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Abstract: Distinctive structural, chemical, and physical properties make the diarylmethane scaffold
an essential constituent of many active biomolecules nowadays used in pharmaceutical, agrochemical,
and material sciences. In this work, 33 novel diarylmethane molecules aiming to target colorectal
cancer were designed. Two series of functionalized olefinic and aryloxy diarylmethanes were
synthesized and chemically characterized. The synthetic strategy of olefinic diarylmethanes involved
a McMurry cross-coupling reaction as key step and the synthesis of aryloxy diarylmethanes included
an O-arylation step. A preliminarily screening in human colorectal cancer cells (HT-29 and HCT116)
and murine primary fibroblasts (L929) allowed the selection, for more detailed analyses, of the three
best candidates (10a, 10b and 12a) based on their high inhibition of cancer cell proliferation and
non-toxic effects on murine fibroblasts (<100 µM). The anticancer potential of these diarylmethane
compounds was then assessed using apoptotic (phospho-p38) and anti-apoptotic (phospho-ERK,
phospho-Akt) cell survival signaling pathways, by analyzing the DNA fragmentation capacity,
and through the caspase-3 and PARP cleavage pro-apoptotic markers. Compound 12a (2-(1-(4-
methoxyphenyl)-2-(4-(trifluoromethyl)phenyl) vinyl) pyridine, Z isomer) was found to be the most
active molecule. The binding mode to five biological targets (i.e., AKT, ERK-1 and ERK-2, PARP, and
caspase-3) was explored using molecular modeling, and AKT was identified as the most interesting
target. Finally, compounds 10a, 10b and 12a were predicted to have appropriate drug-likeness and
good Absorption, Distribution, Metabolism and Excretion (ADME) profiles.

Keywords: diarylmethane; colorectal cancer; antiproliferative activity; apoptosis; molecular docking;
ADME profile

1. Introduction

Diarylmethanes (DAM) are a class of organic compounds whose chemical scaffold
is based on a central methylene group and a 1,1-diaryl unit. These molecules from either
natural or synthetic source constitute attractive scaffold present in various pharmaceutical
agents. DAM are privileged structures in medicinal chemistry. They endowed several
biological activities, including anti-infectious [1,2], anti-inflammatory [3–5] and anti-cancer
activity [6–17]. Moreover, some DAM are well known as therapeutical agents [18–25]. The
most relevant example is tamoxifen which has been successfully used for decades in the
treatment of hormone-dependent breast cancer [17–19] (Figure 1).
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Figure 1. Examples of diarylmethane structures described in the literature with pharmacological properties.

Colorectal cancer (CRC) is the third most common cancer-related death after prostate
and lung cancer in western societies, with more than half a million annual deaths world-
wide. The incidence is high and is steadily increasing. In France, CRC is the second leading
cause of death (17,117 deaths/year) [26,27]. The current therapies used in the clinic of CRC
still have several side effects and resistance issues. Therefore, there is an urgent need to
find novel therapeutical alternatives to reduce these drawbacks.

We described previously the synthesis of ferrocenyl DAM using McMurry cross
coupling and the antibacterial activity evaluation [2,28]. Inspired by this study, and by
the evidence that endows that DAM are well described for their anti-cancer activities, we
were interested in the design and synthesis of new pyridyl diarylmethanes-type to develop
novel therapeutic agents to target CRC.

Hence, the pyridyl DAM olefinic and their oxygenated analogues were synthesized,
and their antiproliferative activity was assayed in vitro on human CRC cell lines. The
potential cytotoxicity of the synthesized compounds was evaluated on normal murine
fibroblast. Several target receptors involved in the inhibition of cancer cell proliferation were
analyzed in vitro to suggest the likely mechanism of action of the DAM drug candidates.
Moreover, we complemented our endeavors with a docking study performed on some
biological targets that may potentially be involved in the biological activity. Finally, an in
silico prediction of biopharmaceutical properties allowed us to investigate the Absorption,
Distribution, Metabolism, and Excretion (ADME) profile and druglikeness of the most
promising anticancer DAM.

2. Materials and Methods
2.1. Chemistry

All reagents were obtained from commercial sources unless otherwise noted and used
as received. Heated experiments were conducted using thermostatically controlled heating
mantles and were performed under an atmosphere oxygen-free in oven-dried glassware
when necessary. The reactions were monitored by analytical Thin Layer Chromatogra-
phy (TLC). TLC was performed on aluminum sheets precoated silica gel plates (60 F254,
Merck). TLC plates were visualized using irradiation with light at 254 nm. Flash column
chromatography (FCC) was carried out when necessary, using silica gel 60 (particle size
0.040–0.063 mm, Merck). A mixture of cyclohexane (CyHex) and ethyl acetate (EtOAc) was
used as mobile phase.

2.2. Physical Measurements

Melting points were recorded on a Kofler hot block Heizbank type 7841 and were
uncorrected. The structures of the products were checked by comparison of Nuclear Mag-
netic Resonance (NMR), Infrared (IR) and Mass spectrometry (MS) data and by the TLC
behavior. 1H- and 13C-NMR spectra were recorded on a Bruker BioSpin GmbH spectrom-
eter 400 MHz, at room temperature. Chemical shifts are reported in δ units, parts per
million (ppm). Coupling constants (J) are measured in hertz (Hz). Splitting patterns are
designed as follows: s, singlet; d, doublet; dd, doublet of doublets; m, multiplet; t, triplet;
td, triplet of doublet; ddd: doublet of doublet of doublet. Distortionless enhancement
with polarization transfer (DEPT) experiments and various 2D techniques such as COr-
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relation SpectroscopY (COSY), Heteronuclear Single Quantum Coherence (HSQC) and
Heteronuclear Multiple Bond Correlation (HMBC) were used to establish the structures and
to assign the signals. Conventional adopted to assign signal of 1H- and 13C-NMR spectra
are described in Figure 2. Gas chromatography-mass spectrometry (GC-MS) analysis was
performed with an Agilent 689 0N instrument equipped with a dimethyl polysiloxane
capillary column (12 m × 0.20 mm) and an Agilent 5973N MS detector-column temper-
ature gradient 80–300 ◦C (method 80): 80 ◦C (1 min); 80 ◦C to 300 ◦C (12.05 ◦C/min);
300 ◦C (2 min). Electrospray ionization (ESI)-Low resolution mass spectra (LRMS) were
performed from ionization by electrospray on a Waters Micromass ZQ2000. Infrared
spectra were recorded over the 400–4000 cm−1 range with an Agilent Technologies Cary
630 Fourier-transform infrared spectroscopy (FTIR)/Attenuated Total Reflectance (ATR)/
ZnSe spectrometer. High-resolution mass spectra (HRMS) analyses were acquired on a
Thermo Scientific LTQ Orbitrap mass spectrometer.
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Figure 2. Convention adopted to assign signals of 1H- and 13C-NMR spectra. Only the chemical
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2.3. General Procedure for the Synthesis of Olefinic Diarylmethanes

To a suspension of zinc (2.86 mmol, 182 mg, 6 eq) in anhydrous tetrahydrofuran (THF)
(2.6 mL) under argon was added dropwise TiCl4 (1.872 mmol, 0.2 mL, 4 eq). The reaction mix-
ture was stirred for 2 h at 85 ◦C. A solution of and (4-methoxyphenyl) (pyridin-2-yl)methanone
5 (0.468 mmol, 100 mg, 1 eq) and the corresponding aromatic aldehyde 2 (0.486 mmol,
1.04 eq) in THF (1 mL) was then added dropwise via a syringe. After reaction completion, the
mixture was cooled at room temperature and then poured into the water and extracted with
dichloromethane (DCM). The combined organic extracts were dried over anhydrous MgSO4,
filtered and concentrated. The crude was purified by FCC on silica gel.

