THE INTERACTION FORMULAE FOR BEAM -COLUMNS:
A NEW STEP OF A YET LONG STORY

Presented by :
R.Maquoi'’

Also on behalf of :
N.Boissonnade and J.P. Muzeau ®

J.P.Jaspart’®
M.Villette *

INTRODUCTION

A beam-column is a member subjected to a combination of axial force and either mono-axial or bi-axial bending;
bending is due to transverse loads acting between the member ends and/or to end moments, A beam-column
provides therefore a link between the axially compressed column, on the one hand, and the beam, which
experiences only bending moments and corresponding shear, on the other hand. It is the most common member
used in framed structures. Thus columns and beams appear respectively as particular cases of beam-columns
where one load component — respectively bending and compression - becomes small enough so as o be
negligible.

The behaviour of a beam-column is usually treated as the response of an isolated structural member to a known

system of end forces and moments, Then the end moments, aiso called continuity moments, represent the

restraints provided by the surrounding members in rigidly or semi-rigidly framed structures. The effects of a

possible sway that results in a translation of one end relative to the other, are normally assessed at the stage of

the glebal frame analysis; therefore the problem is reduced to the consideration of non-sway beam-columns, The
structural response of a beam-columa is very much dependent on the way this member is loaded and supported.

In this respect three basic modes of failure can be identified:

+ Failure due to an excessive deformation in the bending plane, when the member is subjected to the
combination of axial force and minor axis bending or of axial force and major axis bending (under the
reservation, in the latter case, that any deflection out of the bending plane is prevented by appropriate bracing
or supports): there is thus an interaction between column buckling and mono-axial beam bending;

¢ TFailure involving spatial deformation (bending abowt the minor axis accompanied by twisting), that looks
like lateral torsional buckiing in beams subjected to bending only: the interaction occurs between column
buckling and beam buckling;

¢ Failure due to combined bending and twisting, when the member experiences combined axial force and bi-
axial bending: column buckling interacts with bi-axial bending.

The behaviour up to collapse of beam-columns belongs to the most complex problems relative to structural

elements. For practice purposes, both the design and check of beam-columns are usnally conducted based on the

concept of interaction formulae. The latter result from some simplifications and/or approximations. Therefore
one could say that there could be as many interaction formulae as there are researchers who look at this topic.
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Much research work has been devoted to this subject. There is no place here for an historical retrospective of the
problem. Let us just stress that the basic developments all along the forty years starting from the very first
attempts are summarised by Massonnet [1] and that an exhaustive review of the theory of beam-columns is due
to Chen and Atsuta [2]. The background is also developed in the successive issues of the guide produced by the
Structural Stability Research Council (formerly the Colummn Research Council) [3]. Those who want to know
more are advised to refer to the many bibliographical references listed in the aforementioned publications. At the
origin, the theoretical investigations were conducted in the elastic range. The cotlapse criterion is simply taken as
the onset of the yield stress at the most loaded point within the member, The sole difficulty is how to account for
the effects of initial imperfections (out-of-straightness) which, offering a lever arm to the axial force, generate
additional bending moments and precipitate the onset of the collapse criterion, Despite this fact, the solution is
simple. Later, the inelastic range was investigated; the general format established in the elastic range is kept,
under the reservation of some amendments aimed at accounting for the effects of both material yielding and
residual stresses.

At the time the purely elastic design was the rule, rather few divergences existed between the interaction

formulae proposed respectively in the North American and European national codes and standards. Simply

speaking, these formulae were based on a single basic format: the one used in the 1966 AISC Specifications [4];

they are hardly different in the more recent American specifications [5]. With such a nearly universal format,

only minor differences and divergences are observed between the standards; they are more especially relative to:

¢ The reference curves used for the determination of the reduction coefficients for, respectively, column
buckling and lateral torsional buckling;

e The selection of those of these curves, which are applicable to the structural shape under consideration, for
column buckling and lateral torsional buckling respectively;

» The way the moment distribution along the member is reflected: through either the loading term, or the
resistance term, or both terms;

e The either linear or non linear expression, in terms of end moment ratio, used for the equivalent moment
JSactor when bending is produced by end moments;

e The format of the amplification factor aimed at increasing the first-order bending moments so as to account
for the second-order effects generated by the axial force.

Of course, an jnelastic design is more realistic when the section allows for plasticity developing significantly.
Then, the problem complicates substantially. However, practice purposes impose a pragmatic approach; only
rather simple but safe design rules for difficult problems can answer the designer expectations and requirements,
Then due aliowance for inelastic behaviour shall result in further changes in the design interaction formulae and
is the cause of further divergences between the standards. In the Introductory Report to the 2! International
Colloquium on Stability [6], which served as background document to the ECCS Recommendations [7], the
derivation of the so-called “plastic design” regarding beam-columns was simply introduced as follows: “This
approach {elastic design] is used for plastic design as well, where W, {elastic section modulus] is replaced by W,
fplastic section modulus]”. This rough generalisation, which aimed at taking possibly benefit of the progression
of plasticity, was thought adequate and appropriate, In [6], both the elastic and the plastic ECCS interaction
formulae were compared with test results. For the case of an “elastic design”, a quite satisfactory agreement was
observed: all the theoretical results were found conservative (see Figure 11 on page 224 of {6]) and sometimes
significantly over-conservative. When referring to the “plastic design”, it was concluded as follows: “In some
cases, the ECCS design equations are optimistic” and “In general, however, there is a good agreement between
the design equations and the test results”. Despite the first one of these conclusive sentences, little attention was
paid at that time to all those results that are on the unsafe side (see Figure 12 on page 224 of [6]).

