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Abstract

Type-II superconductors are of great interest in high magnetic field and electric power appli-
cations due to their unique magnetic and electric properties. The design and optimization of
systems in these applications require devoted numerical modeling techniques. The main objec-
tive of this dissertation is to contribute to the development of robust and efficient finite element
formulations suited for systems containing type-II superconductors, and possibly ferromagnetic
materials. Type-II superconductors and ferromagnetic materials are described by nonlinear con-
stitutive laws, that may cause distinct finite element formulations to present markedly different
numerical behaviors.

In this work, we first present two standard finite element formulations for magnetodynamic
problems (h-φ and a) and we analyze how the involved nonlinearities can be handled in the
most efficient manner. Based on the analysis results, we then propose and present four dedi-
cated mixed finite element formulations (h-φ-a, t-a, h-φ-b, and a-j). As these mixed formu-
lations take the form of perturbed saddle-point problems, we pay a particular attention to their
discretization so as to avoid numerical instabilities.

Next, we compare the performance of the six formulations on a collection of problems of
increasing complexity, with geometries ranging from 1D to 3D. We highlight the fact that the
best formulation is problem-dependent and we give general recommendations for obtaining
efficient time-stepping and linearization techniques. We conclude by applying the formulations
on two distinct problems featuring non-trivial geometries: cables made up of twisted multi-
filamentary superconducting wires, and layered magnetic shields made up of a stack of a large
number of superconducting tapes with a ferromagnetic substrate.
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Résumé

Grâce à leurs propriétés électriques et magnétiques remarquables, les supraconducteurs de type
II sont particulièrement intéressants dans le cadre d’applications à haut champ et de trans-
port d’énergie électrique. La conception et l’optimisation de telles applications requièrent des
méthodes de modélisation numérique dédiées. L’objectif principal de ce travail est de contribuer
au développement de formulations éléments finis robustes et efficaces pour des systèmes inclu-
ant des supraconducteurs de type II, ainsi que, éventuellement, des matériaux ferromagnétiques.
Ces deux matériaux sont décrits par des lois constitutives nonlinéaires, ce qui implique que des
formulations éléments finis distinctes peuvent présenter des comportements numériques forte-
ment différents.

Dans un premier temps, nous présentons deux formulations éléments finis classiques pour
des problèmes de magnéto-dynamique (h-φ and a) et nous étudions comment traiter les non-
linéarités associées de la façon la plus efficace possible. À partir des conclusions obtenues, nous
proposons ensuite quatre formulations éléments finis mixtes (h-φ-a, t-a, h-φ-b, and a-j). Ces
formulations prennent la forme de problèmes au point-de-selle perturbés. Une attention partic-
ulière doit dès lors être portée à leur discrétisation afin d’éviter des instabilités numériques.

Dans un second temps, nous comparons les performances des six formulations pour un
ensemble de problèmes de complexité croissante, impliquant des géométries 1D, 2D, et 3D.
Nous mettons en évidence le fait que la formulation la plus performante est différente selon
le problème. Nous formulons également des recommandations générales pour obtenir une
intégration temporelle robuste et une linéarisation efficace. Nous concluons en appliquant les
méthodes à deux problèmes présentant des géométries non-triviales : des câbles constitués
de filaments supraconducteurs torsadés, et des écrans magnétiques creux réalisés à partir de
l’empilement d’un grand nombre de rubans supraconducteurs comportant un substrat ferro-
magnétique.
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Introduction

Context and motivation

Superconductivity was first discovered in 1911 by Kamerlingh Onnes. He observed that the
electrical resistivity of mercury suddenly drops to zero when it is cooled below a temperature of
4.2 K [1]. Many other elements, metallic alloys and ceramic compounds were then discovered
to be superconductors and were intensively studied by scientists. In addition to their zero DC
electrical resistivity, superconductors were found to exhibit unique magnetic properties [2, 3].

The electric and magnetic properties of a certain type of superconductors, known as irre-
versible type-II superconductors (T2S), allow them to carry large currents with smaller resis-
tance than conventional conductors and to generate magnetic fields higher than the saturation
field (≈ 2 T) of ferromagnetic materials [4]. For these reasons, superconductors are fascinating
materials that are being exploited in a wide variety of applications since their discovery [5] and
that continue to offer promising perspectives in new technologies [6] as listed below.

Low-temperature superconductors (LTS) such as Nb-Ti and Nb3Sn are widely used in com-
mercial cables. They are typically manufactured in the form of multi-filamentary twisted wires
(≈ 100 filaments) and used in high-field applications, typically cooled with liquid helium [7].
Coils of Nb-Ti cables can generate fields up to 9 T at 4.2 K, or 11 T at 1.8 K, whereas Nb3Sn
cables open the possibility of generating fields up to≈ 23 T [5]. These materials are used in ap-
plications including magnetic resonance imaging (MRI) systems, nuclear magnetic resonance
(NMR) devices, magnetic levitation (Maglev) trains, particle accelerators [8], and tokamak fu-
sion reactors [9].

High-temperature superconductors (HTS), i.e., superconductors with a transition tempera-
ture above the liquid nitrogen boiling temperature of 77 K, were discovered since 1987 [10, 11,
12]. While considerably reducing the refrigeration costs [13], high-temperature superconduc-
tors (HTS) push the limit of accessible fields beyond 20 T [14, 15]. Continuous improvements
are being accomplished on manufacturing high-performance wires and tapes made of these ma-
terials [5], but they remain challenging and expensive to produce at a large-scale, so that a large
part of recent technologies involving HTS is still in a development stage [13, 16].

In addition to wires and tapes, HTS can be used as bulk materials [23], including large
single-grain pellets and sintered structures [24]. Bulk HTS are able to trap large magnetic
fluxes permanently, involving fields that exceed 17.6 T at 26 K [25], or 10 T at 50 K [26].
The resulting “trapped-field magnets” are particularly attractive in applications such as rotating
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HTS layer (≈ 1 µm)

(c) Bi-2212 wire.(a) Nb-Ti wire.

(f) Roebel cable.

(g) Twisted stacked tape conductors.(e) REBCO tape. (h) Bulk GdBCO.

(b) Nb3Sn wire. (d) CORC R© cable.

12 mm12 mm

Figure 1: Superconducting wires, tapes and bulks. (a)-(b) Multi-filamentary Nb-Ti and Nb3Sn wire c©
2015 Elsevier [17]. (c) Multi-filamentary Bi-2221 wire c© 2019 IEEE [18]. (d) CORC R© (conductor on
round core) cable [19]. (e) REBCO tape c© 2022 MDPI [20]. (f) Roebel cable [19]. (g) Twisted stacked
tape conductors c© 2022 IEEE [21]. (h) Bulk GdBCO sample c© 2016 IEEE [22].

electric machines, magnetic separation devices, magnetic drug delivery systems, portable MRI
and NMR systems, or Lorentz force velocimetry [26]. Bulk HTS can also be used as magnetic
shields [27] or even as flywheels for energy storage systems [28].

With the development of the T2S technology, there is a strong demand for tools and methods
capable of describing the behavior of complex superconducting systems in order to predict their
performance [29]. Existing analytical methods are not accurate for realistic systems and exper-
imental tests are oftentimes expensive, time-consuming, and can even be destructive [6]. By
contrast, modern numerical methods provide a versatile and powerful solution that is becoming
increasingly important for the design and optimization of superconducting applications [6, 30].

The finite element method (FEM) is the most commonly used method for superconductor
modeling. For decades, it has proved to be a general and extremely flexible approach for finding
approximate solutions to complex sets of equations describing various physics, in particular
in electromagnetism [31]. Developing finite element models includes writing the differential
problem describing the chosen physics into an alternative form, called a formulation, that is
suited for a practical implementation of the finite element method. Establishing efficient and
accurate finite element formulations suited for superconductor modeling is however not an easy
task, for essentially two main reasons.

First, the equations describing the macroscopic (≈ 1 cm3) magnetic response of supercon-
ductors are highly nonlinear. Constitutive laws may also be strongly anisotropic or be cou-
pled with other highly nonlinear thermal parameters in the case of magneto-thermal coupling.
Moreover, many superconducting systems also involve ferromagnetic materials [32, 33, 34, 35],



Introduction 3

whose magnetic response is also nonlinear. Handling all nonlinearities in a robust manner is not
straightforward with classical finite element formulations and there is thus a need for dedicated
methods to be designed [36].

(b) CCT magnet.(a) No-insulation coil. (d) HTS motor stator.(c) Feather M2 magnet.

HTS bulkMagnetizing coil
HTS coil

CopperHTS wire

HTS tape

Figure 2: Examples of systems involving high-temperature superconducting tapes, wires or bulks. (a)
No-insulation coil c© 2020 IOP Publishing [37]. (b) Canted-Cosine-Theta (CCT) magnet c© 2017-2022
CERN [38]. (c) Feather M2 magnet c© 2014 IEEE [39]. (d) Stator of a HTS motor c© 2018 IEEE [40].

Second, superconducting wires and tapes can display complex geometries, as shown in
Fig. 1. Rutherford cables [41], Roebel cables [42], tri-axial HTS cables [43], twisted stacked
tape conductors [44], or multi-layer CORC R© cables (conductor on round core) [45] are good
examples of intrinsically 3D geometries. Furthermore, many practical superconducting systems
involve complicated windings or arrangements of wires and tapes, as shown in Fig. 2. Striking
examples include layered structures made up of stacks of HTS tapes such as racetrack coils [46],
no-insulation coils [47], and passive magnetic shields [48]. Dealing with a direct representa-
tion of such systems by a finite element model rapidly becomes computationally expensive
and time-consuming. Dedicated and clever numerical methods are required to obtain reliable
predictions of the behavior of these systems within a reasonable amount of computational time.

Different finite element formulations and methods exist and are being investigated for mod-
eling the numerous types of superconducting systems [49, 29]. Relevant examples are thin-
shell approaches for thin structures such as HTS tapes [50, 51], homogenization techniques for
layered structures made up of a large number of tapes [52, 53], and mixed formulations for
hybrid superconducting-ferromagnet systems or rotating motors [54, 55, 56]. All are promis-
ing avenues for an efficient treatment of the difficulties associated with the different kinds of
superconducting applications.
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Dissertation goals

The main goal of this work is to contribute to the development of efficient and reliable finite
element formulations, in particular for modeling type-II superconductors (T2S, which includes
both LTS and HTS) coupled with soft ferromagnetic materials (SFM), focusing on purely mag-
netic models. This main goal is decomposed in four objectives.

The first objective is to understand in detail how to handle in a robust manner the nonlin-
earities involved with T2S and SFM, in order to identify the principles on which new, better
performing, formulations can be designed.

The second objective is to propose, or gather from the literature, finite element formulations
that potentially present interests for hybrid systems with T2S and SFM, and to give indications
on how to discretize them properly, avoiding numerical instabilities.

The third objective is to compare all the introduced formulations, and to try to give general
recommendations on how to choose a method for obtaining accurate, robust and efficient reso-
lutions. We shall see that no formulation outperforms all the others in all cases, so that a variety
of different situations is worth considering.

The last objective is to apply and extend the proposed methods to two problems that present
inherent complex geometries: a twisted multi-filamentary superconducting wire and a stacked-
tape magnetic shield made up of T2S and SFM layers.

These objectives can be tackled one by one, leading to the following dissertation outline.

Dissertation outline

This dissertation is divided in five chapters.

In Chapter 1, we present the equations describing the macroscopic behavior of type-II su-
perconductors and ferromagnetic materials. After introducing the magnetodynamic approxi-
mation of Maxwell’s equations, we discuss the nonlinear constitutive laws associated with T2S
and SFM. We then close the chapter with a brief overview of the state-of-the-art in numerical
modeling techniques.

In Chapter 2, we start by fully defining the strong form of the mathematical problem we want
to solve, based on the equations introduced in the previous chapter. The problem definition in-
cludes the introduction of global variables for imposing the voltage or the current in conducting
regions. From the strong form, we then derive two distinct weak forms of the problem, the h-φ-
formulation and the a-formulation, and describe their space and time discretizations, as well as
their linearization for a practical implementation in a finite element solver. Both formulations
are classical formulations for magnetodynamic problems that can be applied to systems with
T2S and SFM. However, when applied to such systems, they are known to exhibit completely
different numerical behaviors because of the nonlinearity of the equations. Therefore, we pro-
pose to analyze the treatment of the nonlinearities by investigating simplified versions of the
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formulations in the light of fixed point theory. The conclusions of the analysis suggest that none
of the two formulations is optimal for handling systems with both T2S and SFM, which is one
motivation to look for other formulations.

In Chapter 3, we propose four different mixed formulations. They all involve two main
unknown fields that are coupled either via a common surface, the h-φ-a and t-a-formulations,
or via a common volume, the h-φ-b and a-j-formulations. The t-a-formulation is relevant for
thin T2S tapes whereas the other ones are primarily designed for handling systems containing
both T2S and SFM. The four formulations enter the same framework of perturbed saddle-point
problems, and their discretization necessitates to verify particular stability conditions to ensure
well-posedness. We illustrate how naive discretization choices result in undesirable behaviors
such as spurious oscillations in the numerical solution, and we propose choices that verify the
stability conditions. We justify our results by the so-called inf-sup test, after introducing the
basics of saddle-point stability analysis.

The first three chapters settle the theoretical basis and provide a collection of six different
finite element formulations, together with different resolution techniques. The methods are
ready to be used on systems with T2S and SFM. It is the subject of the next two chapters to
compare them and assess their performance when applied on practical problems.

In Chapter 4, we compare the numerical performance of the different methods and formula-
tions on problems with relatively simple geometries. We start by general observations on a 1D
T2S bar problem. We continue with several 2D systems involving a T2S bulk cylinder, a T2S
tape, and both T2S and SFM cylinders. We close the chapter by a 3D problem containing both
T2S and SFM.

In Chapter 5, we consider two distinct problems with more complex geometries. A brute
force modeling approach on these problems results in exceedingly long simulations and dedi-
cated simplifications are therefore required for obtaining efficient models. The first application
consists in evaluating AC losses in wires made up of twisted multi-filamentary superconduct-
ing wires. When these wires present a combination of translation and rotation symmetries, the
dimension of the problem can be reduced from 3D to 2D by the introduction of a helicoidal
change of variables, which drastically reduces the computational work.

The second application focuses on calculating the shielding effectiveness of magnetic shields
made up of a stack of T2S tapes with a SFM substrate. The resulting system is a layered struc-
ture exhibiting both superconducting and ferromagnetic properties. We propose two simplified
models to describe the magnetic behavior of this structure.
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Original contributions

Below is a list of the main contributions that are considered to be, at least partly, original:

1. The analysis of the treatment of nonlinear laws involved in type-II superconductors and
ferromagnetic materials by iterative techniques, in the light of fixed point theory. This
analysis is presented in Chapter 2.

2. Several propositions for mixed formulations. The h-φ-a-formulation, applied on 2D and
3D problems, including a scalar magnetic potential; a derivation of the t-a-formulation
including global variables for the total current and voltage in thin conducting domains;
the a-j-formulation for 3D problems; and the h-φ-b-formulation, applied on 2D and 3D
problems. These formulations are presented in Chapter 3 and applied in Chapters 4 and
5. Parts of these contributions are published in [36, 55, 57].

3. The stability analysis of the proposed mixed formulations in the light of perturbed saddle-
point problem theory, as well as the identification of discrete function spaces that satisfy
the stability conditions in order to obtain well-posed discrete finite element formulations.
This is discussed in Chapter 3. Parts of the stability analysis are published in [55].

4. The presentation of the discrete function spaces associated with the h-φ-formulation un-
der a change of variables from Cartesian coordinates to helicoidal coordinates, applied
on helicoidally symmetric magnetodynamic problems. The presentation includes the
treatment of nonlinear materials. Also, an extension to the treatment of non-helicoidally
symmetric boundary conditions for linear materials, by means of a mode decomposition
method, resulting in a quasi-3D problem, as well as a brief outlook of the applicability of
this method on nonlinear materials such as type-II superconductors. This is presented in
Chapter 5. A small part of this work is submitted for publication in [58].

5. A homogeneous and anisotropic model for describing the magnetic response of magnetic
shields made up of a stack of superconducting tape annuli, and the comparison of the
numerical performance of three formulations in axial (2D-axisymmetric) and transverse
(3D) configurations. This is discussed in Chapter 5. The application of the homogeneous
model is submitted for publication in [53].

The finite element formulations and the models developed in this thesis are part of the open-
source Life-HTS toolkit. They are available online at:

www.life-hts.uliege.be.

Codes are implemented in GetDP, an open-source finite element software [59], and the geome-
try and mesh generation is performed by Gmsh [60], an open-source software as well.

www.life-hts.uliege.be
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• S. Brialmont, J. Dular, L. Wéra, J.-F. Fagnard, B. Vanderheyden, C. Geuzaine, S. Hahn,
A. Patel, and P. Vanderbemden, “Magnetic shielding up to 0.5 T at 77 K using a stack of
high temperature superconducting tape annuli”, in review in Superconductor Science and
Technology, 2023. [53]

Conference and workshop presentations

• J. Dular, C. Geuzaine, and B. Vanderheyden, “Finite element models for systems with
high-temperature superconductors and ferromagnetic materials”. Oral presentation at
the 22nd International Conference on the Computation of Electromagnetic Fields, Paris,
France. July 2019.

• J. Dular, C. Geuzaine, and B. Vanderheyden, “Comparison of finite element formula-
tions for HTS and ferromagnetic materials”. Invited poster presentation presented at the
14th European Conference on Applied Superconductivity, Glasgow, United Kingdom.
September 2019.

• J. Dular, C. Geuzaine, and B. Vanderheyden, “Life-HTS - Finite element formulations for
HTS, practice session”. Lecture at the 3rd International School on Numerical Modelling
for Applied Superconductivity, Nancy, France. September 2020.

• J. Dular, “Superconductors in GetDP”. Two-hour lecture at the GetDP workshop, CERN,
Switzerland (online). April 2021. (https://videos.cern.ch/record/2766046
and https://videos.cern.ch/record/2766047)
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“Stability of HA and TA coupled formulations for HTS modelling”. Oral presentation at
the 12th symposium on electric and magnetic fields (EMF), Liège, Belgium (online). July
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Chapter 1

Superconducting materials modeling

In this chapter, we present the physical framework in which type-II superconductor model-
ing takes place. In particular, we introduce the magnetodynamic approximation of Maxwell’s
equations and we present the power law, describing the electric behavior of type-II irreversible
superconductors. We then give a brief overview of modeling techniques, with a focus on the
finite-element method.

1.1 Magnetodynamic equations and constitutive laws

The electrodynamics in continuous media is described by Maxwell’s equations,

div b = 0, (1.1)
div d = ρ, (1.2)

curl h = j + ∂td, (1.3)
curl e = −∂tb, (1.4)

with b the magnetic flux density (T), d the electric displacement field (C/m2), h the magnetic
field (A/m), e the electric field (V/m), ρ the electric charge density (C/m3) and j the elec-
tric current density (A/m2) [62, 63]. These equations are usually referred to as Gauss’s law
of magnetism (1.1), Gauss’s law of electricity (1.2), Ampère-Maxwell’s law (1.3) and Fara-
day’s law (1.4) respectively. The set of equations (1.1) - (1.4) is completed by constitutive
relations [64]. For isotropic materials, three scalar parameters are introduced and define the
relations

b = µh, d = εe, j = σe, (1.5)

with µ the permeability (H/m), ε the permittivity (F/m) and σ the electrical conductivity (S/m).
In general, constitutive relations are nonlinear and the three parameters µ, ε and σ can be
complicated functionals or functions of, e.g., position, temperature, magnetic field, electric field
or mechanical stress and strain. In this work, coupling with physics other than electrodynamics
is not considered, and the parameters are assumed to be functions of electromagnetic fields
only.

The magnetodynamic (or magneto-quasistatic) approximation of Maxwell’s equations con-
sists in neglecting the electric displacement current ∂td in the Ampère-Maxwell’s law, Eq. (1.3)

9
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[65, 66]. The modified equation, curl h = j, is referred to as Ampère’s law and the resulting
system of equations qualitatively changes in nature: the full Maxwell’s equations describe wave
phenomena, whereas the magnetodynamics equations define a diffusion problem.

The magnetodynamic approximation is valid for slowly time-varying fields, in the sense that
their characteristic time constant τ , e.g., the inverse of the excitation frequency in the harmonic
regime, is much larger than the transit time τem = `/cm needed for an electromagnetic wave
to travel over the spatial length ` of the system, at the speed of light in the medium cm [67].
When τ � τem, wave propagation phenomena can be neglected and changes in field sources
can be assumed to instantaneously affect all field quantities in the whole domain [67]. It is in
the framework of the magnetodynamic equations that we conduct this research [26, 35].

To complete the magnetodynamic approximation, the permeability is assumed to be a known
function of the magnetic field only, i.e., µ = µ(h). In particular, we do not model magnetic
hysteresis behaviors, for which the permeability depends on the history of the magnetic field.
Moreover, the electrical conductivity is assumed to be a known function of the electric field and
the magnetic flux density, i.e., σ = σ(e, b). With these assumptions, the problem is simplified
and a closed set of equations for the magnetodynamic problem is obtained:





div b = 0,

curl h = j,

curl e = −∂tb,
with

{
b = µ(h)h,

j = σ(e, b)e.
(1.6)

This problem will be complemented by boundary and initial conditions in Chapter 2. Constitu-
tive laws can also be inverted. Introducing the reluctivity ν = µ−1 and the electrical resistivity
ρ = σ−1, constitutive laws are sometimes rewritten as h = ν(b)b and e = ρ(j, b)j.

In vacuum, the permeability is constant, it is a fundamental physical constant that we ap-
proximate1 to µ0 = 4π × 10−7 H/m. We denote by ν0 = µ−1

0 the reluctivity of vacuum. Also,
there is no electric current density in vacuum, i.e., σ = 0. In this study, the surroundings of
the materials, usually a cryogenic liquid, are assumed to behave like vacuum. Here, it will be
referred to as the air domain.

The materials considered here are normal conductors, superconductors, and ferromagnetic
materials. Normal conductors are assumed to be characterized by a constant conductivity σ or
resistivity ρ, and are usually assumed to be non-magnetic, i.e., they are described by µ = µ0, or
ν = ν0. The constitutive laws associated with superconductors and ferromagnetic materials, as
well as a brief description of these materials, are the topics of the next two sections.

1.2 Superconducting materials

Superconductivity was first discovered by Kamerlingh Onnes on mercury (Hg) in 1911 [1]. It is
a physical property that some materials display at low temperature, below a critical temperature,

1Since the redefinition of SI units in 2019, the permeability of vacuum is an experimentally determined con-
stant, µ0 = 1.256 637 062 12(19) × 10−6 H/m, with a relative uncertainty about 1.5 × 10−10 [68]. The value
chosen in this work is µ0 = 4π × 10−7 H/m = 1.256 637 061 43× 10−6 H/m.
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denoted by Tc [69]. Superconductivity confers a unique magnetic behavior to those materials
and allows them to carry current with zero electrical resistance [70]. Materials that exhibit
superconductivity are called superconducting materials, or superconductors.

Superconductivity arises below a critical surface in the (T,h, j)-space, with T standing for
the temperature. For isotropic superconductors, the critical surface is only a function of the
norms h and j of vectors h and j. Fig. 1.1(a) illustrates a representative critical surface.

T

h

j

Normal stateSuper-
conducting
state

T T

h h

Meissner state

Mixed state
Meissner state

Normal state

hc(T ) hc2(T )

hc1(T )

(a) Critical surface. (b) Type-I superconductors. (c) Type-II superconductors.

Normal state

Tc Tc

Figure 1.1: Illustration of the different states in isotropic superconducting materials, as a function of T , h,
and j, the temperature, the norm of the magnetic field, and the norm of the current density, respectively.
Diagrams in (b) and (c) are in the (T, h)-plane, i.e., for j = 0.

The class of superconducting materials is decomposed in two sub-classes: type-I and type-II
superconductors [70]. Type-I superconductors are characterized by a single phase transition
defining two states: the normal state and the Meissner state [2]. At a given temperature T with
a given current density j, the transition occurs at a critical field hc = hc(T, j). This is illustrated
in Fig. 1.1(b) in the (T, h)-plane. Type-II superconductors demonstrate two phase transitions,
with an intermediate state referred to as the mixed state or the vortex state [3]. Transitions
are described by two critical fields hc1 and hc2, as depicted in Fig. 1.1(c). In the normal state,
superconductors behave as normal conductors with non-negligible electrical resistance.

Type-II superconductors are further classified into low-temperature superconductors (LTS)
and high-temperature superconductors (HTS) [10, 12, 11], depending on whether their critical
temperature Tc is respectively below or above 77 K, the boiling temperature of liquid nitro-
gen [13]. The majority of HTS are ceramic materials, like rare-earth barium copper oxides
(“ReBCO”), e.g., yttrium barium copper oxide (“YBCO”, Tc = 92 K) [11], whereas common
LTS are metallic alloys such as niobium titanium (Nb-Ti, Tc = 10 K) or intermetallic com-
pounds such as niobium tin (Nb3Sn, Tc = 18.3 K) [71].

1.2.1 Meissner state

In the Meissner state [2], the material behaves in many ways like a perfect conductor. Any
change in an external applied field is counterbalanced by macroscopic supercurrents, flowing
in the material without electrical resistance. Moreover, at the phase transition to the Meissner
state, any existing magnetic flux density is expelled from the bulk material. It only penetrates
to a characteristic depth, referred to as the London penetration depth λ, which is temperature-
dependent. Typically, at 0 K, λ is in the range 30-100 nm for type-I superconductors [72]. This
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magnetic flux expulsion is achieved by supercurrents that spontaneously appear at the material
surface. Supercurrents are carried by superelectrons, that consist of pairs of electrons, referred
to as Cooper pairs [73].

The properties of the Meissner state are described by the first and second London constitutive
laws, that respectively read [74]:

e = ∂t(Λj), curl (Λj) = −b, (1.7)

with Λ = µ0λ
2. The first London law describes perfect conductivity: it replaces the scalar rela-

tion j = σe in Eq. (1.6) and expresses that no loss is associated with the supercurrents. Instead,
they store kinetic energy. The second London law expresses the magnetic flux expulsion.

The Meissner state is not considered further in this work.

1.2.2 Mixed or vortex state

The intermediate state that arises in type-II superconductors is a mixed state containing both
normal and Meissner phases. Magnetic flux density can penetrate the material in the form
of magnetic vortices [3]. A vortex can be viewed as a core of normal phase of radius ξ, the
coherence length, typically in the [1, 1000] nm range [9], surrounded by supercurrents flowing
in the superconducting region. It is found experimentally that vortices hold a magnetic flux
equal to the flux quantum φ0 ≈ 2.07 × 10−15 Wb [75], so that the magnetic flux threading a
superconductor is quantized.

When an external field is applied, vortices penetrate gradually in the material from its sur-
face. If vortices are free to move inside the material, the material is said to be a reversible
type-II superconductor [9]. In that case, the density of vortices follows reversibly the applied
magnetic field, i.e., without hysteresis. Vortices repel each other and experiments show that
they arrange in a triangular array.

Imperfections in the material, like dislocations, grain boundaries, and impurities, can create
pinning centers that trap vortices. Intentionally introducing defects in the material can further
increase this pinning effect. A force needs to be applied to unpin a vortex, and as a conse-
quence, materials with pinning centers demonstrate a hysteretic behavior. In particular, they
can trap magnetic flux permanently. Such materials are said to be irreversible, or hard, type-II
superconductors [9]. Irreversible type-II superconductors are used in numerous applications.
This is the only class of materials that is considered in this work.

When a current density j flows in a type-II superconductor, vortices are subjected to a
Lorentz-like force density fL = j × b, where ‖b‖ = nvφ0 with nv the vortex density and
φ0 the flux quantum. Thus, in reversible materials, any current gives rise to a motion of vor-
tices, or flux flow. Because the flux flow involves the motion of normal cores, losses take place
in the material, see Fig. 1.2(a). The resulting flux flow resistivity is larger than that of classical
metallic conductors at the same temperature. As a consequence, reversible superconductors
have no practical interest for transporting current.

In irreversible superconductors, vortices move only if the Lorentz-like force exceeds the
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(a) Reversible superconductors. (b) Irreversible superconductors.

Figure 1.2: Schematics of the j-e relation in type-II superconductors.

pinning force. This defines a critical current density, or depinning current density, jc, below
which there is no flux flow and thus no losses. This is illustrated in Fig. 1.2(b). In general,
the critical current density is a function of the local temperature and magnetic flux density.
Above jc, superconductivity is kept but the material exhibits losses. If Joule heating raises the
temperature above the critical temperature, the material leaves the superconducting state.

The vortex physics is well described by the Ginzburg-Landau theory [76, 77, 78]. The
associated microscopic description, at the scale of individual vortices, is however not suited for
modeling macroscopic superconducting samples (≈ 1 cm3), as it would involve a prohibitive
amount of numerical resources [79]. Instead, we are interested in a macroscopic description
of the response of irreversible type-II superconductors via a continuous electrodynamic model,
with phenomenological constitutive laws. Below, we introduce two such models: the Bean
model and the power law model.

Bean model

The Bean model [80], or critical state model (CST), is applicable in the case of strong pinning.
It consists in assuming that an induced current density of norm jc, the critical current density, is
generated in every region that sees a local magnetic flux density variation. As long as the local
magnetic flux density varies in the same direction or remains constant, the current density stays
constant. If the local magnetic flux density variation changes direction, the current density also
changes direction, keeping its norm of jc. Only regions that have never been subjected to a
magnetic flux density variation are free of current. Consequently, in the Bean model, the norm
of the current density can only take the two values, 0 or jc.

In the Bean model, the magnetic flux density distribution is therefore assumed to be indepen-
dent of the rate of applied field, or sweep rate. The vortex dynamics is neglected and vortices
are assumed to rearrange themselves instantaneously upon a change of the applied field.

Moreover, the model assumes that hc1 → 0 and hc2 → ∞, i.e., that the material is always
in the vortex state. Finally, in the simplest form of this model, jc is assumed to be independent
of the magnetic flux density. This model is valid on a macroscopic scale only, as it actually
averages quantities over a large number of vortices and does not describe them individually
[81].

As an illustration of the solution obtained with this model, an infinitely long superconducting



14 Chapter 1 Superconducting materials modeling

cylinder subjected to a parallel external applied field hs is considered. For an initially flux-free
cylinder (zero-field cooled) and a vertical applied field of increasing amplitude, a flux variation
is first produced near the sides of the cylinder, where an azimuthal current density appears and
generates a reaction field that shields the inner region in the cylinder, as illustrated by situation
1 in Fig. 1.3(a).

1

2

3

4

5

1

2
3

4
5

µ0hs

b

(a) Increasing applied fields. (b) Decreasing applied fields. (c) Magnetization curve.

t

t

t

〈b〉-µ0hs = µ0(〈h〉-hs)

Figure 1.3: Illustration of the magnetic flux density distribution in a infinitely long superconducting
cylinder and the related magnetization curve, in the framework of the Bean model. Situations 1 to 5 are
in chronological order (increasing t). The dash-dotted line in schematics (a) and (b) is the cylinder axis.
The notation 〈·〉 corresponds to a volume average.

The fact that the current density cannot exceed jc limits the level of magnetic shielding; it
only allows a decrease of magnetic field per unit length of jc (A/m2). If hs keeps increasing
in amplitude, the magnetic flux progressively penetrates the cylinder, until full penetration, as
depicted by situation 2 in Fig. 1.3(a). After full penetration, a constant azimuthal current flows
in the cylinder and the shielding cannot be improved, the magnetic field inside the cylinder
therefore keeps increasing with the external field, as shown by situation 3 in Fig. 1.3(a). When
the applied field stops increasing and starts decreasing in amplitude, as in situations 4 and 5 of
Fig. 1.3(b), the variation of magnetic flux also penetrates gradually.

The magnetic flux density distribution is thus history-dependent. In situation 5 in Fig. 1.3(b),
permanent currents flow in the cylinder, it is said to be magnetized. The evolution of the volume
average magnetic flux density 〈b〉 = µ0〈h〉 with respect to a cycling external applied field hs is
hysteretic, as illustrated in the magnetization curve in Fig. 1.3(c).

Power law model

In practice, at finite temperature, thermal excitations allow some vortices to leave their pinning
centers for current densities under the critical current density value, i.e., for ‖j‖ < jc; this
phenomenon is called flux creep. As a result, losses may be occuring for ‖j‖ < jc and the
transition from flux pinning to flux flow is smoothed out. At a macroscopic scale, this smooth
transition can be modelled by a power law [72, 82, 83],

j =
jc

ec

(‖e‖
ec

)(1−n)/n

e or e =
ec

jc

(‖j‖
jc

)n−1

j, (1.8)
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with ec (V/m) a threshold electric field defining the current density jc. By convention, ec is often
chosen to be 10−4 V/m. The exponent n = U0/kBT describes the sharpness of the transition
to flux flow, and compares the pinning energy barrier in the absence of current U0 (J) to the
thermal energy kBT , where kB = 1.38× 10−23 J/K is the Boltzmann constant [84, 85, 86].

Typical values of the power law exponent n in LTS are between 40 and 100 [87, 13], and
between 25 and 50 for HTS [88, 13]. In the limit n→∞, the power law model degenerates to
the Bean model. Note that the power law model is only valid before the flux flow regime [81].

In the rest of this work, the power law is the model we consider. It is illustrated in Fig. 1.4.
We will use the notation T2S for irreversible type-II superconductors described by this law. The
notation T2S include both LTS and HTS materials.

jjc

ec

e

jjc

ec

e

jjc

en = 10 n = 50 n → ∞

Figure 1.4: Power law for increasing values of the exponent n.

Magnetic constitutive law

Several choices are possible to model the magnetic behavior of T2S in the mixed state. In this
work, the supercurrents are treated as eddy currents, and are described by the power law. These
macroscopic currents generate a magnetic field via Ampère’s law, and the magnetic constitutive
law is taken as b = µ0h, i.e., the superconductor is in the mixed state with hc1 � ‖h‖ � hc2.

1.3 Ferromagnetic materials

Ferromagnetic materials, or ferromagnets, are materials that exhibit a strong magnetic response
to external magnetic fields [89]. A general h-b relationship is illustrated in Fig. 1.5 in a one-
dimensional case. The general relation between the magnetic field and the magnetic flux density
is highly nonlinear. Moreover, it is not a one-to-one relation and the materials usually exhibit a
hysteretic behavior, which is not necessarily isotropic [90].

In this work, we consider isotropic and anhysteretic ferromagnetic materials, that we denote
as SFM (for soft ferromagnetic materials). This amounts to considering materials for which
the area enclosed by the h-b curve tends to zero and for which the curve is independent of the
direction of the applied field. The associated magnetic constitutive law is a one-to-one relation-



16 Chapter 1 Superconducting materials modeling

h

b

Figure 1.5: General hysteresis curve (major loop) in a ferromagnetic material. Black arrows indicate the
direction of evolution, starting from a flux-free material.

ship, and vectors b and h are collinear. Under these assumptions, the relative permeability µr,
defined such that b = µ0µrh, is a function of the magnetic field that only depends on its norm.

A simple model [91] is proposed for describing µr(h), which consists of a rational expression
of first order polynomials, written as

b = µ0

(
1 +

(
1

µr,0 − 1
+
‖h‖
m0

)−1
)
h, (1.9)

with µr,0 (-) the relative permeability at the origin andm0 (A/m) the saturation magnetic field. A
graphical representation of this law is given in Fig. 1.6. The law can be inverted, to express the
magnetic field as a function of the magnetic flux density, i.e., so as to involve the reluctivity ν(b).
The inverted expression is given in Eq. (B.31) in Appendix B.3. To give an idea, let us consider
a supra50 FeNi alloy, for which typical values fitted to experimental measurements [92] are
µr,0 = 1700 and µ0m0 = 1.31 T.

h h

b m = b− µ0h

µ0m0

µ0µr0

µ0m0

µ0(µr0 − 1)

(a) Magnetic flux density. (b) Magnetization.

Figure 1.6: Ferromagnetic constitutive law and representation of the physical parameters.

The model of Eq. (1.9) is convenient for two reasons. First, it provides the simplest de-
scription of the nonlinear anhysteretic ferromagnetic behavior that allows to obtain non-trivial
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conclusions during the numerical analysis. Second, the constitutive law can be analytically
inverted, which is useful for comparing numerical results obtained with different formulations
involving either the permeability or the reluctivity. In addition to this simple model, similar
but alternative descriptions of the nonlinear permeability will be used in Sections 4.5 and 5.2,
based on experimental measurements.

In this work, the electrical conductivity of SFM is neglected. They are treated as non-
conducting materials, in which j = 0.

1.4 Numerical modeling of type-II superconductors

Analytical solutions of the nonlinear equations describing the macroscopic magnetodynamic
response of T2S are only available for simple geometrical configurations [26], such as thin
strips or disks in a perpendicular magnetic field [93, 94], or infinite slabs in a parallel magnetic
field [95]. An overview of analytical methods is proposed in [96]. Most practical and realis-
tic problems do not benefit from analytical solutions and require numerical techniques to be
described, which provides approximate solutions to the equations.

Different numerical techniques exist and have been applied to the modeling of T2S [26,
97, 49, 98], including integral methods based on a sand-pile model and Biot-Savart equa-
tions [99, 100], methods based on Fast Fourier Transforms (FFT) [101, 102, 103, 104], spec-
tral methods [105], minimization techniques [106], such as the Minimum Electro-Magnetic
Entropy Production (MEMEP) method [107, 108, 109, 110], or methods based on equivalent
circuits with lumped elements [47]. The most commonly used method is the Finite Element
Method (FEM). It is a versatile, popular, and general method allowing to tackle complicated
geometries with relative ease.

The FEM has been widely used for classical electromagnetic modeling for decades [31, 111],
as well as in the context of superconductors, for bulk magnetization modeling [23] or AC loss
computation [81] in a large number of applications [29]. It is the method we consider in this
work.

The finite element method does not treat directly the differential problem, referred to as the
strong form of the problem. Instead, it is based on a variational form of the problem, known
as a weak form. Transforming the strong form into a weak form can be done in a number of
different ways, and each of them defines what we call a finite element formulation.

A large number of different finite element formulations exist [112, 113, 114]. They are
written in terms of different physical fields and/or potentials [115]. Each formulation has its
own particularities, advantages, and drawbacks. In particular, in the context of T2S modeling,
the power law Eq. (1.8) can be written in two ways, involving either the conductivity, or the
resistivity. The power law being strongly nonlinear, formulations written in terms of the con-
ductivity present in fact entirely different numerical behaviors, efficiency and robustness, than
formulations written in terms of the resistivity [36]. Selecting an appropriate formulation for a
given problem is therefore an important aspect of superconductor modeling.
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One of the most commonly used formulation is the h-formulation [116, 6]. It introduces
a spurious resistivity in non-conducting regions, so that the whole domain is considered to be
conducting, and solved for h everywhere. This allows to avoid the use of a scalar magnetic
potential φ, and hence eases the implementation compared to its more efficient counterpart,
the h-φ-formulation [117, 118, 79], which presents a smaller number of degrees of freedom.
Recently, a version of the h-φ-formulation with a thin-shell approximation suited for nonlinear
material modeling has been proposed [119, 120]. Another well-known variation of the h-φ-
formulation is the t-ω-formulation [121, 122]. The original form of all these formulations
involves the resistivity, which will be shown in the next chapters to be the optimal choice for
T2S in most cases, in terms of numerical performance.

The dual a-formulation, or a-v-formulation [123, 124, 125, 61], involving the conductivity
in their classical forms have also been advantageously used, as they offer the possibility of
using large time steps for time integration [126].

In addition to these classical formulations, a number of mixed formulations have been re-
cently proposed. Mixed formulations are defined as weak forms that involve more than one
field, and that couple them in the volume or on interfaces [57].

The t-a-formulation [127, 50] is a mixed formulation that incudes a thin-shell approxima-
tion. It is mainly based on the a-formulation, but it handles the power law in thin supercon-
ducting regions in terms of the resistivity via a current vector potential. Extensions of the
t-a-formulation involving homogenization techniques [52] or coupling with a third field in a
t-a-h-formulation [128] have also been recently proposed. Other examples of mixed formula-
tions are the a-v-j-formulation [129] or a-j-formulation [57], that also advantageously involve
the power law resistivity instead of the conductivity. The e-h-formulation [130] is another ex-
ample, it allows for accurate evaluations of the electric field and current density separately.
Finally, the surface-coupled h-a-formulation [54, 56, 131] and h-φ-a-formulation [36, 57] are
convenient and efficient choices for modelling rotating machines and systems with both T2S
and SFM.

In Chapter 2, we present the h-φ-formulation and the a-formulation, as well as their space
and time discretization for an implementation in a finite element solver. Mixed formulations
are then presented and analyzed in Chapter 3. All formulations will finally be compared and
exploited in Chapters 4 and 5 on a number of different problems of increasing complexity.



Chapter 2

Standard finite element formulations

In this chapter, we introduce two classical finite element formulations for magnetodynamic
problems, and their applications to systems with irreversible type-II superconductors (T2S) and
anhysteretic ferromagnetic materials (SFM). These formulations, the h-φ-formulation and the
a-formulation, will serve as a basis for building mixed formulations in Chapter 3.

After defining the problem framework in Section 2.1, we derive the h-φ-formulation and the
a-formulation in the continuous setting in Sections 2.2 and 2.3, respectively. We then discuss
the space and time discretizations in Sections 2.4 and 2.5. Finally, in the last two sections, we
analyze the treatment of T2S and SFM nonlinearities and we motivate the exploration of mixed
formulations.

2.1 Problem definition

2.1.1 Magnetodynamic equations

We define a bounded domain Ω with a piecewise smooth boundary ∂Ω = Γ. Inside Ω, we look
for solutions to Maxwell’s equations in the magnetodynamic approximation:

div b = 0, (2.1)
curl h = j, (2.2)
curl e = −∂tb, (2.3)

as introduced in Chapter 1. Fields b and h are related by a magnetic constitutive law, which is
material dependent and defined in the whole domain Ω,

b = µh, or h = νb. (2.4)

In magnetic materials, µ (resp. ν) is a function of h (resp. b), making the problem nonlinear.

For the electric constitutive law, the domain Ω is decomposed into two complementary do-
mains: Ωc, containing the conducting materials, and ΩC

c = Ω\Ωc, containing the remaining

19
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non-conducting materials. In Ωc, the current density j and the electric field e are related by

e = ρj, or j = σe. (2.5)

In normal conductors, such as copper, ρ and σ are considered to be constant in this work. By
contrast, for T2S in the mixed state, ρ (resp. σ) is a strongly nonlinear function of j (resp. e),
as introduced in Section 1.2. Note that relations (2.5) will be slightly modified in Section 2.1.3
to account for external current or voltage sources.

In the non-conducting domain ΩC
c , the current density is strictly identical to zero, and no

longer related to the electric field e. We have

j = 0. (2.6)

The magnetodynamic equations do not allow to determine more than the curl of e in ΩC
c . Any

gradient part in e in ΩC
c lets the equations unchanged, and is therefore unknown [132]. This

fundamental difference between the conducting and non-conducting domains will be reflected
in the finite element formulations, where function space definitions will treat differently the
subdomains Ωc and ΩC

c .

Models for stranded conductors, e.g., coils in which the current density is assumed uni-
form, are not discussed in this chapter. We refer to previous works [132, 133, 134], and to
Section 4.5.1, where source fields will be briefly presented in the context of a 3D problem.

2.1.2 Initial and boundary conditions

The differential problem (2.1)-(2.3) is time-dependent and defines a diffusion problem. For
well-posedness, information about the initial state, i.e., an initial condition, is required. In par-
ticular, the initial magnetic flux density b should be divergence-free, according to Eq. (2.1) [135].

To complement the differential problem defined by the magnetodynamic equations in Ω and
the initial condition, boundary conditions have to be imposed on ∂Ω = Γ. The boundary Γ is
decomposed into two complementary domains: Γh and Γe, where the tangential components of
h and e are prescribed, respectively. The boundary conditions read:

h× n|Γh = h̄× n|Γh , (2.7)
e× n|Γe = ē× n|Γe , (2.8)

for h̄ and ē given functions and with n the external unit normal vector defined on Γ.

The particular case of homogeneous boundary conditions is often encountered and reads

h× n|Γh = 0, (2.9)
e× n|Γe = 0. (2.10)

In particular, Eq. (2.9) implies that j ·n|Γh = 0, from Ampère’s law (2.2). Similarly, Eq. (2.10)
implies that ∂tb·n|Γe = 0, from Faraday’s law (2.3). If the initial condition satisfies b·n|Γe = 0,
so does the solution for all t.
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2.1.3 Global constraints on voltage and current

In addition to boundary conditions, global conditions must be prescribed on conducting regions
that can carry a net current intensity. Let Ωci , i = 1, . . . , N , be the N connected regions of Ωc.
We define the subset C of indices iwhose associated domains Ωci make ΩC

c multiply connected.
Fig. 2.1 illustrates a typical situation for a 3D problem.

To simplify the formalism, we only consider the simple cases where the Ωci with i ∈ C
have only one associated net current in this section. This excludes, for example, geometries
as double tori (the shape of an “8”, with two “holes”), where two net currents can be defined.
The extension to such topologies does not introduce any difficulty and is briefly discussed in
Section A.1.3.

Ωc1

ΩC
c

I1

V1

ẑ
ŷ
x̂

I2

V2
Ωc2

Ωc3

C1

C2

Γ

Figure 2.1: Example of a multiply connected ΩC
c domain. Domain Ωc1 is a torus contained inside Ω.

Domain Ωc2 is a wire crossing the domain boundary Γ at its terminals. Domain Ωc3 is a bulk volume
inside Ω. Only Ωc1 and Ωc2 make ΩC

c multiply connected: curves C1 and C2 cannot be reduced to a point
with a continuous deformation in ΩC

c . We have C = {1, 2} and currents and voltages are associated with
Ωc1 and Ωc2 . By contrast, there is no global current or voltage associated with Ωc3 .

To each subdomain Ωci , with i ∈ C, we associate its net current Ii, which is defined as

Ii =

∮

Ci
h · d`, (2.11)

with Ci a closed oriented curve contained in ΩC
c that winds once around Ωci .

We also associate with the current the net voltage Vi, that would be applied or measured
across the terminals of an external current or voltage generator. To model this voltage, in each
subdomain Ωci , with i ∈ C, we define a source electric field ea,i, satisfying curl ea,i = 0 (in
weak sense if ea,i is discontinuous), such that

∮

C?i
ea,i · d` = −Vi (2.12)

along any closed curve C?i contained in Ωci that winds once around Ωci , positively with respect
to Ii, as illustrated in Fig. 2.2. We can express the source field as ea = −grad va (in weak
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Ii

Vi

ea,i

C?
i

ΩC
c

Ωci

Σi

Figure 2.2: Source electric field ea,i reproducing the effect of a voltage generator in a conducting domain
Ωci . Global variables are the total current Ii flowing in the domain, and the applied voltage Vi imposed
by the generator.

sense), with va a discontinuous scalar potential. The discontinuity of va is equal to Vi across an
arbitrary cut Σi that makes Ωci simply connected.

For domains Ωci with i ∈ C, that are simply connected in Ω but with terminals on Γ (such
as Ωc2 in Fig. 2.1), we can link each corresponding terminals to create closed loops C?i . In
practice, this makes sense because such domains are modelled as fractions of symmetric or
periodic domains via the boundary conditions.

Let us denote by ea the sum of all ea,i for i ∈ C, i.e.,

ea =
∑

i∈C
ea,i, (2.13)

to account for the source field, the electric constitutive law Eq. (2.5) is modified as follows [136,
132]

e = ρj + ea. (2.14)

This modification allows to generate currents that are not eddy currents, e.g., direct currents,
without needing to model explicitly current or voltage generators. Consider the steady-state
situation resulting from a constant voltage Vi applied on a resistive conductor loop as in Fig. 2.2,
without any other external excitation. In a steady state, we have curl e = −∂tb = 0, so that,
in particular,

∮
C?i
e · d` = 0. Because we have a net current flowing along the conducting loop,

we also have
∮
C?i
ρj · d` 6= 0. The simple law e = ρj would not allow for such a situation, and

adding a source field is therefore necessary, so that
∮
C?i
ρj · d` = −

∮
C?i
ea · d` = Vi.

The source electric field ea models the global effect of the generator. We can choose to define
it on single cross-sections only, using Dirac distributions. However, in practice, depending on
the formulation, it can be convenient to consider a larger support. As long as we consider the
quantity er = e− ea as the actual electric field, that drives the electrons in the conductors, the
support of ea is arbitrary and does not influence the solution. In particular, for T2S in the mixed
state, the power law conductivity is written as a function of er, i.e., σ = σ(er).

Note also that there are other possibilities to model current or voltage generators. One al-
ternative approach is to remove them from the modelled domain Ω and to treat their influence



Section 2.2 Magnetic field formulation (h-φ-formulation) 23

through boundary conditions [137], which leads to equivalent formulations. Another approach
involves voltage distribution functions [138], via a similar modification of the constitutive law.

For simplicity, in this work, we do not consider circuit coupling. We assume that, for every
i ∈ C, either the current or the voltage is imposed. We denote by CI the subset of C for which
Ii is imposed to be equal to Īi, and by CV the complementary subset, for which Vi is imposed
to be equal to V̄i. The global conditions read:

Ii = Īi, for i ∈ CI , (2.15)
Vi = V̄i, for i ∈ CV . (2.16)

2.1.4 Strong form of the magnetodynamic problem

All the equations and conditions presented in this section fully define the magnetodynamic
problem. They are summarized below, and are referred to as the strong form of the problem.

Magnetodynamic problem

Magnetodynamic equations:
div b = 0, (2.17)

curl h = j, (2.18)
curl e = −∂tb. (2.19)

Constitutive laws:
b = µh (or h = νb), in Ω, (2.20)
e = ρj + ea (or j = σ (e− ea)), in Ωc, (2.21)

j = 0, in ΩC
c . (2.22)

Boundary conditions:
h× n|Γh = h̄× n|Γh , (2.23)
e× n|Γe = ē× n|Γe . (2.24)

Global conditions:
Ii = Īi, for i ∈ CI , (2.25)
Vi = V̄i, for i ∈ CV . (2.26)

+ Initial condition.

2.2 Magnetic field formulation (h-φ-formulation)

The h-φ-formulation is expressed in terms of the magnetic field h. The magnetic field is an
element of the spaceH(Ω), defined as

H(Ω) =
{
h ∈ H(curl; Ω) | curl h = 0 in ΩC

c ,

(h− h̄)× n = 0 on Γh, Ii(h) = Īi for i ∈ CI
}
, (2.27)

with, as defined in Section A.1.2,

H(curl; Ω) =
{
h ∈ L2(Ω) : curl h ∈ L2(Ω)

}
. (2.28)

The functional Ii(h) in Eq. (2.27) denotes the net current Ii flowing in conductor Ωci for a
given function h. By Ampère’s law, it is therefore given as the circulation of h along a closed
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loop Ci around that conductor:

Ii(h) =

∮

Ci
h · d` = Ii. (2.29)

Because they are included in the function space definition, boundary and global conditions
Eqn. (2.23) and (2.25) are said to be strongly imposed and are referred to as essential conditions.
By contrast, boundary and global conditions Eqn. (2.24) and (2.26) will be weakly enforced by
the weak formulation and are referred to as natural (boundary and global) conditions.

We denote by H0(Ω) the same space but with homogeneous essential boundary and global
conditions, i.e., with h̄× n = 0 on Γh and Īi = 0 for i ∈ CI .

The h-φ-formulation is a weak form of Faraday’s law. Eq. (2.19) is multiplied by a test
function h′ ∈ H0(Ω) and then integrated over the whole domain Ω. Using the curl-curl Green’s
identity (A.26), and the fact that curl h′ = 0 in ΩC

c and h′ × n = 0 on Γh, we have, for any
h′ ∈ H0(Ω),

(∂t(µh) ,h′)Ω + (curl e ,h′)Ω = 0 (2.30)
⇔ (∂t(µh) ,h′)Ω + (e , curl h′)Ω − 〈e× n ,h′〉Γ = 0, (2.31)
⇔ (∂t(µh) ,h′)Ω + (e , curl h′)Ωc

− 〈ē× n ,h′〉Γe = 0. (2.32)

These expressions introduce notations for volume and surface integration that are used through-
out the work. For any vector (resp. scalar) fields f and g, we note

(f , g)Ω =

∫

Ω

f · g dΩ, and 〈f , g〉Γ =

∫

Γ

f · g dΓ, (2.33)

where · is the dot product (resp. scalar multiplication).

To proceed, we need to express the electric field e in terms of the magnetic field h in Ωc.
Accounting for current or voltage generators in Ωci with i ∈ C, we have from Eq. (2.21):

e = ρ curl h+
∑

i∈C
ea,i. (2.34)

Introducing this expression in Eq. (2.32) yields

(∂t(µh) ,h′)Ω + (ρ curl h , curl h′)Ωc
− 〈ē× n ,h′〉Γe +

∑

i∈C
(ea,i , curl h′)Ωc

= 0. (2.35)

We now show that the last term can be rewritten in terms of the global variables Vi and Ii.
For i ∈ C, let us consider the integral

(ea,i , curl h)Ωci
. (2.36)

By construction, we have curl ea,i = 0. If Ωci is made simply connected by introducing one cut
Σi, as illustrated in Fig. 2.3, there exists a scalar field va,i such that ea,i = −grad va,i in Ωci\Σi.
Across Σi, the scalar field va,i exhibit a discontinuity

va,i|Σ−i − va,i|Σ+
i

= Vi, (2.37)
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nΩciΩC
c

Ωci

Σ+
i

Ii

Σ−
i

Vi

∂Ωci

Figure 2.3: Truncated domain Ωci\Σi and its boundaries. The arrow for the voltage Vi represents the
effect of the source field ea,i imposed by the generator (and not the discontinuity of va across the cut Σi).

which satisfies the condition Eq. (2.12) for ea,i.