2.3.1. 2-(1-(4-methoxyphenyl)-2-arylvinyl)pyridine 6

0.05 mL of benzaldehyde was used (0.486 mmol, 1.04 eq). The reaction lasted 25 min.
The crude product was purified by FCC using the CyHex/EtOAc: 95/5 and the 2-(1-(4-
méthoxyphenyl) -2-phenylvinyl) pyridine was afforded 6 in two separable E and Z isomers.

Z isomer (6a): 31.6 mg of a yellow oil in 24% yield. TLC: CyHex/EtOAc: 80/20,
Rf = 0.36. IR ν (cm−1): 3061, 3029 (νCsp2-H); 2922 (νCsp3-H); 2857 (νOMe); 1604, 1582,
1511 and 1462 (νC=C); 1246 (νasym C-O-C); 1031 (νsym C-O-C); 860 (δCsp2-H p-substitution). 1H
NMR (400 MHz, CDCl3) δ (ppm): 8.78 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12, 1H, H12), 8.12–8.08 (m, 4H, H15, H16, H18, H19), 7.66–7.62 (m, 1H, H10), 7.48–7.44
(m, 3H, H3, H7, H17), 7.29–7.27 (m, 1H, H11), 7.07(s, 1H, H13), 6.96–6.93 (m, 1H, H9), 6.85
(d, J4–3, 6–7 = 8 Hz, 2H, H4, H6), 3.79 (s, 3H, H20, OMe). 13C NMR (100 MHz, CDCl3) δ
(ppm): 159.4 (C5), 159.1 (C8), 149.7 (C12), 140.9 (C1), 137.1 (C10), 134.4 (C2), 133.6 (C17),
130.1 (C15, C16, C18, C19), 129.8 (C14), 129.4 (C9), 128.8 (C13), 128.5 (C3, C7), 120.0 (C11),
113.9 (C4, C6), 55.3 (C20). LRMS: (ES+, CV = 30). m/z = 575 [2M + H]+, 288 [M + H]+, 257
[M − OMe]+. HRMS: calcd. for C20H17NOH [M + H]+ (288.1383); found (288.1383).

E isomer (6b): 31.8 mg of white amorphous solid 44% yield. TLC: CyHex/EtOAc:
80/20, Rf = 0.58. IR ν (cm−1): 3061, 3029 (νCsp2-H); 2922 (νCsp3-H); 2857 (νOMe); 1604, 1582,
1511 and 1462 (νC=C); 1246 (νasym C-O-C); 1031 (νsym C-O-C). 1H NMR (400 MHz, CDCl3) δ
(ppm): 8.65 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.76 (s, 1H, H13),
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7.55 (td, J10–9,10–11 = 7.8 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.17- 7.09 (m, 8H, H3, H7, H11, H15,
H16, H17, H18, H19), 7.02 (d, J9–10 = 7.9 Hz, 1H, H9), 6.95–6.92 (m, 2H, H4, H6), 3.85 (s,
3H, H20, OMe). 13C NMR (100 MHz, CDCl3) δ (ppm): 159.4 (C5), 159.2 (C8), 149.2 (C12),
140.1 (C1), 137.0 (C13), 136.5 (C10), 131.5 (C3, C7), 131.3 (C2), 130.1 (C15, C19), 129.2 (C14),
128.0 (C16, C18), 127.3 (C17), 122.6 (C9), 122.0 (C11), 114.5 (C4, C6), 55.3 (C20). LRMS: (ES+,
CV = 30) m/z = 288 [M + H]+, 271 [M − Me]+.

2.3.2. 2-(1-(4-methoxyphenyl)-2-(p-tolyl)vinyl)pyridine 7

0.059 mL of p-tolylaldehyde was used (0.486 mmol, 1.04 eq). The reaction lasted 12 min.
The crude product was purified by FCC using a gradient system of CyHex/EtOAc (from
1 to 5% of EtOAc), the 2-(1,2-bis(4 methoxyphenyl)vinyl)pyridine 7 was afforded in two
separable E and Z isomers.

Z isomer (7a): 20 mg of yellow oil in 14% yield. TLC: CyHex/EtOAc:80:20,
Rf = 0.2. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.66 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz,
J12–9 = 0.9 Hz, 1H, H12), 7.76 (td, J10–9, 10–11 = 7.7 Hz, J10–12 = 1.7 Hz, 1H, H10), 7.36 (ddd,
J11–10 = 7.5 Hz, J11–12 = 4.9 Hz, J11–9 = 1.2 Hz, 1H, H11), 7.20–7.12 (m, 3H, H9, H15, H19),
7.06 (s, 1H, H13), 6.95–6.86 (m, 4H, H3, H7, H16, H18), 6.75 (d, J4–3, 6–7 = 7.9 Hz, 2H, H4,
H6), 3.76 (s, 3H, H20, OMe), 2.22–2.16 (s, 3H, H21, Me). 13C NMR (100 MHz, DMSO-d6)
δ (ppm): 159.12 (C5), 158.78 (C8), 149.95 (C12), 140.09 (C1), 136.96 (C10), 136.21 (C17),
133.98 (C2), 133.89 (C4, C6), 128.87 (C14), 128.63 (C3, C7), 127.99 (C15, C19), 126.81 (C13),
125.18 (C9), 122.55 (C11), 113.77 (C16, C18), 55.15 (C20), 28.68 (C21). LRMS: (ES+, CV = 30).
m/z = 324.25 [M + Na]+, 303.23 [M + 2H]+, 302.24 [M + H]+. HRMS: calcd. for C21H19NOH
[M + H]+ (302.1539); found (302.1540).

