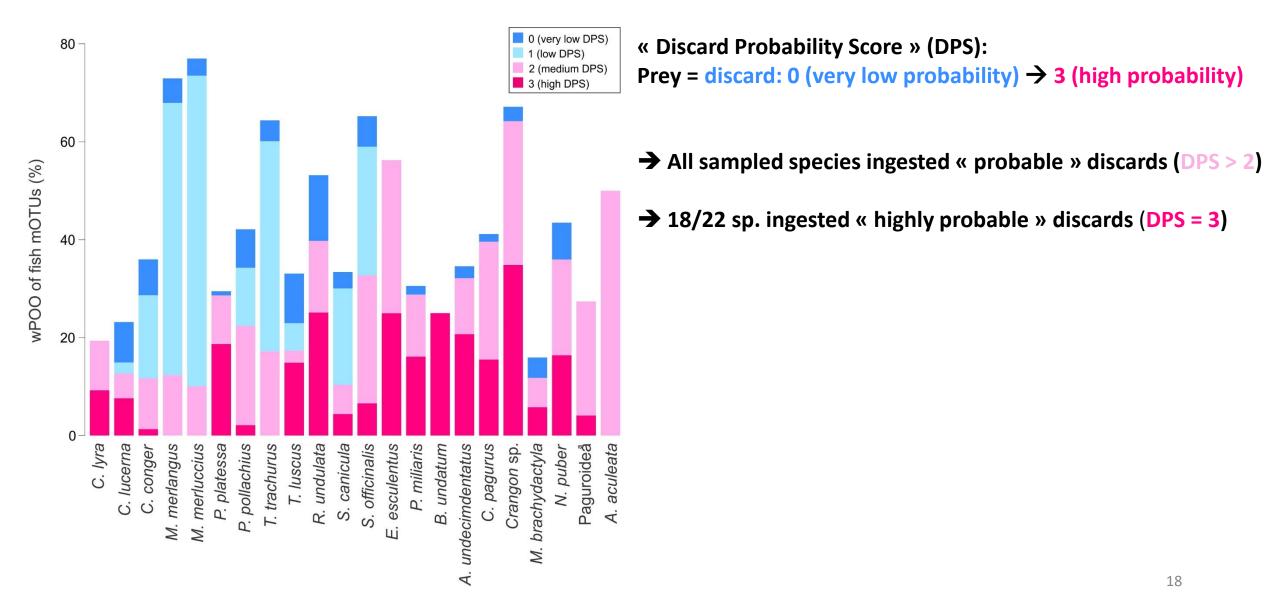

undecimdentatus

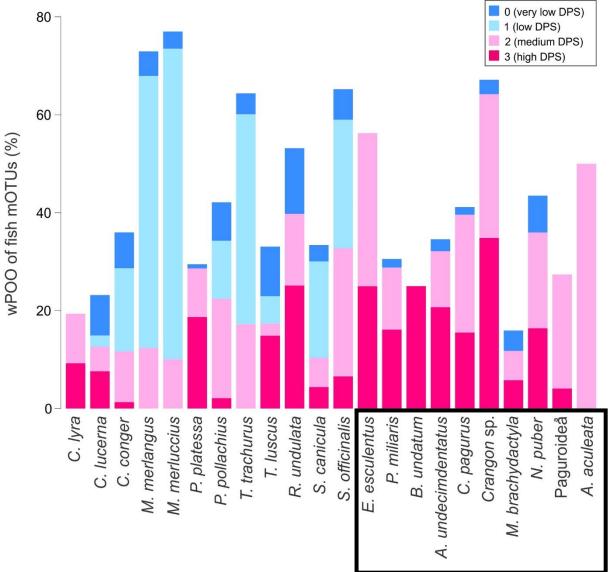

Å.