Using the grad-div Green’s identity (A.25), we have

(ea,i , curl h)Ωci
= − (grad va,i , curl h)Ωci\Σi

= −〈curl h · n , va,i〉∂(Ωci\Σi)
+ (div (curl h) , va,i)Ωci\Σi

, (2.38)

with ∂(Ωci\Σi) = ∂Ωci ∪ Σ−i ∪ Σ+
i . The first term of Eq. (2.38) vanishes on ∂Ωci since we

have curl h · nΩci
= j · nΩci

= 0, and only remains nonzero on Σ−i and Σ+
i . We also have

div (curl ·) = 0 so that the second term of Eq. (2.38) is equal to zero. Therefore, we have,

(ea,i , curl h)Ωci
= −〈curl h · n , va,i〉Σ−i ∪Σ+

i
. (2.39)

The normal component of curl h = j is continuous, and nΣ+
i

= −nΣ−i
, so that

−〈curl h · n , va,i〉Σ−i ∪Σ+
i

= −
〈

curl h · nΣ+
i
, (va,i|Σ+

i
− va,i|Σ−i )

〉
Σ+
i

,

= Vi

〈
curl h · nΣ+

i
, 1
〉

Σ+
i

,

= −ViIi. (2.40)

Therefore, we obtain the link between the integral in Eq. (2.36) and the global variables:

(ea,i , curl h)Ωci
= −ViIi. (2.41)

Using Eq. (2.41) in Eq. (2.35), with h′ ∈ H0(Ω) and introducing condition (2.26), as well
as the notation for the functional Ii(h) defined in Eq. (2.29), this gives

(∂t(µh) ,h′)Ω + (ρ curl h , curl h′)Ωc
− 〈ē× n ,h′〉Γe =

∑

i∈CV
V̄iIi(h′). (2.42)

We finally obtain the weak formulation by imposing that Eq. (2.42) holds for all h′ ∈ H0(Ω).
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h-φ-formulation

From an initial solution at t = 0, find h ∈ H(Ω) such that, for t > 0 and ∀h′ ∈ H0(Ω),

(∂t(µh) ,h′)Ω + (ρ curl h , curl h′)Ωc
− 〈ē× n ,h′〉Γe =

∑

i∈CV
V̄iIi(h′).

Even if the scalar potential φ does not appear explicitly in the weak formulation, by contrast
with other variations of this formulation, as in [139], we still call it the h-φ-formulation, to
stress the strong curl-free property of h in ΩC

c , which is a key point of the formulation.

The magnetic Gauss law (2.17) has not been explicitly introduced in the construction of the
formulation, but we can retrieve it by taking h′ = grad φ′ as a test function in Eq. (2.31) [132].
This is developed in Section B.1 in Appendix.

2.3 Vector potential formulation (a-formulation)

For the a-formulation, we introduce two potentials: the magnetic vector potential a, defined in
the whole domain Ω, such that curl a = b, and the electric scalar potential v, defined in Ωc

only, which is such that e = −∂ta − grad v in Ωc. With these potentials, the magnetic Gauss
law (2.17) and Faraday’s law (2.19) are strongly satisfied. The fields a and v are not unique, as
for any scalar field q, the substitution

a? = a+

∫ t

0

grad q dt, (2.43)

v? = v − q in Ωc, (2.44)

lets the physical fields b and e unchanged. In this work, we choose q such that q = v in Ωc. As
a consequence, v? = 0 and e = −∂ta? in Ωc, so that a? is a primitive of the electric field; it is
called the modified vector potential [140]. This makes a? unique in Ωc up to a gradient field,
constant in time. In the following, we drop the ·? superscript for conciseness.

In ΩC
c , the vector potential a is still not unique (only the curl of e is known in ΩC

c ). Making
a unique in ΩC

c amounts to choosing a gauge. We will address the gauging question explicitly
at the discretization step, in Section 2.4.2. For now, we assume that we have chosen a gauge.

We choose a in the following space

A(Ω) =
{
a ∈ H(curl; Ω) | a is gauged in ΩC

c , (a− ā)× n = 0 on Γe}, (2.45)

where the essential boundary condition on Γe can be expressed from Eq. (2.24) because a is a
primitive of e. We denote byA0(Ω) the same space but with a homogeneous essential boundary
condition, i.e., with ā× n = 0 on Γe.

To account for external voltage or current sources, we introduce an additional unit source
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field ea1,i ∈ H(curl; Ωci) in each Ωci , with i ∈ C, such that curl ea1,i = 0 and
∮

C?i
ea1,i · d` = −1. (2.46)

We then generate the space

U(Ωc) =

{
ea =

∑

i∈C
Viea1,i , Vi ∈ R

∣∣ Vi = V̄i for i ∈ CV
}

(2.47)

for the total field ea introduced in Section 2.1.3. The unit source fields ea1,i will be defined
explicitly in the discrete setting, in Section 2.4.2. Again, we denote by U0(Ωc) the same space
but with homogeneous essential global conditions, i.e., with V̄i = 0 for i ∈ CV .

The a-formulation is a weak form of Ampère’s law. For the first set of equations, Eq. (2.18)
is multiplied by a test function a′ ∈ A0(Ω) and integrated over Ω. Using the curl-curl Green’s
identity (A.26) and the function space definition, we have, for any a′ ∈ A0(Ω),

(curl h ,a′)Ω − (j ,a′)Ω = 0, (2.48)
⇔ (ν curl a , curl a′)Ω − 〈h× n ,a′〉Γ + (σ ∂ta ,a

′)Ωc
+ (σ ea ,a

′)Ωc
= 0, (2.49)

⇔ (ν curl a , curl a′)Ω −
〈
h̄× n ,a′

〉
Γh

+ (σ ∂ta ,a
′)Ωc

+ (σ ea ,a
′)Ωc

= 0. (2.50)

For the second set of equations, Ampère’s law (2.18) is multiplied by a test function e′a with
e′a ∈ U0(Ωc) and integrated over Ωc:

(curl h , e′a)Ωc
− (j , e′a)Ωc

= 0, (2.51)

⇔ (curl h , e′a)Ωc
+ (σ ∂ta , e

′
a)Ωc

+ (σ ea , e
′
a)Ωc

= 0. (2.52)

Using Eq. (2.41), the first term of Eq. (2.52) can be rewritten as

(curl h , e′a)Ωc
= −

∑

i∈C
V ′i Ii = −

∑

i∈C
Vi(e′a)Ii, (2.53)

where the functional Vi(ea) denotes the net voltage Vi applied on conductor Ωci , as defined in
Eq. (2.12), for a given function ea. This yields

(σ ∂ta , e
′
a)Ωc

+ (σ ea , e
′
a)Ωc

=
∑

i∈CI
ĪiVi(e′a). (2.54)

We finally obtain the weak formulation by imposing that Eqn. (2.50) and (2.54) hold for all
a′ ∈ A0(Ω) and e′a ∈ U0(Ωc).

a-formulation

From an initial solution at time t = 0, find a ∈ A(Ω) and ea ∈ U(Ωc) such that, for
t > 0, ∀a′ ∈ A0(Ω) and ∀e′a ∈ U0(Ωc),

(ν curl a , curl a′)Ω −
〈
h̄× n ,a′

〉
Γh

+ (σ ∂ta ,a
′)Ωc

+ (σ ea ,a
′)Ωc

= 0,

(σ ∂ta , e
′
a)Ωc

+ (σ ea , e
′
a)Ωc

=
∑

i∈CI
ĪiVi(e′a).



28 Chapter 2 Standard finite element formulations

2.4 Space discretization

No approximation has been introduced for deriving the weak h-φ- and a-formulations. They are
not yet suited for numerical implementation because of the infinite dimension of the function
spaces H and A. The next step is therefore to choose finite dimensional sub-spaces of H and
A, in which approximate solutions of the weak formulations will be sought.

To define finite dimensional function bases, the geometry of the problem is first discretized
by a mesh, which is a subdivision of the continuous geometry into simple geometrical shapes,
referred to as elements. In a one-dimensional space, the subdivision is made up of line seg-
ments. In a two-dimensional space, it is usually made up of triangles or quadrangles. And in a
three-dimensional space, tetrahedra, pyramids, hexahedra or triangular prisms are usually used.

In this work, we consider meshes of degree one, in which every element is defined by straight
lines, so curved geometries are inevitably approximated. The continuous domain Ω and its
discretized approximation Ωδ are therefore not identical. For conciseness, we however keep the
notations of the continuous domain and its sub-domains for their discretized versions. It should
be clear with the context whether we refer to domains of the continuous setting or to those of
the discrete setting. The same comment holds for the physical fields, we also choose to keep
the notations h and a for their discretized versions.

After discretizing the geometry, we introduce shape functions, that constitute the building
blocks of the finite dimensional function bases. Electromagnetic problems are advantageously
handled with discrete differential forms1 as shape functions [141]. Among them, Whitney
shape functions are forms of the lowest order and are associated with elementary entities of
the mesh: nodes, edges, facets or volumes [141]. These are the main shape functions we will
consider in this work. They are briefly introduced in Section A.2, and are directly applied for
the discretization of the fields in the h-φ and a-formulations in the following sections.

In the following, we denote by N (Ωi), E(Ωi), F(Ωi), and V(Ωi) the set of nodes, edges,
facets, and volumes of the mesh of a given domain Ωi, respectively, including entities on the
boundaries of Ωi.

2.4.1 Discretization of h the h-φ-formulation

The unknown field in the h-φ-formulation is the magnetic field h. In the continuous setting,
h is sought in H(Ω) ⊂ H(curl; Ω), defined in Eq. (2.27). In the discrete setting, we define a
discrete function space Hδ,1(Ω) ⊂ W 1(Ω) ⊂ H(curl; Ω), where W 1(Ω) is the space spanned
by edge functions on a mesh of Ω. In general, any element h ∈ W 1(Ω) can be written as

h =
∑

e∈E(Ω)

he we, (2.55)

1See Section A.1.2 for a definition of differential forms.
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with the components he of h in the basis of the edge functions we, i.e., the degrees of freedom
for h. The value of he is the circulation of h along edge e, ∀e ∈ E(Ω),

he =

∫

e

h · d`. (2.56)

The ·δ,1 superscript in the notation Hδ,1(Ω) indicates that only lowest-order shape functions
are considered. Higher-order shape functions will be investigated in the next chapter, when
treating mixed formulations.

For the magnetic field h to be inHδ,1(Ω), it must be curl-free in ΩC
c , which is not necessarily

the case with the general expansion Eq. (2.55). To ensure curl h = 0 in ΩC
c , we only consider

certain combinations of the degrees of freedom he. It can be shown that the kernel of the
curl operator applied on elements of W 1(ΩC

c ), denoted as NS(curl,ΩC
c ), can be spanned by

gradients of node functions, and by one independent cohomology function for every i ∈ C [137,
142]. The decomposition reads as follows:

h =
∑

e∈E(Ωc\∂Ωc)

he we +
∑

n∈N (ΩC
c )

φn grad wn +
∑

i∈C
Ii ci, (2.57)

where the he, φn and Ii are the degrees of freedom of the magnetic field h ∈ Hδ,1(Ω). The ci’s
are the cohomology functions that we define below. A representation of this decomposition in
a 2D geometry is given in Fig. 2.4.

Ωci

ΩC
c
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(a) Classical edge function we.
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h hh

h

h
h

h

(b) Gradient of node functions wn.

Ωci

ΩC
c

h

j

h

h h

Σi

(c) Cut function ci. Net current 6= 0.

Figure 2.4: Shape functions for h in the h-φ-formulation. The associated current density j = curl h
is also represented, it is constant per element. The gray region is the conducting domain Ωci . Only the
cut function generates a non-zero net current. The orange elements in (c) represent its support, or the
transition layer in ΩC

c , where it is a gradient.

In the conducting domain Ωc, edge functions associated with edges on the boundary ∂Ωc

are not considered because they are not curl-free in ΩC
c , and are therefore not associated with

independent degrees of freedom.

In the non-conducting domain ΩC
c , the gradwn functions are combinations of edge functions

(see the first equation of Eqn. (A.22) in Appendix) ensuring that curl h = 0. We consider every
node inside ΩC

c , including those on its boundary. The kernel NS(curl,ΩC
c ) is completed by a

number of card(C) (cardinal of C) linearly independent elements ci, i ∈ C, of the equivalence
classes of the first de Rham cohomology spaceH1

dR(ΩC
c ), defined in Eq. (A.10). These elements
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are equivalent up to a gradient, so there is still freedom to fix them. The only constraint, for the
degree of freedom Ii to make sense as the net current in loop C?i in regard to Eq. (2.29), is that

∮

Ci
ci · d` = 1, ∀i ∈ C. (2.58)

In this work, as in [132], we choose the ci’s as gradients of node functions with a support
limited in a transition layer on one side of a cut2 Σi ⊂ ΩC

c with ∂Σi ⊂ ∂ΩC
c associated with

the curve Ci, that it intersects once. This choice is illustrated in Figs. 2.4(c) and 2.5. We refer
to these ci’s as the cut functions, they are global shape functions. They are the only shape
functions in Eq. (5.11) that are associated with a non-zero current in Ωci . The support of the
ci’s are sometimes called “thick cuts” [143, 144].
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ΩC
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Σ1
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Figure 2.5: Cuts as supports for building cut functions ci in the h-φ-formulation. (Left) 2D geometry
with two conducting domains. The two cuts are represented by the dark orange lines and the transition
layer is hinted by the light orange regions. Note that its support extends to one element inside the Ωci’s,
too. (Right) 3D case with one conducting domain. The cut is represented by the orange surface. The
transition layer (not represented) is a layer of one elements below the cut and in ΩC

c .

To complete the construction ofHδ,1(Ω), the magnetic field h still has to verify the essential
boundary conditions (h − h̄) × n = 0 on Γh, Ii(h) = Īi for i ∈ CI . If possible, this is
done by constraints on the degrees of freedom he, φn, and Ii. The latter is enforced by fixing
Ii = Īi for i ∈ CI , whereas for the former, this is only possible for the simplest forms of h̄ on
Γh, e.g., when h̄ is constant on Γh. Otherwise, the constraint (h − h̄) × n = 0 on Γh can be
imposed weakly via additional equations, e.g., Lagrange multipliers [145].

As mentioned before, h and φ are not introduced as two separate fields. The scalar potential
arises from combinations of edge functions, and is therefore automatically strongly coupled
with the h field in Ωc. This approach is that of [132] and differs from the implementation
in [139], where h and φ are considered as two separate fields that are weakly coupled via
additional continuity conditions. We however keep the notation h-φ to highlight the fact that
curl-free functions are used in ΩC

c , by contrast with what is done in the “full h-formulation” [6],
that involves edge functions in the whole domain Ω, as well as a spurious resistivity in ΩC

c .
Even if it produces reliable numerical results, this “full h” approach involves a larger number
of degrees of freedom, and hence requires a higher computational time in practice.

2Note that, in practice, with the cohomology solver [142] of Gmsh [60], no cut is explicitly introduced. Instead,
the ci’s are directly defined as sums of edge functions (resulting in a gradient). The resulting shape function is
completely equivalent.
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2.4.2 Discretization of a and ea in the a-formulation

The unknown fields in the a-formulation are the magnetic vector potential a and the source
electric field ea. We describe their discretization separately.

Magnetic vector potential a

In the continuous setting, a is sought in A(Ω) ⊂ H(curl; Ω), defined in Eq. (2.45). For the
discrete setting, we distinguish 3D and 2D models. In 3D, we define a discrete function space
Aδ,1(Ω) ⊂ W 1(Ω), built on a mesh of Ω. In general, if a ∈ W 1(Ω), we can write

a =
∑

e∈E(Ω)

aewe, (2.59)

with the components ae of a in the basis of the edge functions we. The ·δ,1 superscript in the
notation Aδ,1(Ω) indicates that only lowest-order shape functions are considered.

The vector potential a is interpreted as a primitive of the electric field in the conducting
domain Ωc, which makes it unique up to a constant, whereas in the non-conducting domain ΩC

c ,
adding a gradient to a lets the only relevant physical field b = curl a unchanged. A gauge is
therefore necessary in ΩC

c to make the solution unique.

One valid gauge is the co-tree gauge [146], which is illustrated in Fig. 2.6. It consists in
building a spanning tree3 on the mesh of ΩC

c (and its boundary), starting with a complete span-
ning tree on (∂Ωc∩∂ΩC

c )∪Γe, and fixing ae = 0 on every edge e of that tree in ΩC
c \∂Ωc, leaving

only the edges of the co-tree as unknowns. One can show that the co-tree gauge reduces the
number of degrees of freedom from one per edge to one per facet in ΩC

c [132]. No condition
is imposed on ∂Ωc because a is unique in the conducting domain Ωc, and by continuity (of
the tangential component), so is a on ∂Ωc [137]. The tree on Γe must be complete so that the
remaining degrees of freedom are independent for imposing the essential boundary condition
(a− ā)×n = 0 on Γe [137]. Particular cases in which Γe is not topologically trivial are treated
in [146]. Note that the essential boundary condition on Γe can be directly applied for simple
forms of ā only, e.g., a zero magnetic flux on Γe. In this work, we assume that this is the case.
Otherwise, other methods exist, e.g., with Lagrange multipliers [145].

As a result, after a co-tree gauge, the vector potential is expressed as

a =
∑

e∈E(Ωc∪co-tree(ΩC
c ))

aewe, (2.60)

where the ae for e ∈ E(Γe) are fixed by the essential boundary condition.

In 2D, two situations can happen. Either the magnetic flux density b is perpendicular to the
2D plane, or it is parallel to it. In the first case, a is therefore parallel to the plane and the
situation is exactly the same as in 3D, with the co-tree gauge performed on the 2D mesh, as in
Fig. 2.6.

3A spanning tree in a given domain is a connected set of edges that visits all nodes of that domain, and that
does not contain any closed loop.
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ae = 0

ΩC
cΩC

c

ae 6= 0

Figure 2.6: Illustration of the co-tree gauge on a 2D mesh. (Left) A portion of a tree in ΩC
c , visiting all

nodes of the domain without any cycle. All the degrees of freedom associated with the edges of that tree
are fixed to zero. (Right) The associated co-tree, containing all edges that are not in the tree, for which
the associated degrees of freedom are kept.

In the latter case, which is usually more interesting for T2S applications, the vector potential
is perpendicular to the 2D plane. It is expressed as a linear combination of perpendicular edge
functions wn, associated to every node n of the mesh. The only non-zero component of a
perpendicular edge functionwn is associated with the normal direction to the plane, defined as
êz, and is equal to the node function wn, i.e., wn = wnêz. The wn functions can be seen as
edge functions of fictitious edges en of unit length perpendicular to the plane, supported by the
nodes.

We keep the notation Aδ,1(Ω) for the resulting space. Whether it refers to a 3D or a 2D case
depends on the context. Here, elements a ∈ Aδ,1(Ω) have the following decomposition:

a =
∑

n∈N (Ω)

anwn, (2.61)

where coefficients an are the degrees of freedom, with those associated with nodes n ∈ N (Γe)
fixed by the essential boundary condition. The circulation of a along the fictitious perpendicular
edge en supported by node n is equal to an, ∀n ∈ N (Ω),

an =

∫

en

a · d`. (2.62)

An illustration of the perpendicular edge functions associated with a reference triangle is pro-
posed in Fig. 2.7. By construction, Eq. (2.61) implies div a = 0, whatever the values of the
degrees of freedom. Therefore, it satisfies an implicit Coulomb gauge, and the magnetic vector
potential is unique up to a constant [146].

The curl of these functions is meant to represent contributions for the magnetic flux density
b = curl a. As shown in Fig. 2.7, it is such that its flux across edges incident to the related
node is equal to one (in absolute value) and equal to zero across all other edges4. Thus, the
degree of freedom an contributes to the flux of b across edges incident to node n. From the top
of the plane, a positive an induces a counter-clockwise rotation for b around node n.

4This flux across the edges in the two-dimensional geometry is equal to the physical flux across the perpendic-
ular facets supported by the perpendicular edges in the three-dimensional extruded geometry with unit thickness.
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Figure 2.7: (Up) “Perpendicular edge functions” wn in a reference triangle in 2D. These functions
are curl-conform: their tangential component is continuous between different elements. (Down) Curl of
perpendicular edge functions in the plane, which are div-conform: their normal component is continuous
between elements. Note that the curlwn functions are actually the gradients of node functions, gradwn,
with a clockwise rotation of π/2, i.e., curl wn = êz × grad wn.

Source electric field ea

The source electric field defined in Eq. (2.47) is a linear combination of unit source fields ea1,i

with degrees of freedom Vi. For i ∈ CV , they are fixed to V̄i. The unit source fields are such
that curl ea1,i = 0 and

∮

C?i
ea1,i · d` = −1. (2.63)

When C?i is included in Ω\Γ, ea1,i is an element of the first de Rham cohomology space
H1

dR(Ωc). Conducting domains with terminals on Γ are treated as before. As with the magnetic
vector potential, we distinguish 2D and 3D models. In both cases, we denote the associated
function spaces by U δ,1(Ωc).

In 3D, we have freedom on the choice of the ea1,i’s. As in [137], we define them on a one-
element-thick transition layer on one side of a cut Σ?

i in Ωci as a sum of edge functions in Ωci ,
similarly to the cut function ci in ΩC

c for the h-φ-formulation. In the transition layer, ea1,i is a
gradient. In 2D with a perpendicular magnetic flux density b, the situation is the same as in 3D,
but on a 2D mesh. The unit source electric field is represented in Fig. 2.8 in this case.

In 2D with in-plane magnetic flux density, the electric field is perpendicular to the plane. To
ensure curl ea1,i = 0, the source field must be constant in each Ωci . It can be interpreted as a
source field per unit length in the third dimension.
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Figure 2.8: Unit source voltage function ea1,i in a 2D example (with in-plane current). One can show that
ea1,i satisfies Eq. (2.63) for any C?i , because ea1,i is a gradient in the transition layer (green elements).

2.5 Time integration

After space discretization, the unknown fields involved in a finite element formulation are fully
determined by a finite number N ∈ N of degrees of freedom, that are unknown functions of
time. A system of N nonlinear ordinary differential equations for these degrees of freedom can
be obtained by imposing that the weak formulation holds for N linearly independent test func-
tions, e.g., the individual shape functions generating the discrete function space. The resulting
differential problem is semi-discrete (still continuous in time) and first-order in time. It reads:

M(x, t)
dx

dt
(t) + K(x, t)x(t) = g(t), (2.64)

with x ∈ RN the unknown vector, containing the degrees of freedom, g ∈ RN the right-hand
side vector, and K,M ∈ RN×N two system matrices that depend on x in case of nonlinear
problems and whose entries are evaluated by numerical integration of the terms of the weak
form. To obtain a fully discrete system that can be solved numerically, time must also be dis-
cretized [147]. From the initial solution x(t0) = x0 at time t = t0, the solution is successively
sought at discrete time instants tn, n ∈ N0, not necessarily equidistant.

A large number of time integration methods exists [147, 148], of various levels of com-
plexity and orders of accuracy. In this work, we choose a backward Euler method for time
integration [147, 149], which is a simple implicit method: in the equation for time tn, n ∈ N0,
all terms are evaluated at tn, with the time derivative of x at time tn being approximated by the
finite difference

dx

dt

∣∣∣∣
tn

≈ x(tn)− x(tn−1)

tn − tn−1

, (2.65)

where x(tn−1) is the known solution at the previous time instant tn−1. It transforms the prob-
lem (2.64) into the following system of N nonlinear algebraic equations for the N degrees of
freedom, that has to be solved after each time step:

A(x; tn)x(tn) = b(x; tn), (2.66)
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with, using the notation ∆tn = tn − tn−1 for the current time step,

A(x; tn) = ∆t−1
n M(x, tn) + K(x, tn), (2.67)

b(x; tn) = g(tn) + ∆t−1
n M(x, tn)x(tn−1). (2.68)

For conciseness, we drop the explicit time dependence notation ·(·; tn) for A, x, and b in the
following.

Quadratic post-processing quantities with time derivatives

With the implicit Euler method, one should be careful when evaluating quadratic quantities
with time derivatives, especially when we want to integrate them in time. For example, the
instantaneous electromagnetic power P is defined as

P =
(
∂tb ,h

)
Ω

+
(
j , e

)
Ωc
. (2.69)

Integrating this quantity over one period in an AC regime gives an estimate of the power loss.
For anhysteretic materials, the first term does not contribute to losses and can be dropped out
immediately. But still, if we want an accurate evaluation of this term, one should consider the
remark in Section B.2, and evaluate the first term of Eq. (2.69) at mid-step as follows:

∂tb · h|n−1/2 ≈
bn − bn−1

∆t
· hn−1 + hn

2
. (2.70)

2.6 Linearization

At each time instant, after space and time discretizations, the original problem takes the form
of a system of nonlinear algebraic equations. System (2.66) is given as the matrix form

A(x)x = b(x), (2.71)

with x the vector of degrees of freedom. The system matrix A and the right-hand side vector b
may depend on the unknown vector x, which makes the system nonlinear.

In general, the nonlinear system given by Eq. (2.71) cannot be solved directly and iterative
techniques are necessary. They consist in successively solving linear systems to approach the
solution of the nonlinear system. The existing techniques are plentiful but they all present
common features. We present them in the following paragraphs.

In this work, we consider two main iterative methods and combinations of them. The
first method consists of a zeroth-order fixed point iteration, and is referred to as the Picard
method [150, 151, 152]. The second one is the so-called Newton-Raphson method [153, 154].
We present them after the common features of iterative methods.
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Methods for choosing the initial estimate

At each time step, iterations must start with an initial estimate of the solution. Initial estimates
that are “close” to the exact solution usually help to reduce the number of iterations required
to reach a given accuracy. Moreover, some methods may not converge if the initial estimate is
“too far” from the exact solution.

The simplest possibility for choosing the initial estimate, or initial iterate, is to take the
solution at the previous time step. This method is referred to as the zeroth-order extrapolation
method. Several previous solutions can also be extrapolated. A first-order extrapolation method
extrapolates the last two solutions with a linear polynomial. A second-order extrapolation
method extrapolates the last three solution with a quadratic polynomial. The application of
these three methods on a given degree of freedom x is represented in Fig. 2.9. These are the
possibilities we will investigate in this work.

t

x(t)

t

x(t)

t

x(t)

(a) Zeroth-order extrapolation. (b) First-order extrapolation. (c) Second-order extrapolation.

Figure 2.9: Application of the three techniques for choosing the initial estimate for a given degree of
freedom x. Filled nodes represent previous solutions and the hollow node in each case is the initial
estimate based on these previous solutions.

Convergence criterion

Then, a convergence criterion must be defined. Based on a given quantity, evaluated at each
iteration, the convergence criterion indicates whether the current solution is considered accurate
enough to step forward to the next time step. For example, for an approximate solution xi at
iteration i, the convergence criterion can be a condition on the residual ri of the system, defined
by [35]

ri = b(xi)−A(xi)xi. (2.72)

If xi is the exact solution to the nonlinear system, the residual is identical to zero. A pos-
sibility for the convergence criterion is an absolute tolerance on the 2-norm of the residual,
i.e., the accuracy is considered satisfying if ‖ri‖ ≤ εabs, with a given absolute tolerance εabs.
A convergence criterion based on a relative tolerance can also be considered, for example,
‖ri‖/‖r1‖ ≤ εrel, with r1 the residual after the first iteration and a given relative tolerance εrel.

These choices are actually not easy to apply when comparing different methods, involving
quantities with difference orders of magnitude, as is the case here, especially for mixed formu-
lations. In this work, instead of considering the residual, we base the convergence criterion on
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the power estimate. To recall, at time tn, it is defined as

Pn =
(
∂tb ,h

)
Ω

+
(
j , e

)
Ωc
, (2.73)

with the first term evaluated as proposed by Eq. (2.70). For a given relative tolerance εrel, we
consider that the iterations have converged when

Pn − Pn−1

Pn−1

≤ εrel. (2.74)

This choice does not provide an absolute proof of convergence as the system residual would do,
but we have observed that it is a reliable and convenient indicator, e.g., see Section 4.1.1.

Handling convergence failure: adaptive time-stepping

In some situations, the iterative methods diverge or do not converge in a reasonable number of
iterations. To treat these issues automatically, we use an adaptive time step procedure, which
does not use fixed time steps ∆tn, but changes them adaptively depending on the dynamics
of the problem. This will be crucial for efficient resolutions with Newton-Raphson iterations:
small time steps are typically necessary during the first penetration of magnetic flux but one can
afford larger steps once the sample is saturated. The heuristic procedure is defined as follows
(taken from [155]):

• if the number of iterations exceeds imax with a time step ∆t or if the iterations diverge, the
current time integration step restarts with a smaller time step equal to γ∆t, with γ < 1;

• if a step with time step ∆t converges in less than ifast iterations, the next time step is
chosen equal to min(β∆t,∆tmax), with β > 1 and a fixed ∆tmax.

Values for γ, imax, β, and ∆tmax are up to the user and may depend on the application and the
linearization technique. For example, the Picard method described below will typically require
more iterations than the Newton-Raphson method for reaching a given accuracy.

2.6.1 The Picard iteration

The Picard iteration [150, 151, 152] is one of the simplest techniques for handling the nonlin-
earity. From an iterate xi at iteration i, the next iterate xi+1 is sought by fixing the value of
matrix A and vector b at the iterate xi, and looking for the xi+1 that satisfies the following
linear system,

A(xi)xi+1 = b(xi). (2.75)

In general, this method does not exhibit a high convergence rate. It is usually a robust method
in the sense that it usually converges for a wide range of initial iterates. An illustration of one
iteration of this method in the case of a single unknown is given in Fig. 2.10(a). A common ac-
celeration technique associated with fixed point methods is the Aitken’s delta-squared process,
which consists in a clever extrapolation of the last iterates [156, 157].

Note that in some cases, the iterates resulting from Picard iterations may enter cycles and
fail to converge. This will be illustrated later in this chapter, e.g., in Fig. 2.18(a).
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xi xi+1 xi xi+1

(a) Picard iteration. (b) Newton-Raphson iteration.

Figure 2.10: One iteration of the Picard and Newton-Raphson iterative techniques for the case of a single
degree of freedom, for the equation A(x)x = b.

2.6.2 The Newton-Raphson iteration

The Newton-Raphson method [153] consists in approximating the nonlinear terms A(x)x and
b(x) to first order with a Taylor limited development, yielding a linear system. From an iterate
xi, the next iterate xi+1 is computed by solving the following linear system,

A(xi)xi + J(xi)(xi+1 − xi) = b(xi), (2.76)

with J the Jacobian matrix defined by

J(x) =
∂

∂x

(
A(x)x− b(x)

)
. (2.77)

An example of one iteration of this method in the case of a single unknown is proposed in
Fig. 2.10(b).

When the initial iterate is “sufficiently close” to the solution, and under other conditions, the
convergence can be very fast, demonstrating a quadratic rate of convergence [158]. However,
the Newton-Raphson method is usually less robust than the Picard technique in the sense that,
if the initial iterate is not sufficiently close to the solution, the method may diverge. As will be
illustrated later, e.g. in Fig. 2.18(b), iterates may also enter cycles that prevent the method to
converge.

If the analytical expression of the Jacobian matrix Eq. (2.77) is not known, it can be evaluated
numerically, which slightly lowers the convergence rate. In that case, this is referred to as a
quasi-Newton-Raphson method, of which a popular example is the BFGS method [159]. In
this work, if we do not have access to the exact Jacobian expression, e.g., when the constitutive
laws are interpolated on experimental measurements, we evaluate the Jacobian with a finite
difference approximation.

We can introduce a relaxation factor γ that multiplies the solution increment given by system
(2.76) to define a new solution xrelax

i+1 as follows:

xi+1 ← xrelax
i+1 = xi + γ (xi+1 − xi). (2.78)
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The relaxation factor γ can be fixed a priori, or dynamically adapted. In some cases, relax-
ation factors help avoiding divergence or cycles in the iterations, but they may also reduce the
convergence rate [90].

In general, the Newton-Raphson method offers efficient resolutions thanks to its quadratic
rate of the convergence. When it can be used without convergence issues, it is usually preferred
to the Picard method.

2.6.3 Hybrid iterations

Different combinations and variations of the Picard and Newton-Raphson methods can be in-
vestigated. For example, one method can be used on one nonlinear term of the equations while
the other one is used on another nonlinear term. Also, it is possible to switch from one method
to the other after a given number of iterations. We will consider these hybrid techniques in the
following.

2.7 Analysis of the treatment of material nonlinearities

When applying the Newton-Raphson method on the power law for T2S, we quickly observe
convergence issues with the a-formulation. Similarly, when applying the Newton-Raphson
method on the saturation law for SFM, we observe convergence issues with the h-φ-formulation.
In most cases, the iterations obtained from Eq. (2.76) do not converge towards a single solution.
Instead, they enter cycles as represented in Figs. 2.11 and 2.12. Conversely, we also observe
that when using the alternative formulation in the same situation, i.e., the h-φ-formulation for
T2S, or the a-formulation for SFM, these cycles no longer appear and the Newton-Raphson
iterations easily converge.

T2S T2S SFM SFM

(a) a-formulation, T2S. (b) h-φ-formulation, SFM.

Figure 2.11: Two successive Newton-Raphson iterations for (a) a T2S material and the a-formulation,
and (b) a SFM material and the h-φ-formulation. The model represents a T2S or a SFM cylindrical
pellet subjected to an external magnetic field. It is a 2D-axisymmetric model. The arrows represent
the magnetic flux density. This is an illustration of non-converging behaviors: the Newton-Raphson
iterations cycle between two wrong solutions.

Because taking the alternative formulation helps to circumvent the convergence issues, the
observations do not cause much issues in situations where only one material, T2S or SFM, is
involved. However, difficulties naturally arise when we want to combine the two materials in a
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Figure 2.12: Iteration cycles observed on a T2S material with the a-formulation and the Newton-Raphson
method. Same setting as in Fig. 2.11. The situation with the h-φ-formulation is also given for illustration,
it converges without cycles. (Left) Evolution of the norm of the residual ri = b(xi)−A(xi)xi with the
iterations. (Right) Evolution of the power loss estimate Ploss = (j , e)Ωc

.

single model. Handling such situations is the subject of the next chapter, in which we consider
mixed finite element formulations. But before moving on, we will analyze the cycling behavior
in more detail in this section.

In Section 2.7.1, we introduce basic elements of fixed point theory. In Section 2.7.2, we
propose two simplified nonlinear models with a single degree of freedom reproducing the con-
vergence issues that we observe with finite element models (1D, 2D, or 3D), for both T2S and
SFM materials. In Sections 2.7.3 and 2.7.4, we analyze the treatment of the simplified nonlin-
ear models by different iterative techniques, in the light of the fixed point theory. In particular,
we investigate the relevance of using relaxation factors or hybrid iterative techniques to prevent
iteration cycles to appear.

2.7.1 Fixed points

Let us consider a convex subset X ⊂ RN and a function f : X 7→ X . For simplicity, we
assume that f is a continuously differentiable function. The point x̄ ∈ X is said to be a fixed
point of f if

f(x̄) = x̄, (2.79)

i.e., it has its value unchanged under the transformation f [160].

In numerical analysis, a fixed point iteration is a method for finding fixed points of a function.
Starting from an initial value x0, it consists in the following iteration:

xi+1 = f(xi), i ∈ N, (2.80)

hoping that the sequence of the xi’s converges towards a fixed value x̄, one fixed point of f .

If f is strictly contractive in X , that is, if there exists a constant k < 1 such that

‖f(x)− f(y)‖ ≤ k‖x− y‖, ∀x,y ∈ X, (2.81)
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then, the sequence of the xi’s computed from Eq. (2.80) converges strongly in RN for any
x0 ∈ X . Moreover, its limit limi→∞ xi = x̄ is the unique fixed point of f in X and the
convergence is at least linear, i.e., there exists a constant m < 1 such that, ∀i ∈ N,

‖xi+1 − x̄‖
‖xi − x̄‖

= ρi ≤ m. (2.82)

In this expression, we refer to ρi as the convergence factor [151, 157].

It may happen that the iterations do not converge, but approach cycles between two distinct
values instead [161, 162]. In these cases, the values are said to be fixed points of period two,
i.e., fixed points of the function f ◦ f . They satisfy

f
(
f(x)

)
= x, (2.83)

without satisfying f(x) = x. Fixed points of any higher period can also exist. In some
cases, these “periodic” fixed points completely prevent the method from converging towards
the sought solution. As observed above, this is the case for the T2S and SFM nonlinearities in
the a-formulation and h-φ-formulation, respectively.

Particular case: X ⊂ R. If |f ′(x)| < 1,∀x ∈ X ⊂ R, it is strictly contractive in X , and
fixed point iterations will converge to the unique fixed point x̄ for any x0 ∈ X . This condition
on the derivative is a sufficient, but not necessary, condition for convergence. Moreover, when
the iterates become sufficiently close to x̄ (for some i ≥ i0, i0 ∈ N), we have ρi ≈ |f ′(x̄)|. The
value of |f ′(x̄)| can be referred to as the asymptotic convergence factor; the smaller it is, the
faster the convergence near the fixed point. One can show that |f ′(x̄)| ≤ 1 is also a necessary
condition for the iterations to converge to x̄ as an infinite sequence5. In the particular case
|f ′(x̄)| = 0, the convergence rate can be higher than linear. The nature of the convergence
depends on the higher derivatives of f in the vicinity of x̄ [157]. When |f ′(x̄)| ≤ 1, the fixed
point x̄ is said to be attractive. Otherwise, it is said to be repulsive. See Fig. 2.13.

By extension, if x̃ is a fixed point of period two, and hence not a fixed point of f , if
|g′(x̃)| ≤ 1, with g = f ◦ f , the fixed point of period two is said to be attractive. We
can also say that the cycle containing x̃ is attracting. In general, this is no good news, because
the point x̃ will therefore attract the iterates towards a cycle between two wrong solutions for a
range of initial estimate values x0, preventing convergence towards the solution x̄.

Picard iteration. The Picard iteration (2.75) can be seen as a fixed point iteration for the
function

fPi(x) = A−1(x)b(x), (2.84)

so that evaluating fPi(x) involves solving a linear system at each iteration. Of course, the matrix
A(x) must be nonsingular.

5Unlikely choices may offer convergence in a finite number of steps, such as x0 = x̄, in the case |f ′(x̄)| < 1.
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x0 x1 x2x3 x0x1x2x3x0 x1 x3x2

(a) Linear convergence. (c) Non-convergence.(b) Quadratic convergence.
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y = f(x)
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y = f(x)

Figure 2.13: Fixed point iteration in three distinct situations for the particular case X ⊂ R. (a) The
function f is strictly contractive and converges for any x0 in the illustrated interval. (b) In addition
to being strictly contractive, the function f is stationary at the fixed point, and the iterations converge
quadratically once they are close enough to the fixed point. (c) The function is non-contractive, and the
iterates diverge. For cases (a) and (b), the fixed point is said to be attractive. For case (c), it is repulsive.

Newton-Raphson iteration. Similarly, the Newton-Raphson iteration (2.76) can be rewritten
as a fixed point iteration for the function

fNR(x) = x+ J−1(x)(b(x)−A(x)x), (2.85)

provided that J(x) is nonsingular. It is interesting to notice that at a fixed point x̄, which is a
solution of the problem (2.71), we have

f ′NR(x̄) = I +
∂

∂x

(
J−1(x̄)

)
(b(x̄)−A(x̄)x̄︸ ︷︷ ︸

= 0

) + J−1(x̄) (0− J(x̄))︸ ︷︷ ︸
= −I

= 0. (2.86)

If J : X 7→ RN×N is Lipschitz continuous, one can show that the local convergence is
quadratic [158]. That is, if x0 is sufficiently close to the solution x̄, there exists a constant
k < 1 such that, ∀i ∈ N,

‖xi+1 − x̄‖
‖xi − x̄‖2

≤ k. (2.87)

In most cases, if the computational cost of one iteration is comparable, a method with a
quadratic convergence rate is preferable to a method with a linear convergence rate [158].

In general, choosing an initial iterate x0 that is sufficiently close to the solution to guarantee
a fast convergence is not an easy task. However, in our case, we benefit from the time dis-
cretization and the knowledge of previous solutions. They help to provide initial estimates of
good quality, especially when the time steps are small.
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2.7.2 Simple models for T2S and SFM nonlinearities

To analyze the behavior of iterative techniques on the T2S and SFM nonlinearities, we simplify
the finite element models to the simplest possible problems that still exhibit convergence issues.
As we will see, single degree of freedom equations involving similar nonlinearities share the
same features as more complicated finite element models.

Simple T2S model

Φ

I

R, L

Figure 2.14: T2S ring for the single degree of freedom equation.

Consider a T2S ring subjected to a time-varying external magnetic flux Φ, and carrying a current
intensity I , as illustrated in Fig. 2.14. The time derivative of Φ is denoted as Φ̇. The ring can
be modelled by lumped elements: a nonlinear resistor R = Vc/Ic(|I|/Ic)

n−1, that mimics the
electrical resistivity of the power law, with Vc, Ic and n fixed, in series with a linear inductor
L, yielding R(I)I + Lİ = Φ̇. After time discretization, solving the problem for the current
intensity I flowing inside the ring gives rise to an equation of the form

f(x) = |x|n−1x+ λx− b = 0, (2.88)

to be solved at each time step, with λ and b two real parameters. By contrast, solving for the
voltage across the resistor gives rise to an equation of the form

g(x) = |x|(1−n)/nx+ λ−1x− c = 0, (2.89)

with c another real parameter. The shapes of f and g are depicted in Fig. 2.15. The first case
is analogous to the h-φ-formulation with T2S because it involves a resistivity-like nonlinear-
ity whereas the second one is analogous to the a-formulation with T2S because it involves a
conductivity-like nonlinearity.

Note that these analogues can also be obtained from a dimensional analysis of the h-φ and
a-formulation. For f , we have

(ρ curl h , curl h′)Ωc
+ (∂t(µh) ,h′)Ω − source = 0, (2.90)

where the first term is nonlinear with the power law applied on the unknown, |x|n−1x, whereas
the second one is linear, λx. The parameter λ is a scaling parameter and b gathers the sources
and the previous solution from the backward Euler approximation. Similarly, for g,

(σ ∂ta ,a
′)Ωc

+ (ν curl a , curl a′)Ω − source = 0 (2.91)

can be reduced to a nonlinear term, |x|(1−n)/nx, a linear one, λ−1x with a scaling parameter,
λ−1, and a constant term, c.
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x

f(x)

(a) f(x) = |x|n−1x+ λx− b (h-φ-formulation).

x

g(x)

(b) g(x) = |x|(1−n)/nx+λ−1x−c (a-formulation).

Figure 2.15: Typical shapes of the nonlinear functions involved in (a) the h-φ-formulation, and (b) the
a-formulation, for a T2S material modelled with the power law (n = 20, λ = 1) and for b = c = 0.
Note that f and g are not inverse of each other, and that the slope of g diverges for x→ 0.

Simple SFM model

The simplest model involving the nonlinear saturation law of SFM consists in the numerical
inversion of the saturation law. For an h-φ-formulation analogue, we consider the function

ḡ(x) = µr(x)x− c = 0, (2.92)

where µr(·) = µ(·)/µ0 is a saturation law, rescaled for easier analysis, and c is a real parameter.
Here, for µ(·), we use Eq. (1.9). This law has the analytical inverse given by Eq. (B.31) in
Appendix for νr(·) = µ0ν(·), that is used to build the a-formulation analogue,

f̄(x) = νr(x)x− b = 0, (2.93)

where b is another real parameter. The shapes of ḡ and f̄ are depicted in Fig. 2.16. These
functions are single degree of freedom versions a magnetostatic problem with the h-φ or a-
formulation, respectively, i.e., a nonlinear term and a source term:

(µh ,h′)Ω − source = 0, (2.94)
(ν curl a , curl a′)Ω − source = 0. (2.95)

2.7.3 Iterations on the simple models for the T2S nonlinearity

We now investigate how different iterative techniques behave when applied on the simplified
equations, f(x) = 0 and g(x) = 0, given by Eqn. (2.88) and (2.89), analogous to the h-φ and
a-formulations with T2S, respectively.
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x

ḡ(x)

(a) ḡ(x) = µr(x)x− c (h-φ-formulation).

x

f̄(x)

(b) f̄(x) = νr(x)x− b (a-formulation).

Figure 2.16: Typical shapes of the nonlinear functions involved in (a) the h-φ-formulation, and (b)
the a-formulation, for a SFM modelled with the saturation law given in Eq. (B.29) in Appendix, with
µr,0 = 1600 and m0 = 106 A/m, and for c = b = 0.

Analogue to the h-φ-formulation

The simplified equation chosen to simulate the power law nonlinearity in the h-φ-formulation
where the resistivity ρ consists in finding the solution to Eq. (2.88):

f(x) = |x|n−1x+ λx− b = 0, (2.96)

for a given value of b, with n and λ two real parameters.

The Picard iteration function reads xi+1 = fPi(xi), with

fPi(x) =
b

|x|n−1 + λ
, (2.97)

and the Newton-Raphson iteration reads xi+1 = fNR(xi), with

fNR(x) = x− |x|
n−1x+ λx− b
n|x|n−1 + λ

. (2.98)

These functions are illustrated in Fig. 2.17 for n = 20, λ = 1 and for various values of b. The
successive iterations in this figure can be deduced as was shown in Fig. 2.13 on three examples.
By inspection, one can see that Newton-Raphson iterations will converge for any initial iterate
x0 in all cases. By contrast, for b = 1 and b = 1.5, the Picard iteration function fPi(x) presents a
slope higher than one at the fixed point, so that it is repulsive. Instead, the iterates are attracted
by fixed points of period 2, i.e., fixed points of the function fPi(fPi(x)). These points are not
solutions of the original equation f(x) = 0 and, as they are attractive, they will therefore cause
issues for convergence, as illustrated by the resulting cycle in Fig. 2.18(a).

To investigate the behavior of the iterative methods in more detail, we look at the number of
iterations required to reach a given accuracy for a range of initial iterates x0 and values of b.
We iterate from x0 and we stop at an iteration i only when |f(xi)| < εabs, with εabs = 10−8, or
when i exceeds imax = 300. In the first case, we conclude that the method has converged, and
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(b) b = 0.9.
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(d) b = 1.5.

Figure 2.17: Picard and Newton-Raphson iterations viewed as fixed point iterations for the single degree
of freedom equation analogous to the T2S nonlinearity in h-φ-formulation, with n = 20 and λ = 1. In
every case, fNR(x) has a unique attractive fixed point. However, for b = 1 and b = 1.5, fPi(x) has a
repulsive fixed point and presents attractive cycles of period 2.
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x

f(x) + b
b

(a) Picard on f(x) (h-φ-formulation).

x

g(x)
0

(b) Newton-Raphson on g(x) (a-formulation).

Figure 2.18: Illustration of attracting iteration cycles on the single degree of freedom equation analogous
to the T2S nonlinearity. (a) f(x) with Picard iterations, b = 1.1. (b) g(x) with Newton-Raphson
iterations, c = 0.6. Highlighted dots represent the successive iterates and dash-dotted lines connect two
successive cycling iterations.

we color the point (x0, b) according to the iteration number i. In the latter case, iterates have
either entered cycles or diverged, and the iterative technique has failed. Results are presented
in Fig. 2.19.

We observe that the Newton-Raphson iterations converge in the whole x0-b-domain. When
x0 is sufficiently close to the exact solution (the black curve in the figure), the number of
iterations is small (. 10). This fast attraction basin gets however narrower as n increases. For
|b| . 1, the number of iterations is small over a wide range of initial iterates, where the function
f(x) is well approximated by an affine function6. Overall, when x0 moves further away from
the solution, the number of iterations gets higher, and it increases with n as well.

The Picard iterations rarely converge. For |b| & 1, convergence is only achieved with lucky
(but isolated) choices of x0, as those highlighted by the blue circles in the figure. Everywhere
else, iterates enter cycles of period 2, as was illustrated in Figs. 2.17 and 2.18(a), and therefore
do not converge. Using the Picard method in this situation is therefore impractical.

The general observations remain identical when λ is changed: the Newton-Raphson method
converges in all situations whereas the Picard method fails for a wide range of b values. More-
over, the Newton-Raphson method converges very quickly towards the exact solution provided
that the initial estimate is not too far from it.

6For a purely affine function, the exact solution is obtained after only one Newton-Raphson iteration whatever
the initial iterate.
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(a) Newton-Raphson, n = 15.
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(d) Picard, n = 20.

Figure 2.19: Iteration number i at which |f(xi)| < εabs as a function of the initial iterate x0 and the
value of b, with λ = 1, and for two values of n. The black curves give the exact solution as a function
of b. With the Newton-Raphson method, convergence is obtained in the whole domain. White regions
associated with the Picard iterations are those where the maximum number of iterations imax = 300 is
reached without convergence, i.e., where the method has failed. In this case, all points in white regions
enter cycles of period 2.

Analogue to the a-formulation

For the a-formulation, the analogous equation Eq. (2.89) reads

g(x) = |x|(1−n)/nx+ λ−1x− c = 0, (2.99)

with λ and c two real parameters. This function has a diverging slope at x = 0. Both for the
Picard and Newton-Raphson methods, this will lead to issues for iterates that are close to zero.
Therefore, we regularize the function as follows (and we keep the name g for simplicity):

g(x) =
x

ε+ |x|(n−1)/n
+ λ−1x− c, (2.100)

with ε a strictly positive parameter, chosen as small as possible. Note that this parameter is
also necessary in the finite element models, and represents a non-zero resistivity for ‖j‖ → 0
in T2S, which may not be desirable. In practice, ε can however be chosen small enough for its
influence to be negligible in the solution, this will be discussed in Chapter 4.
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The Picard iteration function reads xi+1 = gPi(xi), with

gPi(x) =
c

(ε+ |x|(n−1)/n)−1 + λ−1
, (2.101)

and the Newton-Raphson iteration reads xi+1 = gNR(xi), with

gNR(x) = x− g(x)

g′(x)
, with g′(x) =

1

ε+ |x|(n−1)/n
− n− 1

n

|x|(n−1)/n

(ε+ |x|(n−1)/n)
2 + λ.

(2.102)

These functions are illustrated in Fig. 2.20 for n = 20, λ = 1 and for various values of c.
Note that gPi(0) ≈ εc and gNR(0) ≈ εc. Consequently, if ε > 0 and c 6= 0, gPi(0) and gNR(0)
are not equal to zero, so that the point x = 0 is never a fixed point of gPi or gNR for c 6= 0. The
gPi(x) and gNR(x) curves have a unique fixed point x̄ each, for every value of c.

The situation is the opposite to that observed with the h-φ-formulation analogue. For the
Picard method, the fixed points are always attractive, as |g′Pi(x̄)| < 1. By inspection, one can
see that the iterations will converge to them for any initial iterate x0, whatever the value of
c. For the Newton-Raphson method, this is not the case. The function gNR always presents
an attraction basin close to the solution, but it becomes narrower and narrower as c decreases.
For c = 1 and c = 1.5, this is not an issue, any choice of x0 will eventually lead to the
solution. However, for c = 0.6 and c = 0.9, fixed points of period 2 appear, i.e., fixed points
of the function gNR(gNR(x)). Two of them are attractive, and iterations end up in cycles as in
Fig. 2.18(b).

As with the h-φ-formulation analogue, we look at the number of iterations required to reach
a satisfying accuracy as a function of the initial estimate x0 and the value of c. Starting from
x0, we stop at iteration i when |g(xi)| < εabs, or when i exceeds imax. We keep εabs = 10−8 and
imax = 300. Results are presented in Fig. 2.21 for the two methods and two values of n.

For the Newton-Raphson method, there are large regions in the x0-c-domain where conver-
gence is not achieved. In these regions, iterations enter cycles similar to those that appear in
Figs. 2.20 and 2.18(b). For |c| . 1, only initial iterates x0 that are extremely close to the ex-
act solution will eventually converge towards it, and the width of the attraction basin decreases
when n increases7. On the other hand, for |c| & 1, convergence is obtained after a small number
of iterations.

The Picard method demonstrates a completely different behavior. All initial iterates x0 con-
verge towards the solution whatever the value of c. The number of iterations is however some-
times very high, especially in two bands of c values, and it increases with n.

It is also interesting to notice that the number of iterations for the Picard method barely
depends on the initial iterate x0. Most of the iterations are indeed spent during the last phase of
the convergence, close to the solution, where the asymptotic convergence factor |g′Pi(x̄)| can be
very close to 1, as shown in Fig. 2.20, so that the linear convergence is very slow.

7This is not visible in the graph due to the limited number of sampling points (≈ 100× 100).
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Figure 2.20: Picard and Newton-Raphson iterations viewed as fixed point iterations for the single degree
of freedom equation analogous to the T2S nonlinearity in a-formulation, with n = 20, λ = 1 and
ε = 10−5. In each case, gPi(x) has a unique attractive fixed point. However, for c = 0.6 and c = 0.9,
fPi(x) presents attractive cycles of period 2 and the correct solution has a very small attraction basin.
Note that gPi(0) and gNR(0) are very small (≈ εc) but not identical to zero (for ε > 0). The legend in (a)
is the same as in the other plots.
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(a) Newton-Raphson, n = 15.
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(b) Picard, n = 15.
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(c) Newton-Raphson, n = 20.
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(d) Picard, n = 20.

Figure 2.21: Iteration number i at which |g(xi)| < εabs as a function of the initial iterate x0 and the value
of c, with λ = 1 and two values of n. The black curves give the exact solution as a function of c. With
the Picard method, convergence is obtained in the whole domain, but at the price of a large number of
iterations. White regions associated with the Newton-Raphson iterations are those where the maximum
number of iterations imax = 300 is reached without convergence, i.e., where the method has failed. Here,
all points in white regions enter cycles of period 2.