The comparison of the results got respectively from the existing design interaction formulae, or also between the
results of a certain type of interaction formulae and those of experiments or numerical simulations, always
exhibit discrepancies. In this respect, it is while reminding an excerpt of what the French mathematician Henri
Poincaré (1854-1912) wrote [8] at the beginning of the 20 century: “L'expérience est la source unique de la
vérité ; elle seule peut nous apprendre quelque chose de nouveau ; elle seule peut nous doaner la certitude. Voila
deux points que nul ne peut contester». Accordingly the resuits of carefully instrumented and documented tests
or, presently, those of well-conducted numerical simulations shall prevail against anything else.



The main — and nearly the single - milestone in the improvement of beam-column interaction formulae at the
European level during the last twenty years is achieved in the draft of the European pre-standard ENV1993-1-1
(in short Eurocode 3) for the design of steel structures [9], The basic format of the interaction beamrcolumn
formulae is there and similar to the one used in most of the standards. However the handling of the formulae is
delicate. Not only there is a lot of intermediate coefficients, the calenlation process of which looks like a Chinese
box opening, but also these coeflicients are either positive or negative, what prevents them frombeing physically
understood. Several times the designers pointed out the danger of mistakes and mishandling as well as the lack
of transparency of the EC3 formulae. Under the reservation of only slight and minor differences, the interaction
formulae of Eurocode 3 [9] are similar to those of the German standard DIN 18800 [10], the latter having been
much influenced by [11] and [12]. Unexpectedly, the formal complexity of the BEurocode 3 beam-column
interaction formulae [9] does not enable a significantly better agreement with experimental or numerical results,
than the earlier formulae; that is especially demonstrated by a comparison work conducted in [13} and [14].
Also, the present ENV 1993-1-1 approach for the design of beam-columns has progressively been recognised by
practifioners as few adequate for practice purposes and unduly conservative in several situations. In this context,
the problem of beam-columns is definitively considered as worth being revisited. Together with a need for
improvement of the dsign interaction formulae, due attention must be paid to many aspects: simplicity,
gconomy, accuracy, transparency {physicat background), generality and consistency.

In the last three years, two major attempts were made in Europe with a view to improve stbstantially the
capability of the EC3 beam-column formulae. Based on a huge amount of numerical simulations [15], an
Austrian-German team used intensively the curve fitting technique so as to derive userfriendly interaction
formulae. The latter involve hdeed a limited number of global factors but each of these faclors covers in fact
several individual effects at one time. In the Austrian-German approach, simplicity prevails against transparency.
Quite independently, a French-Belgian team started the development of formulae where all the physical
phenomena are deliberately reflected separately. In contrast with the Austrian-German approach, the French-
Belgian one favours transparency and provides a wider range of applicability together with a better accuracy.
Incidentally, the works developed by both teams were nearly simuitaneously submitted for discussion within
ECCS Technical Commitiee 8 “Structural Stability”. Both approaches were appreciated for their respective
major quality but were still prone to further improvement. Therefore both teams were requested to join their
efforts in order to keep their respective proposals as consistent as possible so as to get expectedly:
s A “Level 1” proposal, due to the Austrian-German team, which, based on the concept of global factors, is the
most simple for what regards the general format;
e A “Level 2” proposal, due to the French-Belgian team, which, through a slightly more elaborated format, is
more transparent and accurate,
Several working papers relative to both proposals have been produced within ECCS TC8. They are not listed in
the list of references because most of them are not published. However it has yet been briefly reported on the
status of development of the “Level 2” propesal in {16] and [17]. Presen{ paper aims al presenting a more
complete survey on this topic as well as the last improvements achieved in the meantime. For that purpose, it is
assumed that the structural shape is fully effective; consequently, in accordance with ENV1993-1-1, it belongs at
least to Class 3 (elastic cross-sectional resistance) and possibly to Class 2 {plastic cross-sectional resistance with
a limited rotation capacity) or Class 1 (plastic cross-sectional resistance with a substantial rotation capacity). The
subject is developed herebelow according to an increase in complexity:
¢  Behaviour of an axially compressed imperfect member,
¢ Behaviour of a laterally restrained member subjected to combined axial force and mono-axial bending;

¢ Behaviour of a laterally restrained member subjected to combined axial force and bi-axial bending,
¢ Account for possible lateral torsional buckling.

Doing so results in some minor duplicates but helps understanding very much.

AXIALLY COMPRESSED MEMBER

Concept of amplification factor. An elastic pin-ended axially compressed prismatic member of length L
buckles according to a sine wave mode in the relevant buckling plane. The effects of both initial structural and



geometric imperfections, i.e. basically residual stresses and lack of straightness, can be reprsented by a single
so-called sinusoidal equivalent geometric imperfection va(x) (fig.1):

,
Valx)= ea.dsm'L—' ey}

where e, 4 designates the maximum magnitude of this imperfection, i.e. atx=0.5L.