E isomer (7b): 30 mg of yellow amorphous solid in 21% yield. TLC: CyHex/EtOAc:
80/20, Rf = 0.4. IR ν (cm−1): 3000 (νCsp2-H); 2940, 2921 (ν Csp3-H); 2854 (νOMe); 1604,
1580, 1509 and 1462 (νC=C); 1240 (νC-O); 1174 (νC-N); 815 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 8.60 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12), 7.74 (s, 1H, H13), 7.68 (td, J10–11, 10–9 = 7.7 Hz, J10–12 = 1.9 Hz, 1H, H10), 7.28–7.24
(m, 1H, H11), 7.10 (d, J3–4,7–8 = 8.6 Hz, 2H, H3, H7), 7.02–6.95 (m, 4H, H15, H19, H16,
H18), 6.94–6.93 (m, 1H, H9), 3.80 (s, 3H, H20, OMe), 2.08 (s, 3H, H21, Me). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 158.6 (C5), 158.2 (C8), 149.0 (C12), 136.8 (C1), 136.7 (C10),
134.5 (C2), 133.6 (C17), 130.9 (C3, C7), 129.8 (C16, C18), 129.5 (C13), 128.7 (C14), 124.4 (C15,
C19), 122.1 (C9), 121.7 (C11), 114.6 (C6, C4), 55.1 (C20), 30.7 (C21). LRMS: (ES+, CV = 30).
m/z = 324 [M + Na]+, 303.23 [M + 2H]+, 302.17 [M + H]+, 211.12 [M − CH3C6H5]+.

2.3.3. 2-(1,2-bis(4-methoxyphenyl)vinyl)pyridine 8

0.056 mL of p-anisaldehyde was used (0.486 mmol, 1.04 eq). The reaction lasted 3 h.
The crude product was purified by FCC using the CyHex/EtOAc 95:5, the 2-(1,2-bis(4-
methoxyphenyl)vinyl)pyridine 8 was afforded in two separable E and Z isomers.

Z Isomer (8a): 34.4 mg of a yellow colored oil in 24% yield. TLC: CyHex/EtOAc:
80/20, Rf = 0.5. IR ν (cm−1): 2932 (ν Csp3-H); 2855 (νOMe); 1604, 1509 and 1461 (νC=C); 1244
(νC-O); 1176 (νC-N); 829 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.66
(ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.78 (td, J10–11, 10–9 = 7.9 Hz,
J10–12 = 1.8 Hz, 1H, H10), 7.38–7.35 (m, 1H, H9), 7.17 (m, 3H, H11, H3, H7), 7.03 (s, 1H,
H13), 6.89 (d, J4–3, 6–7 = 7.2 Hz, 2H, H4, H6), 6.80 (d, J16–15, 18–19 = 8.6 Hz, 1H, H16, H18),
6.70 (d, J15–16, 19–18 = 7.4 Hz, 2H, H15, H19), 3.74 (s, 3H, H21, Me), 3.67 (s, 3H, H20, OMe).
13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.7 (C17), 159.1 (C5), 158.6 (C8), 150.4 (C12),
139.2 (C1), 137.5 (C10), 134.5 (C2), 130.7 (C16, C18), 129.7 (C14), 128.2 (C3, C7), 126.9 (C13),
125.6 (C11), 123.0 (C9), 114.21 (C15, C19), 113.9 (C6, C4), 55.8 (C20), 54.7 (C21). LRMS: (ES+,
CV = 30). m/z = 657.28 [2M + Na]+, 635.35 [2M + H]+, 318.18 [M + H]+, 302.24 [M − Me]+.
HRMS: calcd. for C21H19NO2H [M + H]+ (318.1489); found (318.1489).

E isomer (8b): 92.3 mg of a yellow-colored oil in 60% yield. TLC: CyHex/EtOAc:
80/20, Rf = 0.6. IR ν (cm−1): 2932 (ν Csp3-H); 2855 (νOMe); 1604, 1509 and 1461 (νC=C); 1244
(νC-O); 829 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6) δ 8.59 (ddd, J12–11 = 4.7 Hz,
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J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.76 (s, 1H, H13), 7.66 (td, J10–9, 10–11 = 7.7 Hz,
J10–12 = 1.8 Hz, 1H, H10), 7.24–7.21 (m, 1H, H11), 7.11 (d, J3–4, 7–6 = 8.7 Hz, 2H, H3, H7),
7.04–6.98 (m, 4H, H6, H4, H16, H18), 6.91 (d, J9–10 = 8 Hz, 1H, H9), 6.47 (d, J15–16, 19–18 = 8.8 Hz,
2H, H15, H19), 3.81 (s, 3H, H21, Me), 3.63 (s, 3H, H20, OMe). 13C NMR (100 MHz, DMSO-
d6) δ (ppm): 159.1 (C17), 159.0 (C5), 158.7 (C8), 149.4 (C12), 138.0 (C1), 137.1 (C10), 134.5
(C2), 131.4 (C3, C7, C16, C18), 129.9 (13), 129.4 (C14), 122.3 (C11), 121.9 (C9), 115.2 (C6,
C4), 114.1 (C15, C19), 55.5 (C20, C21). LRMS: (ES+, CV = 30). m/z = 340.19 [M + Na]+,
308.18 [M + H]+.

2.3.4. 2-(2-(4-isopropylphenyl)-1-(4-methoxyphenyl)vinyl)pyridine 9

0.059 mL of 4-isopropylbenzaldehyde was used (0.486 mmol, 1.04 eq). The reaction
lasted 15 min. The crude product was purified by FCC using a gradient system of Cy-
Hex/EtOAc (from 2 to 10% of EtOAc), the 2-(1,2-bis(4 methoxyphenyl)vinyl)pyridine
9 was afforded in two separable E and Z isomers.

Z isomer (9a): 100 mg of yellow amorphous solid in 65% yield. TLC: CyHex/EtOAc:80/20,
Rf = 0.30. IR ν (cm−1): 3001 (νCsp2-H); 2958, 2927 (νCsp3-H); 2835 (νOMe); 1602, 1583, 1509
and 1460 (νC=C); 1244 (νC-O); 1179 (νC-N); 826 (δCsp2-H p-substitution). 1H NMR (400 MHz,
DMSO-d6) δ (ppm): 8.68 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12,
1H, H12), 7.80 (td, J10–11, 10–9 = 7.7 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.40 (ddd, J9–10 = 7.6 Hz,
J9–11 = 4.9 Hz, J9–12 = 1.2 Hz, 1H, H9), 7.21–7.16 (m, 3H, H11, H15, H19), 7.07 (s, 1H, H13),
7.02–6.98 (m, 2H, H3, H7), 6.93–6.88 (m, 2H, H16, H18), 6.78 (d, J4–3 = J6–7 = 8.3 Hz, 2H,
H4, H6), 3.76 (s, 3H, H20, OMe), 2.85–2.71 (m, 1H, H21), 1.23 (d, J22–21= 6.9 Hz, 6H, H22).
13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.56 (C5), 159.25 (C8), 150.45 (C12), 147.67
(C17), 140.41 (C1), 137.55 (C10), 134.74 (C14), 134.33 (C3, C7), 129.41 (C2), 128.41 (C15,
C19), 127.17 (C13), 126.44 (C16, C18), 125.60 (C9), 123.10 (C11), 114.26 (C4, C6), 55.62 (C20),
33.48 (C21), 29.46 (C22). LRMS: (ES+, CV = 30) m/z: 681.58 [2M + Na]+; 352.25 [M + Na]+;
331.31 [M + 2H]+; 330.24 [M + H]+. HRMS: calcd. for C23H23NOH [M + H]+ (308.1281);
found (308.1258).