As with f(x), the behavior of the iterative techniques on g(x) is not significantly different
when λ is increased or decreased: the Newton-Raphson method is impractical because it ex-
hibits an extremely thin convergence domain for a significant range of c values, and the Picard
method converges in all cases but demands a large number of iterations. One can infer that, if
we only consider these two simple iterative methods, function g(x) is more expensive to solve
than functionf(x). This observation is maintained in more complicated finite element models
involving the power law nonlinearity, as was mentioned earlier in this section.

To improve the performance of the iterative methods on g(x), one can investigate several
possibilities. For the Picard method, a common acceleration technique is the Aitken’s delta-
squared process [156, 157]. It can be seen as an extrapolation of the last three iterates. In our
simple case, it consists in looking at the sequence of xA,i defined by

xA,i = xi −
(∆xi)

2

∆2xi
, with

{
∆xi = xi+1 − xi,

∆2xi = xi − 2xi+1 + xi+2,
(2.103)
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where the xi’s are obtained by Picard iterations. Provided that ∆2x does not approach zero, the
sequence of the xA,i’s can be proven to converge faster than that of the xi’s [157]. As can be seen
in Fig. 2.22, this is indeed the case. Compared to the simple Picard method without Aikten’s
acceleration, the number of iterations is nearly divided by two in the whole x0-c-domain.
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(a) Picard, n = 20, Aitken acceleration.
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Figure 2.22: (a) Iteration number i at which |g(Axi)| < εabs as a function of the initial iterate x0 and the
value of c, with λ = 1, n = 20, and the Picard method with Aitken’s acceleration technique. The black
curve gives the exact solution as a function of c. The dashed gray line hints what is represented in the
subfigure (b) on the right. (b) Number of iterations as a function of c for x0 = 0.15; comparison between
the simple Picard method (data from Fig. 2.21(d)) and the accelerated version with Aitken’s technique.
The number of iterations is nearly divided by two on the whole domain.

Another idea to accelerate the convergence of the Picard method while trying to avoid the
iteration cycles of the Newton-Raphson method is to start with a given number iswitch of Picard
iterations, and then switch to Newton-Raphson iterations. The results are shown in Fig. 2.23(a),
with iswitch = 10. Because of the very narrow attraction basin of the Newton-Raphson method,
10 iterations are not always enough to approach the solution sufficiently and cycles still appear.
We could consider more complicated algorithms to accelerate the convergence, but it is unlikely
that they would generalize to real problems (1D, 2D, or 3D).

One idea to circumvent the cycles of period 2 arising in the Newton-Raphson method is to
use relaxation factors [90]. This approach consists in multiplying the correction by a multiplier
γ > 0 as follows:

gNR(x) = x− γ g(x)

g′(x)
. (2.104)

Cycling iterates oscillate around the solution so we have to consider γ < 1 to get closer to
it, which corresponds to an under-relaxation, which also slows down the convergence. The
resulting convergence domain is illustrated in Fig. 2.23(b) for the particular choice γ = 0.5.
The convergence domain is larger than that without relaxation factor of Fig. 2.21(c), but it is
still not large enough: for |c| . 0.5 iterates still almost always cycle. Moreover, the number of
iterations is increased in regions with |c| & 1. Taking a smaller value of γ widens further the
convergence region but at the same time also increases the number of iterations even more. The
situation quickly becomes worse than with the Picard method, in terms of iterations needed.
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(a) Hybrid: switching at iswitch = 10.
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(b) Relaxation factor γ = 0.5.

Figure 2.23: Two ideas for improving the convergence of the Newton-Raphson method. Iteration num-
ber i at which |g(xi)| < εabs as a function of the initial iterate x0 and the value of c, with λ = 1,
n = 20. (a) Hybrid method, starting by iswitch Picard iterations and then switching to the Newton-
Raphson method. (b) Relaxation factor. The convergence domain is increased compared to that of
Fig. 2.21(c).

A simple relaxation technique is therefore not a good candidate for improving the Newton-
Raphson method in this case. Dynamic adaptations of the relaxation factors are possible [90],
but we have not found any robust solution.

The last two ideas are not conclusive for the equation g(x) = 0. As we will see now, the
hybrid technique will however be interesting for the SFM nonlinearity, whose behavior for
small values of x is less pathological.

2.7.4 Iterations on the simple models for the SFM nonlinearity

We conduct a similar analysis for ḡ(x), from Eq. (2.92), and f̄(x), from Eq. (2.93). We fixed
the parameters µr,0 = 1600 and m0 = 106 A/m. As shown in Fig. 2.24, results are comparable
to those for g(x) and f(x).

Solving f̄(x) with the Newton-Raphson method is very efficient, see Fig. 2.24(a), whereas
Picard iterations on the same function almost never converge, see Fig. 2.24(b). Convergence
with Newton-Raphson is achieved for any initial estimate and the number of iterations is small.
One can infer that modeling the SFM saturation law in terms of the reluctivity, e.g., with the
a-formulation, and the Newton-Raphson method is therefore a suitable choice.

On the contrary, the function ḡ(x), e.g., as it appears in the h-φ-formulation, is hard to solve
with the standard Newton-Raphson method. Fig. 2.24(c) presents wide non-convergence re-
gions for |c| . 1. Nevertheless, the situation is less desperate than with g(x), i.e., the power
law as in the a-formulation, as the attraction basin close to the exact solution is not so nar-
row in this case with the permeability. This is related to the fact that, for realistic materials,
|ḡ′(0)| = µr,0 is much smaller than |g′(0)| = 1/ε.
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(c) Newton-Raphson on ḡ(x), h-φ-formulation.
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(d) Picard on ḡ(x), h-φ-formulation.

Figure 2.24: Iteration number i at which (a-b) |f̄(xi)|, or (c-d) |ḡ(xi)|, become smaller than εabs = 10−8

as a function of the initial iterate x0 and the value of c or b. The black curves give the exact solution
as a function of c or b. White regions associated with the Newton-Raphson iterations are those where
the maximum number of iterations iswitch is reached without convergence, i.e., where the method has
failed. Here, all points in white regions enter cycles of period 2. (a) The Newton-Raphson iterations on
f̄(x) converge quickly in all cases. (b) The Picard iterations on f̄(x) hardly converge. (c) The Newton-
Raphson iterations on ḡ(x) fail to converge for a wide range of values of c, and (d) the Picard iterations
on ḡ(x) converge, but slowly.

As for the Picard iterations applied on ḡ(x), Fig. 2.24(d) shows that they converge in the
whole x0-c-domain, but at the cost of a large number of iterations, irrespective of x0, except
when the initial solution is close to the solution.

Solving the saturation law with the permeability, e.g., with the h-φ-formulation, is therefore
not optimal with the simple Newton-Raphson or Picard iterations. It is however possible to
improve the situation by using a hybrid technique. When we start by Picard iterations and then
switch to Newton-Raphson iterations for i > iswitch, we obtain the results of Fig. 2.25. By
contrast with the situation for the power law (Fig. 2.23(a)), the smaller slope |ḡ′(0)| provides a
wider convergence basin in the whole range of c values.

In practice, choosing the value of iswitch in the hybrid technique is a trade-off between effi-
ciency and robustness. Even if we do not guarantee the convergence with the hybrid method,
if we can choose x0 sufficiently close to the solution, i.e., if we have good predictors or small
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(a) Hybrid, h-φ-formulation, iswitch = 5.
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(b) Hybrid, h-φ-formulation, iswitch = 10.

Figure 2.25: Iteration number i at which |ḡ(xi)| becomes smaller than εabs = 10−8 as a function of the
initial iterate x0 and the constant c. The method is a hybrid iterative scheme, starting by iswitch Picard
iterations, and then switching to Newton-Raphson iterations. The black curves give the exact solution as
a function of c. All points in white regions enter cycles of period 2.

time steps, the hybrid approach is worth considering.

As for relaxation factors, we have observed that they are not easy to use efficiently. They
quickly lead to a large number of iterations in regions where the method would have otherwise
converged without problems. Dynamic choices of relaxation factors have also been considered,
but they require parameters to be fixed by a trial and error procedure, which does not necessarily
generalize to several problems or field regimes.

2.8 Summary and motivation for mixed formulations

The main conclusions of the analysis of the previous section generalize to models of higher
dimensions. For 1D, 2D, or 3D finite element problems, we observe the same behaviors when
dealing with the power law involved in T2S, or the saturation law in SFM. We summarize the
main observations here, as this serves as a motivation for the next chapter, but these observations
will be further illustrated in Chapter 4.

The power law of T2S is more efficiently and more robustly handled when written in terms of
the resistivity, rather than in terms of the conductivity [36, 13, 163], even when it is regularized.
If we have the choice among the two standard formulations presented in this chapter, the h-φ-
formulation should therefore be preferred over the a-formulation for T2S modeling.

The addition of spatial dimensions in finite element models also brings some new difficulties
that further complexify the problem resolution. For example, while the Newton-Raphson itera-
tions converged in the whole parameter domain for the simple function f(x), this is no longer
the case in higher dimensions with the h-φ-formulation: if the time steps are too large for the
initial estimates to be sufficiently close to the exact solutions, we observe diverging iterates
and non-convergence behaviors. With T2S, magnetic flux fronts typically penetrate gradually
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inside the material; a sufficient number of time steps is necessary to follow their penetration
with the Newton-Raphson method.

By contrast, for the Picard iteration and the a-formulation, non-convergent behaviors are not
observed and the number of iterations is still largely independent of the initial estimate in the
finite element models. As will be discussed in Chapter 4, this observation can be exploited to
perform large time steps and get quick results with a reasonable accuracy.

For the saturation law of SFM, the situation is dual to that for the power law. The a-
formulation leads to better performance than the h-φ-formulation. For the h-φ-formulation,
using a hybrid Picard-Newton-Raphson technique remains a valid option, but its efficiency usu-
ally relies on preliminary tests by trial and error, and it is still less efficient than using the
a-formulation directly.

For models that involve one of the two materials individually, T2S or SFM, we can choose
the optimal option, h-φ-formulation or a-formulation, respectively. However, questions arise
when both materials enter the same finite element models. This is the subject of the next chapter,
in which we propose mixed formulations that involve the T2S and SFM nonlinear constitutive
laws in their best possible form.



Chapter 3

Mixed finite element formulations

In the previous chapter, we introduced two standard formulations, the h-φ-formulation and the
a-formulation, as well as the main difficulties arising when modeling the non-linear magnetic
response of irreversible type-II superconductors (T2S) or anhysteretic ferromagnetic materi-
als (SFM). In particular, we observed that problems involving the power law in terms of the
resistivity were much easier to solve than problems involving the power law in terms of the
conductivity. This is the main reason why the h-φ-formulation is an interesting choice for T2S
modeling.

However, the h-φ-formulation is not always the optimal choice. For example, when both T2S
and SFM are combined in the same problem, the nonlinear permeability of the SFM may in-
duce convergence difficulties with the h-φ-formulation [36, 57]. Moreover, the h-φ-formulation
may not always be the most convenient choice. Complicated geometries made up of thin T2S
tapes are advantageously modeled with dedicated thin-shell formulations [127, 51]. Similarly,
rotating parts of T2S motors are more easily handled with a magnetic vector potential [54].

These observations have recently been motivations for considering formulations that couple
different fields in different regions of the problem. They are referred to as mixed formula-
tions. Some of them have already been widely studied for magnetostatic and magnetodynamic
problems in the past [164, 165, 114]. Recently, they proved to be relevant in systems with
T2S [129, 54, 56, 127, 55, 131].

Mixed formulations are interesting alternatives to standard formulations but they also intro-
duce new difficulties. To be well-posed, the function spaces involved in mixed formulations
must satisfy well-known stability conditions [166, 167]. If these conditions are not satisfied,
numerical instabilities may arise, which can strongly deteriorate the quality of the numerical
solution.

In this chapter, we present four formulations that enter the framework of mixed formulations
and perturbed saddle-point problems. The first one is the h-φ-a-formulation, involving both
standard formulations in different regions, coupled via a common surface. It is discussed in
Section 3.1. The second one is the t-a-formulation, which is dedicated to T2S tapes, featur-
ing a thin-shell approximation. It is presented in Section 3.2. The last two are variations of
the standard formulations with auxiliary fields, coupled via volume integrals, and derived in

57
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Section 3.3.

In Section 3.4, we describe the space discretization of the mixed formulations and we illus-
trate the stability issues that may arise when choosing function spaces that do not satisfy the
stability conditions, mainly for the h-φ-a and t-a-formulations. With the motivation to avoid
the observed stability issues, we then present the basics of stability analysis in Section 3.5.
In particular, we present the so-called inf-sup condition, and its numerical evaluation with an
inf-sup test. At last, in Section 3.6, we apply the theory of mixed formulation to the different
formulations so as to justify the choices of function spaces.

3.1 Surface-coupled h-φ-a-formulation

When a system contains both T2S and SFM, classical formulations such as the h-φ-formulation
or the a-formulation face convergence issues. As was shown in the previous chapter, the power
law in T2S is more efficiently handled with a Newton-Raphson method in the h-φ-formulation,
which involves the electrical resistivity. Conversely, the a-formulation is more efficient than the
h-φ-formulation to deal with the typical saturation law describing the permeability of SFM [36].
Combining the h-φ and a-formulations into a coupled h-φ-a-formulation allows one to choose
the best suited formulation in each region and has proved to be an efficient method for modeling
systems with both materials [36, 131].

Similar mixed formulations have been considered in a number of other situations. In [54], a
2D model of rotating machines with superconducting windings involves an h-a-formulation1,
with the motivation that the continuity conditions between the fixed and rotating parts of the
motor are more easily written in terms of the scalar-like vector potential a of the a-formulation
in 2D, whereas the T2S power law is best handled with an h-formulation. This coupled formu-
lation may also be a useful alternative to the “full-h-formulation” [6], that involves a spurious
resistivity in air [56], as the number of degrees of freedom is reduced in the non-conducting
regions.

We now derive this surface-coupled formulation. The system is modeled in a domain Ω.
Boundary conditions are applied on its external boundary ∂Ω = Γ, which is decomposed into
two complementary domains: Γe, where the normal component of b or the tangential compo-
nent of e is imposed, and Γh, where the tangential component of h is imposed. The problem
definition is the same as in Chapter 2.

The domain Ω is decomposed into two parts: Ωh, containing the T2S domain, and Ωa,
containing the nonlinear SFM domain, which is assumed to have a negligible electrical conduc-
tivity. Parts of Ω where constitutive laws are linear can be put in either Ωh or Ωa. The optimal
choice depends on the situation, and will be discussed later. For simplicity, we assume that Ωa

is entirely non-conducting. The generalization to conducting domains in Ωa is straightforward.

Inside Ωh, the conducting domain is denoted by Ωh,c and the non-conducting domain is
denoted by ΩC

h,c, with Ωh = Ωh,c∪ΩC
h,c. The common boundary of Ωh and Ωa is denoted by Γm.

1No magnetic scalar potential φ is introduced in [54].
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Coupling operates via this common interface. We also introduce the outer normal vectors nΩh

and nΩa . Choices of domain decomposition are illustrated in Fig. 3.1 for 2D and 3D simple
geometries.
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a,m Ωa,m
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ẑ
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(a) 2D geometry.
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(b) 3D geometry.

Figure 3.1: Simple geometries illustrating the domain decomposition for the h-φ-a-formulation. The
gray regions are the conducting domains (linear or nonlinear), that are all chosen to be put in Ωh. The
domain Ωa,m is the nonlinear SFM domain, put in Ωa, and ΩC

a,m refers to its complementary in Ωa.
(a) 2D example with a nonlinear SFM domain Ωa,m on top of a nonlinear T2S domain Ωh,c, surrounded
by an air domain ΩC

a,m. With the illustrated choice for domain decomposition, the coupling boundary
Γm is equal to ∂Ωh = ∂Ωc = ∂Ωh,c. (b) 3D example with two connected conducting domains Ωh,c1
(copper) and Ωh,c2 (T2S), a nonlinear SFM domain Ωa,m, surrounded by an air domain ΩC

h,c ∪ ΩC
a,m.

We now write the two standard formulations in Ωa and Ωh and couple them to obtain the
h-φ-a-formulation. The classical a-formulation is a weak form of Ampère’s law where the
magnetic flux density b is expressed via a vector potential a as b = curl a. Here, it is introduced
in Ωa only. We choose a ∈ A(Ωa) with

A(Ωa) =
{
a ∈ H(curl; Ωa) | (a− ā)× nΩa = 0 on Γe ∩ ∂Ωa

}
, (3.1)

with ā × nΩa a fixed trace on Γe ∩ ∂Ωa. Because we placed all conducting materials in Ωh,
Ampère’s law reads curl h = 0 in Ωa. We multiply this equation by a test function a′ in the
space A0(Ωa) with the homogeneous essential boundary condition a× nΩa = 0 on Γe ∩ ∂Ωa,
and integrate the product over the whole domain Ωa. We obtain

(curl h ,a′)Ωa
= 0 (3.2)

⇔ (h , curl a′)Ωa
− 〈h× nΩa ,a

′〉(Γh∩∂Ωa)∪Γm
= 0, (3.3)

using the curl-curl Green’s identity (A.26). Prescribing the value of h × nΩa on Γh ∩ ∂Ωa

constitutes a natural boundary condition for the a-formulation. For conciseness, we consider
homogeneous natural boundary conditions on Γh∩∂Ωa. Therefore, after introducing the vector
potential a, the formulation amounts to finding a ∈ A(Ωa) such that ∀a′ ∈ A0(Ωa),

(ν curl a , curl a′)Ωa
− 〈h× nΩa ,a

′〉Γm
= 0, (3.4)

with the reluctivity ν = µ−1. On Γm, the tangential magnetic field is still unknown. It will be
coupled with the formulation in Ωh that we derive below.
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In the complementary domain Ωh, we use the h-φ-formulation. This is a weak form of
Faraday’s law. In the h-formulation, the magnetic field h is sought inH(Ωh) defined as

H(Ωh) =
{
h ∈ H(curl; Ωh) | curl h = 0 in ΩC

h,c,

(h− h̄)× nΩh = 0 on Γh ∩ ∂Ωh, Ii(h) = Īi for i ∈ CI
}
. (3.5)

Only curl-free functions are considered in the non-conducting domain ΩC
h,c, so that the current

density j = curl h is exactly zero in ΩC
h,c, by construction. Cohomology basis functions are

used in addition to gradients to span the kernel NS(curl,ΩC
h,c) of the curl operator in ΩC

h,c,
when ΩC

h,c is not simply connected.

Note that, in this context, ∂Ωh,c has to be considered as a part of ΩC
h,c. Indeed, if h ∈ H(Ωh),

the quantity curl h · n is continuous across any interface; therefore, on the interface ∂Ωh,c,
across which no current flows, we have curl h · n|∂Ωh,c = 0, and h is (locally) the gradient
of a scalar function. This is illustrated in the discrete setting by the fact that edge functions
are not considered on ∂Ωh,c because they would otherwise induce a non-zero current density in
ΩC
h,c (see Section 2.4.1). Consequently, even in the example of Fig. 3.1(a) where Γm = ∂Ωh,c,

the boundary ∂Ωh,c formally constitutes the domain ΩC
h,c, which is not simply connected. In

addition to gradients, a cohomology basis function has to be introduced. This allows us to treat
global conditions as was done in the standard h-φ-formulation.

The weak form is obtained by projecting Faraday’s law on test functions h′ ∈ H0(Ωh):

(∂t(µh) ,h′)Ωh
+ (curl e ,h′)Ωh

= 0 (3.6)

⇔ (∂t(µh) ,h′)Ωh
+ (e , curl h′)Ωh

− 〈e× nΩh ,h
′〉(Γe∩∂Ωh)∪Γm

= 0. (3.7)

The space H0(Ωh) for test functions is the space defined in Eq. (3.5) but with homogeneous
essential boundary conditions, h̄× nΩh = 0 on Γh ∩ ∂Ωh and Īi = 0 for i ∈ CI .

In ΩC
h,c, we have curl h′ = 0, and in Ωh,c, we have e = ρ curl h + ea. For conciseness

again, we consider homogeneous natural boundary conditions on Γe∩∂Ωh. Following the same
procedure as in Section 2.2 for the treatment of the source electric field ea, the formulation (3.7)
then becomes

(∂t(µh) ,h′)Ωh
+ (ρ curl h , curl h′)Ωh,c

− 〈e× nΩh ,h
′〉Γm

=
∑

i∈CV
V̄iIi(h′), (3.8)

with the V̄i’s being the imposed voltages in the natural global conditions for i ∈ CV .

On the remaining boundary Γm, the tangential electric field e is still unknown. It has to be
coupled with that of the a-formulation in Ωa. Thus, the final step of the derivation consists in
coupling the two separate formulations (3.4) and (3.8) in Ωa and Ωh. The tangential trace of the
magnetic field on Γm in (3.4) can be directly expressed in terms of the magnetic field h of (3.8).
Similarly, the tangential trace of the electric field on Γm in (3.8) can be expressed in terms of
the vector potential a of (3.4), with e = −∂ta (modified magnetic vector potential).

The immediate natural coupling is a consequence of the use of two complementary formu-
lations in Ωh and Ωa. No Lagrange multiplier needs to be introduced.
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The h-φ-a-formulation is obtained by imposing that the final coupled equations hold ∀h′ ∈
H0(Ωh), ∀ a′ ∈ A0(Ωa).

h-φ-a-formulation

From an initial solution at time t = 0, find h ∈ H(Ωh) and a ∈ A(Ωa) such that, for
t > 0, and ∀h′ ∈ H0(Ωh), ∀a′ ∈ A0(Ωa),

(
∂t(µh) ,h′

)
Ωh

+
(
ρ curl h , curl h′

)
Ωh,c

+ 〈∂ta× nΩh ,h
′〉Γm

=
∑

i∈CV
V̄iIi(h′),

〈h× nΩa ,a
′〉Γm
− (ν curl a , curl a′)Ωa

= 0.

3.2 Thin-shell t-a-formulation

The second mixed formulation we consider is the so-called t-a-formulation for modeling thin
superconducting tapes [127, 168, 50]. In this formulation, the tape is modeled as a line in
2D, or a surface in 3D. The current density inside the tape is described via a current vector
potential whereas the external magnetic flux density is expressed as the curl of a magnetic
vector potential, naturally allowing discontinuous tangential components of the magnetic field
across the tape. This t-a-formulation can be viewed as a geometric limiting case of the h-φ-a-
formulation for thin geometries [56].

The t-a-formulation has been applied to problems of increasing complexity, such as Roebel
cables [42], or CORC R© cables [169, 45]. It has also been extended to thick T2S racetrack
coils [52], with a homogenization approach. In this chapter, we present its basic formulation.

In [56], this formulation is derived from the h-φ-a-formulation with a thin-sheet approxi-
mation. Circuit coupling is then performed with winding functions [138]. Here, we present
a version of the t-a-formulation following a different approach for circuit coupling. With the
same philosophy as in [170], in each tape, either we strongly impose the current intensity, di-
rectly in the function space, or we weakly impose the voltage, with a circuit equation contained
in the formulation. The formulation derived below is valid for 2D and 3D geometries.

The t-a-formulation applies to situations with thin conducting domains. Let us consider a
conducting domain Γw ⊂ Ωa of constant thickness w, as in Fig. 3.2. We start from the classical
a-formulation in the whole domain Ωa, with homogeneous natural boundary conditions for
conciseness: find a ∈ A(Ωa) such that ∀a′ ∈ A0(Ωa),

(ν curl a , curl a′)Ωa
− (j ,a′)Γw

= 0, (3.9)

with a given current density j (A/m2) in Γw. Instead of modeling the tape Γw as a volume, we
collapse it into a surface and replace j by a surface current density k = wj (A/m), perpen-
dicular to the normal vector n. This constitutes the main approximation of the formulation:
the thickness is not represented in the geometry but introduced inside the equation. Possible
variations of j across the thickness are therefore chosen not to be modeled.
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Figure 3.2: Conventions for the t-a-formulation derivation. (a) 2D case with a tape with current density
perpendicular to the modeled plane. Note the distinction between n and nΓw . (b) 3D case with a tape
loop, e.g., a racetrack coil. In 3D, the effect of an external voltage/current source is modeled on an
arbitrary cross-section.

Definition (3.1) implies that the tangential component of the vector potential a ∈ A(Ωa) is
continuous across Γw, but allows for h× n = ν curl a× n to be discontinuous. Actually, we
can show that the relation (h1 − h2) × n = k is weakly satisfied, with an upward normal, h1

the field on the top of the tape and h2 the field below.

If the current density were known, the problem would be closed. But here, as we want to
represent eddy currents, an equation for the distribution of k is required. Since the current
density is divergence-free in the magnetodynamic regime, we can express j via a current vector
potential t, defined up to a gradient, such that

j = curl t. (3.10)

Adding any gradient to t lets the current density unchanged, so t is not unique. To gauge t, we
choose it along the normal to the tape, i.e., t = tn [127].

The tape boundary ∂Γw is decomposed into two disjoint parts2, ∂Γ−w and ∂Γ+
w , as represented

in Fig. 3.2. We model a possible power source on an arbitrary cross-section of the tape that
imposes either a current intensity I or a voltage V . On lateral boundaries ∂Γ−w and ∂Γ+

w , we
have j · nΓw = 0, so t is constant. We strongly fix it to 0 on ∂Γ−w and let its value, denoted by
T , remain free on the other lateral boundary ∂Γ+

w . The value of T is related to the total injected
current intensity I . Indeed, on any cross-section S of the tape, using Stokes’ theorem, we have

I =

∫

S

j · dS =

∫

S

curl t · dS =

∮

∂S

t · d`∂S = w(t|∂Γ+
w
− t|∂Γ−w

) = wT. (3.11)

In terms of the current vector potential t, Eq. (3.9) reads

(ν curl a , curl a′)Ωa
− 〈w curl t ,a′〉Γw = 0. (3.12)

2For simplicity, in 3D, we restrict ourselves to closed current loops, and we do not consider technical difficulties
such as non-orientable surfaces.
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To close the problem, this equation must be complemented by a second one. On the tape
surface Γw, we weakly impose the equality ∂ta = −e, with the electric field e being expressed
in terms of the current vector potential t and the source electric field ea, using Eq. (2.21), i.e.,
e = ρ curl t + ea. Multiplying the equation by a test function, and integrating over the tape
surface Γw yields the following weak form: find t ∈ T (Γw), such that ∀t′ ∈ T0(Γw), with T
and T0 to be defined later,

0 = 〈∂ta , curl t′〉Γw + 〈e , curl t′〉Γw (3.13)

⇔ 0 = 〈∂ta , curl t′〉Γw + 〈ρ curl t , curl t′〉Γw + 〈ea , curl t′〉Γw . (3.14)

Note that ∂t· is a shorthand for the time derivative, it is not related to the current vector potential.
From the context, there should be no confusion for the time variable t and the current vector
potential t, or its component t along n.

The third term in Eq. (3.14) is linked to global quantities. We can recognize the similarity
with the integral (2.36) appearing in the standard formulation derivations. Here, it is a surface
integral. Let us consider the integral

〈ea , curl t〉Γw . (3.15)

By construction, we have curl ea = 0. If Γw is made simply connected by introducing one cut
Σ, as illustrated in Fig. 3.3, then, there exists a scalar field va such that ea = −grad va in Γw\Σ.
Across Σ, the scalar field va exhibits a discontinuity equal to

va|Σ+ − va|Σ− = V, (3.16)

which satisfies the condition Eq. (2.12) for ea.

∂Γ−
w

∂Γ+
w

Γw

nΓw

I

V

Σ+

Σ−

nnΣ+
`

Figure 3.3: Truncated domain Γw\Σ and its boundaries. Note the different notations for n, the normal
to the tape, perpendicular to the surface of the tape, which is the direction of the vector potential t, and
for nΓw , the normal to the boundary of the tape, parallel to the tape, which arises when applying Green’s
identities on the surface Γw. The arrow for the voltage V represents the effect of the source field ea, with
the convention of Section 2.1.

Using the grad-div Green’s identity (A.25), we have

〈ea , curl t〉Γw = −〈grad va , curl t〉Γw\Σ
= −

〈
curl t · nΓw\Σ , va

〉
∂(Γw\Σ)

+ 〈div (curl t) , va〉Γw\Σ , (3.17)
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with ∂(Γw\Σ) = ∂Γw ∪ Σ− ∪ Σ+ (closed curve). The first term of Eq. (3.17) vanishes on ∂Γw
since curl t · nΓw = j · nΓw = 0, and only remains nonzero on Σ− and Σ+. We also have
div (curl ·) = 0 so that the second term of Eq. (3.17) is equal to zero. Therefore, we have,

〈ea , curl t〉Γw = −
∫

Σ−∪Σ+

va curl t · nΓw\Σ d`. (3.18)

The normal component of curl t = j is continuous, and nΣ+ = −nΣ− , so that

−
∫

Σ−∪Σ+

va curl t · nΣ−∪Σ+ d` = −
∫

Σ+

(va|Σ+ − va|Σ−) curl t · nΣ+ d`

= V

∫

Σ+

curl t · nΣ+ d`

= −V I/w. (3.19)

For the last integral, the current vector potential along n, i.e., t = tn, so that we have,

curl t = grad t× n+ t curl n = grad t× n, (3.20)

because curl n = 0. We can write
∫

Σ+

curl t · nΣ+ d` =

∫

Σ+

(grad t× n) · nΣ+ d`

=

∫

Σ+

(n× nΣ+) · grad t d`

=

∫

Σ+

grad t · d`

= t|∂Γ−w
− t|∂Γ+

w

= −I/w, (3.21)

using Eq. (3.11).

Gathering the results, we can rewrite the third term of Eq. (3.14) as follows:

w 〈ea , curl t′〉Γw = −V I(t′), (3.22)

with I(t′) = wT ′ = I ′ being the net current flowing in the tape for the potential t′. Combining
Eqn. (3.14) and (3.22) yields

〈w ∂ta , curl t′〉Γw + 〈w ρ curl t , curl t′〉Γw = V I(t′). (3.23)

We now generalize to N distinct tapes Γw,i with i ∈ C = {1, 2, . . . , N}. The union of
these tapes is Γw. The thickness wi of one tape Γw,i is constant, but may differ from one tape
to another. We denote by w the general thickness on Γw, with w|Γw,i = wi. The total current
Ii is imposed on a subset CI of C whereas the voltage Vi is imposed on the complementary
set CV . Assuming homogeneous natural boundary conditions on Γh for conciseness, the t-a-
formulation reads as follows.



Section 3.3 Volume-coupled formulations 65

t-a-formulation

From an initial solution, find a ∈ A(Ωa) and t ∈ T (Γw), such that for all time instants
and ∀a′ ∈ A0(Ωa), ∀t′ ∈ T0(Γw),

(ν curl a , curl a′)Ωa
− 〈w curl t ,a′〉Γw = 0,

〈w ∂ta , curl t′〉Γw + 〈w ρ curl t , curl t′〉Γw =
∑

i∈CV
V̄iIi(t′).

The notation Ii(t′) = wiT
′
i = I ′i denotes the net current flowing in tape i for the potential

t′. The space T (Γw) is the set of functions t = tn such that curl t is in the dual space of
the relevant trace space on Γw of functions in A(Ωa), with t = 0 on ∂Γ−w , and t = (Ii/wi)n
on ∂Γ+

w,i for i ∈ CI . The space T0(Γw) is the same space but with homogeneous essential
conditions, i.e., t = 0 on ∂Γ+

w,i for i ∈ CI . The function spaces will be made explicit in the
space discretization step.

As with the h-φ-a-formulation, if the current Ii is imposed, then t′ = 0 on ∂Γ+
w,i, and the

global term (3.22) does not enter the problem. It can however be used as a circuit equation to
compute the voltage Vi associated with the imposed current Ii, as a post-processing quantity.
Conversely, if the voltage Vi is imposed, then Ii is a degree of freedom and the global term
enters the system of equations.

In 2D, the vector potential a is chosen to have only one out-of-plane component (Coulomb
gauge, such as with perpendicular edge functions in the discrete setting). In that case, A(Ωa)
can be identified with the Sobolev space H1(Ωa) (see chapter 2 of Ref. [167]). With z being
the direction of the current density, perpendicular to the 2D plane, if Γw ∩Γe = ∅ [171], we can
choose t in

T (Γw) =
{
t = tn

∣∣ (z · curl t) ∈ H−1/2(Γw),

t = 0 on ∂Γ−w , t = Ii/wi on ∂Γ+
w,i for i ∈ CI

}
. (3.24)

3.3 Volume-coupled formulations

In Section 3.1, we presented a coupled formulation suited to systems containing both T2S and
SFM, described by strongly nonlinear constitutive laws. The objective was to involve these
nonlinearities in their most efficient form, i.e., with ρ and ν instead of σ and µ. For the h-φ-a-
formulation, this was done via a surface coupling of two standard formulations.

We present in this section an alternative coupling and propose two volume-coupled formu-
lations. They are modified versions of the h-φ and a-formulations in which an auxiliary field is
introduced to invert one of the constitutive laws.



66 Chapter 3 Mixed finite element formulations

3.3.1 Volume-coupled h-φ-b-formulation

The first volume-coupled formulation is based on the h-φ-formulation, whose weak form reads:
find h ∈ H(Ω), such that, ∀h′ ∈ H0(Ω),

(∂t(µh) ,h′)Ω + (ρ curl h , curl h′)Ωc
− 〈ē× n ,h′〉Γe =

∑

i∈CV
V̄iIi(h′). (3.25)

We separate Ω in two regions: Ωm, containing the nonlinear SFM, and ΩC
m, its complementary

domain, containing only materials with a linear magnetic constitutive law. In Ωm, to avoid using
the permeability µ that sometimes leads to convergence issues, we introduce the magnetic flux
density b as an auxiliary field in Ωm, such that [114]

ν b = h, (3.26)

and we rewrite the first term of Eq. (3.25) as

(∂t(µh) ,h′)Ω = (µ0 ∂th ,h
′)ΩC

m
+ (∂tb ,h

′)Ωm
, (3.27)

where we assumed that µ = µ0 in ΩC
m, for simplicity. The field b is chosen in a given function

space B(Ωm) that will be made explicit in the space discretization step. Finally, the condition
Eq. (3.26) is weakly enforced by imposing that

(ν b , b′)Ωm
− (h , b′)Ωm

= 0, (3.28)

for all test functions b′ ∈ B0(Ωm).

For conciseness, we assume a homogeneous natural boundary condition ē× n|Γe = 0. The
final formulation reads as follows.

h-φ-b-formulation

From an initial solution at time t = 0, find h ∈ H(Ω) and b ∈ B(Ωm) such that, for
t > 0, ∀h′ ∈ H0(Ω) and ∀b′ ∈ B0(Ωm),

(µ0 ∂th ,h
′)ΩC

m
+ (ρ curl h , curl h′)Ωc

+ (∂tb ,h
′)Ωm

=
∑

i∈CV
V̄iIi(h′),

(h , b′)Ωm
− (ν b , b′)Ωm

= 0.

3.3.2 Volume-coupled a-j-formulation

The second volume-coupled formulation is based on the a-formulation, and has been proposed
in 2D in [129]. We start with its standard weak form: find a ∈ A(Ω) and ea ∈ U(Ωc) such that,
∀a′ ∈ A0(Ω) and ∀e′a ∈ U0(Ωc),

(ν curl a , curl a′)Ω −
〈
h̄× n ,a′

〉
Γh

+ (σ ∂ta ,a
′)Ωc

+ (σ ea ,a
′)Ωc

= 0, (3.29)

(σ ∂ta , e
′
a)Ωc

+ (σ ea , e
′
a)Ωc

=
∑

i∈CI
ĪiVi(e′a). (3.30)
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We introduce the current density j as an auxiliary field on the conducting region Ωc, such that

ρ j = −∂ta− ea, (3.31)

for j chosen in a function space J (Ωc), that will be defined explicitly in the space discretization
step. This equation is weakly enforced by ensuring that

(ρ j , j ′)Ωc
+ (∂ta , j

′)Ωc
+ (ea , j

′)Ωc
= 0 (3.32)

holds for all test functions j ′ ∈ J0(Ωc).

For conciseness, we assume a homogeneous natural boundary condition h̄ × n|Γh = 0.
Introducing the auxiliary field j in Eqn. (3.29)-(3.30), and combining with Eq. (3.32) yields the
following formulation.

a-j-formulation

From an initial solution at time t = 0, find a ∈ A(Ω), j ∈ J (Ωc) and ea ∈ U(Ωc) such
that, for t > 0, ∀a′ ∈ A0(Ω), j ′ ∈ J0(Ωc) and ∀e′a ∈ U0(Ωc),

(ν curl a , curl a′)Ω − (j ,a′)Ωc
= 0,

− (j , e′a)Ωc
=
∑

i∈CI
ĪiVi(e′a),

(∂ta , j
′)Ωc

+ (ea , j
′)Ωc

+ (ρ j , j ′)Ωc
= 0.

3.4 Space discretization and numerical oscillations

As for the standard formulations in the previous chapter, for a practical resolution of the weak
formulations, the unknown fields are sought in finite-dimensional function spaces, built on a
mesh of the original geometry. We consider Whitney shape functions, associated with elemen-
tary entities of the mesh.

In mixed formulations in particular, function spaces must be chosen carefully. As will be
shown below, choosing only the lowest-order Whitney shape functions may lead to spurious
and unphysical oscillations in the numerical solutions for the h-φ-a and t-a-fomulations.

In order to stabilize the problems, we investigate function spaces with local enrichment.
This solution is inspired by well-known results in mixed formulations in mechanics, such as
Stokes’ (nearly) incompressible flow problems [166, 172]. Fields in these problems are however
coupled inside the domain (volume coupling), whereas here, we couple the fields via boundaries
of domains (surface coupling). Surface coupling is common with Mortar methods, coupling
spectral and finite element methods [173, 174, 175], or with the extended finite element method
“X-FEM” [171].

In this section, we introduce the different function spaces that we consider for obtaining
stable results, and we discuss the stability issues that may result from different choices. We
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will later analyze the validity of the possible choices in Section 3.6 in the light of saddle-point
theory, that we will recall in Section 3.5.

As in Chapter 2, we keep the same notations for domains and fields in the continuous and
discrete setting, for readability. We keep in mind that domains and fields here are discretized
versions of those in the continuous setting.

3.4.1 Surface-coupled h-φ-a-formulation

Lowest order function spacesHδ,1(Ωh) and Aδ,1(Ωa)

The simplest choice for h and a in the h-φ-a-formulation is to keep the same function spaces
as those proposed for the h-φ and a-formulations in Chapter 2, restricted in Ωh and Ωa, respec-
tively. We refer to these spaces as Hδ,1(Ωh) and Aδ,1(Ωa), with the superscript ··,1 refering to
the fact that these are the lowest-order spaces.

Similarly to Eq. (5.11), the spaceHδ,1(Ωh) is spanned by elements h written as

h =
∑

e∈E(Ωh,c\∂Ωh,c)

he we +
∑

n∈N (ΩC
h,c)

φn grad wn +
∑

i∈C
Ii ci, (3.33)

with degrees of freedom he, φn and Ii. The basis is made of edge functions or combinations
of them. We remind the fact that ∂Ωh,c is considered to be a part of ΩC

h,c. Because we assume
that all conducting domains are put in Ωh, there is no degrees of freedom solely associated
with edges on Γm, as this coupling surface at most intersects ∂Ωc, and is not inside Ωc. As a
consequence, only traces of gradients of node functions, grad wn, and traces of cut functions,
ci, are considered on Γm.

The space Aδ,1(Ωa) is also identical to those for the a-formulation but now restricted to Ωa.
Two distinct situations can happen, but we keep the same notation, Aδ,1(Ωa), for both. First,
following Eq. (2.60) for 3D problems, or 2D problems with in-plane current density, we have
for a ∈ Aδ,1(Ωa) the decomposition

a =
∑

e∈E((∂Ωc∩Ωa)∪co-tree(Ωa))

aewe, (3.34)

where the ae are the degrees of freedom of a, associated with all edges on ∂Ωc ∩ Ωa, and with
edges of a co-tree built in the whole domain Ωa, which is non-conducting, starting with a com-
plete tree on (∂Ωc∪Γe)∩Ωa. Second, for 2D problems with in-plane magnetic field, following
Eq. (2.61), we have the following decomposition, with “perpendicular edge” functions:

a =
∑

n∈N (Ωa)

anwn. (3.35)

The support entities for the lowest order function spaces are illustrated in Fig. 3.4 for a 2D
problem with in-plane magnetic field. As with standard formulations, when possible, essential
boundary conditions are directly imposed by fixing the corresponding degrees of freedom.
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Ωh,c

Ωa

Ωh,c

Ωa

ΩC
h,c

ΩC
h,c

a-formulation

h-φ-formulation

Γm

Γm

Γm

Figure 3.4: Support entities for lowest-order shape functions for h ∈ Hδ,1(Ωh) and a ∈ Aδ,1(Ωa) in
a 2D geometry with in-plane magnetic field. (Left) Mesh of a part of the domain, with the coupling
boundary Γm represented by the brown line. The gray region represents the conducting domain. (Right)
Domain decomposed into Ωa and Ωh. The solid, and not dashed, edges represent supports for edge
functions in Ωh; the nodes represent supports for gradients of node functions in Ωh, and support for
perpendicular edge functions in Ωa. The support of a possible cut function in Ωh is not represented.

Enriched spaces with hierarchical shape functionsHδ,2(Ωh) and Aδ,2(Ωa)

Enriching the spaces can be done globally on the whole Ωh or Ωa domains, or locally in some
parts of them only. In our case, global enrichment will not be necessary for stabilization and
we therefore choose hierarchical functions to be able to combine functions of different orders
consistently in different regions of the problem [176, 137]. The alternative choice is however
valid, too.

We introduce hierarchical conform functions, i.e., continuous functions, that we formally
associate with edges. Let m and n be the nodes defining an edge e = {m,n}. We define the
associated hierarchical basis function w2,e as w2,e = wmwn, which is the product of the two
node functions wm and wn. The new function w2,e vanishes on all nodes and can be referred to
as a bubble function. The associated functions and their gradients on the reference triangle in
2D are represented in Fig. 3.5. On simplices, these functions are second-order polynomials.

To obtain stable formulations, we will show that it is sufficient to introduce these functions
on the coupling surface Γm only. We introduce two enriched spaces: one for h in Ωh, and one
for a in Ωa.

An enriched space for the magnetic field h in Ωh is defined by the expansion Eq. (3.33) with
an additional term:

h =
∑

e∈E(Ωh,c\∂Ωh,c)

he we +
∑

n∈N (ΩC
h,c)

φn grad wn +
∑

i∈C
Ii ci +

∑

e∈E(Γm)

φ2,e grad w2,e, (3.36)

with the new degrees of freedom φ2,e, associated with edges on the coupling surface Γm only.
Note that the new term is curl-free and does not contribute to the current density, and that the
circulation of grad w2,e along every edge is equal to zero. We denote the resulting function
space byHδ,2(Ωh). Elements in this function space are curl-conform.

For the magnetic vector potential a in Ωa, in 2D problems with in-plane magnetic field, we
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Figure 3.5: (Up) Second-order bubble functions w2,e in the reference triangle in perspective view. These
functions are conform: they are continuous between elements. (Down) Gradient of second-order bubble
functions in the plane. These gradients are curl-conform: their tangential component is continuous
between different elements.

introduce new “perpendicular edge functions” w2,e, perpendicular to the plane with the only
non-zero component equal to w2,e. To the decomposition Eq. (3.35), we add a new term:

a =
∑

n∈N (Ωa)

anwn +
∑

e∈E(Γm)

a2,ew2,e, (3.37)

with the new degrees of freedom a2,e, associated with edges on Γm only. The associated function
space is denoted by Aδ,2(Ωa). Elements in this function space are curl-conform. The flux of
curl w2,e across every facet is equal to zero, see Fig. 3.6.
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Figure 3.6: Curl of second-order perpendicular bubble edge functions w2,e in the plane. They are div-
conform: their normal component is continuous between different elements.

For 3D problems or 2D problems with in-plane current density, we can also add specific
hierarchical shape functions on Γm for a. We do not describe these functions explicitly here,
see [177, 178, 179] for more details. We denote by Aδ,2(Ωa) the resulting function space. The
additional shape functions contribute to linear variations of curl a = b inside the elements
adjacent to Γm, whereas with a ∈ Aδ,1(Ωa), b = curl a is constant in elements.
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Tangential traces of h and a on Γm in 2D

For simplicity, we consider a 2D problem with an in-plane magnetic field. In the h-φ-a-
formulation, the only fields that are exchanged between the h-φ and a-formulations are the
tangential traces of h and a on the coupling boundary Γm. As will be shown later, the range
spaces of these traces are important because they will determine the stability of the coupled
formulation.

The tangential trace n × (h × n)|Γm of functions h ∈ Hδ,1(Ωh) on the coupling curve Γm

is piecewise constant along Γm, and possibly discontinuous between adjacent edges of Γm. For
h ∈ Hδ,2(Ωh), it is still possibly discontinuous between adjacent edges, but becomes piecewise
affine along Γm.

For a magnetic vector potential a ∈ Aδ,1(Ωa), the tangential trace n × (a × n)|Γm is per-
pendicular to the plane and its non-zero component is piecewise affine along Γm, and contin-
uous between adjacent edges. For a ∈ Aδ,2(Ωa), it is still continuous but becomes piecewise
quadratic along Γm.

φ = wn1

φ

φ = wn2 φ = w2,e

n1 n2 n1 n2

n1 n2 n1 n2 e

e

e

n× (gradφ× n)

n× (a× n)

a = wn1
a = wn1 a = w2,e

z

n1 n2 n1 n2

z

Figure 3.7: Tangential traces of shape functions for h and a on an edge of Γm for 2D problems with
in-plane magnetic field. Traces are independent of the direction of the normal n.

Observations

Let us consider a simple 2D geometry made of two stacked bars, surrounded by air, and sub-
jected to an external magnetic field. The bottom bar is a T2S (n = 20, jc = 3 × 108 A/m2)
and defines Ωh, whereas the top bar is a linear ferromagnet (µr = 1000, σ = 0). The air and
ferromagnetic domains constitute Ωa. This geometry is represented in Fig. 3.8.

Using lowest order Whitney elements for both fields, i.e., h ∈ Hδ,1(Ωh) and a ∈ Aδ,1(Ωa),
results in non-physical oscillations where the coupling interface Γm separates two regions of
different permeabilities. This is illustrated in Figs. 3.9(a) and 3.10(a). By adjusting the numer-
ical values of the permeability, we observe that the oscillation amplitude decreases when the
permeability of the ferromagnet is lowered.
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Figure 3.8: Simple 2D geometry for the h-φ-a-formulation. Stack of two bars: a T2S bar with n = 20,
jc = 3× 108 A/m2 and µ = µ0 (bottom bar) and a ferromagnetic bar σ = 0 and µr = 1000 (top bar),
surrounded by air. Bar width: 20 mm. Bar height: 10 mm. The system is subjected to a vertical applied
field. The brown curve is Γm.

When choosing h ∈ Hδ,2(Ωh) and a ∈ Aδ,1(Ωa), as shown in Figs. 3.9(b) and 3.10(b), the
oscillations no longer appear, whatever the value of the permeability jump across Γm. Likewise,
choosing h ∈ Hδ,1(Ωh) and a ∈ Aδ,2(Ωa), also stabilizes the problem.

Enriching both spaces by choosing h ∈ Hδ,2(Ωh) and a ∈ Aδ,2(Ωa) is no longer a valid
option and oscillations appear again in the numerical solution.

It is important to emphasize that oscillations are not a consequence of the nonlinearity of the
equations. If the T2S is replaced by a linear conductor, or even by air, stability issues remain.
The nonlinearities of the materials are the motivation behind the use of mixed formulations, but
are not the cause of the oscillations. Note also that because oscillations are less important for
lower permeability jumps across Γm, they can easily be missed in case of nonlinear SFM, that
saturate quickly at the large fields involved in many superconducting systems.

We will show in Section 3.6 that these observations on the 2D problem can be justified by
the theory of perturbed saddle-point problems. In particular, we will show that the choices
{Hδ,1(Ωh), Aδ,1(Ωa)} and {Hδ,2(Ωh), Aδ,2(Ωa)} fail to satisfy an important stability condition,
known as the inf-sup condition.

The stability analysis will only be conducted for 2D problems, with in-plane magnetic field,
but observations in 3D are found to be exactly similar: one has to enrich exactly one of the two
fields h or a to get rid of spurious oscillations in the numerical solution.

3.4.2 Thin-shell t-a-formulation

Function spaces for a

The magnetic vector potential a in the t-a-formulation can be discretized exactly as in the a-
formulation, that is, with perpendicular edge functions in 2D, or with edge functions and a
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Figure 3.9: Details of two solutions for the stacked bar problem, magnetic flux density near the material
interface (arrows represent the average value in each element). (a) Unstable choice of function spaces,
resulting in non-physical oscillations on Γm. (b) Example of a stabilized problem with hierarchical basis
functions for h, on Γm only.
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Figure 3.10: Normal magnetic flux density distribution (horizontal position in abscissa) just above and
just below the material interface for the stacked bar problem, in correspondence with Fig. 3.9. (a) Unsta-
ble choice of function spaces, such that strong spurious oscillations take place. (b) Stabilized solution,
with higher order hierarchical basis functions for h, on Γm only.
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co-tree gauge in 3D. Note that 2D problems with an in-plane current density do not make sense
for the t-a-formulation and are therefore not considered.

At the tape surface, the tangential component of the magnetic field h = νb has to be discon-
tinuous to account for a surface current density in the tape. Discretizing the field a as a 1-form
implies that the magnetic flux density b = curl a is a 2-form, so that it is b-conform. The lack
of h-conformity naturally allows for the tangential component of h = νb to be discontinuous at
the boundary between two adjacent elements and no particular treatment is necessary compared
to the usual function space for a, as introduced in Section 2.4.2. For example, this is not the
case for thin-shell formulations based on the h-φ-formulation, such as in [119], where degrees
of freedom on the tape surface need to be duplicated to allow for a discontinuous magnetic
field.

In 2D, with lowest-order Whitney elements, the vector potential a is discretized as

a =
∑

n∈N (Ωa)

anwn. (3.38)

We denote the resulting space byAδ,1(Ωa), as before. As will be shown, choosing lowest-order
shape functions for a and t results in spurious oscillations in the numerical solution. We will
show that one possibility to circumvent this issue is to enrich the function space of a with
hierarchical shape functions, associated with edges of the tapes Γw only. This yields

a =
∑

n∈N (Ωa)

anwn +
∑

e∈E(Γw)

a2,ew2,e, (3.39)

which defines the space Aδ,2(Ωa).

In 3D, we also choose the same spaces as for the h-φ-a-formulation. The lowest-order shape
functions are accompanied by a co-tree gauge in the whole domain minus the tapes, where all
edges are kept. The space Aδ,1(Ωa) is described by

a =
∑

e∈E(Γw∪co-tree(Ωa))

aewe. (3.40)

As in 2D, this space can be enriched to get rid of nonphysical oscillations. We use the same
functions as for the h-φ-a-formulation to define the resulting space Aδ,2(Ωa).

Function spaces for t

The current vector potential t satisfies curl t = j = curl h, so that it differs from the mag-
netic field h up to a gradient. In formulations without the thin-shell approximation, it can be
discretized as a 1-form and chosen to belong to a gauged subspace of H(curl; Ωc). With the
thin-shell approximation, it is no longer defined in the conducting volume Ωc, but rather on the
surface tapes Γw. It is gauged by being defined along the normal n of the tapes.

For t along n, we write t = tn, and we describe the scalar field t with node functions.
Starting with lowest-order node functions, we have the general decomposition

t =
∑

n∈N (Γw)

tnwn, (3.41)
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where the wn’s are the node functions on the tape, defined on Γw only, i.e., on a 1D curve
in a 2D problem, or on a 2D surface in a 3D problem. Correspondingly, for the vector t, we
introduce the “perpendicular function” wn = wnn.

The decomposition Eq. (3.41) is too general. As said in Section 3.2, the scalar t must be
constant on the lateral boundaries ∂Γ+

w and ∂Γ−w to enforce j · nΓw = 0 (notice the distinction
between n and nΓw

3). Moreover, the difference t|∂Γ+
w,i
− t|∂Γ−w,i

was shown in Eq. (3.11) to be
related to the total current Ii flowing in tape Γw,i:

Ti = t|∂Γ+
w,i
− t|∂Γ−w,i

= Ii/wi. (3.42)

Without loss of generality, we can therefore choose t|∂Γ−w,i
= 0, and introduce a global shape

function `i defined as the sum of all node functions of nodes on ∂Γ+
w,i:

`i =
∑

n∈N (∂Γ+
w,i)

wn. (3.43)

Again, `i is restricted to the tape region and is not defined outside of it. Its support is limited
to a layer of one element adjacent to ∂Γ+

w,i. We denote by `i = `in the corresponding global
shape function for the vector t. Note that in 2D, the sum in Eq. (3.43) contains only one term.

The resulting function space reads

t =
∑

n∈N (Γw\(∂Γ−w∪∂Γ+
w))

tnwn +
∑

i∈C
Ti `i, (3.44)

where the tn’s and Ti’s are the degrees of freedom. For i ∈ CI , we apply the essential global
condition Ti = Īi/wi. We denote by T δ,1(Γw) the space generated by these functions. It is
illustrated in Fig. 3.11.