Figure 1 — Deflection of an axially loaded imperfect member

Applying a design axial force Ngy on the imperfect member results in an additional deflection vagu(x) (fig.1). The
latter can be expressed as a well-known magnification of the initial deflection vp{x):
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N,
Vadd(X) = Nas Volx) (2)

N

or

where N, is the Euler buckling load of the member for a buckling length L. Account taken of (1) and (2), the
total deflected shape of the member, measured from its chord, is thus:
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The most ioaded section is at mid-length, where the internal design forces, including second-order effects, are:
e A compressive force Ny

Nsd
o A bending moment Nggeoq /(1-——%)
- NC"
The first-order bending moment N gze,q is thus magnified by the so-called amplification factor:
!
K= @
]S
N

so as to get the tofal non-linear bending moment, which includes therefore the second-order effects; the wording
“non finear” expresses simply the fact that the tofal bending moment is not proportional to the axial force Ng,.

Design resistance criterion. Designating A and W, as the cross-sectional area and the elastic section modulus

respectively, £ as the material yield stress and ji, as the partial resistance safety factor, the elastic resistance
criterion in the determinative section writes;

fy
Nsa , lr Nsi€od Ty (5.2)
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N
or, alternatively:
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with the design compression resistance Ny s and the design elastic bending resistance M,y g, of the cross-section:
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It is demonstrated elsewhere [18, 19 that this “elastic” format can be used to derive satisfactory analytical
expressions for the inelastic column buckling fitting closely with experimental resuits. A so-called buckling
curve provides the reduction factor y for column buckling, i.e. the design buckling load N, gy of the member
normalised with respect to the design compression resistance Ny go of the cross-sectional area:

Ny ra

= Nora ®)
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as a function of the reduced coliumnin slenderness A :
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The magnitude of the equivalent geometric imperfection e, is determined by the limit state criterion: above

equation (5.b} is just fulfilled (sign =) when the design axial force Ng, is equal to the design buckling load ¥, ga.
Therefore:
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With this expression for e, 4, the inelastic resistance criterion (5.b) writes simply:
*N Sd_ o (1)
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It shall be observed that );* 2 ¥ and that z* = ¥ only at failure, i.e. when Ngy; =Ny gt

ELASTIC MEMBER SUBJECTED TO COINCIDENT AXIALL FORCE AND MONO-AXIAL
BENDING MOMENT ACTING IN THE BUCKLING PLANE

Concepts of equivalent moment factor and amplification factor. Let assume that the member under
consideration is now subjected to the combination of a design axial force Mgy and a first-order bending due either
to end moments Mgy and wMsy (-1 £ < 1) or/and transverse loads between the member ends, Referring herein
to end moments, the latter can result from appropriate eccentricities e; and e, of the axial force (fig.2.a).
Accordingly, the first-order bending moment distribution varies between the member ends. On its turn, the
deflection induced by firstorder bending provides a lever arm to the axial force and results in additional second-
order beading moments. There is a section, somewhere along the member, where the amplified bending moment,
i.e. the total non-linear bending moment (including second-order effects), is maximum and amounts M, .
(fig.2.a). In order to avoid the determination of the location of this section, the concept of equivalent uniform
moment Mey, is intreduced: it is the firstorder constant mement distribution which, applied in combination with
the specified axial force Ngy, produces the same maximum bending moment M, as the actual moment



distribution (fig.2.b) together with this axial force. The equivalent uniform moment is usually expressed as
follows:

M equ — Co Mgq (13)

where Mg, is the maximum design first-order moment within the member. It corresponds to a same eccentricity
eq, of the design axial force Ng, at both member ends (fig.2.b).
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Figure 2 — Equivalent moment concept
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Figure 3 — Amplification factor
a) K, : Sinusoidal equivalent geometric imperfection ( )
b) K; : Constant eccentricity of the axial force ( --=-------- )

The presence of the design axial force Ng; makes that the equivalent uniform moment M., is magnified by
second-order effects. It is known that the resulting maximum total non-linear bending moment is given as:

!
Mpygy=———F—=M equ (14)

The amplification factor for a perfect member loaded by Ns,; with a constant eccentricity is different from the
one (4) obtained in the case of the axially loaded imperfect member; it writes:
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As far as the design axial force is not too close to the critical load, the respective magnitudes of both expressions
(4) and (15) are not substantially different (fig.3). However a significant discrepancy is observable for very large
magnitudes of the relative axial force Ng#/N,,. For practice purposes, K, is generally substituted for K, in the
bending term so as to keep a single format of the amplification factor in the interaction formulae. In order to
compensate for the consequences of this substitution (see equ. 2l.a), it is suggested to pre-multiply the
theoretically based expression of C,, (i), represented by the underlined factor of the right hand term of (16), by

the correction factor (/-N, [N ):
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it Ngy 2 Ny, , and:
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where i designates the end moment ratio (fig.2} such that — 1<y <1 . The limit value Ny, corresponds to the
exhaustion of the resistance in the most loaded end section of the member:

N, =N_ {arccos ylz) (18)

tint
In many standards and codes, the influence of the relative axial force Ng;/N,, on the equivalent moment

factor is disregarded. Then, reference is most often made to the so-called either Campus-Massonnet or Austin
expression. The non-linear Campus-Massonnet format [20}:

Cy(w)= Jo,s (1+y/2)+0,4w 23% (19.a)

prevails for long in Europe; however, for sake of simplicity, ENV1993-1-1 [9] refers to the linear Austin format
[21]:
Clw)=06+04w = 04 (19.b)

Expressions {(19.a) and (19,b) are only approximates of the the sole underlined factor of the right hand term of
(i6), which are in addition made free from the influence of axial force,

Recently, Villette [22] suggested to approach the complete expression (16) of C,, () by means of a rather simple
but more accurate fermula:

Nsd
Cop(w) =079 + 021 w + 036 (v ~033) - (19.¢)
cr
This expression enable to fulfil with some requested continuities, as it will be shown later.
When bending is produced by transverse loads Mgor by combined end moments and transverse loads M,,.g, an
appropriate expression of C,, results as follows from theoretical considerations:
2 *
n° Elv NS(i
C,,,(W+Q) =1+ « 2 ! (20)
ML Ny
where M* and v* represent respectively the maximum first-order bending moment and the maximum first-order
bending deflection wherever they occur, For a point load acting at mid-span, one get:




C, =1~ 018 Ng, /N, while, for a uniform load applied over the whole member length,
Cp = 14+0.03 Ngg [N, .

Elastic design resistance criterion for in-plane behaviour, When the member is subjected to the combination
of an axial force and a mono-axial bending in the plane of column buckling, the elastic design resistance
criterion is simply obtained by implementing equation (5.b) with the relevant term relative to the firstorder
bending. With due allowance made, as said above, for a single format of the amplification factor, this criterion
writes:
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Some tedious transformations enable another format, where the first term coincides with the specification of
ENVI1993-1-1 [9] regarding column buckling only. It is:

N C, M
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cr
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N

cr
It is referred to this format in the following.

This elastic design resistance criterion has the following characteristics:

- Itis theoretically based and it is obtained accordingly;

- Itis fully consistent with the elastic cross-sectional resistance checks;

- It reduces 1o the column buckling check in the absence of additional firstorder bending moment (due to
either end moments or transverse loads);

- Appropriate expressions of the equivalent uniform moment factor are available.

No allowance for plasticity effects is the basic criticism that can be addressed to.

MEMBER SUBJECTED TO COINCIDENT AXIAL FORCE AND BIAXIAL FIRST-ORDER
BENDING

Basic principle for gencralisation to bi-axial bending. When bi-axial bending, the axial force amplifies
actually both moments about the principal axes y-y and z-z of the section. That results in a complex coupling
between the instabilities in both planes. However, such a coupling is generally disregarded for practice purposes;
it is indeed the case in ENV1993-1-1 [9] and in most of the national standards. A quite similar simplification is
made herein, being undetstood that it results in a slight divergence from a fully theoretical approach.
Accordingly, the instability is controlled in either bending plane and biaxial bending is accounted for by simply
adding a second bending term, which looks similar to the first one, Then, the simplified expression for the design
resistance criterion reads:
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where the index y (resp. 2) is relative to bending about the y-y (resp. z-z) axis of the cross-section.

Flastic design resistance criterion for beam-columns in bi-axial bending. The index 7 indicates the plane in
which failure is likely to occur. As this plane is not known beforehand, one has to check a doublet of formulae,
which is likely to govern the uncoupled phenomena:
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The characteristics of above design formulae, which control respectively the instability about either principal
axis, are the same as in the case of in-plane behaviour, except that this doublet of expressions is not derived from
a fully rigorous theoretical reasoning.

Plastic design resistance criterion for beam-columns in bi-axial bending. Rigorously speaking, the beam-

column interaction formulae established in the previous section hold as far as the behaviour is elastic, More

especially, it is valid for Class 3 sections in accordance with the designation of ENV1993-1-1 [9], i.e. those

requiring a complete elastic design check. When sections of Class 1 or Class 2 are of concern, the question arises

of how to account for the inelastic effects on the member resistance.

In order to keep the governing equation as simple as possible, it is decided:

* To keep the general format established in the case of elastic behaviour;

* To substitute the plastic cross-sectional resistance M, s to the elastic one M pa;

e To generalise implicitly, in the inelastic range, the convenient elastic concepts of buckling length, equivalent
moment factor and amplification factor;



o To alleviate the effects of above simplifications and assumptions by the introduction of additional factors, the
expressions of which are partly theoretically based but often need some calibration against results of tests or
numerical simulations.

In the latter respect, due allowance shall be made for the effects of yielding on:

e The interaction between mono-axial bending and axial force, with due consideration of the effects of the
member slenderness, by means of four factors &y, &,.. k., and &_;;

e The interaction, for the cross-sectional resistance, between bending moments M, and M; by means of two
factors a* and §*.

In the inelastic range, the design criteria (24) become:
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In order to enable the degeneration of these expressions into the (24) ones, all the above factors &,y, k)., kg and
k.., on the one hand, and &* and #*, on the other hand, need to be taken equal to unity when an elastic design
check is requested.