E isomer (9b): 46 mg of a yellow-colored oil in 30% yield. TLC: CyHex/EtOAc:
80/20, Rf = 0.7. IR ν (cm−1): 3001 (νCsp2-H); 2958, 2927 (νCsp3-H); 2835 (νOMe); 1602,
1583, 1509 and 1460 (νC=C); 1244 (νC-O); 1179 (νC-N); 826 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 8.60 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12, 1H, H12), 7.78 (s, 1H, H13), 7.63 (td, J10–11, 10–9 = 7.7 Hz, J10–12 = 1.9 Hz, 1H, H10),
7.27–7.23 (m, 1H, H11), 7.12 (d, J3–4,7–8 = 8.7 Hz, 2H, H3, H7), 7.06–7.02 (m, 4H, H15, H19,
H16, H18), 6.95 (d, J4–3, 6–7 = 8.2 Hz, 2H, H4, H6), 6.94–6.91 (m, 1H, H9), 3.81 (s, 3H, H20,
OMe), 2.82–2.80 (m, 1H, H21), 1.13 (d, J22–21 = 6.8 Hz, 6H, H22). 13C NMR (100 MHz,
DMSO-d6) δ (ppm): 158.3 (C5), 158.1 (C8), 150.6 (C12), 145.5 (C17), 139.0 (C1), 136.5 (C10),
135.7 (C2), 134.8 (C3, C7), 129.6 (C14), 129.1 (C15, C19), 127.2 (C13), 127.0 (C16, C18), 125.6
(C9), 123.1 (C11), 113.8 (C4, C6), 55.5 (C20), 33.8 (C21), 29.5 (C22). LRMS: (ES+, CV = 30)
m/z: 681.58 [2M + Na]+; 352.25 [M + Na]+; 331.23 [M + 2H]+; 330.24 [M + H]+.

2.3.5. 2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 10

0.084 mL of 4-tert-butylbenzaldehyde was used (0.486 mmol, 1.04 eq). The reaction
lasted 20 min. The crude product was purified by FCC using a gradient system of Cy-
Hex/EtOAc (from 2 to 10% of EtOAc), the 2-(1,2-bis(4 methoxyphenyl)vinyl)pyridine
10 was afforded in two separable E and Z isomers.

Z isomer (10a): 89 mg of a white amorphous solid in 56%. TLC: CyHex/EtOAc:80/20,
Rf = 0.2. IR ν (cm−1): 3047, 3005 (νCsp2-H); 2956, 2931 (ν Csp3-H); 2866 (νOMe); 1603,
1593, 1509 and 1462 (νC=C); 1244 (νC-O); 1181 (νC-N); 827 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 8.68 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12), 7.80 (td, J10–11, 10–9 = 7.7 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.40 (m, 1H, H11), 7.20–7.14
(m, 5H, H9, H3, H7, H15, H19), 7.06 (s, 1H, H13), 6.92–6.89 (m, 2H, H6, H4), 6.79 (d,
J16–17, 18–19 = 8.4 Hz, 2H, H16, H18), 3.75 (s, 3H, H20, OMe), 1.20 (s, 9H, H22). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 158.91 (C5), 158.57 (C8), 149.80 (C17), 149.21(C12), 139.76
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(C1), 136.87 (C10), 133.67 (C2), 129.14 (C14), 128.48 (C3, C7), 127.72 (C16, C18), 126.94 (C13),
126.34 (C15, C19), 124.90 (C9), 123.89 (C11), 122.43, 113.58 (C4, C6), 54.96 (C20), 34.00 (C21),
30.76 (C22). LRMS: (ES+, CV = 30) m/z: 709.37 [2M + Na]+; 687.42 [2M + H]+; 366.22
[M + Na]+; 345.27 [M + 2H]+; 344.28 [M + H]+. HRMS: calcd. for C24H25NOH [M + H]+

(344.2009); found (344.2009).
E isomer (10b): 59 mg of a yellow amorphous solid 37%. TLC: CyHex/EtOAc:80/20,

Rf = 0.5. IR ν (cm−1): 3050, 3005 (νCsp2-H); 2957, 2926 (νCsp3-H); 2858 (νOMe); 1602,
1581, 1509 and 1461 (νC=C); 1240 (νC-O); 1178 (νC-N); 832 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 8.61 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12, 1H, H12), 7.80 (s, 1H, H13), 7.68 (td, J10–11, 10–9 = 7.7 Hz, J10–12 = 1.9 Hz, 1H,
H10), 7.26 (m, 1H, H11), 7.20 (d, J15–16, 19–18 = 8.5 Hz, 2H, H15, H19), 7.15–7.11 (m, 2H,
H3, H17), 7.07–7.03 (m, 2H, H4, H6), 6.99 (d, J16–17, 18–19 = 8.5 Hz, 2H, H16, H18), 6.92
(d, J9–10 = 8.0 Hz, 1H, H9), 3.82 (s, 3H, H20, OMe), 1.21 (s, 9H, H22). 13C NMR (100 MHz,
DMSO-d6) δ (ppm): 158.68 (C5), 158.12 (C8), 150.09 (C17), 149.07 (C12), 138.92 (C1), 136.72
(C10), 133.54 (C2), 131.72 (C3, C7), 130.84 (C14), 129.55 (C13), 129.41 (C16, C18), 124.99
(C15, C19), 122.12 (C9), 121.65 (C11), 114.75 (C6, C4), 55.09 (C20), 34.30 (C21), 30.95 (C22).
LRMS: (ES+, CV = 30) m/z: 709.37 [2M + Na]+; 366.22 [M + Na]+; 345.27 [M + 2H]+;
344.28 [M + H]+, 214.16 [M − (CH3)3CHC6H4]+.

2.3.6. 4-(2-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)phenol 11b

61.2 mg of 4-hydroxybenzaldehyde was used (0.486 mmol, 1.04 eq). The reaction lasted
10 min. The crude product was purified by FCC using a gradient system of CyHex/EtOAc
(from 1 to 10% of EtOAc), the 4-(2-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)phenol 11b
was afforded in two E and Z isomers but only E isomer was isolated.