We will also consider an enriched function space for t as a possibility to stabilize the mixed
formulation. To edges e of Γw minus the boundaries ∂Γ+

w and ∂Γ−w , we associate hierarchical
node functions w2,e, and “perpendicular functions” w2,e = w2,en identical to those of Fig. 3.6.
This defines the space T δ,2(Γw), with the current vector potential t decomposed as

t =
∑

n∈N (Γw\(∂Γ−w∪∂Γ+
w))

tnwn +
∑

i∈C
Ti `i +

∑

e∈E(Γw\(∂Γ−w∪∂Γ+
w))

t2,ew2,e. (3.45)

Observations

A representative example is obtained with the simple geometry of Fig. 3.13(a), illustrating a sin-
gle straight T2S tape (thickness: 1 µm, width: 10 mm, n = 20, jc = 2.5×108 A/m2), modelled
in 2D, with an imposed current intensity. For the lowest-order function spaces Aδ,1(Ωa) and
T δ,1(Γw), results are shown in Figs. 3.13(b) and 3.12. The magnetic flux density distribution

3The normal n is the normal to the tape and is defined on the whole Γw, whereas the normal nΓw is in the
local plane tangent to Γw and normal to the boundaries ∂Γ+

w and ∂Γ−w , and is defined only on those boundaries.
See Fig. 3.2(b).
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Γw,i

∂Γ−
w,i

∂Γ+
w,i

j

(a) Support of wn and associated current density.

Γw,i

∂Γ−
w,i

∂Γ+
w,i

j

(b) Support of `i and associated current density.

Figure 3.11: Support of the shape functions for t ∈ T δ,1(Γw) in the t-a-formulation in a 3D problem
and their associated current density j = curl t (in red). For clarity, the domain and mesh outside the
tape Γw,i are not represented. (a) “Perpendicular function”wn on the tape. Degrees of freedom are only
associated with nodes inside Γw,i, and not on its boundaries. (b) Global shape function `i for the total
current in the tape.

does not exhibit problematic oscillations, but the current density is clearly nonphysical. Such
oscillations also appear with linear (ohmic) materials, and are not a consequence of the nonlin-
earity of the T2S response. The oscillation amplitude however decreases when the resistivity
increases, so the stability issues are more important with T2S.

As with the h-φ-a-formulation, oscillations no longer appear if the function space for a is
enriched with hierarchical elements on Γw. With the choice a ∈ Aδ,2(Ωa) and t ∈ T δ,1(Γw),
we obtain the green curve in Fig. 3.12. Increasing the order for t instead of a, i.e., choosing a ∈
Aδ,1(Ωa) and t ∈ T δ,2(Γw), leads to similar stabilized results with linear (ohmic) materials but
induces convergence issues with the Newton-Raphson iterations for T2S materials. Replacing
Newton-Raphson iterations by Picard ones does not help either.

Observations in 3D are exactly similar to those in 2D: one has to enrich exactly one of
the two fields a or t to get rid of spurious oscillations in the numerical solution. And for
nonlinear materials such as T2S, enriching a is the only valid option, because enriching t leads
to convergence troubles with the iterative techniques. The stabilization with a ∈ Aδ,2(Ωa)
is illustrated in Fig. 3.14, for a 3D geometry that consists in a flat annulus T2S tape with an
applied current, placed in air.

0

0.5

1

j z
/
j c

(-
)

a ∈ Aδ,1(Ωa) and t ∈ T δ,1(Γw)

a ∈ Aδ,2(Ωa) and t ∈ T δ,1(Γw)

Figure 3.12: Current density for the simple tape problem. Nonphysical oscillations appear when using
lowest-order elements for both fields. Enriching the space for a on Γw stabilizes the problem.
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Ωa

Γe

Γw

(a) Problem geometry. (b) Magn. flux density (zoom).

Figure 3.13: Simple problem for the t-a-formulation: a superconducting tape in air, with an imposed
total current intensity. (a) The problem geometry and domains. (b) Magnetic flux density near the tape,
solution with first-order basis functions, a ∈ Aδ,1(Ωa) and t ∈ T δ,1(Γw). Oscillations are not visible
when looking at b only.

∂Γ+
w

∂Γ−
w

(a) a ∈ Aδ,1(Ωa) and t ∈ T δ,1(Γw).

∂Γ+
w

∂Γ−
w

(b) a ∈ Aδ,2(Ωa) and t ∈ T δ,1(Γw).

Figure 3.14: Current density for the annulus geometry. Flat annulus T2S tape with an applied current,
only one quarter of the full annulus is modelled, and placed in air. In this 3D problem, conclusions are
identical to those for 2D cases: one has to enrich the space for a on Γw to stabilize the problem. The
solution in (a) presents nonphysical oscillations, which is not the case for the solution in (b).

3.4.3 Volume-coupled h-φ-b-formulation

Function space for h

For the magnetic field h, we keep the same function space as for the h-φ-formulation, with
h defined in the whole domain Ω and described by edge functions or combinations of them:
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gradients and cohomology basis functions. We have, as in Eq. (5.11),

h =
∑

e∈E(Ωc\∂Ωc)

he we +
∑

n∈N (ΩC
c )

φn grad wn +
∑

i∈C
Ii ci, (3.46)

where the he, φn and Ii coefficients are the degrees of freedom for the magnetic field h in the
discrete function spaceHδ,1(Ω).

Function space for b

The main motivation for the h-φ-b-formulation is to invert the magnetic constitutive law, not to
introduce new continuity conditions. A simple possibility to discretize the auxiliary field b in
the magnetic domain Ωm is to consider classical edge functions, to be able to match exactly the
magnetic field h. We define Bδ,1(Ωm) as the space of fields b that are expressed as

b =
∑

e∈E(Ωm)

bewe. (3.47)

Together with h ∈ Hδ,1(Ω), this choice is observed to produce reliable results in 2D, whether
Ωm is conducting or not. It does not introduce any additional continuity constraint with respect
to the standard h-φ-formulation. The magnetic field h is still strongly curl-conform, but the
auxiliary magnetic flux density b (made of 1-forms) is not forced to be div-conform. The zero
divergence of b in Ωm and µh in ΩC

m is only enforced weakly in the formulation.

Note that when Ωm is non-conducting, the local space for h is curl-free. One could be
tempted to modify the space described by Eq. (3.47) to make it curl-free as well. However, in
the case of nonlinear magnetic materials, this is not correct. In Ωm ∩ ΩC

c , we have

curl b = curl (ν−1h) = grad ν−1 × h, (3.48)

which is therefore not necessarily equal to zero. In practice, even if choosing only curl-free
functions for b can be shown to satisfy the stability conditions, it results in non-physical solu-
tions for nonlinear materials.

In 3D problems with non-conducting Ωm, we observed that another choice provides better
convergence properties. We define the alternative space Bδ,1cst (Ωm) as the space of fields b that
are expressed as

b =
∑

v∈V(Ωm)

(bv,x êx + bv,y êy + bv,z êz)1Kv (3.49)

with bv,x, bv,y, and bv,z the degrees of freedom, K(v) the element associated with volume v, and
1Kv the indicator function of element Kv, which is equal to one inside Kv and to zero outside
of it. Fields in this space are constant vectors within each element, but may be discontinuous
between them. This choice also yields valid results in 2D for non-conducting Ωm, but involves
more degrees of freedom than Bδ,1(Ωm).

No stability issues have been observed with h ∈ Hδ,1(Ω) and b ∈ Bδ,1(Ωm) or Bδ,1cst (Ωm).
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3.4.4 Volume-coupled a-j-formulation

Function spaces for a and ea

For the magnetic vector potential a, we keep the same function space as for the a-formulation.
It is defined in the whole domain Ω and described by perpendicular edge functions in 2D with
in-plane magnetic field,

a =
∑

n∈N (Ω)

anwn, (3.50)

or by classical edge functions with a co-tree gauge otherwise,

a =
∑

e∈E(Ωc∪co-tree(ΩC
c ))

aewe. (3.51)

As before, we denote these spaces by Aδ,1(Ω).

The source electric field is also defined exactly as in the standard a-formulation: constant
per connected conducting region in 2D with in-plane magnetic field, or defined as a sum of
edge functions on a transition layer otherwise. We denote these function spaces by U δ,1(Ωc), as
was defined in Section 2.4.2.

Function space for j

A simple choice for the auxiliary field j in the conducting domain Ωc is to keep the same
function space as for a. We define J δ,1(Ωc) as the space of fields j that are expressed as

j =
∑

n∈N (Ωc)

jnwn, (3.52)

in 2D problems with in-plane magnetic field, as in [129], or expressed as

j =
∑

e∈E(Ωc)

jewe, (3.53)

in 3D problems, or 2D problems with in-plane current density.

In practice, no stability issue is observed with the choices a ∈ Aδ,1(Ω), ea ∈ U δ,1(Ωc)
and j ∈ J δ,1(Ωc). However, as will be discussed in the next chapter, some discrete problems
involving source electric fields ea appear to be ill-conditioned.
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3.5 Basics of stability analysis of saddle-point problems

Mixed finite element formulations face numerical stability issues if function spaces for their
unknowns are not chosen consistently. Typically, spurious oscillations in the numerical so-
lution may arise and affect the accuracy of the method, as illustrated in the previous section
for the h-φ-a and t-a-formuations. The theory of mixed finite element formulations provides
compatibility conditions on spaces to ensure the numerical stability of the problem [167].

The formulations introduced in this chapter fit into the classical framework of perturbed
saddle-point problems. In this section, we present the stability conditions relevant to this class
of problems, following closely Brezzi’s classical treatment [167]. We also describe the inf-sup
test [180], a numerical test which is used for checking the compatibility of specific functions
spaces in the discrete setting. In the next section, we apply the theoretical results to analyze the
four mixed formulations.

3.5.1 Spaces, norms and operators

We consider two Hilbert spaces V and Q, and their dual spaces V ′ and Q′, respectively, con-
taining all linear functionals V → R and Q → R, respectively. On these spaces, we build
perturbed saddle-point problems of the following form.

Perturbed saddle-point problem

For given f ∈ V ′ and g ∈ Q′, find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = 〈f, v〉, ∀v ∈ V, (3.54)
b(u, q)− c(p, q) = 〈g, q〉, ∀q ∈ Q, (3.55)

with a(·, ·), b(·, ·), and c(·, ·) continuous bilinear forms on V × V , V ×Q, and Q×Q, respec-
tively, and where 〈f, v〉 (resp. 〈g, q〉) denotes the value of the functional f (resp. g) at v (resp.
q). We also denote byA,B, and C the linear continuous operators associated with a(·, ·), b(·, ·),
and c(·, ·), verifying

a(u, v) = 〈Au , v〉 , b(u, q) = 〈Bu , q〉 , c(p, q) = 〈Cp , q〉 , (3.56)

as well as their adjoint operators AT, BT, and CT, verifying

a(u, v) =
〈
u ,ATv

〉
, b(u, q) =

〈
u ,BTq

〉
, c(p, q) =

〈
p , CTq

〉
. (3.57)

The term −c(p, q) in Eq. (3.55) is considered to be the perturbation to the classical (unper-
turbed) saddle-point problem defined as follows. For given f ∈ V ′ and g ∈ Q′, find u ∈ V and
p ∈ Q such that

a(u, v) + b(v, p) = 〈f, v〉, ∀v ∈ V, (3.58)
b(u, q) = 〈g, q〉, ∀q ∈ Q. (3.59)
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We refer to the problems above as those in the continuous setting, considering Hilbert spaces
V and Q of infinite dimension.

In practice, we solve a discretized version of the (perturbed) saddle-point problems and we
look for elements uδ and pδ in finite-dimensional spaces V δ ⊆ V andQδ ⊆ Q, respectively, i.e.,
the finite element spaces, with operators aδ(·, ·), bδ(·, ·), and cδ(·, ·) defined on these discrete
spaces, as well as with the linear operators Aδ, Bδ, Cδ and their adjoint. We refer to the
associated problem as the problem in the discrete setting.

The superscript ·δ refers to a mesh of characteristic size δ. For conciseness, we drop the
superscript for elements of V δ andQδ, for elements of their dual spaces (V δ)′ and (Qδ)′, as well
as for the bilinear operators. We keep the superscript for function spaces and linear operators.

Spaces V δ and Qδ are equipped with appropriate norms ‖ · ‖V δ and ‖ · ‖Qδ . Dual norms are
used for elements in the dual spaces V δ ′ and Qδ ′, they are defined as

‖f‖V δ ′ = sup
v∈V δ

〈f, v〉
‖v‖V δ

and ‖g‖Qδ ′ = sup
q∈Qδ

〈g, q〉
‖q‖Qδ

. (3.60)

Norms are also associated with the bilinear operators, they are denoted and defined as follows:

‖aδ‖ = sup
u,v∈V δ

a(u, v)

‖u‖V δ‖v‖V δ
, (3.61)

‖bδ‖ = sup
u∈V δ,q∈Qδ

b(u, q)

‖u‖V δ‖q‖Qδ
, (3.62)

‖cδ‖ = sup
p,q∈Qδ

c(p, q)

‖p‖Qδ‖q‖Qδ
. (3.63)

The bilinear operators are assumed continuous, so their norm is finite [167].

We finally define two kernels associated with the coupling bilinear operator b(·, ·) of the
(perturbed) saddle-point problem, that will play an important role in stability conditions:

Kδ = {v ∈ V δ : b(v, q) = 0,∀q ∈ Qδ} = kerBδ, (3.64)

Hδ = {q ∈ Qδ : b(v, q) = 0,∀v ∈ V δ} = ker(Bδ)T. (3.65)

3.5.2 Solvability and stability of unperturbed saddle-point problems

Theorem 4.2.3. in [167] states that the unperturbed saddle-point problem (3.58)-(3.59) in the
discrete setting has a unique solution (u, p) ∈ V δ × Qδ for every f ∈ (V δ)′ and g ∈ (Qδ)′ if
imBδ = (Qδ)′ and if a(·, ·) is coercive on Kδ, i.e.,

∃αδ > 0 : a(v, v) ≥ αδ‖v‖2
V δ , ∀v ∈ Kδ. (3.66)

Moreover, if

∃βδ > 0 : inf
q∈Qδ

sup
v∈V δ

b(v, q)

‖q‖Qδ‖v‖V δ
= βδ > 0, (3.67)
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then the unique solution (u, p) satisfies

‖u‖V δ ≤
1

αδ
‖f‖(V δ)′ +

2‖aδ‖
αδβδ

‖g‖(Qδ)′ , (3.68)

‖p‖Qδ ≤
2‖aδ‖
αδβδ

‖f‖(V δ)′ +
2‖aδ‖2

αδ(βδ)2
‖g‖(Qδ)′ . (3.69)

Condition (3.67) is the so-called inf-sup condition, or the Babuška-Brezzi condition [145, 181].
When the values ‖aδ‖, αδ, and βδ can be chosen independent of the mesh, the problem is said
to be stable, in the sense that the solution is bounded in terms of the right-hand side functional
norms.

Note that conditions (3.66) and (3.67) are sufficient, but not necessary. Also, the bounds
provided by Eqn. (3.68) and (3.69) can be improved when more restrictive conditions are met.
For example, when a(·, ·) is a symmetric operator, which is often the case in practice, the unique
solution (u, p) satisfies

‖u‖V δ ≤
1

αδ
‖f‖(V δ)′ +

2‖aδ‖1/2

(αδ)1/2βδ
‖g‖(Qδ)′ , (3.70)

‖p‖Qδ ≤
2‖aδ‖1/2

(αδ)1/2βδ
‖f‖(V δ)′ +

‖aδ‖
(βδ)2

‖g‖(Qδ)′ . (3.71)

If the coupling linear operatorBδ is not surjective, a solution exists only if g ∈ imBδ. When
this is the case, p is defined up to an element of the kernel Hδ, so that the solution is not unique.
We however retrieve unicity and stability if we look for elements of Qδ in the kernel orthogonal
complement (Hδ)⊥ only, i.e., if we replaceQδ by (Hδ)⊥ in the expressions above. The stability
bounds therefore no longer hold for the whole space Qδ, but only on (Hδ)⊥.

The comment above is particularly important in this work for studying the perturbed saddle-
point problems associated with the mixed finite element formulations. In other applications, the
stability analysis can usually be first conducted on the unperturbed problem before introducing
perturbations [167]. In our case, we will have to treat the perturbed problems directly, as their
unperturbed versions are not necessarily well-posed.

3.5.3 Solvability and stability of perturbed saddle-point problems

For the perturbed saddle point-problem (3.54)-(3.55) in the discrete setting, we present two
distinct results. First, if a(·, ·) and c(·, ·) are coercive on their whole spaces, i.e., if

∃αδ > 0 : a(v, v) ≥ αδ‖v‖2
V δ , ∀v ∈ V δ, (3.72)

∃γδ > 0 : c(q, q) ≥ γδ‖q‖2
Qδ , ∀q ∈ Qδ, (3.73)

then, for every f ∈ (V δ)′ and g ∈ (Qδ)′, the perturbed problem has a unique solution (u, p)
satisfying (proposition 4.3.1. of [167])

αδ

2
‖u‖2

V δ +
γδ

2
‖p‖2

Qδ ≤
1

2αδ
‖f‖2

(V δ)′ +
1

2γδ
‖g‖2

(Qδ)′ , (3.74)
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which follows from Lax-Milgram theorem [182, 183]. This result provides bounds for the
solution irrespective of whether the coupling operator b(·, ·) satisfies an inf-sup condition or
not. However, the provided bounds are often unsatisfactory [167]. Indeed, in many application
cases, the perturbation −c(·, ·) is such that γδ can be very small, and we would like a better
bound for vanishing (but non-zero) perturbations.

The second result involves an inf-sup condition on the coupling operator, and lifts the whole
space coercivity conditions. For simplicity, because this will be the case in practice for our prob-
lems, we directly assume that both a(·, ·) and c(·, ·) are symmetric and positive semi-definite
bilinear operators. If a(·, ·) is coercive on Kδ and c(·, ·) is coercive on Hδ, i.e., if

∃αδ > 0 : a(v, v) ≥ αδ‖v‖2
V δ , ∀v ∈ Kδ, (3.75)

∃γδ > 0 : c(q, q) ≥ γδ‖q‖2
Qδ , ∀q ∈ Hδ, (3.76)

and if

∃βδ > 0 : inf
q∈(Hδ)⊥

sup
v∈(Kδ)⊥

b(v, q)

‖q‖Qδ‖v‖V δ
= βδ > 0, (3.77)

then, the perturbed problem has a unique solution (u, p) satisfying (theorem 4.3.1. in [167])

‖u‖V δ + ‖p‖Qδ ≤ kδ
(
‖f‖(V δ)′ + ‖g‖(Qδ)′

)
, (3.78)

with kδ a constant depending only on the stability constants, αδ, βδ, and γδ, and continuity
constants ‖aδ‖ and ‖cδ‖. Note that the inf-sup condition (3.77) has to hold on the orthogonal
complements ·⊥ of Hδ and Kδ only. The dependence on the stability and continuity constants
is now more interesting than that of Eq. (3.74) (see [167]).

In the particular case often encountered in practice where

c(p, q) = λ (p, q)Qδ , λ ≥ 0, (3.79)

where (·, ·)Qδ is the inner product in Qδ, so that γδ = ‖cδ‖ = λ, under the same conditions, the
bounds are given by (theorem 4.3.2. in [167])

‖u‖V δ ≤
(βδ)2 + 4λ‖aδ‖

αδ(βδ)2
‖f‖(V δ)′ +

2‖aδ‖1/2

(αδ)1/2βδ
‖g‖(Qδ)′ (3.80)

‖p‖Qδ ≤
2‖aδ‖1/2

(αδ)1/2βδ
‖f‖(V δ)′ +

4‖aδ‖
λ‖aδ‖+ 2(βδ)2

‖g‖(Qδ)′ . (3.81)

With these bounds, we clearly see the improvement compared to Eq. (3.74): when λ → 0,
they do not diverge. Note that for λ = 0, we almost recover Eqn. (3.70) and (3.71), but as we
mentioned before, we only want to represent small but non-zero λ values, as our problems with
λ = 0 are not necessarily well-posed.

Link with the solution in the continuous setting

For simplicity, we still assume that a(·, ·) and c(·, ·) are symmetric, positive semi-definite con-
tinuous bilinear operators, which will be the case in the applications. Let (ū, p̄) ∈ V ×Q be the
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exact solution of the perturbed saddle point-problem (3.54)-(3.55) in the continuous setting. In
the discrete setting, with finite-dimensional spaces V δ ⊆ V and Qδ ⊆ Q, if conditions (3.75),
(3.76), and (3.77) hold, the perturbed saddle point-problem (3.54)-(3.55) in the discrete setting
admits a unique solution (u, p) ∈ V δ ×Qδ that satisfies (proposition 5.5.2. in [167])

‖u− ū‖V δ + ‖p− p̄‖Qδ ≤ k̄δ
(

inf
v∈V δ
‖v − ū‖V δ + inf

q∈Qδ
‖q − p̄‖Qδ

)
, (3.82)

with a constant k̄δ depending only on the stability constants, αδ, βδ, γδ, and continuity con-
stants, ‖aδ‖, ‖bδ‖, ‖cδ‖. Note the addition of ‖bδ‖ compared to previous bounds. If all these
values can be chosen independent of the mesh, k̄δ is bounded with mesh refinement and the
problem is said to be stable.

3.5.4 Numerical inf-sup test

In many practical cases, the inf-sup value βδ cannot be evaluated analytically. Instead, it can be
estimated with a numerical inf-sup test [167, 180]. On a given mesh, unknown fields u ∈ V δ

and p ∈ Qδ are described by vectors uδ and pδ containing the degrees of freedom for the
two fields. The size of these vectors depends on the discretization. We introduce orthogonal
matrices Nδ

V δ
and Nδ

Qδ
such that

‖u‖2
V δ =

(
uδ
)T

Nδ
V δu

δ and ‖p‖2
Qδ =

(
pδ
)T

Nδ
Qδp

δ. (3.83)

These “norm matrices” can be obtained in practice from the finite element assembly of the
following dummy formulations:

find u ∈ V δ : (u, v)V δ = 0, ∀v ∈ V δ, (3.84)

and find p ∈ Qδ : (p, q)Qδ = 0, ∀q ∈ Qδ, (3.85)

with (·, ·)V δ and (·, ·)Qδ the inner products in V δ and Qδ. The resulting system matrices are
Nδ
V δ

and Nδ
Qδ

for the given mesh, respectively.

Then, we introduce the coupling matrix Bδ, satisfying b(u, p) =
(
pδ
)T

Bδuδ, and which
is the lower off-diagonal block of the global matrix system associated with the finite element
assembly of the perturbed saddle-point problem (3.54)-(3.55), written on the considered mesh:

(
Aδ (Bδ)T

Bδ −Cδ

) (
uδ

pδ

)
=

(
f δ

gδ

)
, (3.86)

with the right-hand side vectors f δ and gδ, and diagonal blocks Aδ and Cδ.

In terms of these norm and coupling matrices, Eq. (3.77) expressed in matrix form reads

inf
qδ∈(Hδ)⊥

sup
vδ∈(Kδ)⊥

(
qδ
)T

Bδvδ(
(qδ)T Nδ

Qδ
qδ
)(

(vδ)T Nδ
V δ
vδ
) = βδ. (3.87)
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This expression is still not easy to evaluate as is, but the inf-sup value βδ in Eq. (3.87) can
be shown to be equal to the square root of the smallest non-zero eigenvalue of the following
generalized eigenvalue problem [184]:

(
Bδ
(
Nδ
V δ

)−1 (
Bδ
)T
)
qδ = λδ Nδ

Qδq
δ. (3.88)

Note that we disregard zero eigenvalues because they are associated with eigenvectors defining
elements in Hδ that are not involved in the inf-sup condition. Note also that the norm ‖bδ‖ is
the square root of the largest eigenvalue of the generalized eigenvalue problem Eq. (3.88).

Equivalently, βδ and ‖bδ‖ can also be obtained by the converse generalized eigenvalue prob-
lem written for vδ:

((
Bδ
)T (

Nδ
Qδ

)−1
Bδ
)
vδ = µδ Nδ

V δv
δ. (3.89)

Zero eigenvalues are associated with eigenvectors defining elements in Kδ and are therefore
disregarded as well. Depending on the sizes of vectors vδ and qδ, i.e., on the number of degrees
of freedom for each field, solving Eq. (3.88) or Eq. (3.89) might not have the same computa-
tional cost, and one of them might be more interesting to consider in practice.

The inf-sup test consists in computing βδ values for a sequence of progressively refined
meshes, i.e., with decreasing mesh size δ. If the values appear to be bounded from below by a
positive value independent of mesh size, and if the other conditions (coercivity and continuity)
are met, then the problem has high chances to be stable. On the other hand, if βδ tends to
zero, we expect stability issues, because the inf-sup condition then fails to be satisfied with
a βδ > 0 independent of the mesh size. The numerical test does not provide a formal proof
of stability, but experience shows that it is a reliable indicator [180, 185] in a wide range of
applications [186, 187, 171].

3.6 Stability analysis

In this section we apply the stability results presented in the previous section on the four mixed
formulations introduced earlier in this chapter: the h-φ-a, t-a, h-φ-b, and a-j-formulations.

We restrict the analysis to 2D problems with in-plane magnetic field, we will only mention
when conclusions also extend to 3D problems. Moreover, we do not address the technical
difficulties brought by the power law nonlinearity for T2S materials. These difficulties are not
restricted to mixed formulations, are not the direct cause for the oscillations, and are outside
the scope of this work. See [188, 189] for a rigorous treatment of them. In practice, we observe
that all conclusions on stability are the same whether we consider linear materials or not, which
justifies to let them aside for this work.

In addition to stability results, we also take a deeper look into the results of the inf-sup tests
for the h-φ-a and h-φ-b-formulations, from which instructive interpretations can be extracted.



86 Chapter 3 Mixed finite element formulations

3.6.1 Surface-coupled h-φ-a-formulation

Linear equations

We start the analysis with a linear problem. We consider materials with constant resistivity and
reluctivity values, but not necessarily homogeneous in space.

Using the implicit Euler method, at a given time step n, the solution (a,h) = (an,hn)
depends on the solution at the previous time step (·)n−1. If we multiply the first equation of the
h-φ-a-formulation by the time step ∆t, we obtain the system

(
µh ,h′

)
Ωh

+ (∆t ρ curl h , curl h′)Ωh,c
+ 〈a× nΩh ,h

′〉Γm
= 〈s,h′〉, (3.90)

〈h× nΩa ,a
′〉Γm
− (ν curl a , curl a′)Ωa

= 0, (3.91)

with the right-hand side functional defined by

〈s,h′〉 = 〈an−1 × nΩh ,h
′〉Γm

+
(
(µh)n−1 ,h

′)
Ωh

+ ∆t
∑

i∈CV
V̄iIi(h′). (3.92)

System (3.90)-(3.91) can be rewritten as

(
µ h ,h′

)
Ωh

+ (∆t ρ curl h , curl h′)Ωh,c
+ 〈a× nΩh ,h

′〉Γm
= 〈s,h′〉, (3.93)

〈a′ × nΩh ,h〉Γm
− (ν curl a , curl a′)Ωa

= 0, (3.94)

using nΩa = −nΩh . For conciseness, we consider homogeneous essential boundary condi-
tions. Problem (3.93)-(3.94) can therefore be cast into the form of the perturbed saddle point
problem (3.54)-(3.55), with identical function spaces for unknown functions and test functions.

The case of non-homogeneous essential boundary conditions can be easily treated by remov-
ing the associated degrees of freedom from the function spaces and introducing them separately
in the formulation, so that they enter directly the right-hand side as sources; the following anal-
ysis is unchanged, and conclusions are identical [167].

After discretization, we obtain a system of linear equations in a matrix form. The formulation
will be considered stable if a sequence of problems on progressively refined meshes satisfies
conditions (3.61) to (3.63) and (3.75) to (3.77), with constants αδ, βδ, γδ, ‖aδ‖, ‖bδ‖, and ‖cδ‖
independent of mesh size.

In the following, the notationHδ
0(Ωh) refers to eitherHδ,1

0 (Ωh) orHδ,2
0 (Ωh), and the notation

Aδ0(Ωa) refers to eitherAδ,10 (Ωa) orAδ,20 (Ωa). We will consider the different cases in the inf-sup
test. InHδ

0(Ωh) and Aδ0(Ωa), we define the norms

‖h‖2
Hδ0

= (µ0 h ,h)Ωh
+ (∆t0 ρ0 curl h , curl h)Ωh,c

, (3.95)

‖a‖2
Aδ0

= (ν0 curl a , curl a)Ωa
, (3.96)

with ρ0 being a characteristic resistivity and ∆t0 a characteristic time step.
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With these norms, whatever the discretization, ∀h ∈ Hδ
0(Ωh) and ∀a ∈ Aδ0(Ωa), we have

a(h,h) =
(
µh ,h

)
Ωh

+ (∆t ρ curl h , curl h)Ωh,c
(3.97)

≥ inf(µ/µ0,∆t/∆t0 · ρ/ρ0) ‖h‖2
Hδ0
, (3.98)

c(a,a) = (ν curl a , curl a)Ωa
(3.99)

≥ inf(ν/ν0) ‖a‖2
Aδ0
, (3.100)

which proves the coercivity properties (3.75) and (3.76), with values independent on the mesh
size: αδ = inf(µ/µ0,∆t/∆t0 · ρ/ρ0) > 0, and γδ = inf(ν/ν0) > 0.

Similarly, for the continuity constants, we have

a(h,h) =
(
µh ,h

)
Ωh

+ (∆t ρ curl h , curl h)Ωh,c
(3.101)

≤ sup(µ/µ0,∆t/∆t0 · ρ/ρ0) ‖h‖2
Hδ0
, (3.102)

c(a,a) = (ν curl a , curl a)Ωa
(3.103)

≤ sup(ν/ν0) ‖a‖2
Aδ0
. (3.104)

As a(·, ·) and c(·, ·) are symmetric and positive-definite bilinear operators, they satisfy [167]

(a(h1,h2))2 ≤ a(h1,h1) a(h2,h2), ∀h1,h2 ∈ Hδ
0(Ωh), (3.105)

(c(a1,a2))2 ≤ c(a1,a1) c(a2,a2), ∀a1,a2 ∈ Aδ0(Ωa). (3.106)

Consequently, the norms from (3.61) and (3.63) are finite and satisfy ‖aδ‖ ≤ sup(µ/µ0,∆t/∆t0·
ρ/ρ0) <∞, and ‖cδ‖ ≤ sup(ν/ν0) <∞, which are also independent on the mesh size.

The remaining conditions for stability are the inf-sup condition and the continuity of b(·, ·):
there must exist a β > 0 independent of mesh size that fulfils,

inf
a∈(Hδ)⊥

sup
h∈(Kδ)⊥

〈a× nΩh ,h〉Γm

‖a‖Aδ0‖h‖Hδ0
= βδ ≥ β, (3.107)

and ‖bδ‖must be bounded from above. To check these two conditions, we perform a numerical
inf-sup test on a characteristic problem involving the h-φ-a-formulation.

We consider the stacked bar geometry represented in Fig. 3.15, with linear homogeneous
materials: a linear conductor with ρ = 1.6 × 10−8 Ωm, and a linear non-conducting ferro-
magnet with µr = 1000, surrounded by air. We analyze the behavior of the values of βδ and
‖bδ‖, obtained from the generalized eigenvalue problem Eq. (3.88), or Eq. (3.89), considering
different discretization levels. Four cases are considered: h ∈ Hδ,i

0 (Ωh) and a ∈ Aδ,j0 (Ωa), for
(i, j) ∈ {1, 2} × {1, 2}, with function spaces defined in Section 3.4.1. Results are shown in
Fig. 3.16.

First, the norm ‖bδ‖ of the coupling operator can clearly be bounded from above independent
of the function spaces, as deduced from the values in the upper part of Fig. 3.16. However, the
evolution of the inf-sup value follows two distinct behaviors. When exactly one of the two
fields h and a is enriched with hierarchical elements, the inf-sup value βδ does not decrease, so
that the inf-sup condition is likely to be satisfied, in which case Eq. (3.82) ensures the stability
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Figure 3.15: Simple 2D geometry for the inf-sup test on the h-φ-a-formulation. Stack of a conducting
bar with ρ = 1.6×10−8 Ωm and µ = µ0 (below) and a ferromagnetic bar σ = 0 and µr = 1000 (above),
of common width W , surrounded by air. The system is subjected to a vertical applied field. The thick
curve is Γm.

of the associated problem. On the other cases, if none of the fields is enriched with hierachical
elements, or if both of them are, the inf-sup value βδ decreases as βδ ∼ δ and stability issues,
i.e., oscillations in the numerical solution, are not a surprise.

In practice, when choosing h ∈ Hδ,1
0 (Ωh) and a ∈ Aδ,10 (Ωa), or h ∈ Hδ,2

0 (Ωh) and a ∈
Aδ,20 (Ωa), we do indeed observe oscillations in the numerical solution. This was illustrated
in Figs. 3.9(a) and 3.10(a) with a T2S. However, these oscillations only appear at interfaces
between regions with large permeability jumps across Γm. By contrast, when no ferromagnetic
material is present in the geometry, the numerical results are satisfying. These behaviors can
be explained by Eq. (3.74) (Proposition 4.3.1 of [167]), that follows from the Lax-Milgram
theorem. Because a(·, ·) and c(·, ·) are coercive on their whole space, the problem has a unique
solution (a,h) and we have the following inequality:

αδ

2
‖a‖2

Aδ0
+
γδ

2
‖h‖2

Hδ0
≤ 1

2αδ
‖sa‖2

(Aδ0)′ +
1

2γδ
‖sh‖2

(Hδ0)′ , (3.108)

with sa and sh the right-hand sides of the final system (after treating non-homogeneous es-
sential boundary conditions). This bound is valid irrespective of whether the coupling operator
satisfies the inf-sup condition or not. Consequently, the problem is actually always stable in the
sense of Eq. (3.108). However, the provided bound deteriorates when either αδ or γδ decreases,
which is the case when considering a ferromagnetic material in Ωa, in particular. Indeed, when
1/ν → ∞ in Ωa, we have γδ → 0. With practical mesh resolutions and ferromagnetic mate-
rials, the bound in Eq. (3.108) appears to be too loose. This explains why stability issues still
arise for choices that fail to satisfy the inf-sup condition.

As said above, we can extend to spaces with non-homogeneous essential boundary condi-
tions, and hence to non-homogeneous function spaces. In practice, when dealing with ferro-
magnetic materials adjacent to Γm, it is therefore recommended to choose either h ∈ Hδ,1(Ωh)
and a ∈ Aδ,2(Ωa), or h ∈ Hδ,2(Ωh) and a ∈ Aδ,1(Ωa), to guarantee stability.
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Figure 3.16: Evolution of the inf-sup constant βδ from Eq. (3.107) and the norm ‖b‖ with mesh refine-
ment (δ/W → 0) on the stacked bar linear problem shown in Fig. 3.15. Four cases are considered:
h ∈ Hδ,i0 (Ωh) and a ∈ Aδ,j0 (Ωa), for (i, j) ∈ {1, 2} × {1, 2}. We can only conclude on stability when
i 6= j, i.e., when exactly one space is enriched with respect to Whitney elements (green lines). The
legend is the same for both graphs.

Interpretation

To illustrate the link between the eigenvalue problem and the spurious oscillations, we inves-
tigate the solution of the generalized eigenvalue problem arising in the inf-sup test, defined by
Eq. (3.88). We apply it on the same stacked-bar problem as before, still with linear materials.

For the stability analysis, we are only interested in the non-zero eigenvalues, whose asso-
ciated eigenvectors form a basis of the orthogonal complement (Hδ)⊥ of the kernel Hδ, for a
given mesh. These eigenvalues are represented in Fig. 3.17 for both stable and unstable choices
of function spaces, at two different discretization levels. The same conclusions as from Fig. 3.16
can be drawn, by looking only at the smallest (and highest) eigenvalue(s). In particular, with
the choice h ∈ Hδ,1(Ωh) and a ∈ Aδ,1(Ωa), the problem is unstable because it contains modes
of smaller and smaller eigenvalues as the mesh is refined. The eigenvector associated with the
smallest eigenvalue of the fine mesh is represented in Fig. 3.18(a). Clearly, such a mode (among
others) is also activated in the unstable solution of Fig. 3.9(a) with nonlinear materials. To give
an idea, the 40th mode is shown in Fig. 3.18(b).
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Figure 3.17: Distribution of the square root of the non-zero eigenvalues computed from Eq. (3.88) on the
stacked-bar geometry with linear materials. The smallest values are the inf-sup values βδ, the largest are
the norms ‖bδ‖. Eigenvectors associated with the square and circle points are represented in Fig. 3.18.
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Figure 3.18: Eigenvectors associated with the two dots in Fig. 3.17, for the (unstable) choice h ∈
Hδ,1(Ωh) and a ∈ Aδ,1(Ωa) and the same mesh as in Fig. 3.9. The brown curve is Γm.

Of course, similar highly oscillating modes still exist in the (Hδ)⊥ basis for the stable choice
h ∈ Hδ,1(Ωh) and a ∈ Aδ,2(Ωa), but their eigenvalues are levelled up and the new modes
appearing with mesh refinement do no longer introduce smaller and smaller eigenvalues.

Intuitively, one can understand how adding bubble shape functions for either h or a helps
increasing the inf-sup value. Let us consider the fraction in the inf-sup equation Eq. (3.107),

〈a× nΩh ,h〉Γm

‖a‖Aδ0‖h‖Hδ0
, (3.109)

and a vector potential awhose trace exhibits symmetric oscillations on a part of Γm, as depicted
in Fig. 3.19. Such a function is close to what constitutes the infimum argument of Eq. (3.107),
as can be seen in Fig. 3.18(a).
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If we have only access to magnetic fields h ∈ Hδ,1(Ωh), generated by gradient of lowest-
order node functions wn and wn+1 on Γm, the integral 〈a× nΩh , grad wi〉Γm

in the numerator
of the fraction (3.109) is equal to zero by considering the node ni. This is true for the node
ni+1 as well. Of course, one should be careful not to conclude too quickly, as the function
a has to belong to (Hδ)⊥. It cannot be chosen so that it vanishes for all h, but the fact that
highly oscillating functions yield small values of the fraction (3.109) can still be understood
intuitively.

By contrast, the introduction of bubble functions for h ∈ Hδ,2(Ωh) and the possibility of
considering them as component of the argument of the supremum of Eq. (3.107) directly makes
the oscillating vector potential a less problematic, as the integral 〈a× nΩh , grad w2,ei〉Γm

no
longer vanishes with the bubble function w2,ei , whereas the norms in the denominator remain
comparable. Again, this does not imply directly that the inf-sup condition is verified, but it
provides an element to understand why highly oscillating functions are no longer associated
with small values of the fraction (3.109).

Ωa

Ωh

Γm

n× (a× n)

n× (grad wn1
× n)

z

zni

Ωa

Ωh

Γm

n× (a× n)

n× (grad w2,ei × n)

ei

(a) Lowest-order shape function for h ∈ Hδ,1(Ωh). (b) Bubble shape function for h ∈ Hδ,2(Ωh).

ni+1

Figure 3.19: Situation on the coupling boundary Γm for a symmetrically oscillating vector potential a
at the material interface, and illustration of why choosing h ∈ Hδ,2(Ωh) and a ∈ Aδ,1(Ωa) stabilizes
the problem. (a) Gradients of node functions bring a zero contribution to the coupling integral. (b) The
integral involving bubble functions does no longer vanish.

Nonlinear equations

We consider SFM in Ωa, characterized by a saturation law for the permeability, and T2S in Ωh,
whose resistivity is described by a power law. The associated system of equations after time
discretization is as in Eqn. (3.90)-(3.91), but with solution-dependent coefficients ρ and ν. With
a Newton-Raphson linearization, we obtain a problem that is iteratively solved. The solution
(h,a) = (hkn,a

k
n) at time step n and iteration k depends on the solutions at the previous time

step (·)n−1 and previous iteration (·)k−1. Using, nΩa = −nΩh , we obtain the linear system

(
µ0 h ,h

′)
Ωh

+
(

∆t (∂e/∂j)k−1 curl h , curl h′
)

Ωh,c
+ 〈a× nΩh ,h

′〉Γm
= 〈s̃h,h′〉,

(3.110)

〈a′ × nΩh ,h〉Γm
−
(
(∂h/∂b)k−1 curl a , curl a′

)
Ωa

= 〈s̃a,a′〉,
(3.111)
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with right-hand side functionals s̃h and s̃a defined by

〈s̃h,h′〉 = 〈an−1 × nΩh ,h
′〉Γm

+
(
(µh)n−1 ,h

′)
Ωh

−
(

∆t ((ρI− ∂e/∂j) curl h)k−1 , curl h′
)

Ωh,c
+ ∆t

∑

i∈CV
V̄iIi(h′), (3.112)

〈s̃a,a′〉 =−
(

((νI− ∂h/∂b) curl a)k−1 , curl a′
)

Ωa
, (3.113)

with I being the identity matrix. The structure is similar to that of system (3.93)-(3.94). Co-
ercivity and continuity of diagonal operators a(·, ·) and c(·, ·), in the sense of the norms (3.95)
and (3.96) are only satisfied if the eigenvalues of matrices (∂e/∂j)k−1 and (∂h/∂b)k−1 are
bounded away from zero and infinity, independently of the mesh. This is the case for the differ-
ential reluctivity with classical saturation laws. However, with the power law, the differential
resistivity tends to zero for small current densities, so that we cannot verify the coercivity con-
dition with norm (3.95), and tends to infinity to large current densities, so that continuity is not
satisfied either.

To avoid the technical difficulty due to the power law, we could use a regularized version,
such as

ρ = min

(
ρ0 +

ec

jc

(‖j‖
jc

)n−1

, ρM

)
, (3.114)

with two limiting resistivity values ρ0 and ρM. If the residual resistivity ρ0 is small enough
compared to ec/jc, the effect on the numerical solution can be neglected. The upper bound ρM

can be chosen to model flux flow. In practice, we observe that introducing limiting resistivities
is not required for obtaining reliable results. We therefore choose not to address this technical
detail here, as the resistivity does not play such an important role as the permeability. Stability
issues are not observed to depend on its value.

Note that we would also have to tackle this difficulty in standard formulations to discuss their
well-posedness in a formal mathematical framework. We refer to others works for a rigorous
treatment of the power law in simpler formulations [188, 189]. We keep in mind that, by
contrast to the linear case, in this work, we therefore do not establish a formal proof of stability
for nonlinear materials, due to this particular operator a(·, ·).

Conducting an inf-sup test provides results that are exactly similar to those in Fig. 3.16, and
we observe that in practice, the conclusions obtained for the linear case remain and lead to the
same recommendations. When choosing h ∈ Hδ,1(Ωh) and a ∈ Aδ,2(Ωa), or h ∈ Hδ,2(Ωh)
and a ∈ Aδ,1(Ωa), we obtain stable results, whereas the other combinations lead to spurious
oscillations. As with linear materials, the larger the permeability jump across the coupling
interface Γm, the larger the oscillation amplitude. Also, as already mentioned before, in the
large fields involved in T2S system, the (nonlinear) SFM usually saturate rapidly, so that the
oscillation amplitude rapidly decreases in practical simulations, even with unstable choices of
function spaces.
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Generalization to 3D problems

In practice, we observe the same conclusions on 3D problems: enriching one of the two fields
gives results that do no present any oscillations.

3.6.2 Thin-shell t-a-formulation

We directly consider a nonlinear material in Γw, e.g., a superconducting tape. Including a non-
linear SFM in Ωa does not raise any additional difficulty. We restrict the analysis to 2D problems
with an in-plane magnetic field. With the same procedure as for the h-φ-a-formulation, for ev-
ery iteration k at time step n, we obtain the following discrete linear system for the unknowns
t ∈ T δ0 (Γw) and a ∈ Aδ0(Ωa),

(ν curl a , curl a′)Ωa
− 〈w curl t ,a′〉Γw = 0, (3.115)

−〈w curl t′ ,a〉Γw −
〈
∆t w (∂e/∂j)k−1 curl t , curl t′

〉
Γw

= 〈s̃t, t′〉, (3.116)

∀t′ ∈ T δ0 (Γw) and ∀a′ ∈ Aδ0(Ωa), with a right-hand side functional s̃t defined by,

〈s̃t, t′〉 =− 〈w an−1 , curl t′〉Γw −∆t
∑

i∈CV
V̄iIi(t′)

+
〈

∆t w ((ρI− ∂e/∂j) curl t)k−1 , curl t′
〉

Γw
, (3.117)

∀t′ ∈ T δ0 (Γw). As before, the function space notations refer either to the lowest-order spaces
or to the enriched spaces.

In Aδ0(Ωa), we use the same norm as for the h-φ-a-formulation,

‖a‖2
Aδ0

= (ν0 curl a , curl a)Ωa
, (3.118)

so that we can choose αδ = inf(ν/ν0) > 0, and we have ‖aδ‖ ≤ sup(ν/ν0) <∞, whatever the
mesh. Therefore, the first diagonal block is coercive and continuous on the whole space.

The inf-sup condition requires to find a β > 0 independent of the mesh size that fulfils

inf
t∈(Hδ)⊥

sup
a∈(Kδ)⊥

〈w curl t ,a〉Γw
‖t‖T δ0 ‖a‖Aδ0

= βδ ≥ β. (3.119)

To evaluate this condition in the discrete setting, it remains to choose a norm for t ∈ T δ0 (Γw), as
defined in Eq. (3.24). To avoid the evaluation of the fractional H−1/2(Γw)-norm for the field t
defined on the surface Γw, we use a mesh-dependent norm, as is common in the discrete setting
[171]. We assume a uniform mesh on Γw, for which there exists a δ and two finite non-zero
constants c1 and c2 such that c1δ ≤ δe ≤ c2δ, ∀e ∈ E(Γw), where δe is the length of edge e. For
a given mesh length δ, we define

‖t‖2
T δ0

= δ 〈w ∆t0 ρ0 curl t , curl t〉Γw , (3.120)
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with ∆t0 and ρ0 being characteristic time step and resistivity values. The inverse inequality
[190]

‖µ‖H−1/2(Γ) ≥ c
√
δ‖µ‖L2(Γ), ∀µ ∈ H−1/2(Γ), (3.121)

with a finite constant c, implies that satisfying the inf-sup condition with norm (3.120) is a
necessary condition for stability in terms of the norm ‖ · ‖H−1/2(Γw). In [191], the condition is
also shown to be sufficient.

Fig. 3.20 gives the evolution of the inf-sup constant for a sequence of progressively refined
meshes, for four choices of function spaces. Analogously to the h-φ-a-formulation, it is only
when exactly one approximation space is enriched with hierarchical elements that the inf-sup
constant is uniformly bounded from below. These choices are good candidates if we want a
stable formulation. On the other hand, when choosing t ∈ T δ,10 (Γw) and a ∈ Aδ,10 (Ωa), or
t ∈ T δ,20 (Γw) and a ∈ Aδ,20 (Ωa), the test suggests that stability issues may arise. In practice,
this is indeed the case, see Fig. 3.12.

We observed that with the choice t ∈ T δ,20 (Γw) and a ∈ Aδ,10 (Ωa), the Newton-Raphson
procedure faces convergence issues. Using a fixed point method does not help either, and no
satisfying numerical solution has been found in the nonlinear case. On the other hand, when
considering a linear conductor, no particular issue is encountered and oscillations disappear,
as expected from the inf-sup test. We therefore believe that the issue for nonlinear materials
is related to the iterative technique rather than to the structure of the saddle-point problem.
Investigating this phenomenon would constitute an instructive further work.

By contrast, the choice t ∈ T δ,10 (Γw) and a ∈ Aδ,20 (Ωa) provides good results and no issue
has been observed. Our results match the observations in [192], where the function space for a
is however enriched in the whole Ωa domain, instead of only in the vicinity of Γw. This is more
expensive in terms of computational work for a given mesh, but also offers a more accurate
representation of the magnetic flux density in Ωa.

To prove formally the stability of the choice t ∈ T δ,10 (Γw) and a ∈ Aδ,20 (Ωa), we have to
prove coercivity of c(·, ·) on the kernel Hδ, as well as continuity of bilinear operators b(·, ·) and
c(·, ·). For the coercivity on the kernel Hδ, we note that with the particular choice t ∈ T δ,10 (Γw)
and a ∈ Aδ,20 (Ωa), Hδ reduces to 0, so the coercivity condition is trivially satisfied. A priori
estimates for ‖bδ‖ and ‖cδ‖ cannot be obtained easily with the fractional norm ‖ · ‖H−1/2(Γw).
These properties are not investigated in this work.

To conclude, extending to spaces with non-homogeneous essential boundary conditions, we
recommend choosing t ∈ T δ,1(Γw) and a ∈ Aδ,2(Ωa). This choice ensures a bounded inf-sup
value and does not exhibit any stability issues. We observe that this is also valid in 3D problems.

3.6.3 Volume-coupled h-φ-b-formulation

The volume-coupled h-φ-b-formulation does not exhibit any stability issues for the function
spaces that have been introduced in Section 3.4.3. We analyze here the well-posedness of the
formulation.
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Figure 3.20: Evolution of the inf-sup constant with mesh refinement (δ → 0) on the simple tape problem
(n = 20, jc = 2.5 × 1010 A/m2). Four cases are considered t ∈ T δ,i0 (Ωh) and a ∈ Aδ,j0 (Ωa), for
(i, j) ∈ {1, 2} × {1, 2}. We observe instabilities when i = j. In practice, the usual Newton-Raphson
scheme with i = 2, j = 1 does not converge. Only the case i = 1, j = 2 leads to satisfying results.

For simplicity and conciseness, we consider linear materials. As before, we also assume
homogeneous essential boundary conditions in the developments, the generalization to the non-
homogeneous case being immediate. At each time step n, the h-φ-b-formulation can be written
as: find h ∈ Hδ,1

0 (Ω) and b ∈ Bδ,10 (Ωm) such that

(µ0 h ,h
′)ΩC

m
+ (∆t ρ curl h , curl h′)Ωc

+ (b ,h′)Ωm
= 〈s ,h′〉 , (3.122)

(h , b′)Ωm
− (ν b , b′)Ωm

= 0, (3.123)

h′ ∈ Hδ,1
0 (Ω) and b′ ∈ Bδ,10 (Ωm). The right-hand side functional s is defined by

〈s ,h′〉 = (µ0 hn−1 ,h
′)ΩC

m
+ (bn−1 ,h

′)Ωm
+ ∆t

∑

i∈CV
V̄iIi(h′), (3.124)

h′ ∈ Hδ,1
0 (Ω), with hn−1 and bn−1 being the solutions at the previous time step. This problem

has the form of a perturbed saddle point problem (3.54)-(3.55).

InHδ,1
0 (Ω) and Bδ,10 (Ωm), we define the norms

‖h‖2

Hδ,10

= (µ0 h ,h)Ω + (∆t0 ρ0 curl h , curl h)Ωc
, (3.125)

‖b‖2

Aδ,10

= (ν0 b , b)Ωm
, (3.126)

with ∆t0 and ρ0 being characteristic time step and resistivity values. With these norm defi-
nitions, the lower diagonal bilinear operator c(b1, b2) = (ν b1 , b2)Ωm

is trivially coercive and
continuous, provided that ν > 0. It is also symmetric and positive-definite. On the other hand,
the upper diagonal a(h1,h2) = (µ0 h1 ,h2)ΩC

m
+ (∆t ρ curl h1 , curl h2)Ωc

is continuous but
not coercive on the whole space Hδ,1

0 (Ω). Indeed, for any curl-free field h whose support is on
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Ωm only, we have a(h,h) = 0. Therefore, one cannot use directly the Lax-Milgram theorem
for solvability, nor the bounds of Eq. (3.74) for stability.

Instead, we will verify the coercivity of a(·, ·) on the kernel Kδ and the inf-sup condition on
the coupling operator b(·, ·).

By definition, the kernel Kδ is the set of elements h0 ∈ Hδ,1
0 (Ω) that verify

(b ,h0)Ωm
= 0, ∀b ∈ Bδ,10 (Ωm). (3.127)

Because Bδ,10 (Ωm) contains the restriction of all individual elements inHδ,1
0 (Ω) to Ωm, elements

h0 in the kernel Kδ must be identically equal to zero in Ωm. Therefore, the kernel expresses as

Kδ = {h0 ∈ Hδ,1
0 (Ω) : h0|Ωm = 0}. (3.128)

Consequently, ∀h0 ∈ Kδ, we have

a(h0,h0) = (µ0 h0 ,h0)ΩC
m

+ (∆t ρ curl h0 , curl h0)Ωc

= (µ0 h0 ,h0)Ω + (∆t ρ curl h0 , curl h0)Ωc

= ‖h0‖2

Hδ,10

, (3.129)

so that coercivity condition Eq. (3.75) is verified on Kδ.

The inf-sup expression reads

inf
h∈(Kδ)⊥

sup
b∈(Hδ)⊥

(h , b)Ωm

‖h‖Hδ,10
‖b‖Bδ,10

. (3.130)

To evaluate it, we carry out an inf-sup test on a simple 2D problem of a rectangular magnetic
bar, placed in air, as represented in Fig. 3.21. The results are shown in Fig. 3.22 for four cases:
triangular or quadrangular mesh, and conducting or non-conducting magnetic domain Ωm.

When Ωm is non-conducting, for both meshes, the inf-sup values βδ are nearly constant and
do not approach zero as the mesh is refined. The inf-sup test is successfully passed. This result
is further strengthened by the absence of non-physical oscillations in the numerical solution.
The spaces Hδ,1

0 (Ω) and Bδ,10 (Ωm) can be confidently considered to be stable choices for the
h-φ-b-formulation with a non-conducting magnetic domain.

When Ωm is conducting, for both meshes, the inf-sup values βδ decrease as βδ ∼ δ, and
the inf-sup test fails. We have no guarantee that the choices Hδ,1

0 (Ω) and Bδ,10 (Ωm) lead to a
stable h-φ-b-formulation. In practice, however, no particular issue has been observed on the
tested cases, and the numerical solution to the h-φ-b-formulation matches that of the standard
formulations.