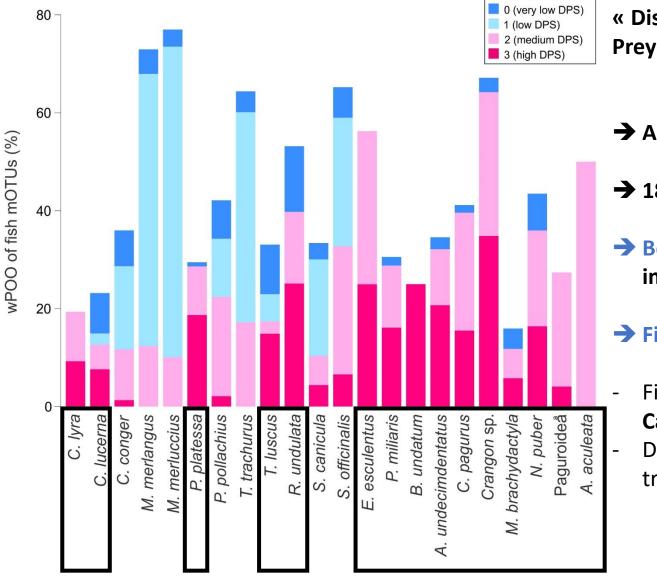

B. undatum





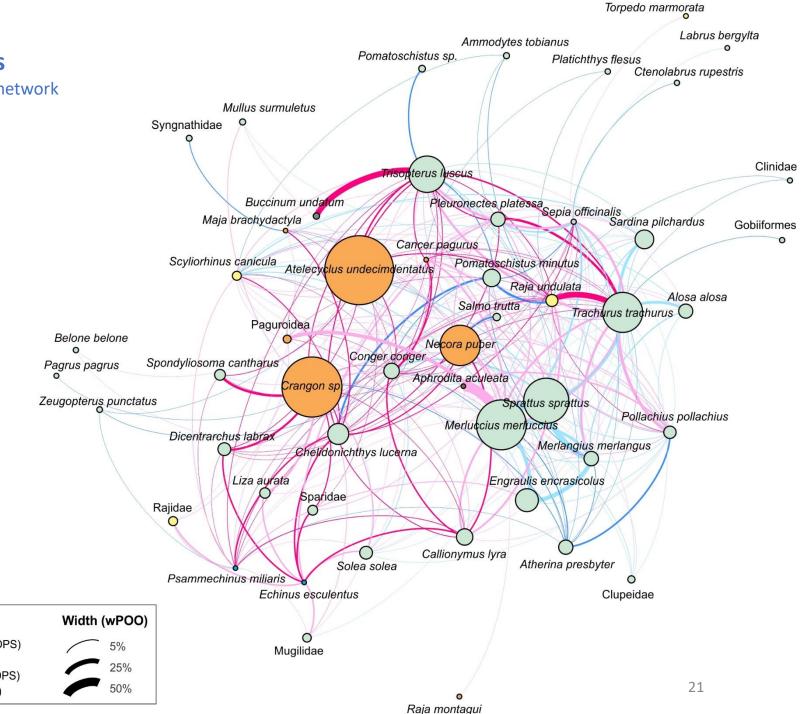




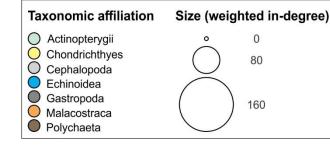


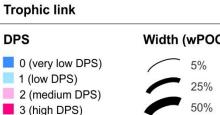
« Discard Probability Score » (DPS):
 Prey = discard: 0 (very low probability) → 3 (high probability)

- → All sampled species ingested « probable » discards (DPS > 2)
- → 18/22 sp. ingested « highly probable » discards (DPS = 3)
- Benthic invertebrates: potential discard consumption is important and main source of fish



« Discard Probability Score » (DPS):
 Prey = discard: 0 (very low probability) → 3 (high probability)


- → All sampled species ingested « probable » discards (DPS > 2)
- → 18/22 sp. ingested « highly probable » discards (DPS = 3)
- Benthic invertebrates: potential discard consumption is important and main source of fish
- → Fish: potential discard consumption is variable, but:
- Fish probably almost exclusively consumed as discards in
 Callionymus and plaice
 Discard consumption probably less important in higher trophic level fishes


Molecular ecological network Analysis

ForceAtlas2 algorithm to depict modular aspect of the network

Node

Molecular ecological network Analysis

ForceAtlas2 algorithm to depict modular aspect of the network

Most interactions with « fish » prey have a high probability of involving discard consumption

→ 66% DPS > 2, including 26% DPS = 3

Size (weighted in-degree)

0

80

160

Trophic link

0 (very low DPS)