E isomer (11b): 48 mg of a yellow amorphous solid in 34% yield. TLC: CyHex/EtOAc:
80/20, Rf = 0.24. IR ν (cm−1): 3512 (νOH); 3062, 3002 (νCsp2-H); 2957, 2920 (νCsp3-H); 2853
(νOMe); 1602, 1586, 1507 and 1462 (νC=C); 1242 (νC-O); 1171 (νC-N); 831 (δCsp2-H p-substitution).
1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.58 (s, 1H, OH), 8.59 (ddd, J12–11 = 4.7 Hz,
J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.72 (s, 1H, H13), 7.70–7.62 (m, 1H, H10), 7.24–7.19
(m, 1H, H11), 7.12–7.08 (m, 2H, H15, H19), 7.06–7.01 (m, 2H, H, H16, H18 ), 6.92–6.87
(m, 3H, H9, H3, H7), 6.61–6.50 (m, 2H, H4, H6), 3.85–3.78 (s, 3H, H20, OMe). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 158.57 (C5), 158.48 (C17), 157.03 (C8), 149.00 (C12), 136.63
(C1), 131.5 (C2), 131.12 (C3, C7, C15, C19), 129.90 (C13), 127.40 (C14), 121.75 (C9), 121.32
(C11), 115.05 (C16, C18), 114.72 (C4, C6), 113.84 (C14), 55.09 (C20). LRMS: (ES+, CV = 30)
m/z: 629.26 [2M + Na]+; 326.15 [M + Na]+; 3034.21 [M + H]+; 200.20 [M − C6H6OHCH]+.
HRMS: calcd. for C20H17NO2H [M + H]+ (304.1332); found (304.1333).

2.3.7. 2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)vinyl)pyridine 12

0.064 mL of 4-(trifluoromethyl) benzaldehyde was used (0.486 mmol, 1.04 eq). The reac-
tion lasted 15 min. The crude product was purified by FCC using a gradient system of Cy-
Hex/EtOAc (from 1 to 10% of EtOAc), the 2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)
vinyl)pyridine 12 was afforded in two separable E and Z isomers.

Z isomer (12a): 60 mg of yellow oil in 36% yield. TLC: CyHex/EtOAc: 80/20,
Rf = 0.25. IR ν (cm−1): 3020, 3013 (νCsp2-H); 2921 (ν Csp3-H); 2846 (νOMe); 1605, 1579,
1510 and 1464 (νC=C); 1244 (νC-O); 1111 (νC-N); 834 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 8.67 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12), 7.79 (td, J10–11= 7.7, 1.8 Hz, 1H, H10), 7.51 (d, J15–16, 19–18 = 8.2 Hz, 2H, H15, H19),
7.42–7.37 (m, 1H, H11), 7.27–7.15 (m, 4H, H13, H9, H3, H7), 7.05 (d, J16–15, 18–19 = 8.1 Hz, 2H,
H16, H18), 6.92 (d, J4–3, 6–7 = 8.9 Hz, 2H, H4, H6), 3.82–3.66 (s, 3H, H20, OMe). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 158.96 (C5), 157.64 (C8), 149.25 (C12), 142.50 (C1), 140.84
(C10), 136.88 (C2), 131.9 (C17), 130.95 (C16, C19, C3, C7), 129.89 (C14), 128.22 (C14), 126.00
(C13), 124.93 (C16, C18), 124.89 (C21), 122.29 (C9), 121.51 (C11), 114.72 (C4, C6), 55.11 (C20).
LRMS: (ES+, CV = 30) m/z: 733.29 [2M + Na]+; 378.13 [M + Na]+; 357.19 [M + 2H]+; 307.17
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[M + 2H]+; 356.16 [M + H]+; 288.89 [M − CF3]+. HRMS: calcd. for C21H16F3NOH [M + H]+

(356.1256); found (396.1257).
E isomer (12b): 76 mg of a white amorphous solid in 46% yield. TLC: CyHex/EtOAc:

80/20, Rf = 0.44. IR ν (cm−1): 3043, 3005 (νCsp2-H); 2920 (ν Csp3-H); 2846 (νOMe); 1605,
1579, 1509 and 1464 (νC=C); 1244 (νC-O); 1111 ((νC-N); 831 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 8.63 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12), 7.82 (s, 1H, H13), 7.73 (td, J10–11, 10–9 = 7.7 Hz, J10–12 = 1.9 Hz, 1H, H10), 7.54 (d,
J15–16 = J19–18 = 8.3 Hz, 2H, H15, H19), 7.33 (ddd, J11–10 = 7.5 Hz, J11–12 = 4.7, J11–9 = 1.1 Hz,
1H, H11), 7.29–7.25 (m, 2H, H16, H18), 7.13 (d, J3–4 = J7–6 = 8.7 Hz, 2H, H3, H7), 7.07–6.99 (m,
3H, H9, H4, H6), 3.80–3.79 (s, 3H, H20, OMe). 13C NMR (100 MHz, DMSO-d6) δ (ppm):
158.96 (C5), 157.64 (C8), 149.25 (C12), 142.50 (C1), 140.84 (C10), 136.88 (C2), 131.57 (C17),
130.95 (C3, C7), 130.01 (C16, C18), 129.89 (C21), 129.20 (C14), 128.22 (C13), 124.97 (C15, C19),
122.82 (C9), 122.29 (C11), 114.72 (C4, C6), 55.11 (C20). LRMS: (ES+, CV = 30) m/z: 378.07
[M + Na]+; 357.12 [M + 2H]+; 365.05 [M + H]+; 212.15 [M − CF3C6H5]+.

2.3.8. 2-(2-(4-bromophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 13

76.8 mg of 4-bromobenzaldehyde was used (0.486 mmol, 1.04 eq). The reaction lasted
15 min. The crude product was purified by FCC using a gradient system of CyHex/EtOAc
(90/10), the 2-(2-(4-bromophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 13 was afforded in
two separable E and Z isomers.