Interpretation in the non-conducting case

It can be instructive to work out the inf-sup expression (3.130) in the non-conducting case, i.e.,
when Ωm ⊂ ΩC

c . For simplicity, let us also consider that the conducting domain Ωc is empty so
that h is described everywhere as a gradient.
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Figure 3.21: Simple 2D geometry for the inf-sup test on the h-φ-b-formulation. It consists of a magnetic
bar with relative permeability µr = 103 surrounded by air. If the magnetic bar is conducting, ρ =
1.7 × 10−8 Ωm. The cross-section of the bar is a square of side W . (a) The problem geometry and
parameters. (b) A triangular mesh for the whole domain. (c) A hybrid mesh with triangles in ΩC

m and
quadrangles in Ωm.
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Figure 3.22: Evolution of the inf-sup values with mesh refinement (δ → 0) on the simple 2D magnetic
bar problem (µr = 103), forHδ,10 (Ω) and Bδ,10 (Ωm). Four cases are considered: triangular or quadrangu-
lar mesh, and conducting (ρ = 1.7 × 10−8 Ωm) or non-conducting magnetic domain Ωm. The inf-sup
test fails in the conducting case, even if in practice, no stability issue is observed.

We notice that, for any h ∈ Hδ,1
0 (Ω), it is possible to choose a particular b ∈ Bδ,10 (Ωm) that

is exactly equal to h everywhere in Ωm, i.e., such that b = µ0h|Ωm . Hence, by choosing this
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magnetic flux density, we can rewrite the inf-sup expression as follows:

inf
h∈(Kδ)⊥

sup
b∈(Hδ)⊥

(h , b)Ωm

‖h‖Hδ,10
‖b‖Bδ,10

≥ inf
h∈(Kδ)⊥

(h , µ0h|Ωm)Ωm

‖h‖Hδ,10
‖µ0h|Ωm‖Bδ,10

= inf
h∈(Kδ)⊥

(h , µ0h|Ωm)Ωm√
(µ0h ,h)Ω

√
(ν0µ0h|Ωm , µ0h|Ωm)Ωm

= inf
h∈(Kδ)⊥

√
(µ0h ,h)Ωm

(µ0h ,h)Ω

, (3.131)

so that the inf-sup value cannot be smaller than the last infimum. If Ωm = Ω, the infimum
is equal to one and this proves the stability. But in the general case, Ωm does not cover Ω
and computing the value of the infimum is not trivial, due to the fact that h is chosen in the
orthogonal complement of the discrete kernel Kδ, given by Eq. (3.128). Of course, this is the
reason why the numerical inf-sup test for evaluating the inf-sup expression (3.130) is helpful in
practice. Here, we just want to look at the result of the generalized eigenvalue problem in the
light of the simplification of Eq. (3.131).

For illustration, Fig. 3.23 gives the distribution of eigenvalues for the mesh size δ = 0.06W ,
which corresponds to the square point in Fig. 3.22, and Fig. 3.24 shows the scalar potential of
the eigenvectors associated with the three selected eigenvalues in Fig. 3.23. For comparison,
eigenvalues for the conducting magnetic bar are also represented.

100 101 102 103
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10−1

100

0.504 0.706
1

Eigenvalue number i

√
λ
δ i

Ωm ⊂ ΩC
c

Ωm ⊂ Ωc

Figure 3.23: Distribution of the square root of the non-zero eigenvalues computed from Eq. (3.88) on the
simple magnetic bar geometry for the h-φ-b-formulation and the choice h ∈ Hδ,10 (Ω) and b ∈ Bδ,10 (Ωm)
on a triangular mesh in two cases. The smallest values are the inf-sup value βδ. Eigenvectors associated
with the highlighted points are represented in Fig. 3.24. The mesh for the conducting and non-conducting
cases were not the same.

For the eigenvectors illustrated in Fig. 3.24, one can approximate the expression
√

(µ0h ,h)Ωm

(µ0h ,h)Ω

, (3.132)
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(a) φ⊥,1,
√
λδ1 ≈ 1/2. (b) φ⊥,45,

√
λδ45 ≈

√
2/2. (c) φ⊥,200,

√
λδ200 = 1.

Figure 3.24: Scalar potentials φ⊥,i of the eigenvectors h⊥,i = grad φ⊥,i associated with the highlighted
eigenvalues in Fig. 3.23 for a non-conducting magnetic material. The brown curves delimit Ωm (inside)
and ΩC

m (outside). The colormap is: -1 (blue), 0 (green), +1 (red).

arising in the lower bound for the inf-sup constant in Eq. (3.131). For the first eigenvector,
large gradients of the scalar potential φ⊥,1 are located in the vicinity of (two) right corners of
the boundary ∂Ωm in this particular geometry, such that, in a first approximation,

(µ0 grad φ⊥,1 , grad φ⊥,1)Ωm
≈ 1/4 (µ0 grad φ⊥,1 , grad φ⊥,1)Ω , (3.133)

so that having
√
λδ1 ≈ 1/2 is not surprising. Note that modes h⊥,i ∈ (Kδ)⊥ must be harmonic

in ΩC
m to be orthogonal to functions in Kδ, in particular4. For the 45th eigenvector, the field is

almost symmetric on both sides of ∂Ωm, so that

(µ0 grad φ⊥,45 , grad φ⊥,45)Ωm
≈ 1/2 (µ0 grad φ⊥,45 , grad φ⊥,45)Ω . (3.134)

Such modes are associated with the plateau in Fig. 3.23 around level≈
√

2/2. Finally, the 200th

eigenvector is equal to zero in ΩC
m, so that

(µ0 grad φ⊥,200 , grad φ⊥,200)Ωm
= (µ0 grad φ⊥,200 , grad φ⊥,200)Ω , (3.135)

and Eq. (3.132) is equal to one. These last modes that are internal to Ωm are associated with
unit eigenvalues.

Interpretation in the conducting case

In the conducting case, the magnetic field can no longer be expressed as a gradient if the current
density is non-zero. The inf-sup expression now involves a curl-curl term in the denominator:

inf
h∈(Kδ)⊥

sup
b∈(Hδ)⊥

(h , b)Ωm√
(µ0 h ,h)Ω + (∆t0 ρ0 curl h , curl h)Ωc

√
(ν0 b , b)Ωm

. (3.136)

4The orthogonality condition for the elements h⊥ = grad φ⊥ of (Kδ)⊥ with respect to those in the kernel
Kδ is the weak form of a Laplace problem for the scalar potential φ⊥ in ΩC

m, with a zero net flux across ∂Ωm as a
boundary condition.
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Fields h ∈ (Kδ)⊥ with a large curl but a small support in Ωm will contribute to small value of
the fraction. As the mesh is refined, Fig. 3.22 shows that the values associated with these fields
become smaller and smaller.

3.6.4 Volume-coupled a-j-formulation

The volume-coupled a-j-formulation does not exhibit any stability issue for the function spaces
that have been introduced in Section 3.4.4. In practice, as already mentioned, problems involv-
ing a source electric field ea are however ill-conditioned and the resolution of the resulting
linear systems is not an easy task. This will be further illustrated in the next chapter.

In this section, we briefly justify the well-posedness of the a-j-formulation. Let us first
consider the situation without a source field ea. In this case, the a-j-formulation reduces to

(ν curl a , curl a′)Ω − (j ,a′)Ωc
= 0, (3.137)

− (a , j ′)Ωc
− (∆tρ j , j ′)Ωc

= − (an−1 , j
′)Ωc

. (3.138)

As for the other mixed formulations, with homogeneous essential boundary conditions, this
formulation has the structure of the perturbed saddle-point problem (3.54)-(3.55). In terms of
the norms

‖a‖2

Aδ,10

= (ν0 curl a , curl a)Ω , (3.139)

‖j‖2

J δ,10

= (∆t0 ρ0 j , j)Ωc
, (3.140)

the diagonal operators a(·, ·) and c(·, ·) are coercive and continuous. The Lax-Milgram theorem
implies solvability, and Eq. (3.74) gives a bound on the solution. Because we have not observed
any stability issue in the tested examples in this work, other than the difficulties with a source
electric field, that we believe are not associated with the structure of the saddle-point problem,
we do no pursue the analysis further.

Note that in the full formulation, the source electric field ea,i can be seen as a Lagrange
multiplier for imposing a given current intensity Īi in the conducting domain Ωci , with i ∈ CI :

(ν curl a , curl a′)Ω − (j ,a′)Ωc
= 0, (3.141)

(∂ta , j
′)Ωc

+ (ρ j , j ′)Ωc
+ (ea , j

′)Ωc
= 0, (3.142)

(j , e′a)Ωc
= −

∑

i∈CI
ĪiVi(e′a). (3.143)
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3.7 Summary

In this chapter, we proposed four different mixed finite element formulations suited for model-
ing systems with T2S and SFM, or thin superconducting tapes. We also described their space
discretization, taking care of verifying the stability conditions associated with the resulting per-
turbed saddle-point problems. In particular, the surface-coupled h-φ-a and t-a-formulations
present numerical oscillations if the discrete function spaces are not chosen properly. Stability
is obtained by a local enrichment of the function space of one of the two fields involved in these
formulations.

The four mixed formulations introduced here in addition to the two standard formulations
presented in Chapter 2 offer a large variety of possibilities for modeling systems with T2S.
Mainly because of the nonlinearity of the equations, all choices are however not equivalent. It is
the aim of the next chapter to compare the numerical performances of the different formulations,
with the objective of determining general recommendations on which formulation to choose for
different types of problems.
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Chapter 4

Numerical performance of the
formulations

In this chapter, we compare the performance of the standard and mixed formulations presented
in the Chapters 2 and 3, on different test cases. The performance of a formulation is evaluated
in terms of its accuracy and efficiency.

The accuracy of a formulation is its ability to produce accurate numerical results when ap-
plied on a discrete problem. A formulation is said to be accurate if the resulting numerical
solution is satisfyingly close to the solution of the continuous equations. A direct comparison
with analytical solutions is only possible when the said solutions are known; in the context of
type-II superconductors (T2S), this is rarely the case. When this is not possible, we rather com-
pare the solutions of different formulations with each other, for progressively refined meshes
and time discretization levels. We then rely on the extensive literature on standard and mixed
formulations, both for linear materials and T2S, to consider that these fine numerical solutions
can be taken as reference solutions.

We refer to this approach as the verification of the formulations, by contrast with a validation
of the models, that would involve comparing numerical results and experimental measurements.

The efficiency of a formulation is related to its abillity to provide accurate results in a small
number of evaluations, or in a small amount of time. Problems with T2S are nonlinear, so a
first indicator for efficiency is the total number of iterations that is needed to obtain an accurate
solution. Moreover, as the spatial discretization for different formulations does not necessarily
involve similar numbers of degrees of freedom, the size of the system to be solved at each it-
eration is not identical for all formulations. This is especially relevant in 3D problems [57]. In
addition to the number of iterations, we therefore also compare the computational time associ-
ated with each resolution.

Note that the objective of this work is not to propose high-performance resolutions of sys-
tems with T2S, but rather to compare the relative performance of different approaches and
formulations. As we implemented all the formulations in the same software, the open-source
finite element solver GetDP [59], we believe this comparison is fair for obtaining relative per-
formance indicators. We have not considered more recent and efficient finite element libraries

103
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such as Gmsh-Fem [193], that could be used to improve the absolute efficiency of the methods.
Such a consideration would constitute an interesting further work. For example, the assembly
step and the convergence criterion evaluation are, in the current implementation, two computa-
tionally expensive tasks that can be improved by parallelization.

In this work, all models and formulations are implemented in GetDP [59]. The geometry and
mesh generation is performed by Gmsh [60]. Both GetDP and Gmsh are open-source software.
Also, the models presented in this chapter constitute the main part of the open-source Life-HTS
toolkit [194] and are available online1.

In this chapter, we consider problems of increasing complexity. In Section 4.1, we illustrate
the main features of the two standard formulations on a simple 1D problem with a T2S bar. In
particular, we describe the consequences of the power law shape on the numerical performance.
As will be shown later, most observations made in this 1D problem can be generalized to
problems in higher dimensions.

In Section 4.2, we extend the conclusions to a 2D axisymmetric T2S system subjected to
an applied field, and we test the a-j-formulation, that proves to be an efficient choice for T2S
modelling in 2D. In Section 4.3, we consider the 2D problem of a single T2S tape with an
imposed current intensity. In particular, we apply the t-a-formulation. In Sections 4.4 and 4.5
we consider 2D and 3D problems involving both T2S and anhysteretic ferromagnetic materials
(SFM). We illustrate the advantages of using dedicated mixed formulations.

We summarize the observations and give practical recommendations in Section 4.6. As
will be shown, no formulation performs better than all other ones in all test cases. The best
formulation in terms of accuracy and efficiency is problem-dependent.

4.1 T2S slab (1D)

We start the analysis with a simple 1D problem. It consists of an infinite superconducting slab
of width W , subjected to an applied magnetic flux density bs. The direction of the applied field
is parallel to the slab. The geometry is infinite along the applied field direction, so there is no
demagnetizing field. Consequently, only the magnetic field inside the slab is unknown and only
the slab must be meshed.

A Cartesian coordinate system (x, y, z) is defined such that the symmetry plane at the half-
width of the slab coincides with the (y, z)-plane, with the applied field along the z-direction as
illustrated in Fig. 4.1. The magnetic field distribution inside the material only depends on x and
the original problem reduces to a one-dimensional problem. As the problem is symmetric, we
only model one half of the slab.

For this problem, we consider the two standard formulations: the h-φ and the a-formulations.
The objective is to highlight the impact of using the power law in terms of the resistivity
or in terms of the conductivity. Mixed formulations will be investigated later. For the h-φ-
formulation, one layer of quadrangular elements is considered, as depicted in orange in Fig. 4.1,

1Available online at www.life-hts.uliege.be.

www.life-hts.uliege.be
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Figure 4.1: Superconducting slab problem and domain definition for the two standard formulations.
Degrees of freedom for the h-φ-formulation are associated with the vertical edges, minus the rightmost
one. Degrees of freedom for the a-formulation are associated with the nodes, minus the leftmost one.

to build a 1D-like problem on a rectangular domain Ω = Ωc. On the top and bottom bound-
aries of the domain, we have h × n = 0, and degrees of freedom associated with edges on
these boundaries are fixed to zero. On the rightmost edge, we impose the essential condition
h×n|Γh = ν0bs. On the leftmost edge, we impose the natural symmetry condition e×n|Γe = 0.

For the a-formulation, a segment of line elements is considered as a 1D domain, as depicted
in green in Fig. 4.1. The vector potential is supported by perpendicular edge functions associ-
ated with the nodes of the domain. On the leftmost node, we impose the essential symmetry
condition a × n|Γe = 0. On the rightmost node, we impose the natural boundary condition
h× n|Γh = ν0bs.

In this section, we first verify the implementation against an approximate analytical solution,
and we compare the numerical results of both formulations in terms of accuracy. We then
briefly discuss the possibility of using large time steps in some situations. Finally, we conclude
by comparing the formulations in terms of their efficiency. We will see that we reproduce the
results that were predicted in Section 2.7.2 by models with a single degree of freedom.

4.1.1 Verification with a scaling solution

The magnetic field in a zero-field cooled slab subjected to a linearly increasing applied field
obeys a scaling equation. An approximate solution to this scaling equation is proposed in [95].
For information, it is presented in Section B.4 in Appendix. The validity of the approximate
solution is limited to the first flux penetration and breaks down when the front reaches the
symmetry line [95]. In this section, we verify the implementation of the two standard finite
element formulations on this 1D problem.

The superconducting slab is described by a power law with the constant values n = 40 and
jc = 3 × 108 A/m2. We apply a linear ramp of magnetic flux density from 0 to 10 T, with a
rate of 5 T/s. The numerical domain is discretized with a number of elements Ne, describing
the number of quadrangles for the h-φ-formulation and the number of nodes (minus one) in the
a-formulation. The time step is denoted as ∆t.
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Numerical solution of the h-φ-formulation

With h ∈ Hδ,1(Ω), the magnetic field is along ẑ, piecewise linear and continuous in Ω = Ωc.
The current density is element-wise constant and not continuous.

We run a 1D-like finite element model with a relative tolerance of εrel = 10−10 for the
convergence criterion, based on the power estimate P , and Newton-Raphson iterations for lin-
earization. Fig. 4.2 compares the numerical solution and the approximate analytical solution
for two different discretization levels.
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(c) Magnetic flux density, fine mesh.

0 2 4 6 8 10 12

0

0.5

1

x (mm)

−
j y
/j

c
(-

)

0 2 4 6 8 10 12

0

0.5

1

x (mm)

−
j y
/j

c
(-

)

(d) Current density, fine mesh.

Figure 4.2: Comparison between the numerical solution of the h-φ-formulation (orange curves) and the
approximate analytical solution (gray curves) of the scaling equation for n = 40 and jc = 3×108 A/m2.
Four time instants are considered: 0.25, 0.5, 0.75 and 1 s, and two different discretization levels are
compared. Coarse mesh: Ne = 50 and ∆t = 0.01 s. Fine mesh: Ne = 500 and ∆t = 0.001 s.

The flux front position is accurately represented, as well as the shape of the magnetic flux
density distribution. For the coarse mesh, a small oscillating pattern of b is visible over a few
elements ahead of the front, see the zoom in Fig. 4.2(a). The largest difference with the ap-
proximate analytical solution is however only around 50 mT, which is small with respect to the
average amplitude of the magnetic flux density in the slab. The current density is proportional
to the spatial derivative of h = ν0b and these oscillations thus lead to non-negligible errors on
the current density profile, ahead of the front. When the mesh is refined, the oscillations of b
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decrease in amplitude, but because the slope of these oscillations does not necessarily decrease,
a similar error is still observed in the current density profile. However, because it is limited
to a few elements, the spatial extent of this error decreases as the elements shrink with mesh
refinement.

When the spatial and time discretization are refined, the numerical solution is observed to
converge steadily towards the approximate solution of the scaling law. With Ne = 5000 and
∆t = 0.001 s, the largest difference between the numerical and analytical magnetic flux density
distributions is only 0.15 mT, and is still located at the front position.

For verification, the same problem is solved with Picard iterations. This method has been
characterized in Chapter 2 as possibly leading to iteration cycles. This is indeed observed here.
When the time step is not small enough, the iterations enter cycles that prevent the method
from converging. The required time step for avoiding cycles is much smaller than the time step
required for a convergence with the Newton-Raphson method. Combined with the fact that
the Picard iterations exhibit a slower rate of convergence, this leads to very time-consuming
simulations. Nevertheless, when it converges, the solution quality is identical to that obtained
with the Newton-Raphson method.

In summary, for a given spatial and time discretization, when linearization methods do not
cycle, they provide the same results. We consider the numerical results to be accurate because
they rapidly converge towards the approximate analytical solution. The only noticeable error
is observed ahead of the flux front and consists in small amplitude oscillations of b, and os-
cillations of j of larger amplitude over a few elements. However, the importance of this error
steadily decreases as the mesh is refined.

Numerical solution of the a-formulation

With a ∈ Aδ,1(Ω), the vector potential is along ŷ, piecewise linear and continuous in Ω = Ωc.
The magnetic flux density is along ẑ, element-wise constant and discontinuous. The electric
field is expressed as a finite difference approximation of the time derivative of the vector po-
tential. It is thus also piecewise linear. The current density is obtained with the power law
involving the nonlinear conductivity.

We run a 1D finite element model with a relative tolerance εrel = 10−8 for the conver-
gence criterion based on the power estimate P and Picard iterations for linearization. Fig. 4.3
compares the numerical solution and the approximate analytical solution for two different dis-
cretization levels.

With both coarse and fine meshes, the magnetic flux density and the flux front position are
accurately represented. On the other hand, the current density profile suffers from large errors
ahead of the flux front, especially on the coarse mesh. This is not surprising. Oscillations are
observed in the vector potential over a few elements ahead of the flux front, as was the case for
the magnetic field in the h-φ-formulation. The electric field, which is a time derivative of the
vector potential, is thus also subject to those oscillations, and small values of the electric field
are highly amplified by the power law when computing the current density. Due to the shape
of the power law, this strong amplification of errors is restricted to small values of the electric
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Figure 4.3: Comparison between the numerical solution of the a-formulation (green curves) and the
approximate analytical solution (gray curves) of the scaling equation for n = 40 and jc = 3×108 A/m2.
Four time instants are considered: 0.25, 0.5, 0.75 and 1 s, and two different discretization levels are
compared. Coarse mesh: Ne = 50 and ∆t = 0.01 s. Fine mesh: Ne = 500 and ∆t = 0.001 s.

field. Consequently, this oscillating pattern is only observed in non-penetrated regions. When
the mesh is refined, the error persists but, because it spreads over a few elements, its spatial
extent is reduced.

When the time step is reduced together with the mesh refinement, the numerical solution
converges steadily towards the approximate solution to the scaling law, similarly to the situation
for the h-φ-formulation.

Oscillations also arise with second-order line elements. This is illustrated in Fig. 4.4, where
we consider linear elements enriched on the whole line Ω with the hierarchical second-order
perpendicular edge functions w2,e, as defined in Section 3.4.1. They allow to describe b with
piecewise linear functions in each element, not necessarily continuous between elements. Os-
cillating patterns in the current density profile are still present. Since no improvement is brought
by second-order elements, we keep linear elements in the following.

The same model is solved with the Newton-Raphson method as a linearization technique.
It was observed in Chapter 2 that this situation was very likely to give rise to iteration cycles.
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Figure 4.4: Comparison between the numerical solution of the a-formulation with second-order elements
(green curves) and the approximate analytical solution (gray curves) of the scaling equation for n = 40
and jc = 3 × 108 A/m2. Four time instants are considered: 0.25, 0.5, 0.75 and 1 s. Coarse: Ne = 50
and ∆t = 0.01 s.

This is observed here also. Without relaxation factors, the iterations do not converge, even for
very small time steps, but instead follow a cycle far from equilibrium between two solutions.
These cycles have the same origin as in models with a single unknown, as they are due to the
shape of the power law.

To conclude, the a-formulation produces accurate results with Picard iterations. Oscillating
patterns ahead of the flux front are more important than with the h-φ-formulation because of
the shape of the power law, but the associated error decreases steadily with mesh refinement.

4.1.2 Possibility of using large time steps

In some situations, we observe that the iterative techniques converge even with very large time
steps, while providing accurate magnetic flux density distributions. With the a-formulation and
Picard iterations, it has even been observed that the larger the time step, the easier the conver-
gence. A single-time-step method has already been discussed in [124, 72, 36]. To some extent,
such an approach is also possible with the h-φ-formulation and Newton-Raphson iterations.
This will be illustrated below. It can thus be tempting to use very large time steps to accelerate
the simulations. This possibility should however be exploited with care as not all quantities
are determined with accuracy when large time steps are used. In this section, we explore the
validity of this approach.

To illustrate the results, we consider the 1D slab problem. The magnetic flux and current
penetration profiles are compared for two time discretization levels: with a single time step,
and with 100 time steps for a given final value of the applied field. Materials with n = 10
and n = 100 are chosen, still with the constant critical current density jc = 3 × 108 A/m2.
Fig. 4.5 compares the corresponding numerical solutions of the h-φ-formulation. Results from
the a-formulation are similar.
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Figure 4.5: Comparison between the numerical solutions of the h-φ-formulation on the 1D slab geometry
for two time discretization levels for n = 10 and n = 100. Dashed curves correspond to the solution
obtained with a single time step whereas solid curve are obtained after 100 time steps (∆t = 0.01 s for
n = 10, and ∆t = 0.005 s for n = 100). Solid curves coincide well with the approximated analytical
solution from [95] (not represented in the figure). The legend is the same for both figures.

As can be seen in the figure, even if the method converges in the four cases, there is a large
error on the magnetic flux density distribution and the current density profile for the low power
exponent n = 10. Clearly, the single-time-step approach is not accurate in that case. However,
with a larger value of n, both time discretization levels provide an accurate description of b and
j. Using large time steps in this case may be interesting to get fast results, especially with the
a-formulation, which is particularly robust.

Results in Fig. 4.5 hint that the size of the time step has a limited influence on b and j for
large values of the power law parameter n. As discussed in the following paragraphs, this is
however not the case for all other quantities.

In the Bean model [80] limit (n→∞) and with a linear ramp of applied field, the magnetic
flux density distribution is linear in space and the flux front propagates at constant speed. In
the finite element model, time derivatives are estimated by a finite difference approximation
(backward Euler method). This approximation amounts to replacing the instantaneous increase
rate of the magnetic flux density by its average increase rate over the considered time step. This
is illustrated in Fig. 4.6 in the extreme case of a single time step for the whole time interval
from a virgin state. In this situation, the time derivative is underestimated almost everywhere
in the material. If more time steps are considered, the underestimation error is localized near
the front and its influence on the numerical solution is thus reduced. A power law model with a
finite exponent n yields a different distribution but the finite difference still underestimates the
time derivative. The error on the time derivative is, in a first approximation, equivalent for all
values of n, up to the Bean model limit.

The error on time derivatives induces an error on the electric field e: weakly via Faraday’s
law curl e = −∂tb in the h-φ-formulation, and strongly via e = −∂ta in the a-formulation.
This is where the influence of n comes into play. For large values of n, the resulting error on
the current density j is small because of the low differential conductivity in the power law for
‖j‖ close to jc. But when the value of n decreases, the differential conductivity for ‖j‖ close



Section 4.1 T2S slab (1D) 111

t4

t3

t2

t1

t0

t

x3 x2 x1 x0

bs

x3 x2 x1 x0

ttt

h h h h

Figure 4.6: Illustration of the error induced by the finite difference approximation of the time derivative
in the case of large time steps. Left: magnetic flux density distribution inside the superconductor at
several time instants for a linearly increasing source field in the Bean model limit. Right: time evolution
of the magnetic flux density at several spatial points (bold blue curves) and illustration of the finite
difference approximation (dash-dotted lines) in the case of a single numerical time step. Time instants
t0, . . . , t4 are equidistant.

to jc increases, which in turn increases the error on j. Moreover, because e is underestimated,
j is also underestimated and this provokes the need for a larger penetration distance to reach
h = hs at the material-air interface, as observed in Fig. 4.5.

As a consequence, even though the use of very large time steps provides accurate current and
magnetic field distributions when n is large enough, time derivatives are badly approximated
and lead to non-negligible errors on the electric field. Power quantities and losses rely on
time derivatives and on the electric field, hence, they also suffer from important errors. This is
illustrated in Fig. 4.7. A single time step may cause an error as high as 50% on the instantaneous
power estimate P =

(
∂tb ,h

)
Ω

+
(
j , e

)
Ωc
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Figure 4.7: Influence of the number of time steps on the solution accuracy for n = 10, 20, 40 for the
h-φ and a-formulations. Starting from a virgin state at t = 0 s, a ramp of applied field with rate 2.5 T/s
is applied during T = 1 s. Number of elements: Ne = 50. One reference solution is computed for
each formulation, it is the numerical solution obtained with 1000 time steps. (a) Relative difference
on the power estimate P compared to the associated reference solution at the end of the simulation.
(b) Relative difference on the magnetic flux density: it is computed as the largest difference with the
reference solution at the end of the simulation, normalized by 2.5T. The legend is the same as in (a).
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4.1.3 Comments on the power law

Combining the observations of Sections 4.1.1 and 4.1.2, we can distinguish two distinct con-
sequences of the nonlinearity of the power law on the numerical behavior of the finite element
models. We propose in Fig. 4.8 to look at two main regions on the differential conductivity
graph: Region 1, for which dj/de� jc/ec and Region 2, for which dj/de� jc/ec.

j/jc
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Region 1:

Region 2:

Figure 4.8: Representation of the power law for type-II superconductors and the two distinct regions
for the associated differential conductivity dj/de. The high differential conductivity in Region 1 is
responsible for numerical oscillations of the current density in flux-free regions, especially for the a-
formulation. The small differential conductivity in Region 2 allows for large time steps to be used in
order to get a good approximation of the current density and the magnetic field.

In Region 1, the current density is extremely sensitive to the electric field. The sensitivity
increases with n. Notably, in the a-formulation, the current density j is calculated from e =
−∂ta and this high sensitivity induces large amplitude oscillations in the flux-free region of the
superconductor, as was observed in Fig. 4.3. In the h-φ-formulation, this effect is much less
important, as j is expressed as curl h. The magnetic field also exhibits small oscillations after
the flux front, but they are not strongly amplified by a nonlinear law.

In Region 2, the current density is much less sensitive to the electric field. The sensitivity
decreases with n. The existence of this small differential conductivity allows for very large
time steps to be used. In the a-formulation, a large error on e = −∂ta does not induce a large
error on j, so that the resulting current density distribution remains accurate. Similarly, in the
h-φ-formulation, a large error on curl e = −∂tb does not translate into a large error on j in
penetrated regions.

4.1.4 Efficiency of the formulations

In this section, we comment on the efficiency of the standard formulations applied on a simple
1D axisymmetric problem, with a cylinder of radius R = 12.5 mm. We compare the formu-
lations on a similar spatial discretization, Ne = 50 quadrangles for the h-φ-formulation and
Ne = 50 line segments for the a-formulation, and with identical time steps ∆t. As an indica-
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tor of the efficiency, we consider the total number of iterations, equal to the number of solved
linear systems, needed to model the response to a given external field. Because the number
of degrees of freedom and the structure of the matrix are equivalent in both formulations, the
number of iterations is proportional to the computational time for both formulations with direct
linear solvers.

In the superconducting cylinder, we choose n = 20 and jc = 3 × 108 A/m2. Three applied
field functions are considered, as illustrated in Fig. 4.9: triangle and sinusoidal cycles with peak
magnetic flux density of 10 T and a “creep” source that consists in two linear ramps followed
by a zero applied field. These excitations fully penetrate the cylinder at some point (in the Bean
model limit, the full penetration field is µ0Rjc = 4.71 T). Time discretization is fixed using
the results in Fig. 4.7: with n = 20, using 10 time steps for a ramp of applied field from 0 to
2.5 T yields errors on the power estimate smaller than 5% and maximum errors on the magnetic
flux density distribution smaller than 1%, which is considered accurate enough. By extension,
the time step here is fixed to 0.05 s, which also provides 10 steps for each 2.5 T change in the
triangle source. The same time step is chosen for the other two sources.
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Figure 4.9: Time evolution of the three different applied source field functions.

For the h-φ-formulation, we iterate with a Newton-Raphson method, a relative tolerance
εrel = 10−8, and we consider three different possibilities for choosing the initial estimate: ze-
roth, first, and second-order extrapolations of the last solutions, as was proposed in Section 2.6.
For the a-formulation, we iterate with a Picard method and we consider the same three possi-
bilities for choosing the initial estimate. Convergence difficulties are observed with the Picard
method if the relative tolerance is chosen smaller than εrel = 10−5, so that we choose εrel = 10−5

in the following. The choices for the initial iterates are illustrated in Fig. C.1 in Appendix for
the case of a linear ramp of applied field.

The results are given in Table 4.1. The first observation is that the impact of the first estimate
is significant, the best choice for each formulation leads to a strong reduction of the number of
iterations in all cases, compared to other choices. With the h-φ-formulation, the first-order
extrapolation is beneficial for the convergence whereas with the a-formulation, the second-
order extrapolation appears to be more interesting.

The second observation is that the a-formulation requires many more iterations (and com-
putational time) compared to the h-φ-formulation. This conclusion would be even more pro-
nounced if identical tolerances were considered. This is related to the lower convergence rate
of the Picard method with respect to the Newton-Raphson method. As an illustration, Fig. 4.10
shows the evolution of the norm of the system residual, Eq. (2.72), for three different time steps.
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Formulation h-φ-formulation a-formulation
Linearization Newton-Raphson Picard
Extrapolation 0th 1st 2nd 0th 1st 2nd

Triangle 5 200 2 580 4 128 23 475 6 093 4 268
Sine 4 933 2 830 4 109 24 307 11 504 7 389
Creep 3 893 2 556 3 964 67 293 45 994 38 566

Table 4.1: Number of iterations for simulating the magnetic response to three source fields, withNe = 50
and ∆t = 0.05 s, for the two standard formulations and three different choices for the initial iterate. Note
that the tolerance on the power estimate was εrel = 10−8 for the h-φ-formulation and εrel = 10−5 for
the a-formulation. The bold numbers are the minima of each line.

When they converge, the Newton-Raphson iterations progressively approach the solution.
The convergence rate is first linear, the residual is divided by a constant value at each iteration,
and the flux propagates steadily. Fig. C.2 in Appendix illustrates how the front progressively
propagates with the h-φ-formulation for two different extrapolation methods. Many iterations
can be needed if the time step is large. Then, the convergence becomes quadratic and a few
iterations are enough for reaching a very small residual.

Note that Fig. 4.10(a) shows cases for which the method converges. As already mentioned,
using Newton-Raphson iterations with the h-φ-formulation and large time steps is not as ro-
bust as using Picard iterations with the a-formulation in the same situation. In some cases,
the Newton-Raphson algorithm diverges and the iterations must then be started again using a
smaller time step.

By contrast with Newton-Raphson iterations, Picard iterations do not exhibit a monotonous
decrease of the residual. Fig. C.3 in Appendix shows the evolution of the magnetic flux density
distribution with Picard iterations in two different cases. Picard iterations lead to less efficient
resolutions than Newton-Raphson iterations. However, as said above, they offer a more robust
behavior when using large time steps.
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Figure 4.10: Evolution of the norm of the residual ri = b − A(xi)xi with the iterations, for three
representative examples of time integration steps and for the two linearization techniques. (a) Newton-
Raphson iterations with the h-φ-formulation and the zeroth-order extrapolation. (b) Picard iterations
with the a-formulation and the first-order extrapolation.
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4.2 T2S cylinder (2D)

The next problem consists of a superconducting bulk cylinder subjected to an external applied
field bs, as illustrated in Fig. 4.11(a). This test case is comparable to benchmark 4 of the HTS
modeling website [195]. The bulk superconductor has a radius R = 12.5 mm and a height H =
10 mm. The critical current density is constant and equal to jc = 3 × 108 A/m2. The external
field is applied parallel to its axis, the z-axis, so that the problem is 2D and axisymmetric. The
time evolution of the applied field is illustrated in Fig. 4.11(b) with bmax = 1 T and t1, t2, and
t3 equal to 5, 10, and 15 s, respectively.
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(a) Cylinder geometry.

0 t1 t2 t3
0
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(b) External applied field bs(t).

Figure 4.11: Superconducting cylinder test case. An external applied field bs is applied parallel to a T2S
cylinder, the problem is axisymmetric and is solved in 2D. (a) Problem geometry. The dash-dotted gray
segment is the cut along which the magnetic flux density is sampled for Fig. 4.12. Only a part of the
meshed air domain is represented in the figure, but the full half-disk is modelled. (b) Time evolution of
the applied field bs(t).

The outer boundary Γout is placed at a distance of 10 cm from the center of the cylinder. This
is a bit less than 10 times the cylinder radius. Far from the cylinder, the magnetic field generated
by currents flowing in the cylinder can be approximated by that generated by a magnetic dipole
[196]. It decreases as 1/r3 [197] in the axisymmetric situation we consider here. The truncation
error is therefore expected to be of the order of 0.1% of the main field close to the cylinder, in
a first approximation. We consider this to be an acceptable error. Mapping the outer boundary
to infinity helps to reduce the truncation error [198]. This method has been studied in detail in
[199] in the context of T2S, but is not considered here.

4.2.1 Comparison of the solutions

We compare the numerical solution obtained with three formulations. We consider both stan-
dard formulations, h-φ and a, as well as the volume-coupled a-j-formulation. The other for-
mulations, h-φ-a, t-a, and h-φ-b are not relevant in this case.

For the h-φ-formulation, the external boundary Γout is put in Γh and the essential boundary
condition (h − hs) × n|Γout = 0 is imposed via a Dirichlet condition on the magnetic scalar
potential φ. The symmetry boundary Γsym is put in Γe and the associated homogeneous natural
boundary condition b · n|Γsym = 0 is implicitly imposed in the weak form.
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For the a and a-j-formulations, the whole boundary Γout ∪ Γsym is put in Γe. The essential
boundary conditions b · n|Γsym = 0 and (b − bs) · n|Γout = 0 are imposed via Dirichlet condi-
tions on the magnetic vector potential a, taking care of the axisymmetry of the problem. The
additional Dirichlet condition j × n|Γsym = 0 is imposed for the a-j-formulation.

Note that the boundary conditions on Γout are not equivalent in the two cases. Because
Γout is not at an infinite distance from the T2S cylinder, this introduces a systematic modelling
difference between the formulations.

The azimuthal current density distributions obtained with the three formulations are rep-
resented in Fig. 4.13 at the three instants t1, t2, and t3, with a rather fine mesh (≈ 4 × 104

elements). As already observed with the 1D slab problem, the current density obtained from
the a-formulation exhibits oscillations ahead of the sharp flux penetration front, because small
oscillations in the unknown field a are strongly amplified by the power law. To a lesser ex-
tent, oscillations are also present with the a-j-formulation. By contrast, the h-φ-formulation
produces a much cleaner front. This is further illustrated in Fig. 4.14, where the situation is
worse with a coarser mesh. For the a-j-formulation on the coarse mesh, the transition between
opposite current densities is badly described along the represented segment because j is forced
to be element-wise linear and continuous.

As for the magnetic flux density, results from the three formulations nicely match each other,
as shown in Fig. 4.12, where its z-component is sampled along a segment, 2 mm above the
cylinder at times t1, t2, and t3. The solutions inside the T2S cylinder also almost coincide
(not represented in the figures). With mesh and time step refinement, the solutions of the
three formulations are seen to approach each other (both globally and locally). The global
convergence is illustrated in Fig. 4.15. Compared to the tape problem that will be presented in
the next section, a very fine mesh is however necessary to get a difference smaller than 1%.
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Figure 4.12: Distribution of the z-component of the magnetic flux density along the cut represented
in Fig. 4.11(a), 2 mm above the cylinder, at the instants t1, t2 and t3 for a maximum applied field
bmax = 1 T, n = 20, and jc = 3 × 108 A/m2. Time step: ∆t = t1/50. Fine mesh with ≈ 4 × 104

elements. The highlighted circles illustrate that the difference between the formulations are of the order
of the inter-element variations of the solutions at the considered space discretization level.
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Figure 4.13: Current density distribution in a slice of the bulk cylindrical geometry at the instants t1, t2,
and t3 for a maximum applied field of 1 T, n = 20, and jc = 3 × 108 A/m2. Time step: ∆t = t1/50.
Fine mesh with ≈ 4× 104 elements. White areas are free of current, light gray areas carry out-of-plane
current densities and dark gray areas carry opposite current densities. Top row: h-φ-formulation. Middle
row: a-formulation. Bottom row: a-j-formulation.
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Figure 4.14: Current density profiles as a function of the distance r to the symmetry axis, at the mid-
height of the cylinder, at time t3 for a maximum applied field of 1 T, n = 20, and jc = 3 × 108

A/m2. Upper figure: coarse mesh of ≈ 2000 nodes. Lower figure: finer mesh with ≈ 4 × 104 nodes.
The percentages inside the highlighted circles are the local relative differences between the h-φ and
a-j-formulations.
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Figure 4.15: Change of AC losses
∫ t3

0 (j , e)Ωc
dt, relative to an accurate solution, for various numbers

of degrees of freedom, for the two formulations, with a constant time step ∆t = t1/50, n = 20, and
jc = 3× 108 A/m2. The reference value is determined as the average of the solutions obtained with the
finest mesh for the h-φ and a-formulations.
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4.2.2 Efficiency of the formulations

The convergence speeds of the different methods are not identical. Depending on the formula-
tion, the linearization technique and the choice for the first iterate, the iterative techniques may
require very different numbers of iterations to converge. Because the simulation time directly
depends on the total number of iterations, this affects the calculation speed. As was done for
the 1D slab problem, we now compare the three formulations in terms of their efficiency.

We consider three discretization levels: coarse, medium, and fine, defined by a multiplier α
equal to 4, 2, and 1, respectively. The mesh size varies from 0.3α mm in the cylinder to 3α mm
on the outer surface Γout. The number of time steps from 0 to t3 is fixed to 300/α. The power
law exponent is fixed to n = 25 and the critical current density is also kept constant and equal
to jc = 3 × 108 A/m2. The same convergence criterion is used for the three formulations, it is
based on the power estimate, with a relative tolerance of εrel = 10−6 on its change between two
iterations.

Results are presented in Table 4.2 in terms of the total number of iterations for the full
simulation. As for the 1D slab, the a-formulation suffers from the low convergence rate of
the Picard method. Its associated mixed volume-coupled a-j-formulation demonstrates a much
more efficient numerical behavior. As the introduction of the auxiliary field j allows for the
resistivity to be involved instead of the conductivity, Newton-Raphson iterations can be used
without leading to iteration cycles. It is observed that this leads to a number of iterations that is
even smaller than with the h-φ-formulation.

Note also that if meshes are equivalent, the number of degrees of freedom are not identical
for the different formulations. For the fine mesh, the h-φ, a, and a-j-formulations involve
14 438, 10 916, and 12 624 degrees of freedom, respectively.

As in the 1D bar problem, the choice for the first iteration has a non-negligible influence
on the resolution efficiency. Both the h-φ and a-j-formulations perform better when the last
solution is taken as a first estimate, whereas a second-order extrapolation is still the best choice
for the a-formulation.

Formulation h-φ-formulation a-formulation a-j-formulation
Linearization Newton-Raphson Picard Newton-Raphson
Extrapolation 0th 1st 2nd 0th 1st 2nd 0th 1st 2nd

Cylinder
Coarse 570 612 824 16 382 10 905 9 182 480 549 608
Medium 1 287 1 344 1 808 34 858 20 935 16 654 904 1 021 1 148
Fine 2 671 2 751 3 780 74 929 41 467 27 006 1 760 1 989 2 235

Table 4.2: Total number of solved linear systems for the simulation from 0 to t3 in the cylinder case,
for three discretization levels (α = 4, 2, 1), n = 25, three extrapolation techniques with the h-φ, a, and
a-j-formulations. Relative tolerance for the convergence criterion: εrel = 10−6. Bold numbers are the
minima of each line. Simulation times for the fastest simulations of each line (bold numbers) are, on a
single Intel Core i7 2.2 GHz CPU: 30” (coarse), 3’16” (medium), and 27’07” (fine).
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4.3 T2S tape (2D)

The problem of this section consists of a superconducting tape with an imposed current. The
tape has a large aspect ratio: its thickness isw = 1 µm and its width isW = 12 mm. The critical
current density is chosen constant and equal to jc = 2.5 × 1010 A/m2. Cartesian coordinates
are introduced with the x-axis along the width of the tape and the y-axis along its height. A
sine-wave current intensity I(t) = Imax sin(2πft) is imposed, with a frequency f = 50 Hz and
an amplitude Imax = FIc, where Ic = Wwjc is the critical current intensity and F ∈ [0, 1] is a
constant. The outer boundary Γout is circular and placed at a distance of 6 cm from the center
of the tape. This test case is comparable to benchmark 1 of the HTS modeling website [195].
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Figure 4.16: Simple tape test case (not to scale). A current intensity I(t) is imposed in the tape. The
problem is 2D. (a) Problem geometry. The plane symmetry is not exploited here. (b) Time evolution of
the imposed current intensity.

4.3.1 Comparison of the solutions

As for the T2S cylinder problem, we first compare the numerical results obtained with different
relevant formulations. For this problem, in addition to the standard formulations, we consider
the t-a-formulation, featuring a thin-shell approximation. The a-j-formulation proved to be an
efficient choice for modeling bulk T2S, we will show here that it suffers from bad conditioning.

For the standard formulations and the a-j-formulation, the tape is meshed with a single
layer of first-order structured quadrangular elements. The tape can typically be described with
a reasonable accuracy with ≈ 50-100 elements along its width [200], so the aspect ratio of
quadrangles can be as high as ≈ 100-200. Discretizing the tape with a small number of el-
ements across its thickness has been proven to produce accurate field distribution and power
loss evaluation [200, 6], at least for simple cable configurations as is the case here [51]. With
only one layer of elements, we only model an average current density over the thickness. This
approximation is also the main assumption of the t-a-formulation, in which the tape is repre-
sented as a line segment and first-order line elements are used along its width. In all cases, we
mesh the air with triangular elements. Extensions to more complex cable configurations that
would require more element layers are investigated in [51], using an efficient h-φ-formulation
with a thin-shell approximation.
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In all formulations, Γout is put in Γe in order to impose (strongly or weakly) the homogeneous
boundary condition b · n|Γout = 0. The total current I = I(t) is imposed via (strong or weak)
global conditions.

We run the four formulations on a relatively fine mesh of approximately 3000 elements. The
a-j-formulation faces important numerical issues that we discuss in the next paragraph, but
the results of the other three formulations nicely match each other. Fig. 4.17 shows the current
density and magnetic flux density distributions inside the tape after one fourth of a period. With
mesh and time refinement, the solutions of the h-φ, a, and t-a-formulations converge to each
other and the solutions are considered accurate, see Fig. 4.18. Note that the current density
profile is still very sensitive to errors in the a field with the a-formulation, especially with large
n values. The convergence criterion must be strong enough if accurate current density profiles
are sought with the a-formulation.
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Figure 4.17: Current density (z-component, up) and magnetic flux density (y-component, down) distri-
butions inside the tape at time instant t = 1/(4f) for n = 25 (left) and n = 100 (right), jc = 2.5× 1010

A/m2, and F = 0.5 or F = 0.9. Results from three formulations are presented, as the tested linear
solvers did not manage to solve linear systems associated with the a-j-formulation. Only one half of
the tape is represented in each case. The legend is the same for all figures. The percentage inside the
highlighted circle is the local relative difference between the solutions of the h-φ and a-formulations.
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Figure 4.18: Change of AC losses
∫ tf

0 (j , e)Ωc
dt, with tf = 5/(4f), relative to an accurate solution,

for various numbers of spatial degrees of freedom, for three formulations, with a constant time step
∆t = 1/(120f), n = 25, jc = 2.5 × 1010 A/m2, and F = 0.9. The accurate solution is the average of
the values obtained with the h-φ and t-a-formulations on the finest mesh.

Failure of the linear solver on the a-j-formulation

The default direct sparse solver from MUMPS [201] fails to solve the linear system associated
with the a-j-formulation. We observed that this is linked to the global condition on the current
intensity. If we replace the applied current by an applied field, and remove the global conditions,
which implicitly implies that V = 0 on the tape, no issue is encountered and the solver succeeds
to solve the linear system, and performs well, as for the cylinder case in Section 4.2.

On very coarse meshes, i.e., with a small number of degrees of freedom and hence a small
system matrix size, no issue is encountered. We also observed that a simple preconditioning
consisting of multiplying the equation related to the global constraint by a small number, e.g.,
µ2

0, allows for slightly finer meshes to be solved. This however does not suffice to circumvent
the difficulty with a practical spatial discretization.

In [129], authors solved the same formulation with the Matlab differential algebraic equation
solver ode15s [202, 203] and did not observe any solving difficulties. We also tried the
default Matlab 2018a direct solver2 [204] on systems that were observed to be problematic
with MUMPS. This default solver tackles the linear systems without troubles.

Finally, it is interesting to note that on 3D problems, the solving issues do no longer appear.
When modeling a straight tape in a 3D geometry, no difficulty is faced with the a-j-formulation,
whether we introduce global constraints or not.

Because we had efficient alternative formulations for solving the tape problem in 2D, i.e.,
the h-φ and t-a-formulations, we have not investigated further the cause for these numerical
difficulties. Analyzing deeper the matrix structure arising with global variables in 2D, as well
as looking for efficient preconditioning methods are interesting further works.

2Called with the command x = A\b, for a matrix system Ax = b.
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4.3.2 Efficiency of the formulations

As for the previous test cases, the convergence speed of the three formulations is not identical.
Strong differences in terms of number of iterations are observed.

We consider three discretization levels: coarse, medium, and fine, defined by a multiplier
α equal to 4, 2, and 1, respectively. A number of 200/α elements are used in the tape, quad-
rangles for the h-φ and a-formulations, and lines for the t-a-formulation, and the mesh size
progressively increases away from the tape up to a mesh size of 3α mm on Γout. The power
exponent is fixed to n = 25. We model the magnetic response to the sinusoidal current defined
in Fig. 4.16(b) with F = 0.9, from t = 0 to t = 5/(4f), using a number of 300/α time steps.

Results are gathered in Table 4.3. As already observed on the other problems, the Picard
iterations that must be used for the a-formulation make this formulation much more compu-
tationally expensive than the others. The h-φ-formulation offers the most efficient resolution,
with first or second-order extrapolations for the initial iterates, closely followed by the t-a-
formulation, with second-order extrapolation. Note that the numbers of degrees of freedom
associated with the three formulations are comparable, so that the h-φ-formulation is also the
fastest choice in this case.

Formulation h-φ-formulation a-form. t-a-formulation
Linearization Newton-Raphson Picard Newton-Raphson
Extrapolation 0th 1st 2nd 2nd 0th 1st 2nd

Tape
Coarse 4 124 836 455 1 827 2 310 744 549
Medium 8 558 983 732 4 222 4 734 1 259 832
Fine 17 266 867 1 058 8 172 9 941 2 185 1 435

Table 4.3: Total number of solved linear systems for the simulation from 0 to 5/(4f) in the tape case,
for three discretization levels (α = 4, 2, 1), different extrapolation techniques with the h-φ, a, and
the t-a-formulations. Relative tolerance for the convergence criterion: εrel = 10−6, except for the a-
formulation, for which εrel = 10−4. Bold numbers are the minima of each line. Simulation times for
the fastest simulations of each line (bold numbers) are, on a single Intel Xeon 2 GHz CPU: 20” (coarse),
2’50” (medium), and 14’ (fine).

4.4 T2S and SFM cylinders (2D)

The next problem is a hybrid structure made up of a T2S bulk cylinder placed below a SFM
cylinder, subjected to an external applied field bs(t), as illustrated in Fig. 4.19(a). Interactions
of T2S and SFM in such hybrid structures have been studied in [205, 206, 207, 92].

The cylinders have a common radius R = 12.5 mm and an identical height HT2S = HSFM =
5 mm. The external field is applied parallel to the cylinders axis, the z-axis, so that the problem
is 2D and axisymmetric. The time evolution of the applied field is illustrated in Fig. 4.19(b)
with bmax = 1.5 T and t1 = 5 s and t2 = 10 s. The outer boundary Γout is a half-circle placed at
a distance of 10 cm from the center of the T2S cylinder.
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In the T2S, the critical current density is chosen constant and equal to jc = 3 × 108 A/m2,
and the power exponent is fixed to n = 20. The SFM is assumed non-conducting and has a
field-dependent permeability described by the simple form Eq. (1.9), with the parameter values
µ0m0 = 1.31 T and µr,0 = 1700. This law has the analytical inverse given by Eq. (B.31) for the
reluctivity.
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(a) Cylinders geometry.
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(b) External applied field bs(t).

Figure 4.19: Hybrid T2S-SFM test case. An external field bs is applied parallel to an T2S-SFM hybrid
structure. The problem is axisymmetric and is solved in 2D. (a) Problem geometry. The two dash-dotted
lines are segments along which the numerical solution is compared. Only a part of the meshed air domain
is represented, but the full half-disk is modelled. (b) Time evolution of the applied field bs(t).

4.4.1 Comparison of the solutions

We compare the numerical solutions obtained with different relevant formulations. In addition
to the two standard h-φ and a-formulations, we consider the three mixed formulations that were
designed for handling models with both T2S and SFM: the h-φ-a, h-φ-b, and a-j-formulations.

For the h-φ-a-formulation, we place the air in the a-domain Ωa and we choose h ∈ Hδ,1(Ωh)
and a ∈ Aδ,2(Ωa) for stabilization. Placing the air in Ωa or in Ωh is nearly equivalent in terms
of number of degrees of freedom, because both the h and a fields are discretized with one
unknown per node in 2D. This is no longer the case in 3D, as will be illustrated in Section 4.5.
For the h-φ-b-formulation, we take b ∈ Bδ,1(Ωm).

The boundary conditions are the same as for the single T2S cylinder of Section 4.2, with
conditions for the h-φ-a and h-φ-b-formulations identical to those for the h-φ-formulation.

We run the five formulations from t = 0 to t = t2. As for the other models, we observe
that all methods provide numerical results that match each other. As an illustration, Fig. 4.20
shows the current density and magnetic flux density distributions along the mid-height horizon-
tal segment in the T2S cylinder, denoted as “Cut 1” in Fig 4.19(a). Note the non-zero radial
component, br, which is a result of the presence of the SFM cylinder, channelling flux lines
on top of the T2S cylinder [92]. As already shown before, the current density obtained from
the a and a-j-formulations exhibit stronger oscillations ahead of the flux front than the current
density obtained via h-conform formulations. The spatial extent of these oscillations decreases
when the mesh is refined. Fig. C.4 in Appendix shows the results obtained with a coarser mesh.

The magnetic flux density components along the mid-height horizontal segment in the SFM
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cylinder, denoted as “Cut 2” in Fig 4.19(a), is represented in Fig. 4.21. Again, all formulations
provide comparable results, the difference between the different curves being of the order of
the inter-element variations of br or bz. The same results but on a coarser mesh are presented in
Fig. C.5 in Appendix.

Global convergence is also checked. As an illustration, Fig. 4.22 shows the evolution of AC
losses in the T2S cylinder with mesh refinement for a given time discretization, for the five
considered formulations.
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Figure 4.20: Azimuthal current density (up) and magnetic flux density r and z-components (down)
along the mid-height horizontal segment in the T2S cylinder (“Cut 1” of Fig. 4.19(a)) at time t = t1
(left) and t = t2 (right). Results of five formulations are presented. Fine mesh resolution: α = 1 (see
Section 4.4.2). The legend is the same for all figures. The percentage inside the highlighted circle is the
local relative difference between the solutions of the h-φ and a-j-formulations.

4.4.2 Efficiency of the formulations

The five tested formulations perform differently in terms of numerical efficiency. In this sec-
tion, we compare the required number of iterations for a complete resolution, for the different
formulations and for various levels of spatial and time discretization.

We define three discretization levels: coarse, medium, and fine, defined by a multiplier α
equal to 4, 2, and 1, respectively. The mesh size varies from 0.3α mm in the cylinders to
3α mm on the outer surface. The initial time step is fixed to ακt2/240, with κ = 1 or 2.