2 (medium DPS)

1 (low DPS)

3 (high DPS)

DPS

Node

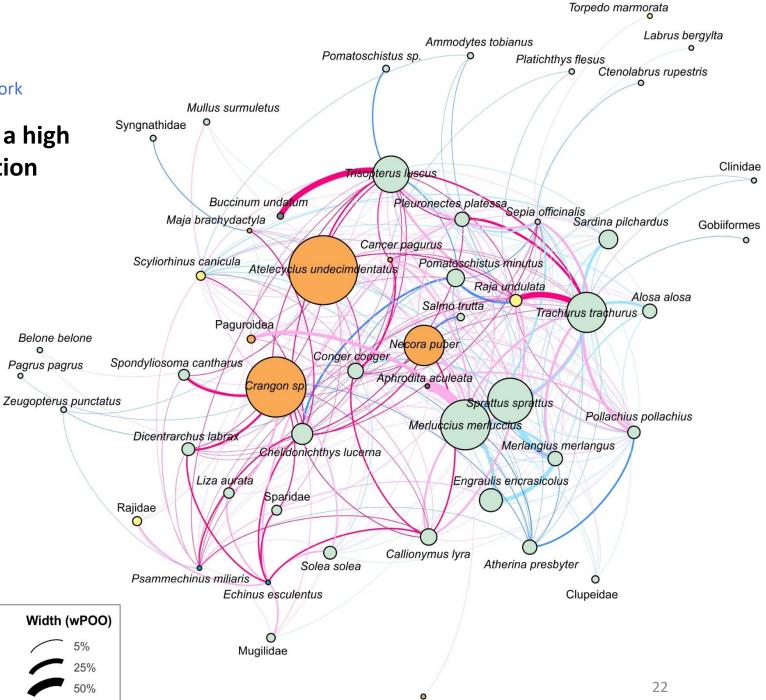
 \bigcirc

 \bigcirc

Taxonomic affiliation

Actinoptervaii

O Chondrichthyes


Cephalopoda

Gastropoda

Malacostraca

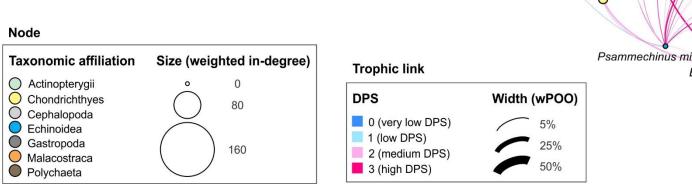
Polychaeta

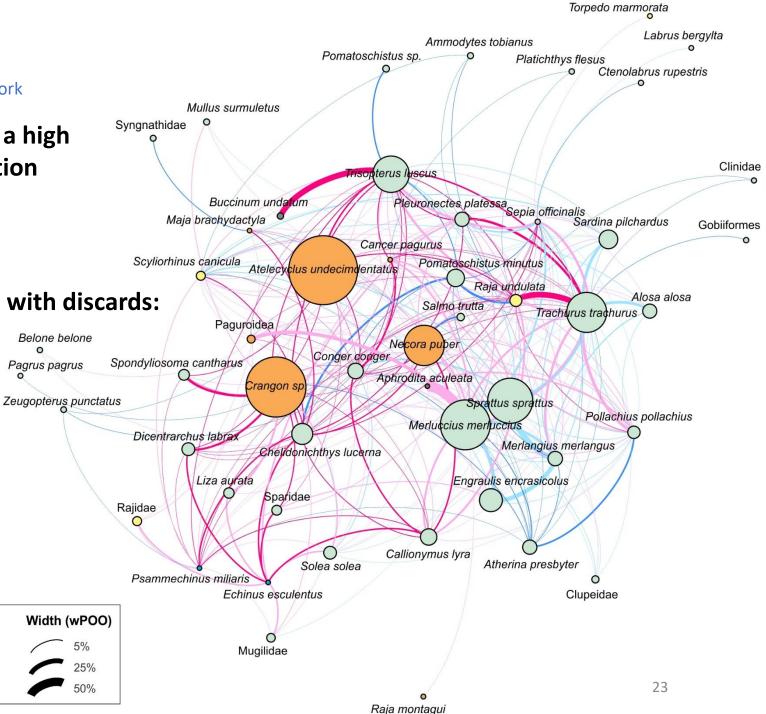
Echinoidea

Molecular ecological network Analysis

ForceAtlas2 algorithm to depict modular aspect of the network

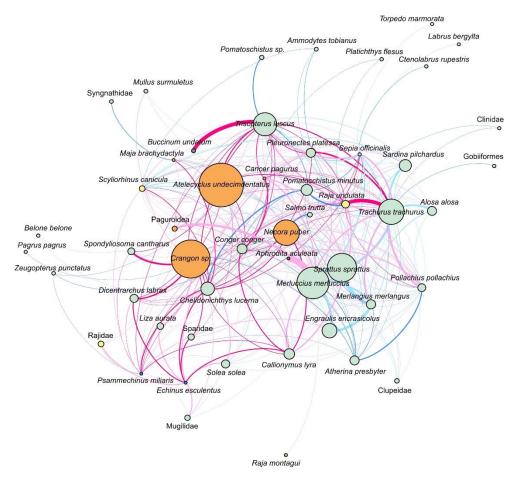
Most interactions with « fish » prey have a high probability of involving discard consumption


→ 66% DPS > 2, including 26% DPS = 3


Functionally important species have links with discards:

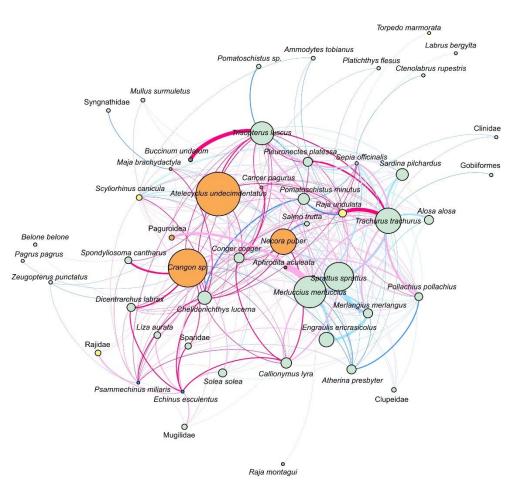
(weighted in-degree + eigenvalue centrality)

Decapods (crabs, shrimps)
 = important discard consumers


Fish (Hake, Horse mackerel, Pout)
 = frequently discarded species

Discussion and perspectives

Analysis of TL reveals that benthic invertebrates, squids and rays depict potentially higher TL, but stable isotopes alone provide low resolution in diet description


Discussion and perspectives

- Analysis of TL reveals that benthic invertebrates, squids and rays depict potentially higher TL, but stable isotopes alone provide low resolution in diet description
- → Coupling metabarcoding with prey classification using discard probability score could help advance research on discard consumption:
- **Discard consumption** is **potentially important** and **generalized** across the studied bentho-demersal community