Z isomer (13a): 57.5 mg of a yellow oil 34% yield. TLC: CyHex/EtOAc: 80/20,
Rf = 0.34. IR ν (cm−1): 3048, 3000 (νCsp2-H); 2950, 2927 (νCsp3-H); 2837 (νOMe); 1601,
1582, 1509 and 1473 (νC=C); 1245 (νC-O); 1179 (νC-N); 818 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6 ) δ (ppm): 8.65 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H,
H12), 7.78 (t, J10–11, 10–9 = 7.7 Hz, 1H, H10), 7.40–7.31 (m, 1H, H11), 7.32 (d, J15–16, 19–18 = 8.5 Hz,
H15, H19), 7.19 (d, J3–4, 7–6 = 8.8 Hz, 2H, H3, H7), 7.16 (d, J9–10 = 7.8 Hz, 1H, H9), 7.10 (s, 1H,
H13), 6.91 (d, J4–5, 6–7 = 8.8 Hz, 4H, H4, H6), 6.81 (d, J16–15, 18–19 = 8.5 Hz, 2H, 2H, H16, H18),
3.75 (s, 3H, H20, OMe). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.0 (C5), 158.5 (C8),
150.0 (C12), 141.7 (C1), 137.1 (C10), 136.2 (C2), 133.4 (14), 130.9 (C15, C19), 130.8 (C16, C18),
128.2 (C3, C7), 125.6 (C13), 125.1 (C9), 122.8 (C11), 119.9 (C17), 113.8 (C4, C6), 55.1 (C20).
LRMS: (ES+, CV = 30) m/z: 754.92 [2M + Na]+; 366.92 [M]+; 278.98 [M − Br]+. HRMS:
calcd. for C20H16BrNOH [M + H]+ (366.0488); found (366.0490).

E isomer (13b): 84.7 mg of a white amorphous solid product in 50% yield. TLC: Cy-
Hex/EtOAc: 80/20, Rf = 0.53. IR ν (cm−1): 3065, 3001 (νCsp2-H); 2957, 2931 (ν Csp3-H); 2838
(νOMe); 1602, 1576, 1507 and 1461 (νC=C); 1240 (νC-O); 1173 (νC-N); 818 (δCsp2-H p-substitution).
1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.61 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz,
J12–9 = 0.9 Hz, 1H, H12), 7.73–7.69 (m, 2H, H10, H13), 7.29 (d, J15–16, 19–18 = 8.5 Hz, 1H, H15,
H19), 7.29–7.27 (m, 1H, H11), 7.10 (d, J3–4, 7–6 = 8.7 Hz, 2H, H3, H7), 7.02–6.98 (m, 5H, H9,
H4, H6, H16, H18), 6.95–6.92 (m, 2H, H4, H6), 3.80 (s, 3H, H20, OMe). 13C NMR (100 MHz,
DMSO-d6) δ (ppm): 158.8 (C5), 157.8 (C8), 149.2 (C12), 140.8 (C1), 136.8 (C10), 135.8 (C2),
131.4 (C15,C19), 131.1 (C16, C18), 130.9 (C3, C7), 130.1 (C14), 128.5 (C13), 125.1 (C9), 122.5
(C11), 122.0 (C17), 114.7 (C4, C6), 55.1 (C20). LRMS: (ES+, CV = 30) m/z: 369.12 [M+3H]+;
367.93 [M + H]+.

2.3.9. 2-(2-(4-chlorophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 14

70.4 mg of 4-chlorobenzaldehyde was used (0.486 mmol, 1.04 eq). The reaction lasted
10 min. The crude was purified by FCC using a gradient system of CyHex/EtOAc (from
1 to 5% of EtOAc). The 2-(2-(4-bromophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 14 was
afforded in two separable E and Z isomers.

Z isomer (14a) 17.8 mg of an orange-colored oil 12% yield. TLC: CyHex/EtOAc:
80/20, Rf = 0.37. IR ν (cm−1): 3080, 3011 (νCsp2-H); 2940, 2926 (νCsp3-H); 2838 (νOMe); 1604,
1578, 1508 and 1461 (νC=C); 1241 (νC-O); 1174 (νC-N); 820 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6 ) δ (ppm): 8.65 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12), 7.78 (td, J10–9, 10–11 = 7.7 Hz, J10–12 = 1.9 Hz, 1H, H10), 7.40–7.37 (m, 1H, H11),
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7.20–7.15 (m, 5H, H3, H7, H9, H15, H19), 7.10 (s, 1H, H13), 6.92–6.86 (m, 4H, H4, H6,
H16, H18), 3.75 (s, 3H, H20, OMe). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.0 (C5),
158.5 (C8), 150.0 (C12), 141.6 (C1), 137.1 (C10), 135.8 (C2), 133.4 (C14), 131.2 (C17), 130.5
(C16, C18), 128.2 (C3, C7), 128.0 (C15, C19), 125.5 (C13), 125.0 (C9), 122.8 (C11), 113.8
(C6, C4), 55.2 (C20). LRMS: (ES+, CV = 30). m/z = 643.08 [2M]+; 344.01 [M + Na]+;
322.05 [M + H]+; 197.09 [M − C6H4CHCl]+. HRMS: calcd. for C20H16ClNOH [M + H]+

(322.0992); found (322.0995).
E isomer (14 b): 35 mg of a white amorphous solid 24% yield. TLC: CyHex/EtOAc:

80/20, Rf = 0.5. IR ν (cm−1): 3080, 3013 (νCsp2-H); 2940, 2926 (νCsp3-H); 2838 (νOMe); 1604,
1578, 1508 and 1461 (νC=C); 1241 (νC-O); 1174 (νC-N); 820 (δCsp2-H p-substitution). 1H NMR
(400 MHz, DMSO-d6 ) δ (ppm): 8.62 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz,
1H, H12), 7.74 (s, 1H, H13), 7.61 (t, J10–9,10–11 = 7.7 Hz, 1H, H10), 7.30- 7.27 (m, 1H, H11),
7.24 (d, J15–16, 19–18 = 8.6 Hz, 2H, H15, H19), 7.11–7.00 (m, 6H, H3, H7, H16, H18, H4, H6),
6.98 (d, J9–10 = 6.9 Hz, 1H, H9), 3.80 (s, 3H, H20, OMe). 13C NMR (100 MHz, DMSO-d6) δ
(ppm): 158.8 (C5), 157.8 (C8), 149.1 (C12), 140.7 (C1), 136.8 (C10), 135.5 (C2), 131.7 (C14),
131.1 (C3, C7), 130.9 (C16,C18), 130.1 (C17), 128.4 (C13), 128.1 (C15,C19), 122.5 (C9), 121.9
(C11), 114.7 (C6, C4), 55.1 (C20). LRMS: (ES+, CV = 30). m/z = 344.06 [M + Na]+, 324.12
[M+3H]+, 322.12 [M + H]+.

2.3.10. 2-(2-(4-fluorophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 15

0.053 mL of 4-fluorobenzaldehyde was used (0.486 mmol, 1.04 eq). The reaction lasted
15 min. The crude product was purified by FCC using a gradient system of CyHex/EtOAc
(from 1 to 5% of EtOAc), the 2-(2-(4-bromophenyl)-1-(4-methoxyphenyl)vinyl)pyridine
15 was afforded in two separable E and Z isomers.