126 Chapter 4 Numerical performance of the formulations

0 2 4 6 8 10 12

bz

br

r (mm)

b r
an

d
b z

(T
)

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

2

br

bz

r (mm)

h-φ-formulation
a-formulation

h-φ-a-formulation
h-φ-b-formulation
a-j-formulation

Figure 4.21: Magnetic flux density components along the mid-height horizontal segment in the SFM
cylinder (“Cut 2” of Fig. 4.19(a)) at time t = t1 (left) and t = t2 (right). Results of five formulations are
presented. Fine mesh resolution: α = 1 (see Section 4.4.2). The legend is the same for both figures.
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Figure 4.22: Change of AC losses
∫ t2

0 (j , e)Ωc
dt, relative to an accurate solution, for various numbers

of spatial degrees of freedom, for five formulations, with constant time step ∆t = t1/(60), n = 20,
and jc = 3 × 108 A/m2. The accurate solution is the average of the values obtained with the h-φ-b and
a-j-formulations on the finest mesh.

An adaptive time-stepping algorithm is used to handle divergent or non-converging itera-
tions. We use the procedure described in Section 2.6, with γ = 1/2, β = 2, ∆tmax equal to
the initial time step, ifast = imax/4. For the Newton-Raphson and Picard iterations, we choose
imax = 50 and imax = 500, respectively. These are heuristic values.

Results are presented in Tables 4.4 and 4.5. In all cases, the a-j-formulation together with a
zeroth-order extrapolation for the initial iterate demonstrates a better efficiency than the other
methods. Because it also involves less degrees of freedom (DOFs) than the other mixed formu-
lations, it is also the fastest in terms of computational time.

For coarse discretization levels especially, the h-φ-formulation encounters iterations cycles
that deteriorate its efficiency. With smaller time steps or with a hybrid linearization technique
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for the SFM that consists in switching from Picard to Newton-Raphson after a number of
iswitch = 10 iterations, the situation improves, but remains less efficient than the mixed for-
mulations.

It is interesting to notice that the number of iterations does not scale linearly with the number
of time steps. When it is multiplied by two from κ = 2 to κ = 1, the number of iterations is less
than doubled. The fact that reducing the time step helps providing a good initial iterate is not a
surprise, and was already hinted by iteration graphs in Section 2.7. For the a-formulation, the
effect of the time step is less marked, as the number of Picard iterations is much less dependent
on the initial iterate, as was shown in Section 2.7, too. The Picard method provides a very
robust convergence, allowing for large time steps to be used, as mentioned in Section 4.1.2. In
this example, a time step of ∆t = t1 = t2 − t1 already give a good first approximation of the
magnetic field and current density at time instants t1 and t2.

Formulation h-φ-form. a-form. h-a-form. h-φ-b-form. a-j-form.
Linearization T2S N-R Picard N-R N-R N-R
Linearization SFM N-R Hybrid N-R N-R N-R N-R
Extrapolation 1st 1st 2nd 0th 1st 0th 1st 0th 1st

Coarse
κ = 2 1 206 664 1 004 593 526 583 509 464 484
κ = 1 946 1 068 1 823 649 713 643 680 510 567

Medium
κ = 2 1 492 1 153 1 671 1 124 1 030 1 130 1 016 893 921
κ = 1 1 548 1 819 2 951 1 324 1 412 1 318 1403 961 1 121

Fine κ = 1 3 468 3 606 3 987 2 892 3 084 2 833 2 855 1 958 2 350

Table 4.4: Total number of solved linear systems for the hybrid T2S-SFM model from t = 0 to t = t2
for different discretization levels (α = 4, 2, 1, κ = 2, 1), different extrapolation techniques, and five
formulations. N-R stands for Newton-Raphson. For the hybrid method, iswitch = 10. Relative tolerance
for the convergence criterion: εrel = 10−6, except for the a-formulation, where εrel = 10−4. Bold
numbers are the minima of each line. Underlined numbers indicate that the resolution has encountered
iteration cycles. Simulation times for the fastest simulations of each line (bold numbers) are, on a single
Intel i7 2.2 GHz CPU, from top to bottom: 18”, 21”, 2’05”, 2’34”, and 22’14”.

Formulation # DOFs # iterations Time/it. Time/it./DOF Total time
h-φ 9 847 3 468 633 ms 64.3 µs 38 m 05 s
a 8 000 3 987 618 ms 77.3 µs 41 m 03 s
h-φ-a 9 914 3 084 721 ms 72.7 µs 34 m 47 s
h-φ-b 12 447 2 833 773 ms 62.1 µs 36 m 30 s
a-j 8 890 1 958 681 ms 76.6 µs 22 m 14 s

Table 4.5: Comparison of the different formulations for the hybrid T2S-SFM model. Performance figures
for the best choices with the five formulations and for α = κ = 1, in correspondence with the last row
of Table 4.4. CPU times are for a single Intel i7 2.2 GHz CPU.

In this particular test case, the gain obtained with the mixed formulations is not so high,
compared to the standard h-φ-formulation. This does not generalize to every other case. In
practice, there is no a priori guarantee to avoid cycles with the h-φ-formulation, even with rea-
sonably small time steps. Getting an efficient resolution method based on the h-φ-formulation
often relies on trial-and-error preliminary tests, as opposed to the situation with the mixed for-
mulations, that always exhibit a good efficiency. This observation will be further illustrated in
the next 3D problem.
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4.5 T2S and SFM in a magnet motor pole (3D)

The last problem of this chapter is a hybrid T2S-SFM 3D structure. It consists of four T2S
bulks placed on top of a SFM substrate. The T2S-SFM stack is then put in the bore of a
magnetizing coil. The geometry is described in Fig. 4.23 and geometrical dimensions are given
in Table 4.6(a) [40, 57]. Symmetry allows us to model one-eighth of the geometry, such that
the finite element model in defined on the geometry of Fig. 4.23(b).
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(a) Full geometry, seen from above.
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(b) One-eighth of the geometry.

Figure 4.23: Geometry of the motor pole and its magnetizing coil. The problem exhibits four plane
symmetries: x = 0, y = 0, x = y, and x = −y, with the axis origin O at the center of the bulks, so that
one can model one-eighth of the problem. Curved boundaries of the SFM and coil domains are quarters
of circles, whose centers coincide with those of the T2S bulks. The top surface of the T2S bulks and that
of the coil are in the same plane. The dash-dotted gray line is where the magnetic flux density is sampled
for Fig. 4.25, it is at ε = 2 mm above the T2S bulk and coil top surfaces, in the plane x = 0.

We model the magneto-quasistatic response of the T2S bulks and the SFM substrate to an
applied current in the magnetizing coil. The coil is made up of Nturns = 55.5 turns of a winded
T2S tape that carries a net current Is(t) defined by

Is(t) =

{
Imax sin(πt/2T ), t < T,

Imax e
−(t−T )/τ , t > T,

(4.1)

with Imax = 2 kA, T = 2 ms, and τ = 10 ms, see Fig. 4.24(a). Eddy currents in the coil are
neglected, and the current density amplitude is assumed uniform inside it, and directed counter-
clockwise along concentric circles in curved regions, or parallel to the boundaries in straight
regions of the coil. We model the response of the system from a virgin state at t = 0 (zero-field
cooled) to t = 10T .

The T2S bulks are described by the power law with field-dependent critical current density
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jc(b) and power exponent n(b) defined by

jc(b) =
jc0

1 + ‖b‖/b0

, n(b) = n1 +
n0 − n1

1 + ‖b‖/b0

, (4.2)

with jc0 = 5 × 108 A/m2, b0 = 0.5 T, n0 = 21, and n1 = 5 [208]. These are representative
values for YBCO pellets. The field-dependence is handled with a “fixed-point” approach for
linearization: at a given iteration, the field from the previous iteration is used for jc(b) and n(b).
We did not observe any new difficulties with this approach, nor a significant impact on the total
number of iteration with respect to problems with constant jc and n values.

The SFM is assumed non-conducting and its permeability follows a saturation law based
on experimental data for a Cobalt Steel VACOFLUX 50 material [209]. The saturation law is
shown in Fig. 4.24(b). The saturation magnetization is around 2.2 T. In the finite element model,
a linear interpolation is used on the discrete experimental data to get a continuous function
µ(h), or ν(b), and the differential permeability, or differential reluctivity, required for Newton-
Raphson iterations, is evaluated by a finite difference on µ(h), or ν(b), respectively.

Parameter Value
T2S radius RT2S 15.0 mm
T2S height HT2S 17.7 mm
SFM half-width WSFM 34.0 mm
SFM height HSFM 17.7 mm
Coil width Wc 23.1 mm
Coil height Hc 30.0 mm
Small gap δ 2.0 mm
Air radius Rout 270.0 mm

(a) Geometric parameters.

Parameter Value
jc0 5× 108 A/m2

b0 0.5 T
n0 21 -
n1 5 -
Imax 2 kA
Nturns 55.5 -
T 2 ms
τ 10 ms

(b) T2S and coil parameter values.

Table 4.6: Geometric and parameter values for the magnet motor pole problem.
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Figure 4.24: Source current and SFM saturation curve for the magnet motor pole problem.

The modeled domain is denoted by Ω, and is decomposed into a conducting part, Ωc, con-
taining the T2S bulk, and a non-conducting part ΩC

c , containing the air, the SFM, and the coil.
In addition, the SFM domain is referred to as Ωm, and its complementary domain is denoted
by ΩC

m. The coil is denoted by Ωs. The domain boundary Γ consists of one-eighth of a sphere
as an outer boundary Γout, placed at a distance Rout from the center O, and two half-disks as
symmetry boundaries Γsym (in planes x = 0 and x = y).
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4.5.1 Source fields

The inducting coil is handled as a stranded inductor, as proposed in [134]. Eddy currents
are not modeled in Ωs so that Ωs ⊂ ΩC

c , i.e., no electrical conductivity is defined in Ωs. We
distinguish two cases depending on the formulation: whether Ωs is in a b-conform or in an h-
conform region. The coil is in a b-conform region with the a and a-j-formulations, and with
the h-φ-a-formulation if Ωs ⊂ Ωa. Conversely, it belongs to an h-conform region with the h-φ
and h-φ-b-formulations, and with the h-φ-a-formulation if Ωs ⊂ Ωh.

Weak global constraint in b-conform formulations

In the first case, the source current density js is explicitly introduced in the formulation via
an integral on Ωs [134]. For the a-formulation, with ea = 0 because no global variable is
associated with the T2S bulk, we write, with Ωs ⊂ ΩC

c ,

(ν curl a , curl a′)Ω + (σ ∂ta ,a
′)Ωc

= (js ,a
′)Ωs

. (4.3)

This can be immediately generalized to the a-j and h-φ-a-formulations.

Strong global constraint in h-conform formulations

In the second case, a generalized unit source field hs1 associated with a unit source current of
1 A is computed before the main finite element resolution, and included in the function space
of the total magnetic field h as a global shape function, i.e., a function spreading over several
mesh elements and associated with a global degree of freedom. Keeping notations of Chapter 2,
the total magnetic field is expressed as

h = Is hs1 +
∑

e∈E(Ωc\∂Ωc)

he we +
∑

n∈N (ΩC
c )

φn grad wn +
∑

i∈C
Ii ci, (4.4)

with the new degree of freedom Is, fixed by the global essential3 condition Is = Is(t). For
simplicity, let us keep the notation Hδ,1(Ω) for the generated function space. Note that in this
motor pole problem, the T2S bulk is simply connected and is not associated with any global
condition so that C = {} and the last term of Eq. (4.4) drops out.

The resulting weak formulations are unchanged, the difference is only contained in the
unknown field h function space, that explicitly involves the known field associated with the
source current. The generalized unit source field hs1 ∈ Hδ,1

s (Ω) generated by a current density
js1 = js/Is satisfies, in the coil region Ωs,

(curl hs1 , curl h′s1)Ωs
= (js1 , curl h′s1)Ωs

, ∀hs1 ∈ Hδ,1
s0 (Ω), (4.5)

and is curl-free in the complementary domain ΩC
s , with function spaces Hδ,1

s (Ω) and Hδ,1
s0 (Ω)

defined as described in [134]. In a nutshell, hs1 is generated by edge functions associated with
edges of a co-tree defined in the interior of Ωs, and by a cut function in the complementary
domain ΩC

s to account for the effect of the source current outside of the coil.
3We do not treat the associated voltage here, nor the possibility to impose it as a natural global condition.
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4.5.2 Comparison of the solutions and efficiencies of the formulations

We now compare the performance levels of different formulations on the 3D problem. We run
simulations on the same mesh, with characteristic lengths of 1.6 mm on the T2S bulk, 2.8 mm
on the SFM substrate, and 4 mm on the magnetizing coil, that progressively increases up to
40 mm on the outer surface. The resulting mesh is made up of 5 797 nodes and contains only
tetrahedra.

For time discretization, for all formulations, the time step is fixed to ∆t = T/80 for 0 < t <
T , and is progressively increased afterwards, so that a total of 48 time steps are used from t = T
to t = 10T . In total, a number of 128 time steps is therefore obtained. They were chosen small
enough so that the adaptive time-stepping algorithm was not triggered for any formulation.

The convergence criterion is based on the instantaneous power P = (∂tb ,h)Ω + (j , e)Ωc
.

Iterations stop when the relative change of P is smaller than εrel = 10−6 in each of the sub-
domains, or εrel = 10−5 when Picard iterations are used, that is, when either σ or µ is involved.

We consider eight different formulations or variations of them. They are presented in the
paragraphs below, and summarized in Table 4.7.

NL laws Function space(s) Number of degrees of freedom (DOFs)?

h ρ, µ h ∈ Hδ,1(Ω) with Ωc = Ω and ρs 35 532 ≈ NE in Ω
h-φ ρ, µ h ∈ Hδ,1(Ω) 12 172 ≈ NE in Ωc + NN in ΩC

c
ā σ, ν a ∈ Aδ,1(Ω) with Ωc = Ω and σs 29 010 ≈ NE in Ω
a σ, ν a ∈ Aδ,1(Ω) 26 964 ≈ NE in Ωc + NF in ΩC

c
h-a ρ, ν h ∈ Hδ,1(Ωc), a ∈ Aδ,2(ΩC

c ) 32 045 ≈ NE in Ωc + NF (†) in ΩC
c

h-φ-a ρ, ν h ∈ Hδ,2(ΩC
m), a ∈ Aδ,1(Ωm) 15 776 ≈ NE in Ωh,c + NN (†) in ΩC

h,c + NF in Ωm

h-φ-b ρ, ν h ∈ Hδ,1(Ω), b ∈ Bδ,1cst (Ωm) 20 821 ≈ NE in Ωc + NN in ΩC
c + NV (×3) in Ωm

a-j ρ, ν a ∈ Aδ,1(Ω), j ∈ J δ,1(Ωc) 36 019 ≈ NE (×2) in Ωc + NF in ΩC
c

Table 4.7: Summary of the different formulations considered for the 3D magnet motor pole problem.
NL stands for nonlinear. NN , NE , NF , and NV are shortcuts for the number nodes, edges, facets, and
volumes, respectively. (?) The DOFs removed by the application of essential boundary conditions are not
explicitly expressed, nor are the DOFs associated with global variables and function space enrichements
for stability, hence the approximation sign “≈” in the last column of the table. (†) For surface-coupled
formulations, a local enrichment is necessary on the coupling boundary Γm to guarantee stability [55].
In 3D, this adds twice the number of facets on Γm to the number of DOFs if one wants to enrich Aδ,1,
which is our choice for the h-a-formulation, or once the number of edges on Γm to the number of DOFs
if one prefers to enrichHδ,1, which is our choice for the h-φ-a-formulation.

First, we consider the standard h-φ-formulation. To illustrate the benefit of using curl-free
functions in ΩC

c , we also consider the alternative “full h-formulation”, in which the magnetic
field is discretized with edge functions on the whole domain Ω, instead of in the conducting
domain Ωc only, hence introducing a spurious resistivity ρs in ΩC

c [210]. This method leads
to more unknowns in ΩC

c , one per edge instead of one per node with curl-free functions, and
was shown to produce ill-conditioned matrices [211]. However, this approach is popular in
proprietary software, e.g., COMSOL [209], because of the ease of its implementation. Note
that a h-φ-formulation analogue has been recently implemented in COMSOL, where the field
h and φ are weakly coupled via Lagrange multipliers [139, 212].
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Then, we consider the standard a-formulation. In parallel with the “full h-formulation”, we
also consider a modified version of the a-formulation where we remove the co-tree gauge in ΩC

c
and instead introduce a spurious conductivity σs in ΩC

c . We refer to this modified formulation
as the ā-formulation. It leads to more degrees of freedom in ΩC

c , one per edge instead of one
per facet with the co-tree gauge. Actually, one can sometimes afford to have σs = 0, hence
making the matrix system singular, as some iterative linear solvers do not require uniqueness
of the solution to converge.

For the h-formulation, the spurious resistivity in air is fixed to ρs = 10−3 Ωm. For the
ā-formulation, the spurious conductivity is fixed to σs = 1 S/m. Typical resistivity values
observed in the T2S bulks are of the order of ec/jc(b) = 6 × 10−13 Ωm for ‖b‖ = 1 T, so that
the chosen values of ρs and 1/σs are much higher. We have not observed any significant impact
of the spurious parameters on the numerical solution quality.

Next, we consider the surface-coupled h-φ-a-formulation. The main motivation of this for-
mulation is to put the T2S bulk Ωc in Ωh, and the SFM substrate Ωm in Ωa, in order to use a
Newton-Raphson method for both nonlinearities, without risking to encounter iteration cycles.
We can choose to place the other subdomains, i.e., the coil Ωs and the air, either in Ωh, or Ωa.
We consider two distinct choices. In what we will denote as the h-a-formulation, we put the
coil and the air in Ωa (the absence of the scalar potential φ in the notation hints that Ωh ⊂ Ωc).
Conversely, we keep the notation h-φ-a-formulation for the alternative choice where we put the
coil and the air in Ωh.

Finally, we consider the two volume-coupled formulations: the h-φ-b-formulation and the
a-j-formulation. We choose b ∈ Bδ,1cst (Ωm), as defined in Section 3.4.3.

We run the simulations with the eight formulations. Global and local solutions agree with
each other. The total hysteresis loss in the T2S bulk is given in Table 4.8, the difference between
the values is at most 1%. The norm of b along the dashed line of Fig. 4.23(b) is represented
in Fig. 4.25 for the a and h-φ-formulations. All other formulations yield results that are visu-
ally indistinguishable from these two formulations. Results also nicely match inside the T2S
bulk and SFM substrate. For illustration, the current density in the T2S bulk is represented in
Fig. 4.26.

A good accuracy can be achieved with all formulations. However, as in all other test cases
in this chapter, the computational cost associated with each of them is not equivalent. This
is clearly demonstrated by the performance figures in Table 4.8. Firstly, in 3D, the number
of DOFs is strongly affected by the choice of function spaces. When possible, is it always
preferable to introduce a magnetic scalar potential φ, or to gauge the magnetic vector potential
a in ΩC

c . Also, using the scalar potential φ in ΩC
c instead of the vector potential a in the surface-

coupled formulation leads to fewer DOFs.

Secondly, the number of iterations required to reach convergence strongly depends on the
involved nonlinear laws. For the h and h-φ-formulations, the large number of iterations is
due to the Picard iterations that are used for the permeability of the SFM. We observed that
in some cases, a Newton-Raphson scheme (with or without relaxation factors) applied on the
permeability works without difficulty, leading to a CPU time - still higher but - nearly similar to
that obtained with coupled formulations. However, this is not guaranteed in general. Typically,
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Figure 4.25: Norm of the magnetic flux density at ε = 2 mm above the system, along the dashed line
represented in Fig. 4.23(b). The upper plot is at t = 0.25T and the lower plot at t = 3.5T . Curves
obtained with the h, h-φ-a, h-φ-b-formulations are visually indistinguishable from those resulting from
the h-φ-formulation (h-conform field in air). The same is true for curves obtained with the ā, h-a,
a-j-formulations in comparison to those resulting from the a-formulation (b-conform field in air).
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Figure 4.26: Current density obtained with the h-φ-a-formulation in the bulk during the magnetizing
pulse: (a)-(b) at t = 0.25T , and (c)-(d) during relaxation at t = 3.5T . (a)-(c) x-component jx in the
bulk, and (b)-(d) full vector j in three planes.
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with the discretization presented here, convergence issues are indeed observed. Circumventing
these issues requires a numerical parameter tuning by a trial-and-error procedure if one wants
to keep the standard formulations. For the ā and a-formulations, the conductivity in T2S is even
more difficult to handle efficiently and, as before, we only obtained convergence with Picard
iterations.

For the coupled formulations, in surface and in volume, the number of iterations is directly
reduced thanks to the shapes of the ρ and ν laws that naturally allow for an efficient use of
Newton-Raphson iterations, without requiring any parameter tuning.

Surface-coupled formulations appear to be the best choices, especially the h-φ-a-formulation,
that only involves the magnetic vector potential a in the SFM substrate. Volume-coupled formu-
lations introduce more DOFs but may possibly be easier to implement, because the associated
function spaces do not involve higher-order shape functions.

Interestingly, the CPU time per iteration does not scale directly with the number of DOFs
in this 3D problem. The matrix structures associated with the formulations are different and
this could influences the linear solver resolution. Note that in the 2D problem presented in the
previous section, the difference was less marked, see Table 4.5.

The CPU times are given as an indication. In the considered implementation, a significant
amount of time is spent in post-processing operations, including the evaluation ofP as a volume
integral at each iteration for the convergence criterion. The cost of this task could be strongly
reduced with a more efficient approach. Additionally, the assembly step could be made much
faster with a parallelization.

Formulation T2S loss (J) # DOFs # iterations Time/it. Time/it./DOF Total time
h 6.35 35 532 4 057 3.3 s 92 µs 3 h 42 m
h-φ 6.36 12 172 3 937 1.4 s 116 µs 1 h 33 m
ā 6.38 29 010 2 955 3.1 s 107 µs 2 h 33 m
a 6.39 26 964 3 147 2.1 s 76 µs 1 h 48 m
h-a 6.31 32 045 1 124 2.7 s 83 µs 50 m
h-φ-a 6.33 15 776 1 108 2.1 s 133 µs 39 m
h-φ-b 6.37 20 821 1 104 3.2 s 151 µs 58 m
a-j 6.34 36 019 2 225 3.6 s 101 µs 2 h 15 m

Table 4.8: Comparison of the different formulations. Performance figures for the 128 time steps of the
eight formulations with lowest-order elements (except on the coupling boundary for coupled formula-
tions where higher-order elements are used). T2S loss is the total hysteresis loss in the T2S bulk from
t = 0 to t = 10T . Results differ by maximum 1%. Picard iterations were used for the first four formu-
lations (for σ or µ), which explains the large associated number of iterations. When trying more efficient
method such as Newton-Raphson iterations (with or without relaxation factors), we have not obtained
robust behaviors. CPU times are for a single AMD EPYC Rome CPU at 2.9 GHz.
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4.6 Summary and general recommendations

In this chapter, we compared the performance levels of standard and mixed formulations on
various problems, from a 1D T2S bar to a 3D hybrid system containing both T2S and SFM.
We observed that when space and time discretizations are chosen fine enough, all formulations
produce accurate results in terms of local and global quantities, in the sense that they all tend
towards each other. With coarse meshes, the only non-negligible source of error we noticed
arises when the current density is expressed from the electric field via the power law, which is
the case with the a-formulation. This results in large oscillations in the current density profile
ahead of flux fronts in flux-free regions, over a few finite elements. With mesh refinement,
however, the spatial extent of this error decreases.

All the presented formulations offer accurate solutions, but the computational resources they
require for doing so are not equivalent. The efficiency of the resolution significantly depends
on the chosen formulation. With T2S, formulations involving the resistivity instead of the
conductivity perform notably better than the others, as we have not found any way to handle
the power law conductivity with efficient linearization techniques. To a lesser extent, with
SFM, formulations involving the reluctivity instead of the permeability are more convenient
to consider, as they do not require any parameter tuning for avoiding iteration cycles. They
directly allow for standard Newton-Raphson iterations to be used effectively. Hybrid problems
involving both T2S and SFM were proven to be solved efficiently with the dedicated h-φ-a,
h-φ-b, and a-j-formulations, in 2D and 3D problems.

In addition to the choice of the formulation, the choice of a first estimate for the itera-
tive methods can have an important influence on the numerical performance. We considered
three different possibilities for the first estimate, and the best choice was demonstrated to be
formulation-dependent. In general, a first-order extrapolation of the last two solutions gives
good results with the h-φ-formulation; a second-order extrapolation of the last three solutions
appears to be a good choice for the a and t-a-formulations; and simply using the previous so-
lution as a first estimate is usually preferable for the h-φ-a, h-φ-b, and a-j-formulations. When
considering a new problem, it is however recommended to evaluate the different possibilities,
as the optimal choice might depend on the situation.

We also discussed the possibility of using large time steps in some circumstances for prob-
lems with T2S. Large time steps provide good approximations of the magnetic flux density and
current density distributions for values of the power exponent n that are large enough. The a-
formulation together with Picard iterations on the conductivity were shown to be robust choices
for the large-time-step approach. This was illustrated on a 1D problem, but conclusions hold on
2D and 3D problems [124, 36]. Provided that accurate evaluations of the electric field and the
power loss are not sought, the large-time-step approach provides good results in a small amount
of time.

Comparisons also highlighted that mixed formulations have an interest for problems with
T2S only. For the 2D T2S cylinder problem, the a-j-formulation was observed to be the most ef-
ficient choice, even outperforming the standard h-φ-formulation. Thin-shell formulations such
as the t-a-formulation also offer interesting properties. In particular, even though this has not
been discussed in this chapter, complicated 3D geometries, such as Roebel cables [42, 120, 51],
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or twisted tapes in CORC R© cables [45] are easier to handle using thin-shell approximations.

The numerical study of this chapter also demonstrated that an important point to take into
consideration when choosing a formulation is the number of associated degrees of freedom
(DOFs), which is especially relevant in 3D. The number of DOFs directly affects the com-
putational work required for the numerical resolution. In particular, when possible, using a
scalar potential instead of a gauged vector potential in the non-conducting domain ΩC

c should
be preferred.

Also, depending on whether the problem is 2D or 3D, different formulations do not compare
equivalently. For example, the a-j-formulation usually involves less DOFs than the h-φ-a-
formulation in 2D, but this is no longer necessarily the case in 3D, where the co-tree gauge for
the vector potential a in ΩC

c only reduces the number of DOFs to one per facet in ΩC
c , whereas

the use of a scalar potential φ in ΩC
c involves one DOF per node in ΩC

c .

We also observed that the number of DOFs does not solely determine the cost per iteration of
a formulation. As was shown with the 3D magnet motor pole problem, the CPU time per DOF
(and per iteration) is not constant. It can nearly be doubled from one formulation to another.

As a final conclusion, no formulation outperforms all the others in all situations. The most
efficient choice is problem-dependent, which demonstrates the utility of considering different
formulations when facing a new problem. In general, for problems with T2S only, we would
recommend to first test the h-φ or a-j-formulations for 2D problems, and the h-φ-formulation
for 3D problems. For hybrid T2S-SMF models, we would recommend in priority the a-j-
formulation for 2D problems and the h-φ-a-formulation for 3D problems.



Chapter 5

Two applications with a non-trivial
geometry

In the previous chapter, we applied different finite element formulations on problems with sim-
ple geometries. This allowed us to assess the advantages and drawbacks of each formulation
and to extract general conclusions for their applications. In this chapter, we focus on two dis-
tinct applications that involve more complex geometries.

The first application, presented in Section 5.1, consists in the evaluation of AC losses in wires
made up of twisted superconducting filaments with the h-φ-formulation. Implementing the
associated 3D problem is already a non-trivial task, because it quickly gets extremely expensive
in terms of computational work, while it also involves technical difficulties related to periodic
boundary conditions and periodic cohomology functions. In addition to the 3D problem, we
present a change of variables that allows a dimension reduction to 2D for geometries that are
helicoidally symmetric, and we discuss how this approach can be applied to superconducting
materials.

The second application, presented in Section 5.2, consists in the calculation of the shielding
effectiveness associated with layered hollow structures made up of a stack of second generation
(2G) superconducting tapes with a ferromagnetic substrate. As for the first application, the
direct 3D problem has a high computational cost and we propose two simpler models that will
be shown to reproduce the global magnetic behavior of the structures. In addition, we will
validate the models against experimental measurements.

5.1 Problems with a helicoidal symmetry

AC losses in wires made up of superconducting filaments can be reduced by twisting the fila-
ments [213, 69, 214]. The filaments are embedded in a conducting matrix and the electromag-
netic response of the resulting system is not trivial. Numerical modeling is helpful to get a better
understanding of the underlying physical behavior. However, with twisted filaments, the wire
geometry is fully 3D in Cartesian coordinates. As shown in [215] for multi-filamentary MgB2

137
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wires, solving a full 3D model can be extremely expensive in terms of computational work.
When possible, it is therefore highly interesting to exploit the symmetries in the problem.

In particular, when wires present a helicoidal symmetry, i.e., a combination of translation
and rotation symmetries, it is possible to reduce the dimension from 3D to 2D, if one works in
an appropriate coordinate system, referred to as the helicoidal coordinate system.

The method for expressing the original helicoidally symmetric 3D problem as a 2D mathe-
matically equivalent problem has been introduced in optical waveguide applications [216, 217,
218]. In the following, it is referred to as the helicoidal transformation method. In addition
to waveguide applications, this method has been applied to electrostatic problems [219, 220],
linear magnetodynamic problems [58], and nonlinear magnetodynamic problems with super-
conduting filaments [221, 222, 223].

Approximate models have also been investigated, such as in [224, 225], where authors esti-
mate leaking currents in the conducting matrix with a 2D finite element model, by introducing
equivalent resistance values between the filaments, obtained via a preliminary 2D electrostatic
resolution. Another model is proposed in [226], where authors investigate the use of a Frenet
frame to simplify the 3D geometry definition and approximate the AC losses by considering a
fraction of the pitch length of the wire in a 3D model, or a cross-section of the wire in a 2D
model.

In this study, we consider the helicoidal transformation method. It offers the advantage of
reducing the dimension from 3D to 2D without introducing any approximation in the continuous
setting by transforming the differential forms using the metric tensor of the change of variables.
In this section, we do not enter into the technical details describing general transformations of
differential forms, we rather refer to the extensive literature about this topic. Useful references
are, e.g., [227, 228]. Instead, we present the main results and directly apply them on our
magnetodynamic problem, involving type-II superconductors (T2S).

In Section 5.1.1, we first introduce the change of variables. In Section 5.1.2, we derive the
h-φ-formulation in helicoidal coordinates, and describe the associated practical implementa-
tion in a finite element code. In Section 5.1.3, we verify the implementation by comparing
the numerical results of the proposed method with those of a 3D model written in the classical
Cartesian coordinate system. Finally, in Section 5.1.4, we propose an extension of the method
to problems whose boundary conditions are not helicoidally symmetric, such as problems in-
volving the excitation of a twisted wire by a transverse field. Here, we only apply this extension
to linear materials, and provide brief prospects for its application to nonlinear materials. Also,
we only apply the helicoidal transformation method on a wire with round superconducting fil-
aments, embedded in a conducting matrix, but the method directly applies to other types of
helicoidally symmetric geometries as well, such as single-layer CORC R© cables [45] or twisted
stacked tape conductors [44].

A peculiarity of our approach is that we take care of maintaining the curl-free property of the
magnetic field in the non-conducting domains. This allows us to benefit from the advantages
of the standard h-φ-formulation in Cartesian coordinates. In addition, the extension to non-
helicoidally symmetric boundary conditions constitutes a novelty compared to state-of-the-art
models.
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5.1.1 Helicoidal change of variables

Let us consider a Cartesian coordinate system (x, y, z), of origin O. We define the helicoidal
change of variables (x, y, z)→ (ξ1, ξ2, ξ3) as the following transformation





ξ1 = x cos(αz) + y sin(αz),

ξ2 = −x sin(αz) + y cos(αz),

ξ3 = z,

⇔





x = ξ1 cos(αξ3)− ξ2 sin(αξ3),

y = ξ1 sin(αξ3) + ξ2 cos(αξ3),

z = ξ3,

(5.1)

with the new coordinate system (ξ1, ξ2, ξ3) with the same origin O, and α ∈ R the twisting
parameter, which is the unique parameter of the transformation. We also define the pitch length
p of the transformation, that is inversely proportional to the twisting parameter, p = 2π/α.

With this transformation, helices in the (x, y, z)-space, Ωx, with pitch length p and whose
axis contains the origin O and is in the z-direction, are mapped into straight lines in the
(ξ1, ξ2, ξ3)-space, Ωξ. This is illustrated in Fig. 5.1 for two helices of pitch length p = 1.
A geometry is said to be helicoidally symmetric, or to have a helicoidal symmetry if, for one
value of α, its description in the (ξ1, ξ2, ξ3)-space is independent of ξ3. In that case, we also say
that such a geometry is ξ3-invariant.
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Figure 5.1: Transformation of two helicoidal curves with the change of variables Eq. (5.1) with α = 2π.

The helicoidal change of variables Eq. (5.1) has the following Jacobian J:

J =
∂xi
∂ξj

=




cos(αξ3) − sin(αξ3) −αξ1 sin(αξ3)− αξ2 cos(αξ3)
sin(αξ3) cos(αξ3) αξ1 cos(αξ3)− αξ2 sin(αξ3)

0 0 1


 , (5.2)

and, conversely, the following inverse transposed Jacobian J−T:

J−T =
∂ξj
∂xi

=




cos(αξ3) − sin(αξ3) 0
sin(αξ3) cos(αξ3) 0
αξ2 −αξ1 1


 , (5.3)



140 Chapter 5 Two applications with a non-trivial geometry

written in terms of the (ξ1, ξ2, ξ3)-variables.

The Jacobian matrix describes the mapping of vectors between the Ωx and Ωξ spaces. One-
forms, such as the magnetic field h, follow the transformation [216, 229]

hx = J−T hξ, (5.4)

where hx and hξ denote the descriptions of the vector h via its components in Ωx and Ωξ,
respectively. Two-forms, such as the current density j, follow the transformation [216, 229]

jx =
J

detJ
jξ, (5.5)

where jx and jξ denote the descriptions of the vector j via its components in Ωx and Ωξ,
respectively. In the case of the helicoidal transformation, from Eq. (5.2), we have detJ = 1.

We now turn to see the effect of the transformation on the weak form of the h-φ-formulation
with homogeneous natural boundary conditions. In the Cartesian coordinate system Ωx, it reads
(see Section 2.2): find hx ∈ H(Ωx) such that, ∀h′x ∈ H0(Ωx), we have

(∂t(µhx) ,h′x)Ωx
+ (ρ curl hx , curl h′x)Ωc,x

=
∑

i∈CV
V̄iIi(h′x), (5.6)

where fields are expressed via their components in Ωx.

To apply the helicoidal transformation on Eq. (5.6), we use Eqn. (5.4) and (5.5), we introduce
a detJ factor in both integrals to account for the change of variables, and we use the fact that
Ii(h′ξ) = Ii(h′x), ∀i ∈ C, because the circulation, which is a scalar quantity, is maintained by
the change of variables. Consequently, in the helicoidal space Ωξ, the h-φ-formulation reads:
find hξ ∈ H(Ωξ) such that, ∀h′ξ ∈ H0(Ωξ), we have

(
∂t(µ̃ hξ) ,h

′
ξ

)
Ωξ

+
(
ρ̃ curl hξ , curl h′ξ

)
Ωc,ξ

=
∑

i∈CV
V̄iIi(h′ξ), (5.7)

where fields are expressed via their components in Ωξ, and with µ̃ and ρ̃ two tensors that are
defined below. In Eq. (5.7), the curl operator has to be regarded as a notation for the same
operator as in Cartesian coordinates, but applied (blindly) on coordinates in the (ξ1, ξ2, ξ3)-
space. Explicitly, the (ξ1, ξ2, ξ3)-components of curl hξ are ∂ξ2hξ3 − ∂ξ3hξ2 , ∂ξ3hξ1 − ∂ξ1hξ3 ,
and ∂ξ1hξ2 − ∂ξ2hξ1 , respectively, with hξ = (hξ1 , hξ2 , hξ3).

The effect of the change of variables can therefore be fully contained in the two “material
parameter” tensors µ̃ and ρ̃, defined as follows:

µ̃ = µ J−1J−T det(J) = µT−1 and ρ̃ = ρ
1

det(J)
JTJ = ρT, (5.8)

with the metric tensor T, defined as

T =
1

det(J)
JTJ =




1 0 −αξ2

0 1 αξ1

−αξ2 αξ1 1 + α2(ξ2
1 + ξ2

2)


 , (5.9)
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and its inverse T−1, that reads:

T−1 = det(J) J−1J−T =




1 + α2ξ2
2 α2ξ1ξ2 αξ2

α2ξ1ξ2 1 + α2ξ2
1 −αξ1

αξ2 −αξ1 1


 . (5.10)

Equations (5.6) and (5.7) are, up to now, in the continuous setting, two completely equivalent
ways of writing the h-φ-formulation in the physical domain Ω, either described in terms of the
x-coordinates, or in terms of the ξ-coordinates. Indeed, no approximation has been introduced
and the change of variables is regular.

The advantage of Eq. (5.7) over Eq. (5.6) is that it consists of integrals over ξ3-independent
domains for helicoidally symmetric geometries (of course, provided that the twisting parameter
α is chosen so that p = 2π/α is equal to the pitch length of the physical geometry).

In addition, and this is a key property of the metric tensor, T and T−1 are also ξ3-independent,
as shown in Eqn. (5.9) and (5.10). As a consequence, both the integrands and the domains of
integrations in the weak formulation (5.7) are ξ3-independent. If the boundary conditions of the
original problem are also ξ3-independent when expressed in helicoidal coordinates, the solution
of Eq. (5.7), i.e., the magnetic field hξ, will be ξ3-independent as well. In such a situation, the
integration over ξ3 is trivial, the problem dimension can be reduced from 3D to 2D. Numeri-
cally, the associated 2D problem is therefore significantly cheaper to solve than the original 3D
problem.

In particular, boundary conditions are helicoidally symmetric in the case of an imposed
current in a wire or an axial (in the z-direction) field excitation, or a combination of both.
By contrast, a transverse field excitation, e.g., an applied field along êx or êy in the Cartesian
coordinate system, does not transform into a ξ3-independent field in the helicoidal space. The
treatment of such excitations will be discussed in Section 5.1.4.

In the next section, we describe how the associated 2D problem can be discretized and
implemented, assuming helicoidally symmetric boundary conditions. We then verify the im-
plementation in Section 5.1.3.

5.1.2 Practical implementation of a full h-φ-formulation in 2D

From now on, for conciseness, we refer to the (x, y, z) and (ξ1, ξ2, ξ3)-spaces as the x and ξ-
spaces, respectively. Also, as we mainly work in the helicoidal coordinate system, we denote
the magnetic field hξ and the current density jξ expressed via their components in the ξ-space
as h and j directly, for conciseness. We also drop the subscript ·ξ for domains Ωξ, Ωc,ξ, and
ΩC

c,ξ. When we refer to quantities in the x-space instead, this will be expressed explicitly.

We consider a general helicoidally symmetric system, made up of (twisted) conducting
wires, that constitute the conducting domain Ωc, surrounded by a non-conducting domain ΩC

c ,
with an external boundary Γout. The system is subjected to a given axial field haxial, and a cur-
rent intensity (or an applied voltage) is imposed on each conducting wire. An example of such
a geometry is represented in Fig. 5.2.
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êξ1

êξ2

Γout

ΩC
c

Ωc1

Ωc2

êξ3

haxial

I1

I2
O

Figure 5.2: General 2D problem, ξ3-invariant, in the helicoidal coordinate system of center O. Heli-
coidally symmetric boundary or global conditions are represented in red: an axial field haxial in ΩC

c , and
applied current intensities I1 and I2 on the conducting domains Ωc1 and Ωc2 . The physical 3D system is
generated by a rotated extrusion of the represented geometry.

One could be tempted to implement Eq. (5.7) directly as a classical 2D problem with in-
plane magnetic field, with the only difference of having anisotropic tensors instead of scalar
material parameters. But this would not be correct: the fact that the problem is ξ3-independent
does not imply that the involved magnetic field only has two components in the ξ-space. One
has to consider three independent components for the magnetic field h in Eq. (5.7).

Decomposition of the magnetic field

To benefit from existing implementations of the h-φ-formulation, we decompose the magnetic
field h into two parts: a “parallel component” h‖, containing the ξ1 and ξ2-components of h,
and a “perpendicular component” h⊥, containing only the ξ3-component. We write

h(ξ1, ξ2) = h‖(ξ1, ξ2) + h⊥(ξ1, ξ2), (5.11)

or, in terms of their explicit components,


hξ1(ξ1, ξ2)
hξ2(ξ1, ξ2)
hξ3(ξ1, ξ2)


 =



hξ1(ξ1, ξ2)
hξ2(ξ1, ξ2)

0


+




0
0

hξ3(ξ1, ξ2)


 , (5.12)

where h = h(ξ1, ξ2) because the solution is ξ3-independent. Note that the vectors h‖ and h⊥
are not orthogonal in the x-space.

In the ξ-space, the curl-free condition for the magnetic field in the non-conducting domain
ΩC

c is expressed as (detJ)−1J curl h = 0. Because the Jacobian is non-singular, it results in
a curl-free condition on the field h in the ξ-space as well (with the curl operator defined as
before). The fact that ∂ξ3· = 0 implies, in ΩC

c ,

curl h =




∂ξ2hξ3
−∂ξ1hξ3

∂ξ1hξ2 − ∂ξ2hξ1


 = 0. (5.13)
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With the decomposition defined by Eq. (5.11), the third component of Eq. (5.13) implies that
curl h‖ = 0, which it the same condition as for a classical 2D formulation, where a two-
component magnetic field is considered. Also, for the first two components of the curl to be
equal to zero in Eq. (5.13), the perpendicular field h⊥ must be constant within each connected
region of ΩC

c . These conditions are introduced in the function space definitions, i.e., they are
strongly enforced. They will be made explicit at the space discretization step.

With the decomposition h = h‖ + h⊥, the h-φ-formulation reads explicitly as follows.
From an initial solution at time t = 0, find h‖ ∈ H‖(Ω) and h⊥ ∈ H⊥(Ω) such that, for t > 0,
h′‖ ∈ H‖,0(Ω) and h′⊥ ∈ H⊥,0(Ω),

(
∂t(µ̃ (h‖ + h⊥)) ,h′‖

)
Ω

+
(
ρ̃ curl (h‖ + h⊥) , curl h′‖

)
Ωc

=
∑

i∈CV
V̄iIi(h′‖), (5.14)

(
∂t(µ̃ (h‖ + h⊥)) ,h′⊥

)
Ω

+
(
ρ̃ curl (h‖ + h⊥) , curl h′⊥

)
Ωc

= 0, (5.15)

where the products between h‖ and h⊥ or their curl do not vanish because of the coupling
induced by tensors µ̃ and ρ̃. Note that Ii(h′⊥) = 0. The function spacesH‖(Ω) andH⊥(Ω) are
defined explicitly in the space discretization step.

For the nonlinear resistivity of T2S, the current density entering the power law ρ = ρ(j)
involves the vector norm of j, which is not invariant under the helicoidal transformation. Using
the fact that detJ = 1, we have, from Eq. (5.5),

ρ̃ = ρ(jx) T = ρ(J curl (h‖ + h⊥)) T. (5.16)

Note that the presence of the Jacobian matrix in Eq. (5.16) introduces a ξ3-dependence. This
is not an issue when the power law only involves the norm of jx, because we have ‖jx‖2 =
jT
xjx = jTJTJj = jTTj, which is ξ3-independent. For simplicity, we can therefore choose
ξ3 = 0 in Eq. (5.16) in that case, and work with

J|ξ3=0 =




1 0 −αξ2

0 1 αξ1

0 0 1


 . (5.17)

More complex constitutive laws that treat differently distinct components of j, e.g., anisotropic
critical current densities, may not necessarily be treated directly with this approach, and may
need to be considered with more caution. Here, we stay in the simple situation of an isotropic
power law.

Space discretization

In practice, we can discretize the parallel field h‖ exactly as the two-component field in a
classical 2D h-φ-formulation with in-plane magnetic field, i.e., with gradient of node functions
and cohomology functions in ΩC

c , and with edge functions in Ωc (see Section 2.4.1). This
defines the function spaceHδ,1

‖ (Ω).

We choose to discretize the perpendicular field h⊥ with perpendicular edge functions. To
account for the fact that h⊥ must be constant in each connected region of ΩC

c , we introduce
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global functions. LetK be the number of such connected regions, we describe the perpendicular
field by the expansion

h⊥ =
∑

n∈N (Ωc\∂Ωc)

h⊥,nwn +
K∑

i=1

Ci pi, (5.18)

with wn the perpendicular edge function associated with node n (see Section 2.4.2), and pi a
global shape function defined as the sum of all perpendicular edge functions associated with
nodes in the ith connected region of ΩC

c , including those on its boundary, for i ∈ {1, . . . , K}.
The support of the shape function pi is not restricted to ΩC

c : it is non-zero on a layer of one
element adjacent to ∂Ωc in Ωc. This defines the function space Hδ,1

⊥ (Ω). Both h‖ and h⊥ are
described as discrete 1-forms, and so is their sum, h.

For simplicity, and because this is the only situation that we will consider in the illustrative
examples below, from now on, we assume that there is only one connected non-conducting
region ΩC

c , such that K = 1, and we rename C1 = C.

Global constraints and boundary conditions

For the global constraints, the current intensity flowing in a conducting domain is a scalar and
its value is therefore independent of the system of coordinates. It can be imposed exactly as
in a classical 2D problem with in-plane magnetic field, i.e., strongly via the degree of freedom
associated with the cut function for the corresponding conducting domain. Alternatively, an
applied voltage can be imposed weakly as in the classical formulation.

For the boundary conditions, we consider a circular external boundary Γout, placed in ΩC
c

and sufficiently far from the conductors such that we can assume b · n|Γout = 0, as represented
in Fig. 5.2. This condition is imposed for h‖ via a homogeneous natural boundary condition
on Γout. This lets the out-of-plane component of the magnetic field, hz, undetermined on Γout.
It corresponds to the applied axial field, that we can freely impose. We derive below how to
translate this condition on h⊥|Γout .

Let us first consider the situation with a zero axial field. At a distance R far from con-
ductors carrying a net current intensity I , the magnetic field tends to be purely azimuthal and
axisymmetric. We have hx = I

2πR
(− sin θ cos θ 0)T, with θ the cylindrical azimuthal coor-

dinate. In terms of helicoidal coordinates, on the plane ξ3 = 0, it reads

h = JT|ξ3=0 hx =
I

2πR




− sin θ
cos θ

αξ2 sin θ + αξ1 cos θ


 =

I

2πR



− sin θ
cos θ
αR


 , (5.19)

using ξ2 = R sin θ and ξ1 = R cos θ for ξ3 = 0. Consequently, to guarantee hz|Γout = 0, one has
to impose that hξ3|Γout = Iα/2π, i.e., one has to fix the degree of freedom C associated with the
non-conducting domain to the value C = Iα/2π.

By superposition, if one wants to impose a non-zero axial field haxial on the external boundary
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Γout in addition to a net current intensity, we therefore have the following essential condition:

C =
Iα

2π
+ haxial, (5.20)

because the axial field hx = (0 0 haxial)
T transforms into h = JT hx = (0 0 haxial)

T in
the ξ-space.

5.1.3 Verification against a 3D model

To verify the implementation, we compare the solution of our 2D model in helicoidal coordi-
nates to the solution of a standard 3D model of the same problem. This will also quantify the
computational gain offered by reducing the dimension from 3D to 2D.

We consider a cylindrical wire, made up of six identical Nb-Ti superconducting filaments,
twisted and embedded into a copper matrix, as illustrated in Figs. 5.3 and 5.4. In order to
simplify the geometry, the cross-sections of the filaments are assumed to be circles, and the
3D geometry is generated by a helicoidal extrusion of the 2D cross-section. This is of course
an approximation of a realistic geometry. If needed, cross-sections of round twisted filaments
can be computed accurately using envelope theory [230, 231, 58] or computer-aided-design
tools [60].

êξ1

Rw

R`

Rf

O

Copper

Nb-Ti

Air

êξ2

(a) Wire geometry in 2D, on the z = ξ3 = 0 plane.

p/6

êzêy
êx

(b) Twisted filaments in 3D.

Figure 5.3: Geometries for the verification of the helicoidal problem. Six twisted Nb-Ti filaments em-
bedded in a copper matrix. The boundary of the air region outside the matrix is not represented (but is
part of the model, too). (a) Geometry in the (ξ1, ξ2)-plane. (b) One-sixth of a pitch length represented in
the x-space. The copper matrix is not represented, for clarity purposes.

The filament radius isRf = 35 µm, their centers are at a distanceR` = 98 µm from the center
of the wire, and the matrix radius is Rw = 155 µm. The pitch length is fixed to p = 1000 µm,
and air is modelled outside the wire up to a distance Rout = 500 µm.

We assume that the Nb-Ti filaments are characterized by jc = 7×109 A/m2 and n = 50, and
the copper resistivity is fixed to ρ = 1.81×10−10 Ωm. A total current I(t) = 0.5 Ic sin(2πt/T )
is imposed in the whole wire, with a period T = 0.1 s and Ic = 162 A, which is an approximate
value for the critical current for the six filaments, that are not round but helicoidal extrusions of
circles. We also impose a zero axial field along êz.
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Γout

Γup

Γdown

êzêy
êx

ΩC
c

Ωc

Figure 5.4: Filament 3D geometry and its boundaries. For clarity purposes, the twisted filaments inside
the copper matrix are not represented.

3D verification model

We consider the 3D geometry represented in Figs. 5.3(b) and 5.4. It represents a periodic cell
of one-sixth of a whole pitch length p. Building and meshing the 3D model represented in
Fig. 5.3(b) is not a trivial task. To account for the periodicity of the problem, the mesh must be
identical on the top and bottom boundaries Γup and Γdown. As an h-φ-formulation will be used,
cohomology basis functions must also be periodic. The quality of the mesh inside the filaments
plays an important role for the accuracy of the resulting numerical solution. Typically, better
results are obtained with a structured mesh inside the filaments. Implementing all these con-
straints is permitted by the open-source finite element mesh generator Gmsh [60], and periodic
cuts and cohomology basis functions are generated as described in [142, 51].

For the h-φ-formulation, we set a homogeneous natural boundary condition on the external
boundary Γout, so that b · n|Γout = 0 is weakly enforced. For the top and bottom boundaries Γup

and Γdown, which are are topologically identical, the periodic condition h×n|Γup = −h×n|Γdown

is imposed by linking the degrees of freedom for the magnetic field h associated with edges on
∂Ωc∩ (Γup∪Γdown). On non-conducting boundaries ∂ΩC

c ∩ (Γup∪Γdown), the periodic constraint
is expressed in terms of the magnetic scalar potential, we fix φ|Γup = φ|Γdown . The case of an
axial applied field is treated by a cut function, as described later.

The total current intensity flowing in the conducting domain made up of the filaments and
matrix is imposed via a cohomology basis function, as represented in Fig. 5.5(a). For infor-
mation, we illustrate in Fig. 5.5(b) the cut that would be used in the case of a non-conducting
matrix. Because of the periodicity, each filament is linked to the next one so that there is
topologically only one strand of filament. In a different situation where distinct current inten-
sities are imposed in distinct filaments, the problem loses its p/6-periodicity, but still exhibits
a p-periodicity (at least). In that case, the 3D model should therefore represent a whole pitch
length.

Note that the periodicity makes the domain Ω topologically equivalent to a torus. For the
non-conducting domain, we have β1(ΩC

c ) = 2, and this introduces an additional cut for the
magnetic scalar potential, as represented in Fig. 5.6. The cohomology basis function associated
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1 2 3 4 5 6

(a) Conducting matrix. (b) Non-conducting matrix.

Figure 5.5: Periodic supports for the cut functions (cohomology basis functions), to impose a total
current I(t) in the conducting domain, and multiplicity of the associated edges (legend in the color bar).
(a) Conducting matrix, the non-conducting domain ΩC

c is the exterior the matrix and filaments, I(t) is
the total current. (b) Alternative case of a non-conducting matrix, where only the filaments belong to
Ωc. The periodicity is such that there is only one strand of twisted filament: the same current must flow
inside each of the six parts. The support for the single cut function involves edges with multiplicity up
to 6, as I(t) is the current flowing in one filament.

with this cut is responsible for fixing an axial field haxial along êz. The degree of freedom
associated with this cut function is equal to the circulation haxial p/6 of the axial field haxial

along the total height p/6 of the model. In our problem, we impose haxial = 0.

Figure 5.6: Support for the “axial cut function”, used to impose an axial field (conducting matrix case).

Before comparing the results, we first verify that the 3D model correctly outputs a heli-
coidally symmetric solution. From the numerical solution in the x-space, we extract the mag-
netic flux density b and the current density j along the helicoidal fiber of pitch length p passing
at point x =

(
r cos(θ), r sin(θ), 0

)
, with r = R` + 0.7Rf and θ = π/50, from z = 0 to z = p.

We exploit the periodicity of the problem to obtain values for z > p/6. The components of
vectors b and j in the x and ξ-spaces are represented in Fig. 5.7 for a relatively fine tetrahedral
mesh (144 840 DOFs), at time t = T/4. The same result but on a coarser mesh (16 556 DOFs)
is given in Fig. C.6 in Appendix. Vector components in the ξ-space are obtained using the one
and two-forms transformation relations, Eqn. (5.4) and (5.5).