- Discards may support functionally important species (e.g. Decapods), suggesting the possibility of cascading effects in cases of discard reduction

Discussion and perspectives

- Analysis of TL reveals that benthic invertebrates, squids and rays depict potentially higher TL, but stable isotopes alone provide low resolution in diet description
- → Coupling metabarcoding with prey classification using discard probability score could help advance research on discard consumption:
- **Discard consumption** is **potentially important** and **generalized** across the studied bentho-demersal community
- Discards may support functionally important species (e.g. Decapods), suggesting the possibility of cascading effects in cases of discard reduction

- → Repeated measures and expansion to other areas are necessary to confrim and refine results → Goal = Improve ecosystem models where trophic links with discards could be currently underestimated
- Reducing bycatch and discards remain conservation priorities, but it is crucial to better understand discard reintegration in marine food webs to anticipate consequences of discard reduction on the functioning of marine ecosystems subject to fishing

OCEAN SCIENCES MEETING 2022

Thank you !

Published work:

Lejeune Benjamin, Mouchet Maud Aline, Mehault Sonia, Kopp Dorothee **Gut content metabarcoding reveals potential importance of fisheries discards consumption in marine fauna**. *Canadian Journal of Fisheries and Aquatic Sciences* **IN PRESS**. <u>https://doi.org/10.1139/cjfas-2021-0267</u>

Open Access version : https://archimer.ifremer.fr/doc/00742/85447/