Z isomer (15a): 71 mg of yellow amorphous solid in 50% yield. TLC: CyHex/EtOAc:80:20,
Rf = 0.34. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.66 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.8 Hz,
J12–9 = 0.9 Hz, 1H, H12), 7.79 (td, J10–11, 10–9 = 7.7 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.39 (ddd,
J11–10 = 7.6 Hz, J11–12 = 4.9 Hz, J11–9 = 1.2 Hz, 1H, H11), 7.24–7.15 (m, 3H, H9, H15, H19),
7.13 (s, 1H, H13), 7.03–6.95 (m, 2H, H3, H7), 6.95–6.88 (m, 4H, H4, H6, H16, H18), 3.75 (s,
3H, H20, OMe). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.2 (C5), 158.5 (C8), 149.9
(C12), 141.4 (C1), 137.8 (C10), 135.8 (C2), 133.5 (C14), 131.6 (C17), 130.5 (C16, C18), 128.2
(C3, C7), 128.0 (C15, C19), 125.5 (C13), 125.0 (C9), 122.8 (C11), 113.8 (C6, C4), 55.2 (C20).
LRMS: (ES+, CV = 30) m/z: 633.29 [2M + Na]+; 328.20 [M + Na]+; 306.19 [M + H]+. HRMS:
calcd. For C20H16FNOH [M + H]+ (306.1288); found (306.1289).

E isomer (15b): 43.7 mg of yellow oil in 31% yield. TLC: CyHex/EtOAc: 80/20,
Rf = 0.5. IR ν (cm−1): 3056 (νCsp2-H); 2926 (νCsp3-H); 2857 (νOme); 1602, 1508 and 1463
(νC=C); 1224 (νC-O); 1156 (νC-N); 832 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6)
δ (ppm): 8.61 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.80 (s, 1H,
H13), 7.7 (td, J10–9, 10–11 = 7.7 Hz, J10–12 = 1.9 Hz, 1H, H10), 7.34–7.25 (m, 1H, H11), 7.17–7.08
(m, 5H, H,9 H15, H17, H3, H7), 7.07–6.96 (m, 4H, H16, H18, H4, H6), 3.80 (s, 3H, H20,
OMe). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 158.9 (C5), 157.8 (C8), 149.5 (C12), 140.7
(C1), 136.8 (C10), 135.7 (C2), 131.7 (C14), 131.1 (C3, C7), 130.4 (C16,C18), 130.3 (C17), 128.4
(C13), 128.7 (C15, C19), 122.5 (C9), 122.1 (C11), 114.7 (C6, C4), 55.5 (C20). LRMS: (ES+,
CV = 30) m/z: 633.29 [2M + Na]+; 611.27 [2M + H]+; 328.20 [M + Na]+; 307.17 [M + 2H]+;
306.19 [M + H]+.

2.4. General Procedure for the Synthesis of aryloxyDAM

To a suspension of molecular sieves (480 mg) in anhydrous dichloromethane (4.8 mL)
under argon was added carbinol (0.46 mmol, 100 mg), arylboronic acid (1.38 mmol, 3 eq),
Cu(OAc)2 (0.46 mmol, 84.5 mg, 1 eq) and anhydrous pyridine (0.92 mmol, 0.074 mL,
2 eq). The reaction mixture was refluxed during 24 h at 40 ◦C under argon. After reaction
completion, the mixture was cooled at room temperature, filtered under celite. To recover
the product, the celite was washed using dichloromethane and ethyl acetate. The filtrate
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was concentrated under vacuum and the crude product was purified by FCC on silica gel
(CyHex/EtOAc: 80/20).

2.4.1. 2-((4-methoxyphenyl)(phenoxy)methyl)pyridine 17

168.2 mg of phenylboronic acid (1.38 mmol, 3 eq) was used. After FCC, the 2-((4-
methoxyphenyl)(phenoxy)methyl)pyridine 17 was afforded as a yellow oil (94 mg) in
70% yield. TLC: CyHex/EtOAc: 60/40, Rf = 0.7. IR ν (cm−1): 3060, 3007 (νCsp2-H);
2932, 2927 (νCsp3-H); 2837 (νOMe); 1586, 1510 and 1491 and 1470 (νC=C); 1223 (νasym C-O-C);
1030 (νsym C-O-C); 749 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6 ) δ (ppm): 8.51
(ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.79 (td, J10–9,10–11 = 7.6 Hz,
J10–12 = 1.8 Hz, 1H, H10), 7.58 (d, J9–10 = 8 Hz, 1H, H9), 7.42 (d, J3–4,7–6 = 8.7 Hz, 2H, H3, H7),
7.28–7.20 (m, 3H, H11, H15, H17), 6.98 (d, J14–15, 18–17 = 7.7 Hz, 2H, H14, H18), 6.90–6.86 (m,
3H, H4, H6, H16), 6.39 (s, 1H, H1), 3.70 (s, 3H, H19, OMe). 13C NMR (100 MHz, DMSO-d6)
δ (ppm): 160.4 (C13), 158.8 (C5), 157.2 (C8), 149 (C12), 137.2 (C10), 1321 (C2), 129.4 (C15,
C17), 128.3 (C3, C7), 122.7 (C9), 120.9 (C16), 120.4 (C11), 115.8 (C14, C18), 113.8 (C4, C6),
80.9 (C1), 55 (C19). LRMS: (ES+, CV = 30) m/z: 314.04 [M + Na]+; 292.01 [M + H]+; 198.14
[M − C6H5O]+. HRMS: calcd. for C19H17NO2H [M + H]+ (292.1332); found (292.1752).

2.4.2. 2-((4-methoxyphenyl)(p-tolyloxy)methyl)pyridine 18

187.6 mg of 4-methylphenylboronic acid (1.38 mmol, 3 eq) was used. After FCC,
the 2-((4-methoxyphenyl)(p-tolyloxy)methyl)pyridine 18 was afforded as a white solid
(122.2 mg) in 87% yield. TLC: CyHex/EtOAc: 60/40, Rf = 0.7. IR ν (cm−1): 3065 (νCsp2-H);
2994, 2917 (νCsp3-H); 2853 (νOMe); 1610, 1588, 1510 and 1473 (νC=C); 1227 (νasym C-O-C);
1032 (νsym C-O-C); 810 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6 ) δ (ppm): 8.62
(ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.78 (td, J10–9,10–11 = 7.6 Hz,
J10–12 = 1.7 Hz, 1H, H10), 7.57 (d, J9–10 = 8 Hz, 1H, H9), 7.42 (d, J3–4,7–6 = 8.6 Hz, 2H, H3,
H7), 7.27–7.24 (m, 1H, H11), 7.01 (d, J15–16, 17–18 = 8.7 Hz, 2H, H15, H17), 6.98–6.85 (m, 4H,
H4, H6, H14, H18), 6.41 (s, 1H, H1), 3.70 (s, 3H, H19, OMe), 2.17 (s, 3H, H20, Me). 13C
NMR (100 MHz, DMSO-d6) δ (ppm): 160.5 (C5), 158.7 (C8), 155 (C13), 149 (C12), 137.1
(C10), 132.2 (C16), 129.7 (C15, C17), 129.6 (C2), 128.2 (C3, C7), 122.7 (C9), 120.4 (C11), 115.7
(C4, C6), 113.8 (C14, C18), 81 (C1), 55 (C19), 20 (C20). LRMS (ES+, CV = 30) m/z: 328.16
[M + Na]+; 306.18 [M + H]+; 214.14 [M − C7H7]+; 198.14 [M − C7H7O]+. HRMS: calcd. for
C20H19NO2H [M + H]+ (306.1489); found (306.1288).