The oscillations along the fiber represent inter-element variations, that decrease in amplitude
with mesh refinement. Up to these inter-element variations, the 3D solution correctly presents
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Figure 5.7: Current density (up) and magnetic flux density (down) along the helicoidal fiber of pitch
length p passing at point x =

(
r cos(θ), r sin(θ), 0

)
, with r = R` + 0.7Rf and θ = π/50, from z = 0 to

z = p. (Left) Three components of the vectors in the x-space. (Right) Three components of the vectors
in the ξ-space. Solution of the 3D model with the h-φ-formulation on a fine tetrahedral mesh involving
144 840 DOFs, solution at t = T/4.

a helicoidal symmetry. It is interesting to notice that the current density jξ is not purely along
the ξ3-direction, but has non-zero ξ1 and ξ2-components, too. Similarly, bξ3 is not equal to zero.
This is an illustration of the necessity to consider a three-component magnetic field in the 2D
model written in the helicoidal space.

Comparison of the results from the 3D and 2D models

We now compare the results of the 2D problem in helicoidal coordinates with the reference 3D
problem described above, in order to verify the implementation. Note that for the 2D model,
in this particular case, we could further exploit the symmetry and model only one-sixth of the
circular region depicted in Fig. 5.3(a), using periodic boundary conditions on the symmetric
boundaries as well as adapted cohomology functions in ΩC

c , hence reducing the computational
cost even more. We however choose to stay general and we model the full 2D cross-section.

The solution of the 2D model on a relatively coarse mesh (4 700 DOFs), is represented in
Fig. 5.8, in the x-space. The current mostly flows in the superconducting filaments, as shown
by the different scales for the middle and right subfigures. The current flow along the filaments
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induces a non-zero perpendicular magnetic flux density bz at the center of the wire. The current
density is represented in Fig. 5.9 in both the ξ and x-spaces. As with the 3D model, this figure
clearly demonstrates the necessity of considering a three-component magnetic field h in the
ξ-space, because the current density is not necessarily purely along êξ3 .

0 00.15b (T) j (A/m2) 7× 109

êx

êy

0 j (A/m2) 3× 105

Figure 5.8: Magnetic flux density (left), current density in the filaments (middle), and current density in
the matrix (right) at time t = T/4 for the 2D problem solved in the helicoidal ξ-space, but represented
in the x-space. The arrows represent the in-plane x and y-components of b and j, whereas the triangular
elements are colored as a function of the perpendicular z-component of b and j. The dashed red line in
the left figure is the cut along which is magnetic flux density is represented in Fig. 5.10.

êz
êy êx

êξ3êξ2 êξ1

‖jξ‖ or ‖jx‖ (A/m2)0 7.5× 109

jξ jx

Figure 5.9: Current density in both the ξ and x-spaces at time t = T/4 for the 2D problem solved in the
helicoidal ξ-space. One can verify that jx is (almost) parallel to the filament boundary (a small portion
of current goes into the copper matrix).

A comparison of the local field distribution of the 2D model with that of the reference 3D
model is shown in Fig. 5.10, along the dashed red line highlighted in Fig. 5.8, for two mesh
resolutions. The solution of the 3D model is taken on the plane ξ3 = 0, but this choice is
arbitrary: as was shown in Fig. 5.7, up to the inter-element variation, the solution of the 3D
model is also ξ3-independent. Solutions of the 2D and 3D models match locally. We verified
that this was also the case for the current density (not represented in the figures).

A comparison of a global quantity is proposed in Fig. 5.11, where the AC losses per unit
length along êz in both the superconducting filaments and the conducting matrix are compared
for the two models, and for two mesh resolutions. For the 2D model, the AC loss is computed
as (ρ̃ j , j)Ωc

, where Ωc is either restricted to the filaments, or to the matrix. For the 3D model,
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Figure 5.10: Magnetic flux density along the dashed red line represented in Fig. 5.8, for the 3D and 2D
models, at time t = T/4, with coarse (up) and fine (down) mesh resolutions.

the integral (ρ jx , jx)Ωc,x
is computed over the 3D domain in the x-space, and the result is

divided by p/6, to obtain the AC loss per unit length as well.

Meshes for the coarse resolution in the z = ξ3 = 0 plane are similar for the 2D and 3D
models, as well as meshes for the fine resolution. However, the 2D solution is less sensitive to
the mesh resolution. This is due to the inter-element variations between the different tetrahedra
in the 3D mesh, that require to be significantly lowered to get an accurate evaluation of the
quadratic quantity representing the AC losses. Meshes with prisms, i.e., extruded triangles,
were also tested. They give slightly better results, but also increase the complexity of the
meshing step, as pyramids must be used as transition elements between prisms and tetrahedra.

The local and global quantity agreement justifies the validity of the 2D model in helicoidal
coordinates. The main motivation is the dimension reduction, which allows for tremendously
more efficient simulations in terms of computational resources. This is demonstrated by Ta-
ble 5.1, that compares the performance figures of the 2D and 3D models on meshes with similar
characteristic length for the finite elements (triangles in 2D and tetrahedra in 3D).
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Figure 5.11: AC losses in the superconducting filaments (up) and in the conducting matrix (down) for
an imposed current I(t) = 0.5 Ic sin(2πt/T ), as a function of time, for two mesh resolutions, with the
2D model in helicoidal coordinates and the 3D verification model.

Model and mesh # DOFs # iterations Time/it. Time/it./DOF Total time

3D model
Coarse 16 556 1 645 1.82 s 110 µs 50 m
Medium 85 605 2 893 22.26 s 260 µs 17 h 53 m
Fine 144 870 3 255 45.77 s 315 µs 41 h 23 m

2D model
Coarse 1 797 1 299 0.13 s 72 µs 3 m
Medium 4 481 1 948 0.32 s 71 µs 10 m
Fine 6 002 2 258 0.46 s 76 µs 17 m

Table 5.1: Performance figures for the 3D and 2D models of the twisted superconducting filaments with
imposed current and no axial field, computed with 150 time steps from t = 0 to t = 5T/4. Elements
in the 2D coarse, medium, and fine resolutions have similar characteristic lengths to those in the 3D
meshes, respectively. The dimension reduction allows for a tremendous acceleration of the resolution.

5.1.4 Extension to non-helicoidally-invariant boundary conditions

An interesting external excitation to consider on twisted conductors is a transverse field, applied
perpendicular to the wire axis. For a constant field in the y-direction, we have

hx =




0
1
0


 ⇒ hξ = JT hx =




sinαξ3

cosαξ3

αξ1 cosαξ3 − αξ2 sinαξ3


 . (5.21)
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The expression of the transverse field in the ξ-space is therefore not ξ3-independent, as illus-
trated in Fig. 5.12. As a consequence, the solution of the magnetodynamic problem will not
be ξ3-independent either. We can however exploit the periodic structure of the problem by
expressing the solution as a series of periodic functions with respect to ξ3.

êξ2

êξ3
êy

êz

p

Figure 5.12: Constant applied field along êy for the six twisted filament geometry. (Left) Representation
in the x-space on the plane x = 0. (Right) Representation in the ξ-space on the plane ξ1 = 0. See
Eq. (5.21).

In all generality, given the p-periodicity with respect to ξ3, by separation of variables, we can
express the magnetic field h = h(ξ1, ξ2, ξ3) as the following series:

h(ξ1, ξ2, ξ3) =
∞∑

k=−∞
hk(ξ1, ξ2)fk(ξ3), (5.22)

with the modes fk = fk(ξ3) that are functions of ξ3 only and that are defined as

fk(ξ3) =





√
2 cos(αkξ3), k < 0,

1, k = 0,
√

2 sin(αkξ3), k > 0,

(5.23)

and with the associated mode coefficients hk = hk(ξ1, ξ2) that are general three-component
vector functions of ξ1 and ξ2.

The modes fk are orthogonal and have a unit norm, denoted as ‖fk‖ = 1, in the sense of
following the inner product:

〈fk1 , fk2〉 =
1

p

∫ p

0

fk1fk2 dξ3 = δk1k2 , ∀k1, k2 ∈ Z. (5.24)

They also satisfy the following property:

∂fk
∂ξ3

= αkf−k(ξ3), ∀k ∈ Z. (5.25)
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Introducing a similar decomposition of the magnetic field into its in-plane and perpendicular
components as in the helicoidally symmetric case for each mode coefficient hk, we can rewrite
Eq. (5.22) as

h(ξ1, ξ2, ξ3) =
∞∑

k=−∞

(
h‖,k(ξ1, ξ2) + h⊥,k(ξ1, ξ2)

)
fk(ξ3), (5.26)

with the h‖,k containing the ξ1 and ξ2-components of hk, and the h⊥,k containing its ξ3-
component. Equation (5.26) generalizes the decomposition in Eq. (5.11) for the case of heli-
coidally symmetry boundary conditions. In the symmetric case, the only mode that is involved
is f0(ξ3) = 1, with coefficients h‖,0 = h‖ and h⊥,0 = h⊥, whereas the coefficients of the other
modes, h‖,k and h⊥,k, ∀k ∈ Z0, are all equal to zero.

The curl of decomposition (5.26) reads

curl h(ξ1, ξ2, ξ3) =
∞∑

k=−∞

(
fk(ξ3) curl h‖,k(ξ1, ξ2) +

∂fk
∂ξ3

êξ3 × h‖,k(ξ1, ξ2)

)

+
∞∑

k=−∞
fk(ξ3) curl h⊥,k(ξ1, ξ2), (5.27)

where êξ3 is the unit vector in the ξ3-direction.

Space discretization

As the only term in Eq. (5.27) contributing to the ξ3-component of the curl involves the curl
of h‖,k, we can keep the same discrete function space for the h‖,k as for h‖ in Section 5.1.2,
however without the cohomology functions for k 6= 0, as net currents cannot be ξ3-dependent
in a magnetodynamic regime. The net currents are handled by cut functions involved in the
coefficient h‖,0 of the constant mode f0(ξ3) = 1.

As in the ξ3-independent case, we express the perpendicular field h⊥,k as a sum of perpen-
dicular edge functions. As the h‖,k functions also contribute to the ξ1 and ξ2-components of
the curl of h for k 6= 0 in Eq. (5.27) via the cross product term, the curl-free condition in ΩC

c
does no longer result in a constant perpendicular field in ΩC

c , for k 6= 0. Instead, as is shown
below, the curl-free condition induces a coupling between the parallel and perpendicular fields
in ΩC

c . For simplicity, and as was done before, we assume that there is only one connected
non-conducting region ΩC

c .

Using curl-free h‖,k functions in ΩC
c and Eq. (5.27), the curl-free condition on h in ΩC

c reads

curl h(ξ1, ξ2, ξ3) =
∞∑

k=−∞

(
∂fk
∂ξ3

êξ3 × h‖,k(ξ1, ξ2) + fk(ξ3) curl h⊥,k(ξ1, ξ2)

)
= 0. (5.28)
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Using the mode property Eq. (5.25), this yields

∞∑

k=−∞

(
αkf−k(ξ3)êξ3 × h‖,k(ξ1, ξ2) + fk(ξ3) curl h⊥,k(ξ1, ξ2)

)
= 0, (5.29)

⇔
∞∑

k=−∞

(
−αkfk(ξ3)êξ3 × h‖,−k(ξ1, ξ2) + fk(ξ3) curl h⊥,k(ξ1, ξ2)

)
= 0, (5.30)

⇔
∞∑

k=−∞
fk(ξ3)

(
curl h⊥,k(ξ1, ξ2)− αkêξ3 × h‖,−k(ξ1, ξ2)

)
= 0, (5.31)

which results in the following condition, ∀k ∈ Z:

curl h⊥,k(ξ1, ξ2)− αkêξ3 × h‖,−k(ξ1, ξ2) = 0. (5.32)

For k = 0, we retrieve the same condition as in the helicoidally symmetric problem, that is,
h⊥,0 must be constant in ΩC

c , with a value given by Eq. (5.20). For k 6= 0, the condition can be
enforced via the independent degrees of freedom of the parallel and perpendicular field mode
components. Indeed, in ΩC

c , we have the expansions

h⊥,k(ξ1, ξ2) =
∑

n∈N (Ωc)

h⊥,n,k wnêξ3 , and h‖,−k(ξ1, ξ2) =
∑

n∈N (ΩC
c )

φ‖,n,−k grad wn (5.33)

where wnêξ3 = wn is the usual perpendicular edge function. In terms of the individual degrees
of freedom, Eq. (5.32) reads

∑

n∈N (ΩC
c )

h⊥,n,k



∂ξ2wn
−∂ξ1wn

0


− αk φ‖,n,−k



−∂ξ2wn
∂ξ1wn

0


 = 0, (5.34)

⇔
∑

n∈N (ΩC
c )

(
h⊥,n,k + αk φ‖,n,−k

)


∂ξ2wn
−∂ξ1wn

0


 = 0. (5.35)

The last equation is valid over the whole span of ΩC
c if and only if the first parenthesis is

constant, i.e., if

h⊥,n,k + αk φ‖,n,−k = Ck, Ck ∈ R, ∀n ∈ N (ΩC
c ). (5.36)

That is, to ensure a curl-free magnetic field in ΩC
c , the degrees of freedom of the mode h⊥,k

must be linked directly to those of the mode h‖,−k in ΩC
c . Still for k 6= 0, the constants Ck can

be arbitrarily fixed to zero, as adding any constant to φ‖,−k lets the physical fields unchanged.
Note that this link between the degrees of freedom induces a non-negligible reduction of the
number of unknowns.
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Boundary conditions for a transverse field

The transverse field defined in Eq. (5.21) applied as a boundary condition on Γout only involves
the modes f−1 and f1. We have

h‖,−1(ξ1, ξ2) =

√
2

2




0
1
0


 , h‖,+1(ξ1, ξ2) =

√
2

2




1
0
0


 , (5.37)

h⊥,−1(ξ1, ξ2) =

√
2

2




0
0
αξ1


 , h⊥,+1(ξ1, ξ2) =

√
2

2




0
0
−αξ2


 . (5.38)

Expressing the functions for h‖,−1 and h‖,+1 in terms of a scalar potential, we can verify that it
satisfies Eq. (5.36).

Results on linear materials

For linear materials, the orthogonality between the modes allows us to treat different modes
independently. The full 3D weak formulation Eq. (5.7) can be integrated along ξ3 for every
mode, giving rise to a “quasi-3D” model. We derive the resulting formulation in Section B.5 in
Appendix. To verify the validity of this approach, we compare the obtained results with those
from a classical 3D model. We consider the same geometry as in Section 5.1.3, but with linear
materials, and with an applied transverse field instead of an imposed current intensity.

For verification, we fix the following model parameters. The filaments have a constant
resistivity ρ = 1.81 × 10−12 Ωm, and the matrix has a constant resistivity ρ = 10−8 Ωm
(dummy values chosen for verification only). The system is subjected to a transverse field ramp
along y, from by = 0 T at t = 0 to by = 0.1 T at t = 0.1 ms (these are dummy values, chosen
such that the diffusion skin depth is smaller than the filament radius).

Boundary conditions for the quasi-3D model are imposed on Γout so as to satisfy Eqn. (5.37)
and (5.38). Only modes f−1(ξ3) =

√
2 cosαξ3 and f+1(ξ3) =

√
2 sinαξ3 are activated, so that

the problem amounts to find the associated parallel and perpendicular magnetic field coefficient
functions in the (ξ1, ξ2)-plane, the full field reading

h(ξ1, ξ2, ξ3) =
(
h‖,−1(ξ1, ξ2) + h⊥,−1(ξ1, ξ2)

)
f−1(ξ3)

+
(
h‖,+1(ξ1, ξ2) + h⊥,+1(ξ1, ξ2)

)
f+1(ξ3). (5.39)

The result of the linear quasi-3D model is illustrated in Fig. 5.13 in the x-space.

Comparisons with the solution of the 3D problem are given in Figs. 5.14 and 5.15, along a
characteristic line in the z = ξ3 = 0 plane and along a helicoidal fiber of pitch length p, passing
at point x =

(
r, 0, 0

)
, with r = R` + 0.8Rf, from z = 0 to z = p, respectively. Both models

agree with each other.

As in the helicoidally-invariant boundary condition case, exploiting the geometrical symme-
try allows for a strong reduction of the computational work. It should however be mentioned
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that, in this case, the quasi-3D model involves twice the number of degrees of freedom com-
pared to the pure 2D model in an applied current case, as two modes are involved.

êx

êy
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bz (T)

µ0J
−T(h‖,−1 + h⊥,−1) µ0J
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Figure 5.13: Solution of the quasi-3D model with linear materials subjected to a transverse field, repre-
sented on the z = 0 plane in the x-space. The arrows represent the magnetic flux density and are colored
as a function of its norm, using the upper color map on the right, and the triangular elements are colored
as a function of the z-component of the magnetic flux density, using the lower color map on the right.
The dashed red line is where the field is taken for Fig. 5.14, and the red dot along that line represents
the intersection with the plane z = 0 of the helicoidal fiber along which the field is taken for Fig. 5.15.
(Left) Field function for the even mode f−1(ξ3) =

√
2 cosαξ3. (Right) Field function for the odd mode

f+1(ξ3) =
√

2 sinαξ3.
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Figure 5.14: Magnetic flux density components along the dashed red line represented in Fig. 5.13, at
z = 0, for the 3D and Quasi-3D models with a fine mesh resolution.
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Figure 5.15: Magnetic flux density along the helicoidal fiber of pitch length p, passing at point x =(
r, 0, 0

)
, with r = R` + 0.8Rf (represented by the red dot in Fig. 5.13), from z = 0 to z = p, for

the 3D and Quasi-3D models. (Left) Three components of the vectors in the x-space. (Right) Three
components of the vectors in the ξ-space.

Comments for nonlinear materials

If part of the geometry contains nonlinear materials, such as superconducting filaments, a mode
decoupling is no longer possible. Let us consider the h-φ-formulation in helicoidal coordinates,
Eq. (5.7), expressed in terms of the spectral decomposition of the magnetic field, Eq. (5.26).
As derived in Section B.5 in Appendix, the eddy current term of the formulation expands as a
double sum on k, k′ ∈ Z of the terms given by Eq. (B.49).

Each term in Eq. (B.49) involves the tensor ρ̃, which, for a superconducting filament, de-
pends on the full local current density (as well as the full magnetic flux density, for a field-
dependent critical current density). First, as the argument of the power law involves the full
current density, all modes are directly coupled via the resistivity tensor ρ̃. Second, this also
implies that we can no longer exploit the orthogonality of the modes, as the integrals along ξ3

now involve ξ3-dependent coefficients, so that the inner product does no longer appear.

An infinite number of modes involved in the expansion Eq. (5.26) are likely to be excited.
As one cannot aim for an exact solution along the ξ3-direction with the numerical model, the
expansion must therefore be truncated. Observations on the 3D solution suggest that consid-
ering only two modes for the response to a transverse field might already provide a good first
evaluation of the solution. This is illustrated by Figs. 5.16 and 5.17, with the evolution of h
along one helicoidal fiber.

Note that we have however no a priori guarantee for the number of modes to consider on
a new problem. Also, the complexity of the formulation, due to the mode coupling, quickly
increases with the number of considered modes. The investigation has not been pursed in this
work, but writing the problem for one or two modes would constitute an interesting further
work.
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5.2 Stacked-tape magnetic shield

Due to their ability to sustain large current densities without losses, superconducting materials
can be used as efficient passive magnetic shields at low frequency [53, 232, 233]. Compared
to conventional shields made up of ferromagnetic materials, superconducting shields are not
limited by a saturation magnetization and can therefore operate at much higher flux densi-
ties [233, 234, 235, 236].

Superconducting shielding can be achieved by low-temperature supeconductors (LTS) [234,
235] or high-temperature superconductors (HTS). For HTS, bulk materials [27, 237, 238, 239]
or coated conductors can be used, such as eye-shaped loops [240, 241] or stacks of tapes [48].

In this work, we focus on the last category: stacks of HTS tapes. We consider magnetic
shields made up of stacks of YBCO tape annuli, as illustrated in Fig. 5.18. More specifically,
we consider the finite element modelling of their magnetic response at 77 K. As a significant
volume fraction of the tapes consists in the ferromagnetic substrate (SFM), assumed anhys-
teretic, the whole structure is a HTS-SFM hybrid. As was discussed in the previous chapter,
numerical modelling of these hybrid structures is not a trivial task, and different approaches
may result in completely different numerical behaviors.

êz

êy êx

(a) Illustration of the fabrication process.

HA

Rout

Rin

(b) Sample A [242].

Figure 5.18: Fabrication process and picture of a stacked-tape magnetic shield (sample A). Each tape
consists mainly of a ferromagnetic substrate, coated by a thin layer of HTS.

Numerical modelling of the magnetic shields is relevant to understand and quantify the in-
fluence of the material parameters on the overall magnetic shielding. For example, once the
models are validated against experimental measurements, they can be exploited to explore the
influence of the permeability of the ferromagnetic substrate on the shielding properties, or the
effect of a field-dependent critical current density. Such discussions are conducted in [53].
Here, we focus on the numerical aspect of the modelling.

We first define the problem in Section 5.2.1. In Sections 5.2.2 and 5.2.3, we propose two
different models suited for a finite element analysis. The first model is a simplification of the
layered structure in which we consider a limited number of tapes in the stack. The second
model follows a homogenization approach [243], that amounts to replacing the layered stack of
tapes by a fictitious homogeneous material with anisotropic properties.

We then assess the accuracy and efficiency of both models for different finite element formu-
lations. In Section 5.2.4, we consider the shielding with respect to an axial external field, that
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can be modelled as a 2D axisymmetric problem, and in Section 5.2.5, we analyze a transverse
applied field configuration, that requires a 3D model.

We will show that obtaining accurate results is challenging and that it can be computationally
expensive. The objective of our analysis is to provide recommendations on how to model hybrid
HTS-SFM layered structures. The two models we propose must be seen as first investigations.
They offer general observations on the main difficulties associated with the stacked-tape mag-
netic shield problem.

5.2.1 Problem definition and experimental measurements

The magnetic shields consist of stacks of YBCO tape annuli, extracted from a 46 mm-wide
coated conductor [242, 53], as illustrated in Figure 5.18. The superconducting tape is based on
a rolling assisted biaxially textured substrate (RABiTS) [32], made up of Ni-5at.%W, which is
approximately 75 µm thick. The filling volume fraction of the ferromagnetic substrate (SFM)
in the tape, and hence also in the whole stack, is equal to f = 0.92. Annuli have an inner radius
Rin = 13 mm and an outer radius Rout = 22.5 mm. Three samples, A, B, and C, of different
height H(·) and number of tapes N(·) are considered. We have HA = 24 mm, HB = 14.9 mm,
and HC = 9.9 mm, with NA = 294, NB = 182, and NC = 121. The fabrication process of the
system is described in [244, 245].

The first magnetization curve [90] of the ferromagnetic substrate has been measured in [246]
at room temperature, 293 K, and in liquid nitrogen at a temperature of 77 K. Experimental mea-
surements (up to 0.2 T) are interpolated to obtain the continuous saturation curves illustrated
in Fig. 5.19 that will be used in the numerical simulations to describe the magnetic constitutive
law. Above 0.2 T, the measurements are smoothly extrapolated to approach the saturation per-
meability of µ0. At both 293 K and 77 K, the relative permeability first increases, up to values
of µr = 330 and µr = 365, respectively, and then progressively decreases down to µr = 1 for
high field values.
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Figure 5.19: Saturation law and magnetic permeability of the ferromagnetic substrate at both 293 K and
77 K. Curves are obtained by interpolation of experimental measurements [246] below 0.2 T, and smooth
extrapolation of them above 0.2 T.
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A volume fraction f = 0.92 of the stack of tapes is therefore characterized by the field-
dependent permeability mentioned above. For the complementary volume fraction, 1 − f ,
containing the superconducting layer as well as buffer layers, we assume that µ = µ0.

The ferromagnetic substrate is considered non-conducting. Only the superconducting layer
is modelled as a conducting material. We neglect the conductivity of other layers, and we
assume that the HTS fills a volume fraction of (1 − f) of the whole stack. The HTS layer is
described by the power law, with n = 20 and a field-dependent critical current density jc(b)
that follows Kim’s law [88]:

jc(b) =
jc0

1 + ‖b‖/b0

, (5.40)

with jc0 = 7× 109 A/m2 and b0 = 0.1 T, two constant parameters that were found to faithfully
reproduce the experimental measurements. We refer to [242] for a more detailed discussion
about the parameter identification. For simplicity, we assume that jc(b) only depends on the
norm ‖b‖ of the magnetic flux density. In reality, tapes are more sensitive to fields perpendicular
to their surface than to parallel fields [247, 35, 248], but we neglect anisotropic effects here.
We already obtain a satisfying agreement between the models and the measurements with this
assumption [242].

We study the magnetic response of the shield to an external applied field bs in two config-
urations: axial and transverse. In the axial configuration, the field bs is applied parallel to the
stacked-tape cylinder axis, i.e., in the z-direction. In the transverse configuration, the field is
applied perpendicular to the cylinder axis, e.g., in the x-direction. See Fig. 5.20. To quantify
the shielding properties of the stacked tape, we define the shielding factor SF as follows:

SF =
‖bs‖
‖bin‖

, (5.41)

where bin is the magnetic flux density at the center of the stack. This quantity is related to a
local measurement. It is the main indicator that we will compare during the numerical analysis.

bs

Axial

bs

Transverse

êzêy
êx

Figure 5.20: Axial and transverse configurations.

At room temperature, the YBCO layers are not in a superconducting state and behave like
a normal conductor. As a result, only the ferromagnetic substrate significantly contributes to
the magnetic shielding. The shielding is much more effective in the transverse configuration,
due to the layered structure of the stack that does not offer paths of low reluctance for vertical
field lines in the axial configuration. At 77 K, the HTS layers are superconducting, and this
offers strong shielding properties in the axial configuration due to the appearance of screening
currents in response to a time-varying magnetic flux.
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The shielding factors have been measured experimentally in [242] on the three samples, at
both room temperature and 77 K, in both axial and transverse configurations, for a linear ramp
of applied field up to 60 mT, with a rate of 0.75 mT/s. The measurements are given in Fig. C.7
in Appendix. A second set of measurements has been conducted at 77 K, with an axial field
up to 670 mT at a rate of 5 mT/s on the three samples. The associated shielding factors are
illustrated in Fig. C.8 in Appendix.

5.2.2 Simple model

Modelling the detailed stacks of N(·) > 120 tapes is expensive in terms of computational re-
sources, but may not be necessary for reproducing the global shielding behavior of the overall
stack. For the first approach, we propose to model the stacked-tape magnetic shield with a lim-
ited number of tapes Ns < N(·), with a fictitious thickness ws = H(·)/Ns, in order to reproduce
the total height H(·) of the stack. As a first step in the numerical analysis, we will assess the
influence of Ns on the obtained shielding factors to verify the validity of this approach.

As already mentioned, we assume that each tape consists in the superposition of a SFM layer
of thickness fws and a HTS layer of thickness (1−f)ws. We do not model other material layers
in the coated conductor, neglecting their role in the shielding properties.

In the axial configuration, the problem is axisymmetric and can be described by a 2D model,
as represented in Fig. 5.21(a). In the transverse configuration, a 3D model is necessary. By
symmetry, only a quarter of the domain can be modelled, as illustrated in Fig. 5.21(b).

bs

O
O bs

êzêy
êxΓsym Γout

(a) Axial configuration. (b) Transverse configuration.

Figure 5.21: Axial and transverse configurations for the simple model. Yellow regions represent the
HTS layers and blue regions represent the SFM layers. The point O is the coordinate system center,
where the magnetic flux density bin is taken for computing the shielding factor. (a) Axial configuration,
the scale is not respected for the external boundary and HTS layer thickness, for clarity. (b) Transverse
configuration, the domain boundary is not represented.

The external field is imposed via an essential boundary condition on the circular or spherical
external surface Γout, placed at a distance R = 100 mm from the center O, whereas symmetry
conditions are imposed on the symmetry surface(s) Γsym, strongly or weakly, depending on the
formulation. A global condition is also associated with each tape Ωci , i ∈ {1, . . . , Ns}. In the
axial configuration, screening currents are free to appear and no external voltage is imposed, so
that we have V̄i = 0, ∀i ∈ {1, . . . , Ns}. In the transverse configuration, both the total current
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and the voltage are equal to zero by symmetry in each tape. This is enforced by strong global
conditions, either on the current, or on the voltage.

5.2.3 Homogeneous model

As a second method, we propose to replace the layered structure by a homogeneous material
with anisotropic properties [243, 249, 46]. The homogeneous material has both superconduct-
ing and ferromagnetic properties, and the problem is written in terms of the local average fields
h, b, e, and j, also referred to as the macroscale fields [250], assuming that each finite element
in the homogeneous model covers a sufficiently high number of tapes in the z-direction. The
problem geometry is illustrated in Fig. 5.22. Note that a plane symmetry with respect to z = 0
can be introduced to reduce the computational domain by half.

bs
O bs

êzêy
êxΓsym Γout

(a) Axial configuration. (b) Transverse configuration.

O

Figure 5.22: Axial and transverse configurations for the homogeneous model. The green region repre-
sents the hybrid HTS-SFM material with anisotropic material properties. The point O is the coordinate
system center, where the magnetic flux density bin is taken for computing the shielding factor. (a) Axial
configuration, the scale is not respected for the external boundaries and HTS layer thickness, for clarity.
(b) Transverse configuration, the external domain boundaries are not represented.

Boundary conditions are identical to those in the simplified detailed model, but global con-
ditions only involve one conducting domain. In the axial configuration, a zero applied voltage
is imposed, strongly or weakly, depending on the formulation. In the transverse configuration,
either a zero applied voltage or a zero current intensity is strongly imposed.

Anisotropic permeability and reluctivity

The homogeneous material is anisotropic and its magnetic permeability takes the form of a
diagonal tensor, defined as follows [243]:

µ̃(h) =



µ̄(hF) 0 0

0 µ̄(hF) 0
0 0 ¯̄µ(hF)


 with

{
µ̄(hF) = fµ(hF) + (1− f)µ0,

¯̄µ(hF) =
(
f/µ(hF) + (1− f)/µ0

)−1
,

(5.42)
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where hF denotes the local magnetic field in the SFM, which is the relevant quantity to be used
as an argument for the field-dependent permeability. This quantity, however, is not the main
unknown of the homogeneous model. Instead, the model is written in terms of the average
magnetic field h. To use Eq. (5.42), one must therefore express hF in terms of h.

The volume average field h is defined as h = fhF + (1− f)hS, where hS is the local field
in the HTS material. By continuity of the tangential component of the magnetic field and of the
normal component of the magnetic flux density, we have

hF
x = hS

x, hF
y = hS

y, µ(hF)hF
z = µ0h

S
z , (5.43)

with (hF
x, h

F
y, h

F
z) and (hS

x, h
S
y, h

S
z) the components of hF and hS in the Cartesian coordinate sys-

tem represented in Fig. 5.22. Consequently, the relation between the components (hx, hy, hz)
of the average magnetic field, h, and the components of the magnetic field in the SFM, hF, can
be written as



hF
x

hF
y

hF
z


 =




hx
hy

µ0hz/
(
fµ0 + (1− f)µ(hF)

)


 . (5.44)

Because of the nonlinear permeability µ(hF), interpolated from experimental measurements,
expressing hF in terms of h therefore requires to solve an implicit equation for hF

z at each point
where the permeability value is needed. We solve this equation using a quasi-Newton method,
which is a variation of the Newton-Raphson method in which the Jacobian is approximated by
a finite difference.

Conversely, for formulations that involve the magnetic flux density as a primal unknown, the
magnetic reluctivity takes the form of a diagonal tensor as well, defined as follows:

ν̃(b) =



ν̄(bF) 0 0

0 ν̄(bF) 0
0 0 ¯̄ν(bF)


 with

{
ν̄(bF) =

(
f/ν(bF) + (1− f)/ν0

)−1
,

¯̄ν(bF) = fν(bF) + (1− f)ν0,
(5.45)

where the non-constant reluctivity in the SFM depends on the local magnetic flux density bF in
the SFM. Following similar steps as for the magnetic field, we can express the relation between
the Cartesian components (bx, by, bz) of the average magnetic flux density, b, and the Cartesian
components (bF

x, b
F
y, b

F
z) of the field in the SFM, bF, as follows:



bF
x

bF
y

bF
z


 =



ν0bx/

(
fν0 + (1− f)ν(bF)

)

ν0by/
(
fν0 + (1− f)ν(bF)

)

bz


 . (5.46)

This also involves an implicit equation for the x and y-components (that can be solved at once).
We also use a quasi-Newton method.

This averaging approach is a simple form of general homogenization techniques involving
multi-scale resolutions [250]. Here, the microscale problem is fully contained in the implicit
equation Eq. (5.44) or Eq. (5.46).
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Anisotropic resistivity

The current density can only flow in the (x, y)-plane. To prevent current from flowing in the
z-direction, we introduce a large resistivity ρ∞ in that direction [46]. In practice, we found that
ρ∞ = 0.01 Ωm gives satisfying results for the considered problems and material parameters.
In the Cartesian coordinate system represented in Fig. 5.22, the resistivity takes the form of a
diagonal tensor, defined as follows:

ρ̃(j; b) =
1

1− f



ρ(jS; bS) 0 0

0 ρ(jS; bS) 0
0 0 ρ∞


 , (5.47)

where the power law resistivity depends on the local current density jS and magnetic flux
density bS in the HTS layer. As the SFM is assumed non-conducting, it does not carry any
current density and the relation between the average current density j and jS is straightforward.
We have jS = j/(1 − f), still assuming that (1 − f) is the filling factor of the HTS. The
local magnetic flux density bS that is involved in the field-dependent critical current density
jc = jc(b

S) can be derived from b and bF, computed from Eq. (5.44) or Eq. (5.46), depending
on the formulation.

As handling the power law in terms of the conductivity has been ruled out as an efficient
technique in the previous chapter, we do not consider the conductivity tensor here. Note that
using the conductivity may still be useful in the case of large time step calculations [126, 239].

Note that in the axial configuration, as the current density is azimuthal by construction, there
is no need to introduce an anisotropic resistivity tensor. The usual (isotropic) constitutive law
can be used as is.

5.2.4 Model comparison in axial field (2D-axi)

In this section, we compare the numerical results and performance of the two approaches with
different formulations on the 2D axisymmetric model reproducing the experimental axial con-
figuration at 77 K for an applied field up to 670 mT, for sample B. For both models, we consider
three formulations: the h-φ, h-φ-b, and a-j-formulations. For the h-φ-b-formulation, we take
b ∈ Bδ,1(Ωm), as defined in Eq. (3.47).

The space discretization is performed using triangular elements, except in the HTS layers of
the simple model, where one layer of quadrangular elements is used. The characteristic mesh
size is fixed to 0.4α mm in the tapes, to 1.5α mm in the vicinity of the center O, and to 6α
mm on the outer surface Γout, with α equal to 4, 2, 1, and 0.5 for the coarse, medium, fine, and
finer discretization levels, respectively. For the homogeneous model, the mesh size is allowed
to increase up to 1.6α mm in the center of the stack. The coarse meshes associated with α = 4
for both models are illustrated in Fig. 5.23.

For the time discretization, we model the response from t = 0 to t = 135 s with a minimum
of 40 time steps. In case of non-convergence, the time step is reduced using the adaptive time-
stepping procedure described in Section 4.4.2, with imax = 180.
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(a) Simple model. (b) Homogeneous model.

O O

Figure 5.23: Coarse meshes (α = 4) for the simple and homogeneous models in the axial configuration
for sample B. (a) Simple model with Ns = 16, the yellow lines represent the HTS layers, meshed with
quadrangles whose size can be inferred from adjacent triangles. (b) Homogeneous model with coarser
mesh size at the center of the stack, as the solution is less sensitive to the mesh resolution in that region.

Influence of Ns in the simple model

We first evaluate the influence of the mesh resolution on the numerical solution. The results of
the h-φ-formulation are illustrated in Fig. 5.24. Especially at low fields and for a large number
of tapes, noticeable changes are still observed in the SF values when refining from α = 1 to
α = 0.5, with the largest variation being of the order of 6%. In the small field regime, the
current density only circulates over a small portion of the HTS layers. This is shown in the
upper-left part of Fig. 5.29, and helps to understand why a fine discretization is required to get
an accurate description of the overall magnetic response.

The influence of the number of tapes Ns on the SF values is illustrated in Fig. 5.25, with the
three considered formulations. All three formulations give comparable results. Note that the
numerical results qualitatively match with the experimental measurements, especially at large
field values.

At a fine mesh resolution and with different formulations, the chosen value of Ns is seen
to have a significant influence on the SF, especially at low fields. In the axial configuration,
most of the shielding is generated by screening currents in the HTS layers, and the height
over which these layers are distributed influences the shielding effectiveness, as shown by the
measurements in Fig. C.8 in Appendix. Because the simple model is built using a SFM layer at
the bottom of the stack, taking smaller values of Ns reduces the overall height covered by HTS
layers, and hence reduces the obtained SF.

To further investigate the influence of Ns on the numerical solution, we consider a modified
version of the simple model in which we introduce a symmetry with respect to the (x, y)-plane,
by considering that the tapes are stacked upside-down below the plane, i.e., for z > 0. In
this symmetric variation of the simple model, the HTS layers cover the entire height of the
physical sample. We compare the obtained SF values to the one obtained with the asymmetric
model in Fig. 5.26, using the h-φ-formulation. As can be expected, the difference between both
approaches reduces as the number of tapes is increased. The SF values from the symmetric
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Figure 5.24: Shielding factors of sample B in the axial configuration from the h-φ-formulation, for four
different numbers of tapes Ns with the simple model (asymmetric case), and four different discretization
levels. The dashed gray curve corresponds to the experimental measurements.
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Figure 5.25: Shielding factors of sample B in the axial configuration from the h-φ, h-φ-b, and a-j-
formulations on the simple model in the axial configuration, for different numbers of tapes Ns (asym-
metric case). Results are obtained on a fine mesh (α = 1). The dashed gray curve corresponds to the
experimental measurements.

approach demonstrates a lower dependence on Ns.

The reduced equivalent HTS height is one piece of explanation for the influence ofNs on the
SF values, but ending the stack with a SFM or a HTS layer also has an influence on the field lines
in the vicinity of the materials. Ferromagnetic materials attract them, whereas screening current
in HTS have the opposite effect. As the SF value is sensitive to the field lines distribution, it is
not surprising to obtain qualitatively different curves in the symmetric and asymmetric cases.
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Figure 5.26: Influence of the number of tapes Ns in the simple model on the shielding factor of sample
B in the axial configuration. Results are obtained on a fine mesh (α = 1) with the h-φ-formulation. The
asymmetric case is what is represented in Fig. 5.21, whereas in the symmetric case there is a HTS layer
at the bottom of the stack. The dashed gray curve corresponds to the experimental measurements.

To faithfully reproduce the overall behavior of the stack of tapes in the axial configuration,
the number of modelled tapes must therefore be large enough. In the following, we choose
Ns = 64. This however gives rise to a very detailed geometry description. Simplifying the
geometry, at the cost of introducing anisotropic material properties and handling a HTS-SFM
hybrid fictitious material is the idea of the second model, that we now consider.

Comparison with the homogeneous model

Results from simulations with the three formulations on the homogeneous model are given
in Fig. 5.27. As with the simple model, the mesh size significantly influences the SF values
at low fields. As is illustrated in the bottom-left part of Fig. 5.29, in that field regime, the
magnetic flux density only penetrates the hybrid material over a small depth. It is expected
that an accurate description of the magnetic response can only be obtained with sufficiently fine
space discretization in that region.

As shown in Figs. 5.28 and 5.29, both models provide similar results, in good agreement with
the experimental measurements. Results obtained with the three formulations are of comparable
accuracy. As discussed in the next paragraphs, the different approaches however do not perform
identically in terms of computational work.

Comments on the numerical efficiency

In the homogeneous approach, the geometry definition is simplified, but the whole stack of
tapes becomes both conducting and magnetic. For an identical mesh, the number of degrees of
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Figure 5.27: Shielding factors of sample B from the h-φ, h-φ-b, and a-j-formulations on the homoge-
neous model in the axial configuration, for three different discretization levels (α = 4, 2, and 1). The
dashed gray curve corresponds to the experimental measurements.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
2

4

6

8
10

20

‖bs‖ (mT)

SF
(-

)

Simple model - Ns = 64 - symmetric
Simple model - Ns = 64 - asymmetric
Homogeneous model
Experimental measurements

Figure 5.28: Shielding factors of sample B from the h-φ-formulation on the simple and homogeneous
models in the axial configuration on a fine mesh (α = 1). The dashed gray curve corresponds to the
experimental measurements.

freedom (DOFs) is therefore affected. In particular, with the h-φ and h-φ-b-formulations, edge
functions are used in the whole homogeneous material, instead of in the HTS layers only; and
with the a-j-formulation, DOFs for the auxiliary j field are associated with every node in the
hybrid material, compared to those in the HTS layers only in the simple model. The anisotropy
of material parameters is also expected to have an influence on the convergence of the iterative
techniques. Furthermore, the implicit equation included in the material parameter law intro-
duces an additional cost compared to the explicit material law in the simple model. For all
these reasons, it is difficult to know a priori which of the two models, simple or homogeneous,
will be the most efficient. We compare the performance figures of the different approaches in
Table 5.2, for the fine mesh resolution.

A Newton-Raphson method is used in all cases, except for the magnetic nonlinearity in the
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‖bs‖ = 50 mT ‖bs‖ = 350 mT ‖bs‖ = 540 mT

−jθ or −jS
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Figure 5.29: Comparison of the azimuthal current density obtained with the simple and homogeneous
models in the axial configuration, with the fine mesh resolution (α = 1) for three values of the applied
field. (Up) Simple model with Ns = 64 and the h-φ-formulation. The HTS layer have been thickened in
the representation for clarity purposes. (Down) Homogeneous model with the h-φ-b-formulation.

h-φ-formulation, for which a hybrid method is the only choice that offers satisfying results
among the possibilities presented in Chapter 2. In the hybrid method, we switch from Picard
to Newton-Raphson after iswitch = 10 iterations. No iteration cycle has been observed with this
choice.

During the resolution, some time steps have to be temporarily reduced due to divergent
iterates, especially at the end of the simulation. This is handled by the adaptive time-stepping
procedure. We also observed that the field-dependent critical current density and the treatment
of the saturation law obtained from experimental measurements were particularly demanding
in terms of number of iterations. As observed in the previous chapter, reducing the time step is
an easy solution for improving the situation.

Table 5.2 shows that the a-j-formulation is the most efficient formulation in terms of com-
putational time. For Ns = 64, note that it only converges for the finer mesh level. The default
linear solver from MUMPS [201] fails to solve the linear systems when using coarser meshes.
The a-j-formulation involves a limited number of DOFs compared to the h-φ-b-formulation,
and almost always converges with the maximum prescribed time step. By contrast, the h-φ and
h-φ-b-formulations require smaller and smaller time steps for increasing values of Ns in the
simple model, and are even more restrictive with the homogeneous model.

The increased number of DOFs in the h-φ-b-formulation compared to the h-φ-formulation
induces an extra CPU time per iteration, that is not compensated by the decreased number of
iterations obtained by the mixed formulation. In this situation, the permeability law is effi-
ciently treated by the hybrid iterative technique and moving to the mixed h-φ-b-formulation for
involving the reluctivity is not worth it.
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Model Formul. # DOFs # iterations (# t.s.) Time/it. Time/it./DOF Total time

Simple Ns = 8
h-φ 41 351 1 247 (45) 1.9 s 45.8 µs 39 m
h-φ-b 74 172 1 057 (40) 2.5 s 30.4 µs 44 m
a-j 41 801 1 214 (40) 1.7 s 41.8 µs 35 m

Simple Ns = 16
h-φ 44 516 1 538 (57) 2.0 s 45.4 µs 51 m
h-φ-b 78 298 1 100 (42) 2.7 s 30.6 µs 49 m
a-j 45 622 1 233 (40) 1.9 s 41.0 µs 38 m

Simple Ns = 32
h-φ 51 261 1 599 (64) 2.5 s 46.9 µs 1 h 05 m
h-φ-b 85 237 1 431 (57) 3.0 s 35.8 µs 1 h 12 m
a-j 53 679 1 361 (43) 2.3 s 42.2 µs 51 m

Simple Ns = 64

h-φ 55 925 2 536 (112) 2.6 s 47.1 µs 1 h 51 m
h-φ-b 92 290 2 491 (106) 3.4 s 37.1 µs 2 h 22 m
a-j 60 967 Not converged / / /
a-j (finer) 192 916 2 419 (54) 8.9 s 46.2 µs 6 h 59 m

Homogeneous
h-φ 49 068 2 522 (95) 2.4 s 49.7 µs 1 h 42 m
h-φ-b 62 807 1 828 (124) 2.7 s 43.6 µs 2 h 09 m
a-j 44 498 1 176 (40) 2.5 s 55.8 µs 48 m

Table 5.2: Comparison of the performance figures obtained with the different approaches and formu-
lations, on the fine mesh resolution (α = 1), except for the a-j-formulation with Ns = 64, for which
α = 0.5. Simulation up to ‖bs‖ = 670 mT in the axial configuration, with a minimum of 40 time steps.
The actual number of time steps resulting from the adaptive time-stepping procedure is given within
parenthesis in the table. The CPU times are for a single AMD EPYC Rome CPU at 2.9 GHz.

For the medium and coarse space discretization levels, the general observations on the sim-
ple model are similar to the ones presented in Table 5.2, except for the a-j-formulation, that
faces solving difficulties for Ns = 8 and 16 tapes, similar to the ones observed with Ns = 64
and the fine mesh. For the homogeneous model, the a-j-formulation is still the most efficient
formulation with coarse and medium meshes, but the difference with the other two formulations
is less marked.

The performance figures are seen to be very sensitive to numerical parameters. For example,
as was shown in Chapter 4, the choice of the first iterate has a significant influence on the overall
efficiency. Here, a first-order extrapolation of the last two solutions was found to be the most
efficient option. The numerical parameters involved in the adaptive time-stepping algorithm
also have a strong influence on the overall efficiency.

Both in terms of accuracy and efficiency, none of the two models, simple or homogeneous,
significantly outperforms the other in the axial configuration. The computational cost associ-
ated with the implicit equation resolution in the homogeneous model only accounts for approx-
imately 6% of the total cost of the simulation, and does not disqualify the approach. Depending
on the finite element software, one of the two models may be easier to implement, and this
could be the criterion for choosing one approach or the other.

Note that variations of the proposed models could be investigated, as well as other meth-
ods and formulations. For example, the layers (and mesh size) in the simple model could be
coarsened in the center of the stack. Other existing methods such as the homogeneous t-a-
formulation [52] or thin-shell h-φ-formulation [119] are relevant possibilities to consider.
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5.2.5 Model comparison in transverse field (3D)

We now consider the different approaches applied on the 3D model reproducing the experimen-
tal transverse configuration for sample B at 77 K, for an applied field up to 60 mT. We consider
the same three formulations as in the axial configuration: the h-φ, h-φ-b, and a-j-formulations.
For the h-φ-b-formulation, we take b ∈ Bδ,1(Ωm), as defined in Eq. (3.47).

We consider a structured mesh in the stack of tapes, and an unstructured mesh outside of
it. We define three discretization levels: coarse, medium, and fine, associated with a multiplier
α equal to 4, 2, and 1, respectively. The characteristic mesh size is fixed to 0.7α mm in the
vicinity of the center O and to 10α mm on the outer surface Γout. The characteristic length of
elements in the stack of tapes along the x and y-directions is around 0.7α mm. For the simple
model, a single layer of tetrahedral elements is considered for the HTS part of each tape, and a
number of 32/Ns×4/α tetrahedral layers are considered for the SFM part of each tape. For the
homogeneous model, 88/α layers of hexahedral elements are generated over the whole height
HB of the sample, which corresponds to thicker elements than for the simple model. Even
with such a coarsening, we will see that the homogeneous model is already computationally
demanding. The coarse meshes for both models are represented in Fig. 5.30, only one-eighth
of the full problem is represented.

We model the magnetic response of the system from t = 0 to t = 80 s, with a minimum
of 40 time steps. An adaptive time-stepping procedure is used as for the 2D model in the axial
configuration, with identical numerical parameters.
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êz
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bs

(a) Simple model. (b) Homogeneous model.

Figure 5.30: Coarse meshes (α = 4) in the stack of tapes for the simple and homogeneous models in
the transverse configuration for sample B. One-eighth of the full stack is represented. (a) Simple model
with Ns = 16, symmetric model. (b) Homogeneous model with hexahedra in the stack of tapes.

Influence of the space discretization in the simple model

We first estimate the mesh influence on the numerical solution. We fix the number of tapes to
Ns = 16. The SF values obtained with the three discretization levels and the three formulations
are presented in Fig. 5.31. Note that the a-j-formulation with the fine level did not converge in
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a reasonable amount of time: it was stopped after 30 hours of computation, after reaching an
applied field of ‖bs‖ = 7.5 mT only.

The solutions approach each other, but convergence is not yet achieved with the fine mesh,
as is suggested by the difference between the successive curves for α = 2 and α = 1. The
fine simulations are however already very expensive in terms of computational resources. In
this case, as will be discussed later, the h-φ-formulation is the fastest choice, with an associated
CPU time of more than 7 hours for α = 1. The SF is however a local indicator, and it is sensitive
to the solution accuracy. As illustrated in Fig. 5.32, a small difference in absolute value results
in a large relative difference close to the center O.

This observation highlights the difficulty of evaluating accurately the shielding effectiveness,
especially in 3D. The geometry is non-trivial and the material response is highly nonlinear.
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Figure 5.31: Shielding factors of sample B from the h-φ, h-φ-b, and a-j-formulations on the simple
model (Ns = 16) in the transverse configuration, for three discretization levels (α = 4,2, and 1). Curves
for the h-φ and h-φ-b-formulations are visually indistinguishable. The fine curve for the a-j-formulation
stops at 7.5 mT, after 30 hours of CPU time. The dashed black line at that field value is related to what
is plotted in Fig. 5.32. The dashed gray curve corresponds to the experimental measurements.

Influence of the ending tape in the simple model

As for the axial configuration, we assess the influence of the number of tapes Ns on SF values.
In addition to the asymmetric model pictured in Fig. 5.21(b), we consider the symmetric varia-
tion in which the tapes are stacked upside-down for z < 0. Results on a fine mesh are presented
in Fig. 5.26 for Ns equal to 8, 16, and 32.

Compared to the axial configuration, the influence of Ns is very limited. In this case, it is
smaller than the difference between the formulations observed in Fig. 5.31. Physically, in the
transverse configuration, most of the shielding is achieved by the high permeability of the SFM,
and the field lines are mostly parallel to the SFM layers. Changing the value of Ns does not
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Figure 5.32: Distribution of the x-component of the magnetic flux density along the x-axis (see Fig. 5.30)
for sample B in the transverse configuration in the simple model (Ns = 16) with three formulations and
the fine mesh resolution (α = 1), for an applied field ‖bs‖ = 7.5 mT, as indicated in Fig. 5.31. The
curves for the h-φ and h-φ-b-formulations are visually indistinguishable. The percentages inside the
highlighted circles correspond to the relative difference between the local values from the h-φ and a-j-
formulations.

qualitatively change the SFM height seen by the horizontal field lines. Starting the stack with
either a SFM or a HTS layer either attracts or repels the field lines nearby, but this is observed
to only slightly influence the SF value.

In the following, we consider the symmetric version of the stack, because it allows to model
only one-half of its height, which is also the case for the homogeneous model that is symmetric
by construction. We also choose Ns = 16.

Comparison with the homogeneous model

We now compare the solutions with the homogeneous model. Simulations are much slower
than with the simple model: not all tests converge in a reasonable amount of time. We will
discuss the numerical performance after comparing the results.

The SF values obtained with the different cases are presented in Fig. 5.34, together with
two curves from the simple model for comparison. The magnetic flux density distributions and
relative permeability maps are compared in Figs. 5.35 and 5.36. Even though local differences
may be significant, e.g., on the top of the stack of tapes for the relative permeability, the ho-
mogeneous model correctly reproduces the results of the simple model. The current density
distributions (not represented in the figures) are also comparable.
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Figure 5.33: Influence of the number of tapes Ns in the simple model on the shielding factor of sample
B in the transverse configuration. Results are obtained on a fine mesh (α = 1) with the h-φ-formulation.
The asymmetric case is what is represented in Fig. 5.21, whereas in the symmetric case the tapes are
stacked upside-down for z < 0. The dashed gray curve corresponds to the experimental measurements.
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Figure 5.34: Shielding factors of sample B from the h-φ, h-φ-b, and a-j-formulations on the homoge-
neous model in the transverse configuration, for different discretization levels. The dotted curves are
given for comparison with the simple model. The dashed gray curve corresponds to the experimental
measurements.

Comments on the numerical efficiency

Both models give results of comparable accuracy, but the associated computational work is not
the same. Even more than in the axial configuration, significant differences in efficiency are
observed. A Newton-Raphson method is used in all cases, except for the magnetic nonlinearity
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Figure 5.35: Distribution of the x-component of the magnetic flux density along the x-axis (see Fig. 5.30)
for sample B in the transverse configuration in the homogeneous model with three formulations and the
medium mesh resolution (α = 2), for an applied field ‖bs‖ = 7.5 mT. The result of the simple model
with the h-φ-formulation and α = 1 is given for comparison. The percentages associated with the
highlighted circles correspond to the largest local relative difference between the values from the simple
and homogeneous models.
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Figure 5.36: Comparison of the relative permeability obtained with the simple and homogeneous models
in the transverse configuration and the h-φ-formulation, with the medium mesh resolution (α = 2) for
two values of applied field: (a) 12 mT, and (b) 24 mT. The solution in the plane x = y is also represented,
and indicated by the gray arrows. (Up) Simple model with Ns = 16. (Down) Homogeneous model, the
represented permeability is the scalar value µr(h

F).

in the h-φ-formulation, for which a hybrid method with iswitch = 10 is considered. Performance
figures are gathered in Table 5.3, with simulation times for a single AMD EPYC Rome CPU at
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2.9 GHz.