DETERMINATION OF THE ADDITIONAL FACTORS INVOLVED IN THE INELASTIC DESIGN
CRITERIA

Determination of the a* and S* factors, Basically, the a* and * factors handle the effects of material yielding
on the cross-sectional resistance when combined bending moments M, and M. only. In other words, they aim at
enabling to approach the M,-M; interaction curve as closely as possible, The latter governs the member resistance
when stocky members (low slenderness) and low axial force, According to ENV1993-1-1 [9], the cross-sectional
resistance to bi-axial bending is given as:

u 8
M, M
M by Rd My, ra

where Mp,.ps and My e are the design bending resistances about respectively y-y and z-z. A quite simitar
expression is used in the North-American standards. The exponents ¢ and - to be distinguished from above a*
and B* - are constants, the values of which depend on both the type of design check — elastic or plastic - and the
cross-sectional shape. For an elastic cross-sectional resistance check, one has of course o= =1 (Class 3)
because the absence of yielding makes the interaction linear. In contrast, & =2 and =1 are realistic values for
the plastic cross-sectional resistance (Class | or Class 2) of a I or H structural shape, with the result that the
admissible domain is convex (fig.4); other values are available when some other types of structural shapes, such
as circular and hollow sections, are considered.

The factors o* and fB* have the same aim as the factors « and £ However, they are introduced in (26) as
multipliers, and not as exponents, of the bending moments. Should &* and f* be taken respectively as constants,
then they make the interaction at the ultimate limit state no more continuously convex but bi-linear (fig.4). When
both & and f° are equal to unity, the interaction is simply linear; this sitvation is appropriate for an elastic



design check. Values lower than | for these factors enable an increase in cross-sectional resistance due to some
plasticity strength reserve; appropriate values are therefore expected suitable for a plastic design resistance
check. Jor sake of simplicity, a single vaiue for both a* and £* can be contemplated; for instance, a* = g* =
0.6 seems an appropriate choice for | and H sections. Alternatively, in a more refined way, the following non-
equal values can also be considered for Class 1 or Class 2 sections:

a' =06 2= (28.2)
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Figure 4 — Plastic cross-sectional resistance {o bi-axial bending

Clearly the w, and w, factors are larger than unity so that their reciprocals are smailer than unity. The upper
boundaries of 1,5 are simply introduced because of the domain where the investigations were carried out. In fact,
they do not constitute severe constraints; indeed they enable to cover most of the steel structural shapes.

Let us remind that factors o* and £* must be taken equal to 1 when an elastic design check is requested, i.e.
when Class 3 sections are of concern. Alsow, and w; shall be considered equal to [ in that situation.

At this stage, it is while stressing that no continuity does exist between ihe classes of sections., The cross
sectional resistance either is based on a purely elastic criterion, and thus represented by the straigth line (e* = g*
= 1} , or is the plastic resistance, and then given by the approximate bilinear interaction {o* and §* < /). In
other words, there is no possibility for a progressive transition, within Class 3, from the elastic resistance
{section located just at the boundary between Class 3 and Class 4) up to the plastic resistance (section located
just at the boundary between Class 2 and class 3). That results simply from the specifications of ENV1993-1-1
regarding the cross-sectional resistance of sections subjected to mono-axial bending. That observation goes
against the physical sense; there is surely a place for improving possibly the specifications in this respect, This
disputable question is revisited in the section “ Consistency and Continuity of the Proposal * at the end of
present paper.

Determination of the k,,, k,, k, and k,, factors. The k factors aim at handling the plasticity effects in the
interaction between mono-axial bending and axial force; in this respect, it shall be kept in mind that, due to the



presence of an axial force, also the member slenderness plays a role on the extent of yielding at the ultimate limit
state. Therefore, the interaction that is of concern herein, applies the member and not the cross-section. Factors
ki and k;; rule the M-V interaction when the buckling plane is coincident with the plane of bending while factors
k.. and k, do similarly when the buckling direction is perpendicular to the plane of bending.

When the member slenderness vanishes, the & factors must degenerate so as to approach the usual cross-sectional
M-N interaction curves (fig.5). Accordingly, a design elasto-plastic resistance k;Mprzq; is substituted for the
elastic one, M z4;, being understood that i means y or z according to the buckling plane under consideration.
Anyone of the factors k;; shall be such that:

e ltis | for Class | or Class 2 sections so as to take full profit from material yielding;

e ltis Wd,;/me for Class 3 sections so as to reduce the elasto-placiic resistance to the elastic one.

The major part of the k factor expressions is physically built so as to comply with these requirements.

Nsq

Approximate criterion:
ENVI9Y31-1

Not g,

Approximate criterion:
Present paper

= M54
Mityra

Figure 5 — Plastic cross-sectional resistance to combined mono-axial bending and axial force

In addition, at the ultimate limit state of the member, the extent of yielding within the most loaded section

(including second-order effects) decreases when the member slenderness 4 and the reduced axial force Ns/Npi a
increase. Also, it depends on the moment distribution, which is characterised by the equivalent moment factor
C,; this distribution is likely to change the position of the most toaded section indeed. When biaxial bending is
combined to axial force, the determinative bending axis, when the member buckles, governs the proneness of the
member to yield and the extent of yielding. In order to avoid the search for this axis, a safe approach is adopted
for sake of simplicity; it consists in referring to a single column slenderness:

2—,,,, ax = max imum {Z 3 Z, 2 ] 30

i.e. to the largest of the column siendernesses relative to both possible buckling directions. The effects of both
the slenderness and moment distribution cannot be derived easily on a purely physically based reasoning; they
are accounted for by means of additional terms, which were obtained by calibration. These terms are those
underlined in the expressions given below.

When Class | or Class 2 sections are of concern, the following expressions for k,,, and k.. are found adequate to
fulfil all the above requirements:

k ' = 1 + (“’v ' - 1) 2 ““{.qu Cm '2 (] + Z’fﬂf) _ﬁ!ﬂf NSL' 2 '-FL (3})
¥ ¥ W, .3 : : Npr.Rd w,
7 2.7 \7 Nsd !
ko =1+ (wz - 1) 2- '—“‘Cm,z (] + ﬁma.\‘)g‘max N 22— (32)
L W, plRd W,

The boundaries assigned to the &, and &_; factors prevent kM, z, from being smaller than M g

The expressions adopted for &, and k., are slightly ditferent. That is due to the lesser effects of plasticity on the
M-N interaction when the plane of bending and the piane considered for buckling are not coincident.



) =
ltnl(l\’ Nsil 0 6
— f — - m.z 14 > 1
k,=1+(w ~1)|2-14 : 2 J_ (33)
P Rd wow,
Coy Ana’ | N 0
k=t 4w, 1) 2-pg 22 2 sy U6 (34)
L N s
W, LR J wow,

The boundaries specified for the k. and k., factors are necessary in order to prevent k,. My, za /o* and k., Mypi/ fF
from becoming smaller than, respectively, M, gq and M, ; gs. 1t shall be noticed that they are smaller than unity.
Let us remind that factors &, ;.. k., and k.. must be taken equal to 1 when an elastic design check is requested,
i.e. when Class 3 sections are of concern.

GENERALISATION TO POSSIBLE LATERAL TORSIONAL BUCKLING

For consistency, the general format of the formulae established above is kept. Only some amendments are

brought, which aim at accounting for possible lateral torsional buckling:

o A reduction factor ypris applied on the cross-sectional bending resistance about the strong axis;

s The expressions of the &), and &, factors are slightly modified;

¢ An additional factor k;rallows for a smooth transition between the respective responses of open and hollow
sections and for the influence of the axial force Ngy on the lateral torsional buckling phenomenon.

Accordingly, the expressions (26) are generalised as follows:

N k ! Coy M I Cone M
Sed " Hy LT my " y.8d _fa“ mz Mz 8d <] (35.2)
Ay Np!.Ra' XLr s Nga kyy.mod‘ M}J.Rd ] Ngg kyz.moa' fwz.Rd
M Noy s N
* *
Nsd LB * kir ! C"'}' MrJ’-Sd + ! Cz M 54 < (35.b)
Xz Nled Xir - Ngg kzy.mod My.Rd I Ngq kzz.mod Mz_Rd
i or,y orz
Factor kprwrites:
* I
kpp=Cyl > (36)
_ Nsqg ., Ngyg
(1 M J
N crz N erT

where N, ris the critical elastic torsional buckling resistance of the member. The denominator can be deduced
theoretically; it reflects the detrimental influence of a possible axial force on the lateral torsional buckling. In the
particular case where Ng; = M. g7 = 0, above generalised formulae {35) must degenerate into the single check of a
member against lateral torsional buckling, i.e. M, gy S ¥ 17 M ), gg, in which case C,,, must vanish, Therefore

. . * . + . » .
the following expressions of ', derived from results of experiments and numerical simulations:

*
m.z

c =Copz (37

apr e}’

. )_
¥ I+ apr 1,8}.

with, for doubly symmetrical sections:

ch . =c,, +li-c

n.y my

(38)



0 = 2284 _4 (9)
Nsg Wely
1
apr =f—-—20 {40)
I,
{p and I, are respectively the torsional inertia about the x-v axis and the flexural inertia about the y-y axis of the

section. Of course a,, may be conservatively taken equal to unity. When C,,, is larger than unity, the

1)

assumption of C C,,, is only slightly conservative.

my

The modified kj;.,,04 factors must degenerate into the k; factors when lateral torsional buckling (LTB) needs not
to be considered, i.e. when z.r= 1. The changes aim at representing the effects of both lateral-torsional buckling
and M. gy moments, which centribute an amplification of LTB effects, on the extent of yielding at the vltimate
limit state. For Class 1 and Class 2 sections, the modified k;; factors write:

6 Y 1o - i
kyy.mod =1+ (W), - 1) 2 m——cm.yz Amax = —— Cfr:.)’2 ’1”'“-"2 iy~ bLT 2 — @
wy Wy, Wy
I Conz’ Amar’
K ymod =1+ (v, =1) e e el LT > 00 42)
| W, A }w), W,
[ 272
C oy Amax 0.6
Kaymod =1+ (wy 1) 2~ 14— 0y~ dyy |2 e 43)
i W, ,’Hyuz
16 - 16 e !
kzz.mod =1+ (Wz - 1) 2- 7 Cm.zz Amax — 5 sz2 )‘"'0-\'2 —ery |Hpi Z— 44
w, w, W,
where;
- M M
by r=0,5a; 1Ay 7 f —— 224 z5d 45)
LU0 o My ra Mtz ja
_ E[T()‘? My.Sd
crr=10a an (46)
o Lr 5+/124 Cm,yZLTMpl}aRd
_ ALT0 My, s M, sa
dir=2a L Lot 47
i 0,1-}-47;24 QM.yZLTMp!.y.Rd szA“(pIz.Rd
T M
epp=1,7a, 1 —2LLO x5d “8)

L
0, I+/Iz4 CmyzLT Mply.Rd

In the definition of factors by, iy, dir and epy, ALTo is the reduced slenderness for lateral torsional buckling
relative to a constant moment over the member length.

For Class 3 sections, similar expressions as above are used but, for reasons explained earlier, reference shall be
made to Mpy; and ¥; instead of M, ps and B, respectively,

CONSISTENCY AND CONTINUITY OF THE PROPOSAL
Ali along the development of above proposal for the design of beam-columns, there was sake for ensuring:

¢ Continuity between the most general format and the one used in more simple loading situations;
o Continuity between member design checks (stability) and section design checks (cross-sectional resistance);



¢ Smooth transition for the resistance in the elasto-plastic range, so as to remove the paradoxical situation of
ENVI1993-1-1, where there is a sudden drop in resistance when passing from Class 2 to Class 3.
Present proposal fulfiis with above continuities and enables a betfer continuity between section classes,

Member subjected to the combination of axial force and strong axis bending. In that case, M, g; vanishes
and, provided lateral torsional buckling is prevented, above expressions(26) reduce to:

Ngq Cm.y My.Sd < ]

+
Xy Npl.Rd Ngqa
T-2x, N KyyM piy.rd
ery

Nsa + ﬂ*}f Cm.y M}'.Sd
X: N plRd ’ N

1A
Ly

kzyM ply.Rd
oy

Two verifications are thus necessary. The second one represents the effect of the strong axis bending on the
buckling about the weak axis. This effect is usually disregarded in the existing codes and standards.

Member subjected to the combination of axial force and weak axis bending. A similar conclusion as above
can be drawn.

Member subjected to axial compression only. In that case, both bending moments M, s; and M, g; vanish. Each
equation (26) reduces to the first term only, The largest one governs the design resistance. Therefore;

Nsa < |
minimum (,t’y. 4 z) Npira

Cross-sectional resistance . The so-called stability criteria (26) must degenerate into cross-sectional resistance
criteria when the member skbnderness )Ly and /Tz approach zero, Then both reduction factors Xy and xare
then equal to unity, so that gy, =y, =1, and Ny pand N, , are infinitely large. Also the equivalent moment

reduces to the bending moment in the section under consideration (C,, =1).

In such conditions, it is clear that one get the elementary checks for axial compression or strong axis bending or
weak axis bending,

Also the resistance check for a section subjected to bi-axial bending only is obtained. For a purely elastic check,

on has w,=w.=1 so that k,, £,;, k;, and &; are all equal to [ and @® = f* = g = fJ= 1,0, That results in the single
well-known elastic additive criterion:

C M
y85d_ 4 [ M, sq } <

| Mo yra M 1z.Rd

For a plastic cross-sectional check, the design equations reduce to:

" ¥
My.Sd N a M, s
L M;Jl.y.Rd

*
B M, sq M
<! and 2 |+ 284 1<
M 1zrd M1y kd M 12 rd

These expressions are nothing else than the bilinear criterion approaching the actual one (fig.4). Indeed, in the
absence of axial force, the & coefficients write:
1 1
kyy =ty =12— and by =k, =12
“,)’ W



They are thus to be taken equal to unity.
The plastic cross-sectional resistance of the section subjected to the combination of an axial force and a mono-
axial bending, for instance a strong axis bending, reduces to the following doublet:

N M N M,
Sy LBy and AR S P L PY
Np!.Rd kyyMpl.y.Rd Npi.Rd k‘zy M;}l.y.Rcf
Indeed, the k, and ., factors reduce respectively to:
N ! N "
kyp = 14 2y, — 1) 5> and ko =1+ 2w, — 1) 2545 P
Nptrd Wy Nptra Wy

so that k£, and k., are equal and must be taken as [/ + Z(wy - 1) NSd/Np!.Rd]- Then, the first equation is

governing {because F*<1) and is the one approaching the M-¥ interaction (fig.5).