For the simple model, the h-φ-b-formulation converges in a smaller number of iterations
than the h-φ-formulation. This is directly related to the fact that the reluctivity is more effi-
ciently handled than the permeability. However, the number of degrees of freedom (DOFs)
involved with the h-φ-b-formulation is much higher. As a consequence, with the default di-
rect sparse solver from MUMPS [201], the CPU time associated with the h-φ-b-formulation
becomes higher for the fine mesh resolution.

Model Formul. # DOFs # it. (# t.s.) Time/it. Time/it./DOF Total time

Simple - Coarse
h-φ 3 579 413 (40) 0.5 s 153 µs 3 m 46
h-φ-b 10 419 165 (40) 1.0 s 91 µs 1 m 37
a-j 18 224 172 (40) 1.3 s 73 µs 3 m 50

Simple - Medium
h-φ 23 511 471 (40) 4.6 s 195 µs 35 m 50
h-φ-b 84 015 222 (40) 9.4 s 111 µs 34 m 40
a-j 120 716 765 (43) 18.0 s 149 µs 3 h 49 m

Simple - Fine
h-φ 151 676 524 (40) 50.8 s 335 µs 7 h 23 m
h-φ-b 631 204 278 (40) 178.2 s 282 µs 13 h 46 m
a-j 823 073 120 (6) 900.0 s 1 093 µs >30 h (7.5 mT)

Homog. - Coarse
h-φ 3 406 560 (40) 0.5 s 153 µs 4 m 57
h-φ-b 6 118 295 (40) 0.9 s 142 µs 4 m 17
a-j 11 960 196 (40) 1.0 s 84 µs 3 m 36

Homog. - Medium
h-φ 28 636 3 383 (38) 6.3 s 219 µs > 6 h (33 mT)
h-φ-b 53 260 4 822 (252) 35.8 s 672 µs >48 h (36 mT)
a-j 84 938 307 (40) 41.2 s 485 µs 3 h 31 m

Table 5.3: Comparison of the performance figures obtained with the different approaches and formula-
tions. Simulation up to ‖bs‖ = 60 mT in the transverse configuration, with a minimum of 40 time steps.
The actual number of time steps resulting from the adaptive time-stepping procedure is given within
parenthesis in the fourth column of the table. Gray values are associated with simulations that did not
end properly: either because of exceedingly slow convergence (a-j and h-φ-b), or because of iteration
cycles (h-φ). The field values within parenthesis in the last column indicates where the simulation was
stopped, if it was not at 60 mT. The CPU times are for a single AMD EPYC Rome CPU at 2.9 GHz.

For the simple model, the performance of the a-j-formulation deteriorates with mesh refine-
ment. The number of DOFs is higher than for the other formulations in this 3D problem, and
the number of iterations significantly increases from the coarse to medium discretization levels.
At the fine level, for α = 1, we decided to stop the simulation after 30 hours of CPU time, when
the simulation only reaches a field of 7.5 mT, as depicted in Fig. 5.31. This is almost five times
the total duration of the h-φ-formulation for the complete simulation on the same mesh.

For the homogeneous model, mixed formulations perform better than the h-φ-formulation
at the coarse discretization level, thanks to the significant gain in number of iterations obtained
by handling the reluctivity instead of the permeability.

At the medium discretization level, the a-j-formulation is the only formulation that con-
verges with only 40 time steps. By contrast, the h-φ-formulation enters iteration cycles at an
applied field of 33 mT: the hybrid iterative technique with iswitch = 10 is not robust enough.
Reducing the time step with the adaptive procedure does not help to avoid these cycles in this
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case and convergence fails. Note that below 33 mT, no cycle is encountered, but the time step
still has to be temporarily reduced due to divergent iterates, several times during the simulation.

For the h-φ-b-formulation and α = 2, the simulation does not end within 48 hours of CPU
time, at which point the simulation only reaches an applied field of 36 mT, whereas for the
simple model at a comparable discretization level, the complete simulation is achieved after less
than an hour. Contrary to the situation with the h-φ-formulation, no iteration cycle is observed,
but very small time steps are necessary to avoid divergence of the Newton-Raphson iterations.
The combination of anisotropic materials properties with strongly nonlinear constitutive laws,
in a hybrid magnetic-conducting region together with a mixed formulation makes the problem
non-trivial, and might explain the small time step requirement.

For the fine discretization level on the homogeneous model (not represented in the table),
the h-φ and h-φ-b-formulations face the same difficulties as in the medium level, and the a-j-
formulation becomes extremely slow, as is the case in the simple model at the fine level.

The performance figures in Table 5.3 lead to the conclusion that the simple model should
be preferred to the proposed implementations of the homogeneous model. The computational
cost of the latter model rapidly increases with mesh refinement and convergence difficulties
are encountered with the h-φ and h-φ-b-formulations, whereas in the simple model, these two
formulations lead to robust and more efficient resolutions.

5.2.6 Summary

The numerical performance analysis for the axial (2D-axi) and the transverse (3D) configuration
do not lead to the same conclusions. In the axial case, the simple and homogeneous models lead
to comparable performance. Among the tested formulations, the a-j-formulation is the most
efficient. It is the formulation we would recommend in this configuration.

In the transverse case, the homogeneous model is observed to be particularly slow compared
to the simple model. The h-φ-formulation faces iteration cycles that are not easy to avoid, and
the h-φ-b-formulation requires very small time steps to converge with the tested implementa-
tion. On the contrary, the simple model is observed to produce efficient resolutions, with the
h-φ-b-formulation for coarse discretization levels, and with the h-φ-formulation for finer ones.
The a-j-formulation does not compete with the other formulations, it leads to significantly
slower resolutions, which matches with the conclusions obtained in Section 4.5 with the 3D
magnet motor pole problem.
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In this thesis, we studied different finite element formulations applied to systems containing
nonlinear materials such as type-II superconductors or ferromagnetic materials, or combina-
tions of them. We observed that they may perform very differently. Thus, implementing ro-
bust and efficient numerical models for problems involving these materials requires carefully
designed formulations. The main objective of this dissertation was to contribute to the devel-
opment of such formulations.

We first presented the standard h-φ and a-formulations. A key difference between these
two formulations is that the power law and saturation law, i.e., the electric and magnetic non-
linear laws respectively associated with type-II superconductors and ferromagnetic materials,
are involved in inverse manners. In the light of fixed point theory, we proposed a qualita-
tive and quantitative analysis of the treatment of these nonlinearities by different linearization
techniques. As a general conclusion, among the tested methods, the most efficient and robust
resolutions were shown to be obtained when the power law is written in terms of the resis-
tivity and when the saturation law is written in terms of the reluctivity, i.e., the inverse of the
permeability.

These results, combined with the fact that neither of the standard formulations involves both
nonlinearities in their optimal form, is a motivation for looking for alternative formulations.
We proposed and gathered from the literature four mixed formulations that directly involve the
resistivity and the reluctivity: the h-φ-a (or h-a), t-a, h-φ-b, and a-j-formulations. Each of
these mixed formulations is written in terms of two main unknown fields and takes the form
of a perturbed saddle-point problem. Hence, the function spaces associated with the unknown
fields need to satisfy particular stability conditions, including the so-called inf-sup condition, in
order to avoid mathematical instabilities that may manifest themselves as spurious oscillations
in the numerical solution. We conducted inf-sup tests to assess the validity of different choices
of function spaces in the discrete setting. For the surface-coupled h-φ-a and t-a-formulations,
stability can be achieved via a local enrichment of the function space of one of the two fields on
the coupling surface, with respect to the lowest-order function spaces. For the volume-coupled
h-φ-b and a-j-formulations, lowest-order function spaces for both fields were shown to provide
stable numerical problems.

After the presentation of the six finite element formulations and the discussion of their spatial
discretization, we compared their numerical performance levels by applying them on a collec-
tion of relatively simple problems involving type-II superconductors, with geometries ranging
from 1D to 3D, possibly coupled with ferromagnetic materials. We highlighted significant dif-
ferences in terms of numerical efficiency between the formulations. However, we showed that
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none of the six formulations outperforms all the other ones in all situations: the best formulation
is problem-dependent. In particular, the a-j-formulation demonstrates good performances on
2D problems but it is usually less efficient than the h-φ or h-φ-a-formulation on 3D problems.

We finally applied the formulations on two distinct applications exhibiting non-trivial ge-
ometries. The first application consisted in the computation of AC losses in cables made up
of twisted superconducting filaments. Tackling directly the associated 3D problem is computa-
tionally expensive, but when the cables present a helicoidal symmetry, the problem dimension
can be reduced from 3D to 2D via an adequate change of variables, which drastically reduces
the computational work for a given simulation. We presented this approach and applied it on a
superconducting cable. We also extended the method to problems with non-helicoidally sym-
metric boundary conditions. We only applied this extension to linear materials.

The second and last application on a more complex geometry was the evaluation of the
shielding effectiveness of magnetic shields made up of a stack of a large number of super-
conducting tape annuli. Two simplified approaches were proposed for modeling the result-
ing layered superconducting-ferromagnetic hybrid structure, in axial (2D) and transverse (3D)
configurations: (i) representing the structure with a limited number of tapes with an increased
thickness, and (ii) replacing the whole structure by a fictitious anisotropic hybrid material. Both
were successfully validated against experimental measurements.

Perspectives

As listed below, the results presented in this dissertation have led to specific questions that can
be investigated in future works. The first question concerns the stability of mixed formulations
for 3D problems. In this work, the stability analysis was formally conducted on 2D problems
only. In practice, the conclusions were observed to be valid for 3D problems as well, but ex-
tensions of the stability analysis to these problems, including the analysis of various types of
elements such as prisms, pyramids, or hexahedra, would strengthen the observations. Addition-
ally, an interesting study would be to compare our stability results to well-studied stable dual
bases of elements such as Buffa-Christiansen elements [251].

The next question is related to the discretization of the t-a-formulation. Using lowest-order
function spaces for t and a results in spurious oscillations in the numerical solution, and nu-
merical inf-sup tests indicate that enriching one of the two function spaces may lead to a stable
discrete formulation. Indeed, enriching the function space for a produces stable results, free
of spurious oscillations, for both linear and nonlinear materials. However, with an enrich-
ment of the function space for t, convergence issues are observed with nonlinear materials, the
Newton-Raphson algorithm always diverges, whereas the situation with linear materials does
not present complications. A deeper look into the associated matrix structure might provide a
better understanding of these observations.

The third unanswered question relates to the failure of the tested linear solvers on the
volume-coupled a-j-formulation, in the case where it is coupled with global conditions on
voltage or current. The a-j-formulation was shown to offer very efficient resolutions for 2D
problems with type-II superconductors, irrespective of whether they contain ferromagnetic ma-



Conclusions 181

terials or not, but the difficulties linear solvers encounter currently prevent us to fully exploit
this formulation. Investigating alternative choices for imposing the global conditions such as
voltage distribution functions [138] may possibly help to circumvent the issue.

The different formulations and models presented in this work also open the way to several
possibilities of extensions. First, the mode decomposition approach for helicoidally symmetric
geometries with non-symmetric boundary conditions was only applied to linear materials. A
natural extension consists in implementing the method for nonlinear materials, by considering
a small number of modes, directly coupled via the weak formulation.

Next, in addition to the simple and fully homogeneous models, other approaches could be
considered for the stacked-tape magnetic shields. The thin-shell h-φ-formulation accounting for
permeability jumps [51], or alternative homogeneous models based on the t-a-formulation [252]
are interesting starting points for other approaches.

Also, the focus in this thesis was to compare the relative performance of different formula-
tions within the same finite element framework. Therefore, optimizing the implementation to
improve their absolute performance has not been the priority. Considering high-performance
computing, e.g., by including state-of-the-art parallelization techniques for the assembly and
post-processing steps or by investigating preconditioning methods for the resolution step, may
strongly improve the performance of the current implementation.

Finally, as all the models presented in this work were purely magnetic, a relevant next step
is to consider a coupling with thermal equations, e.g., in order to describe multiphysics phe-
nomena like quenches. The progressive approach we followed in this dissertation for designing
mixed formulations, starting by a detailed analysis of the separate nonlinear laws, could be ap-
plied to the large number of nonlinear parameters appearing in magneto-thermal equations, and
help to handle them.



182 Conclusions



Appendix A

Mathematical framework

A.1 Elements of algebraic topology and function spaces

We introduce below a few basic elements of algrebraic topology, directly applied in the context
of our problem. Most elements are adapted from [253]. The section below is not meant to be a
complete introduction to chains and cochains, it is just a collection of several definitions, results
and interpretations, that we considered to be useful in the context of this work.

A.1.1 Chains and homology

In a 3-dimensional region Ω, we define as Cp(Ω) the vector space of all p-dimensional objects
over which a p-fold integration1 can be performed [253]. Elements of Cp(Ω) are called p-
chains. For example, a point is a 0-chain, an oriented curve is a 1-chain, an oriented surface is
a 2-chain, and a volume is a 3-chain. The addition of two p-chains and the multiplication of
p-chain by a real number are two operations defined on elements of the vector space Cp(Ω).

We also introduce the boundary operators ∂p, defined as

∂p : Cp(Ω)→ Cp−1(Ω), p = 1, 2, 3, (A.1)

with the classical conventions for orientation. We have

(∂1∂2)s = 0, ∀s ∈ C2(Ω) and (∂2∂3)v = 0, ∀v ∈ C3(Ω), (A.2)

so that the spaces C0(Ω), C1(Ω), C2(Ω), and C3(Ω) form a complex:

C0(Ω)
∂1←− C1(Ω)

∂2←− C2(Ω)
∂3←− C3(Ω). (A.3)

It is called a complex because the composition of any two successive morphisms (boundary
operators) vanishes, i.e., the image of one morphism is contained inside the kernel of the next

1A 0-fold integration has to be understood as the sum of the values of a function at a finite set of points [253].
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one. We say that a complex is exact if the image of one morphism is equal to (and not only
contained in) the kernel of the next morphism in the sequence [51].

In general, the complex (A.3) is not exact. There might exist 1-chains in Ω with a zero
boundary, e.g., closed curves, that are not boundaries of a 2-chain in Ω, e.g, a surface. This is
the case when the domain Ω is not simply connected. Consider the curve c in Fig. A.1 for the
domain ΩC

c . Also, there might exist 2-chains in Ω with a zero boundary, e.g., closed surfaces,
that are not boundaries of a 3-chain in Ω, e.g., a volume. This is the case when the domain Ω
has cavities in it. The first and second homology spaces, that we define below, give measures
of the extent by which the complex fails to be exact [253].

ΩC
c

Ωc

c

Figure A.1: Torus Ωc and its complementary domain ΩC
c . The closed curve c is an example of 1-chain

that belongs to NS(∂1,Ω
C
c ) but not to R(∂2,Ω

C
c ). Indeed, there is no surface contained in ΩC

c whose
boundary is c.

The first and second homology spaces are the vector spaces defined as the following quotient
spaces:

H1(Ω) = NS(∂1,Ω) /R(∂2,Ω), (A.4)
H2(Ω) = NS(∂2,Ω) /R(∂3,Ω), (A.5)

withNS(∂p,Ω) andR(∂p,Ω) respectively the kernel and the range of the boundary operator ∂p
applied on elements of Cp(Ω). That is, H1(Ω) is the set of equivalence classes [c] of 1-chains
in C1(Ω), where c1 and c2 belong to the same equivalence class if c1 − c2 ∈ R(∂2,Ω), i.e., if
the difference of c1 and c2 is the boundary of a 2-chain in C2(Ω), in which case we say that c1

and c2 are homologous. We also define the first Betti number: β1(Ω) = dim(H1(Ω)).

The first homology space is particularly useful for the h-φ-formulation, in the non-conducting
domain ΩC

c , where β1(ΩC
c ) = dim(H1(ΩC

c )) is equal to the number of cuts that need to be intro-
duced to define a magnetic scalar potential in ΩC

c [253].

The second homology spaceH2(Ω) is not used in this work.

A.1.2 Cochains and cohomology

We define the spaces

H1(Ω) =
{
u ∈ L2(Ω) : grad u ∈ L2(Ω)

}
, (A.6)

H(curl; Ω) =
{
u ∈ L2(Ω) : curl u ∈ L2(Ω)

}
, (A.7)

H(div; Ω) =
{
u ∈ L2(Ω) : div u ∈ L2(Ω)

}
, (A.8)
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where the gradient, curl and divergence operator have to be understood in the sense of distribu-
tion [141], and where L2(Ω), and L2(Ω), are the vector spaces of square integrable scalar fields
on Ω and vector fields on Ω, respectively2.

Elements of H1(Ω), H(curl; Ω), H(div; Ω) and L2(Ω) are also called p-cochains, or p-
forms, with p = 0, 1, 2, 3, respectively, in the sense that they can be considered as integrands
of p-fold integrals over p-chains. There is a duality between p-chains and p-cochains under
integration.

By construction, and because curl grad · = 0 and div curl · = 0, we have the following
inclusions: grad H1(Ω) ⊂ H(curl; Ω), curl H(curl; Ω) ⊂ H(div; Ω), and div H(div; Ω) ⊂
L2(Ω). Spaces H1(Ω), H(curl; Ω), H(div; Ω) and L2(Ω) form a complex:

H1(Ω)
grad−−−→ H(curl; Ω)

curl−−→ H(div; Ω)
div−−→ L2(Ω). (A.9)

As mentioned in the previous section, it is called a complex because the composition of any
two successive morphisms (differential operators) vanishes, i.e., the image of one morphism is
contained inside the kernel of the next morphism. We say that a complex is exact if the image
of one morphism is equal to (and not only contained in) the kernel of the next morphism in the
sequence [51].

In general, the complex (A.9) is not exact. That is, there might exist functions in H(curl; Ω)
with a zero curl that are not gradients of functions in H1(Ω), and there might exist functions in
H(div; Ω) with a zero divergence that are not curls of functions in H(curl; Ω).

We denote byR(grad,Ω) the range of the gradient operator applied on elements of H1(Ω),
and by NS(curl,Ω) the kernel of the curl operator applied on elements of H(curl; Ω). The
first de Rham cohomology space is the vector space defined as the following quotient space

H1
dR(Ω) = NS(curl,Ω) /R(grad,Ω), (A.10)

that is, the set of equivalence classes [w], where w1 ∼ w2 (we read “w1 is cohomologous to
w2”) if w1 − w2 ∈ R(grad,Ω), i.e., if w1 − w2 is the gradient of a function in H1(Ω). If
NS(curl,Ω) = R(grad,Ω), which is the case when Ω is simply connected, thenH1

dR(Ω) = 0.

We introduce β1 = dim(H1
dR(Ω)). A cohomology basis ofH1

dR(Ω) is made up of β1 linearly
independent equivalence classes of H1

dR(Ω). To generate NS(curl,Ω), one has to add to ele-
ments ofR(grad,Ω) one element from each of the β1 linearly independent equivalence classes
ofH1

dR(Ω). Note also that β1 = β1 [253].

Although it is not used in this work, we also define the second de Rham cohomology space:

H2
dR = NS(div,Ω) /R(curl,Ω). (A.11)

2To avoid confusion, note that H1(Ω) refers to the Sobolev space defined in Eq. (A.6), and not to the first
cohomology space as the notation with superscript might suggest. In this work, we denote (co)-homology spaces
with the round letter H. Note that H will also refers to the space for the magnetic field h in the finite element
formulations. With the context, there should not be any confusion.
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A.1.3 Global currents and voltages associated with general geometries

In Section 2.1.3, we have only considered cases in which a single current and voltage is asso-
ciated with each connected conducting sub-domain Ωci with i ∈ C. There might be cases for
which this is no longer true. For example, a double torus has two holes, and two distinct net
currents and voltages can be defined.

Using notations of the paragraphs above for the homology spaces, we can generalize the
definitions introduced in Section 2.1.3 for the global variables. Let β1 be the first Betti number
of ΩC

c . We can define β1 curves Ci in ΩC
c that generateH1(ΩC

c ). We can also define β1 curves C?j
in Ωc. In particular, conducting domains with terminals on the domain boundary Γ are treated
by linking their terminals to close the curves.

Defining the linking number of two curves as the number of times each curve winds around
the other, accounting for orientation with the usual right-hand sign convention, we can choose
the curves Ci and C?j so that the matrix formed by their linking numbers is the identity matrix,
i.e., Link(Ci, C?j ) = δij [253]. To each (Ci, C?i ) pair, we can associate the current-voltage pair,
(Ii, Vi), with i ∈ 1, . . . , β1.

A.2 Whitney forms

Whitney forms are associated with simplicial entities: node, lines, triangles, and tetrahedra, or
0-, 1-, 2-, and 3-simplices, respectively [141]. See Fig. A.2. For extensions of Whitney forms
to non-simplicial entities, such as quadrangles, pyramids, prisms or hexahedra, we refer to the
literature [254, 177].

u

v
n3

u

v
n3

w
n4

u

n2

n1

n1

n1

n1
n2

n2

Figure A.2: Reference 0-, 1-, 2-, and 3-simplices (from left to right) and the node numbering convention.
Lengths along the axes are equal to one. Coordinate for the line is u, with n1 = (0) and n2 = (1).
Coordinates for the triangle are (u, v) with n1 = (0, 0), n2 = (1, 0), and n3 = (0, 1). Coordinates for
the tetrahedron are (u, v, w) with n1 = (0, 0, 0), n2 = (1, 0, 0), n3 = (0, 1, 0), and n3 = (0, 0, 1).

In the following, we denote by N (Ωi), E(Ωi), F(Ωi), and V(Ωi) the set of nodes, edges,
facets, and volumes of the mesh of a given domain Ωi, respectively, including entities on the
boundaries of Ωi.
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A.2.1 Node functions (0-forms)

The node function wn of a node n ∈ N (K) in a simplicial element K is the barycentric coordi-
nate function associated to that node in K, that is, the unique affine function in K whose value
at node n is one and zero at others nodes. Barycentric functions constitute the main building
blocks for Whitney forms [177]. The support of wn extends to every simplicial element that
contains n. This node function is a 0-form associated with a 0-simplex. Functions generated by
combinations of node functions are conform, in the sense that they are continuous.

The node functions in the reference triangle are illustrated in Fig. A.3. In the reference
simplices, with conventions and coordinates from Fig. A.2, and the notation wi = wni , we have

Node w1 = 1, (A.12)
Line w1 = 1− u, w2 = u, (A.13)

Triangle w1 = 1− u− v, w2 = u, w3 = v, (A.14)
Tetrahedra w1 = 1− u− v − w, w2 = u, w3 = v, w4 = w. (A.15)

We denote by W 0(K) the function space spanned by node functions in an element K.

u

v

u

v

(−1 − 1)T (1 0)T (0 1)T

1

1

1

1 1− u− v u v

n1

n2

n3

êz

êz

Figure A.3: (Up) Node functions wn in the reference triangle in perspective view. Node functions are
conform: they are continuous between elements. (Down) Gradient of node functions in the plane. These
gradients are curl-conform: their tangential component is continuous between different elements.

A.2.2 Edge functions (1-forms)

An edge e ∈ E(K) is the oriented segment between two nodes m,n ∈ N (K). We note
e = {m,n}. The edge function we associated with edge e = {m,n} is defined as [31]

we = wm grad wn − wn grad wm. (A.16)

Therefore, its support extends to every simplicial element that contains e [141]. Edge functions
for the reference triangle are illustrated in Fig. A.4. The circulation of we along edge e is one,
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and zero along every other edges. It is a 1-form. Functions u generated by a linear combination
of edge functions are curl-conform, in the sense that their “tangential” trace3 u×n is continuous
across any interface of normal n.

We denote by W 1(K) the function space spanned by edge functions in an element K.

u

v

(1− v u)T (v 1− u)T (−v u)T

1

1

Figure A.4: Edge functions we in the reference triangle. The circulation of we along the corresponding
edge is equal to one, whereas it is equal to zero along any other edges. Functions we are curl-conform:
their tangential component is continuous between different elements.

A.2.3 Facet functions (2-forms)

A facet f ∈ F(K) is the oriented triangle defined by three nodes m,n, k ∈ N (K), or
three edges c = {m,n}, d = {n, k}, e = {k,m} ∈ E(K). We note f = {m,n, k} =
{{m,n}, {n, k}, {k,m}}. The orientation of the normal to the facet follows the right-hand
rule for the sense of circulation of nodes m,n, k around the triangle. The facet function wf

associated with facet f is defined as [31]

wf = 2
(
wm grad wn × grad wk + wk grad wm × grad wn + wn grad wk × grad wm

)
.

(A.17)

The support of wf also extends to every volume that contains f , i.e., to only one volume if f
is on the boundary of the mesh, to two volumes otherwise. The flux of wf across facet f is
one, and zero across every other facet. Functions u generated by a linear combination of facet
functions are div-conform, in the sense that their normal trace u · n is continuous across any
interface of normal n.

We denote by W 2(K) the function space spanned by facet functions in an element K.

A.2.4 Volume functions (3-forms)

A volume v ∈ V is a tetrahedron defined by four facets, oriented with their normal pointing
outwards with respect to the tetrahedron. The volume function wv is constant and equal to
1/vol(v) in v, where vol(v) is the volume of v. It is non-zero in v only, and is discontinuous
across different volumes [31].

3The quantity u× n is not the actual tangential component of u along an interface of normal n: it is perpen-
dicular to it. The tangential component is n× (u× n).
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We denote by W 3(K) the function space spanned by volume functions in an element K.

A.2.5 Sequence of discrete function spaces

From the local spaces W p(K), for p = 0, 1, 2, or 3, on an element K, we construct the global
spaces W p(Ω), for p = 0, 1, 2, or 3, on the mesh of a domain Ω, by considering every node,
edge, facet, or volume, of Ω, respectively. We have the following inclusions in the continuous
function spaces

W 0(Ω) ⊂ H1(Ω), (A.18)
W 1(Ω) ⊂ H(curl; Ω), (A.19)
W 2(Ω) ⊂ H(div; Ω), (A.20)
W 3(Ω) ⊂ L2(Ω). (A.21)

See Section A.1 for definitions of the continuous function spaces.

Similarly to the continuous function spaces, the discrete function spaces W p(Ω) also form a
complex. To see why, we first need to introduce the notion of incidence. We denote by i(n, e)
the incidence of node n and edge e, which is equal to 1 if e = {·, n}, to −1 if e = {n, ·}, and
to 0 otherwise. Next, the incidence i(e, f) of edge e and facet f is equal to 1 if e belongs to f
and circulates positively around it, accordingly to the right-hand rule, to −1 if it circulates in
the opposite direction, and to 0 if e does not belong to f . Finally, the incidence i(f, v) of facet
f and volume v is equal to 1 if f belongs to v and has an outward normal with respect to v, to
−1 if it has an inward normal, and to 0 if f does not belong to v.

We can show that, ∀n ∈ N (Ω), ∀e ∈ E(Ω), and ∀f ∈ F(Ω), respectively, we have [141]
∑

e∈E(Ω)

i(n, e)we = grad wn,
∑

f∈F(Ω)

i(e, f)wf = curl we,
∑

v∈V(Ω)

i(f, v)wv = div wf .

(A.22)

The first equation is particularly useful in this work. It states that the gradient of any node
function can be expressed as a sum of edge functions.

Eqn. (A.22) induce the inclusions grad W 0(Ω) ⊂ W 1(Ω), curl W 1(Ω) ⊂ W 2(Ω), and
div W 2(Ω) ⊂ W 3(Ω), and explicitly show that the discrete functions spaces form the complex

W 0(Ω)
grad−−−→ W 1(Ω)

curl−−→ W 2(Ω)
div−−→ W 3(Ω). (A.23)

In the case where the domain Ω is topologically trivial, this complex is exact. This complex is
the discrete counterpart of the de Rham complex, described by Eq. (A.9).

A.2.6 Higher order functions

Whitney shape functions are shape functions of the lowest order. To improve the accuracy
of approximations, p-forms of higher polynomial order can be introduced [137]. They are
however no longer be associated with p-simplices, but they keep the same continuity properties
as Whitney functions.
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A.3 Green’s identities

Let G be a continuously differentiable vector field defined on a compact subset Ω of Rn with
piecewise smooth boundary ∂Ω. The divergence theorem states that

∫

Ω

divG dΩ =

∮

∂Ω

G · n dΓ, (A.24)

with n the unit normal vector field, pointing outwards. Considering the particular cases G =
u v and G = u × v yields two useful identities, referred to as Green’s identities [255]. These
identities are of utmost importance in the construction of weak forms. The grad-div Green’s
identity writes

(u , grad v)Ω + (div u , v)Ω = 〈u · n , v〉∂Ω (A.25)

and the curl-curl Green’s identity writes

(u , curl v)Ω − (curl u ,v)Ω = 〈u× n ,v〉∂Ω = 〈v × u ,n〉∂Ω = −〈v × n ,u〉∂Ω . (A.26)



Appendix B

Additional developments

B.1 Magnetic Gauss law

The magnetic Gauss law (2.17) has not been explicitly introduced in the derivation of the h-
φ-formulation, but we can retrieve it by taking h′ = grad φ′ as a test function in (2.31). We
have

(∂t(µh) , grad φ′)Ω + (e , curl (grad φ′))Ω − 〈e× n , grad φ′〉Γ = 0, (B.1)

⇔ −
(
div
(
∂t(µh)

)
, φ′
)

Ω
+ 〈∂t(µh) · n , φ′〉Γ − 〈e× n , grad φ′〉Γ = 0, (B.2)

where we used curl (grad ·) = 0, and the grad-div Green’s identity (A.25). The second term
of Eq. (B.2) can be worked out as follows (assuming a smoothed boundary Γ):

〈∂t(µh) · n , φ′〉Γ = −〈curl e · n , φ′〉Γ (B.3)
= −〈div (e× n) , φ′〉Γ − 〈e · curl n , φ′〉Γ (B.4)
= −〈div (e× n) , φ′〉Γ (B.5)

= 〈e× n , grad φ′〉Γ −
∫

Γ

div
(
(e× n)φ′

)
dΓ (B.6)

where the last term is equal to zero because Γ is closed. Therefore, for h′ = grad φ′, the
formulation reads

(
div
(
∂t(µh)

)
, φ′
)

Ω
= 0, (B.7)

⇔ ∂t
(

(div (µh) , φ′)Ω

)
= 0, (B.8)

⇔ (div (µh) , φ′)Ω = constant. (B.9)

If the initial condition is such that the constant is equal to zero, this is the weak form of the
magnetic Gauss law.

191
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B.2 Centered finite difference approximations of order two

We consider a smooth function of time u = u(t), and its truncated Taylor development around
time t = tn:

un−1 = un −∆tu̇n +
∆t2

2
ün +O(∆t3), (B.10)

with ∆t = tn − tn−1, un = u(tn), and the dot notation for time derivatives. We have

u̇n =
un − un−1

∆t
+

∆t

2
ün +O(∆t2) ⇒ u̇n ≈

un − un−1

∆t
, (B.11)

that is, the backward Euler approximation has a truncation errorO(∆t), i.e., of the order of ∆t.
The first approach for evaluating the quadratic quantity uu̇ at time t = tn is the following

(uu̇)n = un(u̇)n (B.12)

= un

(
un − un−1

∆t
+

∆t

2
ün +O(∆t2)

)
(B.13)

= un
un − un−1

∆t
+

∆t

2
unün +O(∆t2). (B.14)

The associated approximation is

(uu̇)n ≈ un
un − un−1

∆t
, (B.15)

which has a truncation error O(∆t) equal to unün ∆t/2 . Problems arise in particular when u
is a sinusoidal-like function. In that case, the product unün has a constant (negative) sign for all
tn so that the error also has a constant sign. If we integrate uu̇ in time over one period, errors
therefore accumulate. In practice, we observe that a non-negligible error is associated with this
approach.

A much more accurate evaluation of the quantity uu̇ reads, at mid-time step,

(uu̇)n− 1
2
≈ un + un−1

2

un − un−1

∆t
. (B.16)

This expression involves two centered differences rather than one backward difference as in
Eq. (B.15). As we show below, the associated truncation error is O(∆t2).

Let us consider a smooth scalar function of time u = u(t), and two time instants tn−1 and
tn. Using Taylor’s theorem around tn−1 and tn, we have

un− 1
2

= un−1 +
∆t

2
u̇n−1 +

∆t2

8
ün−1 +

∆t3

48
˙̈un−1 +O(∆t4), (B.17)

un− 1
2

= un −
∆t

2
u̇n +

∆t2

8
ün −

∆t3

48
˙̈un +O(∆t4), (B.18)

with un = u(tn), un− 1
2

= u(tn − ∆t/2), ∆t = tn − tn−1, and the dot notation for time
derivatives. From these equations, we can build two approximations of order two:

un− 1
2

=
un + un−1

2
+

∆t2

16
(ün−1 + ün) +O(∆t4) ⇒ un− 1

2
≈ un + un−1

2
, (B.19)

u̇n− 1
2

=
un − un−1

∆t
+

∆t2

24
˙̈un− 1

2
+O(∆t4) ⇒ u̇n− 1

2
≈ un − un−1

∆t
. (B.20)
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The first one is obtained with the sum of Eqn. (B.17) and (B.18), and the second one by their
difference, with the substitutions n→ n′ + 1

2
, and n→ n′ − 1

2
, respectively.

For the quadratic quantity uu̇ evaluated at tn−1/2, we have

(uu̇)n− 1
2

=

(
un + un−1

2
+O(∆t2)

)(
un − un−1

∆t
+O(∆t2)

)
(B.21)

=
un + un−1

2

un − un−1

∆t
+O(∆t2), (B.22)

such that the approximation

(uu̇)n− 1
2
≈ un + un−1

2

un − un−1

∆t
(B.23)

has an error O(∆t2). Moreover, we can show that the error is not of constant sign in case of a
sinusoidal function.

For the electromagnetic power P , we therefore choose to approximate the integrand of the
first term of Eq. (2.69) at mid-time step n− 1/2 as

∂tb · h|n−1/2 ≈
bn − bn−1

∆t
· hn−1 + hn

2
. (B.24)

It should be clear that the backward Euler method used for time discretization still introduces
an error O(∆t), which we are satisfied with. We do not improve this order of accuracy with
correction (B.24). However, with the correction, we avoid to introduce an additional error on
post-processing integration of power estimates, which turns out to be significant with the naive
approach, especially for situations with important inductive behaviors, such as with T2S.

B.3 Jacobian derivations

The linearization of the system matrix by the Newton-Raphson technique requires the expres-
sions of the derivatives of the nonlinear constitutive laws. As these laws are vector relations,
the derivatives are second-order tensor expressions. In the following expressions, we use the
index notation.

The power law, given by

e =
ec

jc

(‖j‖
jc

)n−1

j = ρ(‖j‖)j, (B.25)

with ec (V/m), jc (A/m2) and n (-) three parameters, gives

∂ei
∂jj

= ρ(‖j‖)δij + (n− 1)
ρ(‖j‖)
‖j‖2

jijj. (B.26)

Conversely, the power law conductivity diverges for ‖e‖ → 0. In this work, the constitutive
law has been regularized as follows,

j =
jc

ec

1

εσ + (‖e‖/ec)
(n−1)/n

e = σ(‖e‖)e, (B.27)
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with the regularization parameter εσ = 10−8. Its tensor derivative is given by

∂ji
∂ej

= σ(‖e‖) δij −
n− 1

n

(
σ(‖e‖)

)2

jcec

(
ec

‖e‖

)(n+1)/n

eiej. (B.28)

An invertible saturation law for ferromagnetic materials reads as follows,

b = µ0

(
1 +

(
1

µr,0 − 1
+
‖h‖
m0

)−1
)
h = µ(‖h‖)h, (B.29)

with µr,0 (-) and m0 (A/m) two parameters. The tensor derivative yields

∂bi
∂hj

= µ(‖h‖)δij −
µ0

m0

(
1

µr,0 − 1
+
‖h‖
m0

)−2
hihj
‖h‖ . (B.30)

Conversely, the inverse law, given by

h =
1

2

(‖b‖
µ0

− µr,0m0

µr,0 − 1
+ s(‖b‖)

)
b

‖b‖ = ν(‖b‖)b, (B.31)

with

s(‖b‖) =

√(
µr,0m0

µr,0 − 1
− ‖b‖

µ0

)2

+
4m0

µr,0 − 1

‖b‖
µ0

, (B.32)

gives

∂hi
∂bj

= ν(‖b‖)δij +
1

2

(
µr,0m0

(µr,0 − 1)‖b‖3
− 1

‖b‖3
s(‖b‖)

+ (s(‖b‖))−1

(
2− µr,0

µr,0 − 1
m0 +

‖b‖
µ0

)
1

µ0‖b‖2

)
bibj. (B.33)

B.4 Approached solution for first-flux penetration

The one-dimensional problem of first flux penetration in a zero-field cooled superconducting
semi-infinite volume, {(x, y, z) ∈ R3|x ≥ 0} is studied in [95]. The applied field is in the
z-direction and increases linearly with a rate of ḃs (T/s). The geometry is illustrated in Fig. B.1.

ẑ

ŷ x̂

bs(t)

n, jc

Figure B.1: Semi-infinite superconducting slab (gray region) subjected to an external field.
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By symmetry, the magnetic flux density inside the superconductor is parallel to ẑ and
varies spatially with x only. The current density is directed along ŷ and varies spatially with
x only as well. Thus, we have b = b(x, t)ẑ and j = j(x, t)ŷ. For a power law model
e = ec|j/jc|n sign(j), the governing equations reduce to the following nonlinear diffusion equa-
tion, for x > 0,

∂b

∂t
=

ec

(µ0jc)n
∂

∂x

(∣∣∣∣
∂b

∂x

∣∣∣∣
n−1

∂b

∂x

)
, (B.34)

with the initial condition b(x, 0) = 0, x ≥ 0 (zero-field cooled) and the boundary condition
b(0, t) = ḃs t, t > 0 (continuity of the tangential component of the magnetic field).

The problem is simplified by introducing a scaling variable ξ and a function f such that

b(x, t) = ḃs t f(ξ(x, t)), ξ(x, t) =
ḃs x

ec

(
t

τ

)−n/(1+n)

, (B.35)

with τ a characteristic time τ = µ0jcec/ḃ
2
s , so that the initial condition is automatically sat-

isfied and the boundary condition becomes f(0) = 1. The function f is then injected into
Eq. (B.34), that reduces to a nonlinear ordinary differential equation for the function f of the
scaling variable ξ,

f − n

1 + n
ξf ′ = (|f ′|n)

′
, with f(0) = 1. (B.36)

We also introduce an unknown value ξ0 at which the scaling function is forced to vanish, i.e.,
such that f(ξ0) = 0. This serves as a second boundary condition. This parameter expresses the
finite speed of propagation of the flux front (for n > 1) and describes its evolution. In terms of
ξ0, the flux front position x0 at time t is then given by

x0(t) =
ecξ0

ḃs

(
t

τ

)n/(1+n)

. (B.37)

Equation (B.36) cannot be solved analytically, but is well approximed by the following ex-
pression [95]:

f(ξ) =

(
1− ξ

ξ0

)n/(n−1)

(1 + aξ) for ξ ∈ [0, ξ0], (B.38)

with the two parameters a and ξ0 given by

a =
1

2n(2n− 1)(n− 1)
and ξ0 =

(
n+ 1

(n− 1)n
(
n(1 + a)

)n−1
)1/(n+1)

. (B.39)

The associated current density profile is given by

j(x, t) = jc

(
t

τ

)1/(1+n)

|f ′(ξ(x, t))| . (B.40)

Note that in the limit n→∞, we have ξ0 → 1, so that x0(t) = ḃst/µ0jc, which induces that
the flux front advances at the constant velocity ḃs/µ0jc. This is consistent with the Bean model.
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B.5 Quasi-3D h-φ-formulation in helicoidal coordinates

In this section, we expand the full h-φ-formulation expressed in helicoidal coordinates,

(∂t(µ̃ h) ,h′)Ω3D
+ (ρ̃ curl h , curl h′)Ωc,3D

=
∑

i∈CV
V̄iIi(h′), (B.41)

written in the 3D domain Ω3D, in terms of a magnetic field h(ξ1, ξ2, ξ3) decomposed as in
Section 5.1.4):

h(ξ1, ξ2, ξ3) =
∞∑

k=−∞

(
h‖,k(ξ1, ξ2) + h⊥,k(ξ1, ξ2)

)
fk(ξ3), (B.42)

with the modes fk(ξ3) defined as

fk(ξ3) =





√
2 cos(αkξ3), k < 0,

1, k = 0,
√

2 sin(αkξ3), k > 0.

(B.43)

We remind that these modes are orthogonal and have a unit norm, i.e.,

〈fk1 , fk2〉 =
1

p

∫ p

0

fk1fk2 dξ3 = δk1k2 , ∀k1, k2 ∈ Z. (B.44)

We denote by ‖fk‖ the norm of the mode fk (= 1). We also have

∂fk
∂ξ3

= αkf−k(ξ3), ∀k ∈ Z. (B.45)

Flux variation term

The first term of Eq. (B.41), (∂t(µ̃ h) ,h′)Ω3D
expands as the following double sum

∞∑

k=−∞

∞∑

k′=−∞

(
∂t(µ̃ h‖,kfk) ,h‖,k′fk′

)
Ω3D

+
(
∂t(µ̃ h⊥,kfk) ,h‖,k′fk′

)
Ω3D

+
(
∂t(µ̃ h‖,kfk) ,h⊥,k′fk′

)
Ω3D

+ (∂t(µ̃ h⊥,kfk) ,h⊥,k′fk′)Ω3D
. (B.46)

Because the decomposition in Eq. (B.42) separate the variables, we can integrate each individ-
ual term along the geometry invariant ξ3-direction over one pitch length p. The orthogonality
of the modes induces that terms with k 6= k′ vanish. Dividing the integral by p, we get,

∞∑

k=−∞
‖fk‖2

((
∂t(µ̃ h‖,k) ,h‖,k

)
Ω

+
(
∂t(µ̃ h⊥,k) ,h‖,k

)
Ω

+
(
∂t(µ̃ h‖,k) ,h⊥,k

)
Ω

+ (∂t(µ̃ h⊥,k) ,h⊥,k)Ω

)
, (B.47)

where integrals are performed on a 2D domain. Equations for different values of k are decou-
pled.
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Eddy current term

The second term of Eq. (B.41), (ρ̃ curl h , curl h′)Ωc,3D
expands as the following double sum

∞∑

k=−∞

∞∑

k′=−∞

(
ρ̃ curl (h‖,kfk) , curl (h‖,k′fk′)

)
Ωc,3D

+
(
ρ̃ curl (h⊥,kfk) , curl (h‖,k′fk′)

)
Ωc,3D

+
(
ρ̃ curl (h‖,kfk) , curl (h⊥,k′fk′)

)
Ωc,3D

+ (ρ̃ curl (h⊥,kfk) , curl (h⊥,k′fk′))Ωc,3D
.

(B.48)

Using Eq. (5.27) for the curl, we get the following expression for each k, k′ ∈ Z,

(
ρ̃ fk curl h‖,k , fk′ curl h‖,k′

)
Ωc,3D

+

(
ρ̃
∂fk
∂ξ3

êξ3 × h‖,k , fk′ curl h‖,k′
)

Ωc,3D

+

(
ρ̃ fk curl h‖,k ,

∂fk′

∂ξ3

êξ3 × h‖,k′
)

Ωc,3D

+

(
ρ̃
∂fk
∂ξ3

êξ3 × h‖,k ,
∂fk′

∂ξ3

êξ3 × h‖,k′
)

Ωc,3D

+
(
ρ̃ fkcurl h⊥,k , fk′ curl h‖,k′

)
Ωc,3D

+

(
ρ̃ fkcurl h⊥,k ,

∂fk′

∂ξ3

êξ3 × h‖,k′
)

Ωc,3D

+
(
ρ̃ fk curl h‖,k , fk′curl h⊥,k′

)
Ωc,3D

+

(
ρ̃
∂fk
∂ξ3

êξ3 × h‖,k , fk′curl h⊥,k′
)

Ωc,3D

+ (ρ̃ fkcurl h⊥,k , fk′curl h⊥,k′)Ωc,3D
. (B.49)

We can integrate each term along the geometry invariant ξ3-direction over one pitch length p
(and dividing by p), use the mode property Eq. (B.45), and exploit the mode orthogonality. For
k = 0, because ∂ξ3f0 = 0, only terms for k′ = 0 survive, and they are decoupled from all other
terms (for k 6= 0). These terms are

‖f0‖2
(
ρ̃ curl h‖,0 , curl h‖,0

)
Ωc

+ ‖f0‖2
(
ρ̃ curl h⊥,0 , curl h‖,0

)
Ωc

+‖f0‖2
(
ρ̃ curl h‖,0 , curl h⊥,0

)
Ωc

+ ‖f0‖2 (ρ̃ curl h⊥,0 , curl h⊥,0)Ωc
. (B.50)

For k 6= 0, only one term of the sum on k′ survives, either k′ = k, or k′ = −k. Indeed,
Eq. (B.45) induces the coupling of the modes k and−k. For each value of k 6= 0, in Eq. (B.49),
the only terms that remain are

‖fk‖2
(
ρ̃ curl h‖,k , curl h‖,k

)
Ωc

+ αk‖f−k‖2
(
ρ̃ êξ3 × h‖,k , curl h‖,−k

)
Ωc

+α(−k)‖fk‖2
(
ρ̃ curl h‖,k , êξ3 × h‖,−k

)
Ωc

+ α2k2‖f−k‖2
(
ρ̃ êξ3 × h‖,k , êξ3 × h‖,k

)
Ωc

+‖fk‖2
(
ρ̃ curl h⊥,k , curl h‖,k

)
Ωc

+ α(−k)‖fk‖2
(
ρ̃ curl h⊥,k , êξ3 × h‖,−k

)
Ωc

+‖fk‖2
(
ρ̃ curl h‖,k , curl h⊥,k

)
Ωc

+ αk‖f−k‖2
(
ρ̃ êξ3 × h‖,k , curl h⊥,−k

)
Ωc

+‖fk‖2 (ρ̃ curl h⊥,k , curl h⊥,k)Ωc
. (B.51)

These terms are coupled with the same set of term but with the opposite value of k, k? = −k,
which sums up to a total of eighteen individual terms for the eddy current contribution, for each
value of |k| 6= 0.



198 Appendix B Additional developments



Appendix C

Additional figures

(a) Magnetic field - h-φ-formulation - 0th order. (d) Vector potential - a-formulation - 0th order.

(e) Vector potential - a-formulation - 1st order.

(f) Vector potential - a-formulation - 2nd order.

(b) Magnetic field - h-φ-formulation - 1st order.

(c) Magnetic field - h-φ-formulation - 2nd order.

ẑ

−ŷ

x̂

Figure C.1: Illustration of the initial iterates (colored bold curves) with the different extrapolation orders
for choosing the initial estimate of a given time step. Simple 1D bar problem with a high n value,
during the first flux penetration with a linear ramp of applied field. In each subfigure, the successive thin
curves going upwards are successive previous solutions and the gray curve is the next exact solution.
The Dirichlet boundary conditions are imposed after extrapolation. (a)-(b)-(c) Vertical z-component of
h for the h-φ-formulation. (d)-(e)-(f) Out-of-plane y-component of a for the a-formulation.
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(a) h-φ-formulation - 0th order extrapolation.
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(b) h-φ-formulation - 1st order extrapolation.

Figure C.2: Evolution (upwards) of the numerical Newton-Raphson iterations during one time step for
the h-φ-formulation and two extrapolation orders, during the first flux penetration. The ordinate axis
corresponds to the z-component of b (T). The orange arrows indicate the direction of evolution. Closest
curves in (a) are each separated by 10 iterations. Closest curves in (b) are each separated by 5 iterations.
The lowest curves represent the solution at the previous time step and the thick orange curves correspond
to the initial iterate, as shown in Fig. C.1(a)-(b).
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(a) a-formulation - 0th order extrapolation.
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(b) a-formulation - 1st order extrapolation.

Figure C.3: Evolution (upwards) of the numerical Picard iterations during one time step for the a-
formulation and two extrapolation orders, during the first flux penetration. The ordinate axis corresponds
to the z-component of b (T). The green arrows indicate the direction of evolution. Successive curves are
not separated by a constant number of iterations. The lowest curves represent the solution at the previous
time step and the thick green curves correspond to the initial iterate, as shown in Fig. C.1(d)-(e).
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Figure C.4: Azimuthal current density (up) and magnetic flux density r and z-components (down) along
the mid-height horizontal segment in the T2S cylinder (“Cut 1” of Fig. 4.19(a)) at time t = t1 (left)
and t = t2 (right). Results of five formulations are presented. Medium mesh resolution: α = 2 (see
Section 4.4.2). The legend is the same for all figures.
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Figure C.5: Magnetic flux density components along the mid-height horizontal segment in the SFM
cylinder (“Cut 2” of Fig. 4.19(a)) at time t = t1 (left) and t = t2 (right). Results of five formulations are
presented. Medium mesh resolution: α = 2 (see Section 4.4.2). The legend is the same for both figures.
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Figure C.6: Current density (up) and magnetic flux density (down) along the helicoidal fiber of pitch
length p passing at point x =

(
r cos(θ), r sin(θ), 0

)
, with r = R` + 0.7Rf and θ = π/50, from z = 0

to z = p. (Left) Three components of the vectors in the x-space. (Right) Three components of the
vectors in the ξ-space. Solution of the 3D model with the h-φ-formulation on a coarse tetrahedral mesh
involving 16 556 DOFs, solution at t = T/4.
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Figure C.7: Experimental measurements of shielding factors for samples A (up), B (middle), and C
(down), at room temperature (left) and 77 K (right), in both axial and transverse configurations. Applied
field up to 60 mT, at a rate of 0.75 mT/s. Data from [242].
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Figure C.8: Experimental measurements of shielding factors for samples A,B, and C at 77 K in the axial
configuration. Applied field up to 670 mT, at a rate of 5 mT/s. Data from [242].
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205



206 Bibliography
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[148] A. Nicolet and F. Delincé, “Implicit Runge-Kutta methods for transient magnetic field computa-
tion,” IEEE transactions on Magnetics, vol. 32, no. 3, pp. 1405–1408, 1996.

[149] J. C. Butcher, Numerical methods for ordinary differential equations. John Wiley & Sons, 2016.

[150] V. Berinde, “Approximating fixed points of Lipschitzian generalized pseudo-contractions,” 2002.

[151] F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbert
space,” Journal of Mathematical Analysis and Applications, vol. 20, no. 2, pp. 197–228, 1967.

[152] V. Berinde and F. Takens, Iterative approximation of fixed points, vol. 1912. Springer, 2007.



Bibliography 215

[153] T. J. Ypma, “Historical development of the Newton–Raphson method,” SIAM review, vol. 37,
no. 4, pp. 531–551, 1995.

[154] P. Deuflhard, Newton methods for nonlinear problems: affine invariance and adaptive algorithms,
vol. 35. Springer Science & Business Media, 2005.

[155] C. Geuzaine, A. Kameni, and A. Stenvall, “Superconductors.” https://gitlab.onelab.
info/doc/models/wikis/Superconductors. Accessed: 2019-02-01.

[156] A. Aitken, “XX.—studies in practical mathematics. II. the evaluation of the latent roots and latent
vectors of a matrix,” Proceedings of the Royal Society of Edinburgh, vol. 57, pp. 269–304, 1938.

[157] F. B. Hildebrand, Introduction to numerical analysis. Courier Corporation, 1987.

[158] C. T. Kelley, Iterative methods for linear and nonlinear equations. SIAM, 1995.

[159] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[160] A. Granas and J. Dugundji, Fixed point theory, vol. 14. Springer, 2003.

[161] G. Sanderson, “From Newton’s method to Newton’s fractal (which Newton knew nothing about),”
YouTube, uploaded by 3Blue1Brown, 2021.

[162] G. Sanderson, “Beyond the Mandelbrot set, an intro to holomorphic dynamics,” YouTube, up-
loaded by 3Blue1Brown, 2021.

[163] E. Vinot, Modélisation des supraconducteurs HTC Applications au calcul des pertes AC. PhD
thesis, Institut National Polytechnique de Grenoble-INPG, 2000.

[164] P. Dular, J.-F. Remacle, F. Henrotte, A. Genon, and W. Legros, “Magnetostatic and magneto-
dynamic mixed formulations compared with conventional formulations,” IEEE Transactions on
Magnetics, vol. 33, no. 2, pp. 1302–1305, 1997.

[165] P. Alotto, F. Delfino, P. Molfino, M. Nervi, and I. Perugia, “A mixed face-edge finite element
formulation for 3D magnetostatic problems,” IEEE transactions on magnetics, vol. 34, no. 5,
pp. 2445–2448, 1998.

[166] F. Brezzi and K.-J. Bathe, “A discourse on the stability conditions for mixed finite element formu-
lations,” Computer methods in applied mechanics and engineering, vol. 82, no. 1-3, pp. 27–57,
1990.

[167] D. Boffi, F. Brezzi, M. Fortin, et al., Mixed finite element methods and applications, vol. 44.
Springer, 2013.

[168] F. Liang, S. Venuturumilli, H. Zhang, M. Zhang, J. Kvitkovic, S. Pamidi, Y. Wang, and W. Yuan,
“A finite element model for simulating second generation high temperature superconducting coil-
s/stacks with large number of turns,” Journal of Applied Physics, vol. 122, no. 4, p. 043903, 2017.

[169] Y. Wang, M. Zhang, F. Grilli, Z. Zhu, and W. Yuan, “Study of the magnetization loss of CORC R©
cables using a 3D TA formulation,” Superconductor Science and Technology, vol. 32, no. 2,
p. 025003, 2019.

[170] P. Dular, C. Geuzaine, and W. Legros, “A natural method for coupling magnetodynamic h-
formulations and circuit equations,” IEEE transactions on magnetics, vol. 35, no. 3, pp. 1626–
1629, 1999.

https://gitlab.onelab.info/doc/models/wikis/Superconductors
https://gitlab.onelab.info/doc/models/wikis/Superconductors


216 Bibliography
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Erratum

• 2023, July 20th: Added a factor 1/(1− f) in Eq. (5.47).
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