Better continuity between Class 2 and Class 3

Above proposal was established based on the specifications of ENV1993-1-1. Accordingly they do not alleviate
the physically non-acceptable sudden step in bending resistance when a section is respectively on both sides of
the borderline between Class 2 and Class 3. A progressive transition, within the domain of Class 3 sections,
between the cross-sectional elastic resistance and the plastic one could however be contemplated (fig.6).
Accordingly a Class 3 section would be characterised by elasto-plastic moduli ¥y, comprised between ¥, and
the plastic section modulus ¥/, which would be governed by the b/t ratios of the compression plaie elements
composing the section, A similar approach is adopted in the Australian standard [23], where the elasto-plastic
modulus W5 is expressed as follows:

Wi =Wy + (Wp; - We;)min r'mum{ (Ef’//;))j - Sf)// :)) :|
37 2

where (/) and (b/r)y; are the relevant (b/) limit ratios of a given compression plate element f of respectively
to Class 2 and Class 3. With such a definition, the design cross-sectiona! bending resistance of Class 3 cross-
sections would vary linearly between the elastic and the plastic design bending resistances (fig. 0).

Should this proposal for the definition of an elasto-plastic bending resistance be adopted within Class 3, then iV
should be substituted to W in all the above formulae involving W, as far as Class 3 sections are of concern. A
similar smooth transition should also be restored in the a* and f* so as to enable a progressive change in the

interaction curve for bi-axial bending from the elastic linear one to the plastic one. That could be done for
instance by introducing:

a"=1-(1-06 l’z"-)mi:{ (b/1)3;= (67 1); :l
Wy (b/t)y (b/t)2,;

B =1-(1-06 |22 mir{ (b/1)y; (670); }
W, (b7 01 (6702

My pa
A ENV 1993-1-1
Mptga _ 777 Preseni paper
h\..‘\
MR Fronmamwanan o =
Class 1 | Class 2 Class 3 | Class 4
ss ass ass ass > b

Figure 6 — Continuity within Class 3 sections



COMPARISONS OF  INTERACTION FORMULAE  WITH RESULTS OF NUMERICAL
SIMULATIONS

The results provided by above “Level 2” formulae were compared with those of more than fourteen thousands
results of numerical simulations. For that purpose, several structural shapes were considered (HEB 300, [PE 200,
RHS 200, IPE 500) and the reduced slenderness was varied from 4.5 up to 3,0. These numerical simulations
have been performed basically in Graz (see for instance [15] and implemented by the junior author during a stay
at the University of Liége [24}. The comparison is summarised in four different tables dealing respectively with:
i) In-plane instability in the y plane, ii) In-plane instability in the z plane, iii) Spatial instability without lateral
torsional buckling, and iv) Spatial instability including lateral torsional buckling. Each table provides the
following information:

e The reduced slenderness A ;
e The mean value m of the so-called R value (R,cq,), defined as the ratio between experimental and analytical
(design formulae) results (R> ! means that the design formulae are conservative);

e The standard deviation of the R values;

¢ The maximum individual value of R (R, );

¢ The minimum individual value of R (R,,;,,);

e The number of simulations X, used for the comparison;
L]

The number of R values lower than 1,0 (Ziegs<1 ),

¢ The number of R values lower than 0,97 (X.5<0.97 ).

These comparisons are aimed at examining the accuracy of the interaction formuiae. Therefore it is essential to
prevent as far as possible the discrepancies between the formulae and the results of numerical simulations from
being due to other sources than the interaction formulae. These sources are especially: the reduction factors z,
and 7 for column buckling and the reduction factor z,r for lateral torsional buckling. Reference is therefore
made not to the relevant specifications of codes in this respect but well to more realistic values as those obtained
by numerical simulation of the individual phenomena values for the section and the member under consideration.
In addition, the resistance of the member ends may prevail so that the appropriate formulae must be added to
above interaction formudae. The format of the cross-sectional resistance formulae for Class 3 sections is not
disputable. In contrast, the format of formulae aimed at controlling the resistance of Class 1 or Class 2 sections
and provided by codes and standards is more questionable; indeed these formulae are just very simple and
usnally conservative approaches. For the comparison, reference is therefore made to more refined and
theoretically based expressions; those developed by Lescouar’ch [25) are adopted for that purpose.

Above proposal is found safe and accurate.

CONCLUSION

The interaction formulae for beam-columns, which are developped above, constitute a substantial improvement
compared lo those existing in the standards till now. Because they are safe, accurate and consistent with all the
individual stability and resistance checks, they enable a much better assessment of the carrying capacity of such
members and are likely to design more economical structural elements. Of course, their format is not fully
derived from theoretical considerations only. Indeed, it looks like the one derived in the purely elastic case but
with additional factors, which aim at accounting for the inelastic behaviour at the ultimate limit state. Doing so
permits the generaj format to be kept rather simple and provides a physical background to all of its terms and to
all the parameters involved in these terms, The resulting transparency can help very much at the didactical point:
the set of the individual phenomena is easily identified and their respective effects are clearly visible and
assessable. At the practical point, the designer, who wants to handle the design checks in another way than a
black box, can get a better understanding of the respective influences of the individual loads. Also, the
opportunity is given of a better coverage of Class 3 sections by means of a section bending resistance varying
progressively from the elastic resistance up to the plastic one according to the slenderness of the compression
plate elements. The generality of the format and the complete continuity and consistency through the classes of
sections are additional valuable capabilities of the proposal. Of course, the expressions of the factors invelved in
the general format (all being positive) can appear compiex at first glance. That impression cannot hold if it is

agreed that the use of programmable pocket calculators and personal computers prevails henceforth the pure by-
hand caiculation.
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