2.4.3. 2-((4-methoxyphenoxy)(4-methoxyphenyl)methyl)pyridine 19

210 mg of 4-methoxyphenylboronic (1.38 mmol, 3 eq) was used. After a FCC, the
2-((4-methoxyphenoxy)(4-methoxyphenyl)methyl)pyridine 19 as a transparent oil (110
mg) in 75% yield. TLC: CyHex/EtOAc: 60/40, Rf = 0.7. IR ν (cm−1): 3065 (νCsp2-H);
2990, 2930 (νCsp3-H); 2837 (νOMe); 1605, 1588, 1507 and 1463 (νC=C); 1216 (νasym C-O-C);
1031 (νsym C-O-C); 823 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6 ) δ (ppm): 8.50
(ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.78 (td, J10–9,10–11 = 7.7 Hz,
J10–12 = 1.7 Hz, 1H, H10), 7.58 (d, J9–10 = 7.8 Hz, 1H, H9), 7.40 (d, J3–4,7–6 = 8.7 Hz, 2H, H3, H7),
7.27–7.24 (m, 1H, H11), 6.93–6.87 (m, 4H, H4, H6, H15, H17), 6.68 (d, J14–15,18–17 = 9.1 Hz,
2H, H14, H18), 6.28 (s, 1H, H1), 3.70 (s, 3H, H19, OMe), 3.64 (s, 3H, H20, OMe). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 160.6 (C5), 158.7 (C8), 153.5 (C13), 151.1 (C16), 149 (C12),
137.1 (C10), 132.3 (C2), 128.3 (C3, C7), 122.6 (C9), 120.4 (C11), 116.9 (C4, C6), 114.5 (C14,
C18), 113.8 (C15, C17), 81.6 (C1), 55.2 (C20). 55 (C19). LRMS: (ES+, CV = 30). m/z: 323.24
[M + 2H]+; 322.16 [M + H]+; 214.14 [M − C7H7O]+; 198.15 [M − C7H7O2]+. HRMS: calcd.
for C20H19NO3H [M + H]+ (322.1438); found (322.1439).

2.4.4. 2-((4-(tert-butyl)phenoxy)(4-methoxyphenyl)methyl)pyridine 20

245 mg of 4-tertbutylmethoxyphenylboronic acid (1.38 mmol, 3 eq) was used. After
FCC, the 2-((4-(tert-butyl)phenoxy)(4-methoxyphenyl)methyl)pyridine 20 was afforded
as a white solid (123.5 mg) in 77% yield. TLC: CyHex/EtOAc 60:40, Rf = 0.7. IR ν
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(cm−1): 2958, 2927, 2927 (νCsp3-H); 2847 (νOMe); 1609, 1585, 1512 and 1463 (νC=C); 1238
(νasym C-O-C); 1024 (νsym C-O-C); 822 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6)
δ (ppm): 8.51 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9= 0.9 Hz, 1H, H12), 7.79 (td,
J10–9,10–11 = 7.8 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.58 (d, J9–10 = 7.8 Hz, 1H, H9), 7.41 (d,
J15–14,17–18 = 8.4 Hz, 2H, H15, H17), 7.28–7.24 (m, 1H, H11), 7.22 (d, J3–4, 7–6 = 8.8 Hz, 2H,
H3, H7), 6.89–6.85 (m, 4H, H4, H6, H14, H18), 6.53 (s, 1H, H1), 3.70 (s, 3H, H19, OMe). 13C
NMR (100 MHz, DMSO-d6) δ (ppm): 160.56 (C5), 158.7 (C8), 154.9 (C13), 149 (C12), 143
(C16), 137.2 (C10), 132.3 (C2), 128.2 (C15, C17), 126 (C3, C7), 122.7 (C9), 120.4 (C11), 115.2 (C4,
C6), 113.8 (C14, C18), 80.9 (C1), 55 (C19), 33.7 (C20), 31.2 (C21). LRMS: (ES+, CV = 30) m/z:
349.27 [M + 2H]+; 348.21 [M + H]+; 214.12 [M − C10H13]+; 198.13 [M − C10H13O]+. HRMS:
calcd. for C23H25NO2H [M + H]+ (348.1958); found (348.1959).

2.4.5. 2-((4-chlorophenoxy)(4-methoxyphenyl)methyl)pyridine 21

215.79 mg (1.38 mmol, 3 eq) of 4-chlorophenylboronic acid was used. After FCC, the
2-((4-chlorophenoxy)(4-methoxyphenyl)methyl)pyridine 21 was afforded as a white solid
(135.2 mg) in 91% yield. TLC: CyHex/EtOAc: 60/40, Rf = 0.7. IR ν (cm−1): 3056, 3005
(νCsp2-H); 2931 (ν Csp3-H); 2837 (νOMe); 1604, 1588, 1511 and 1487 (νC=C); 1229 (νasym C-O-C);
1029 (νsym C-O-C); 820 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6 ) δ (ppm): 8.62
(ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.79 (td, J10–9,10–11 = 7.8 Hz,
J10–12 = 1.8 Hz, 1H, H10), 7.57 (d, J9–10 = 7.8 Hz, 1H, H9), 7.42 (d, J3–4,7–6 = 8.7 Hz 2H, H3,
H7), 7.29–7.25 (m, 3H, H11, H15, H17), 7.01 (d, J14–15, 18–17 = 9 Hz, 2H, H14, H18), 6.90
(d, J4–3, 6–7 = 8.7 Hz, 2H, H4, H6), 6.41 (s, 1H, H1), 3.70 (s, 3H, H19, OMe). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 159.9 (C5), 158.8 (C13), 156 (C8), 149.1 (C12), 137.2 (C10),
131.7 (C2), 129.2 (C16, C18), 128.3 (C3, C7), 124.6 (C16), 122.8 (C9), 120.5 (C11), 117.6 (C14,
C18), 113.8 (C4, C6), 81.23 (C1), 55.0 (C19). LRMS: (ES+, CV = 30) m/z: 348.10 [M + Na]+;
326.11 [M + H]+; 214.14 [M − C6H4Cl]+; 198.14 [M − C6H4ClO]+. HRMS: calcd. for
C20H16ClNO2H [M + H]+ (326.0942); found (326.0944).

2.4.6. 2-((4-bromophenoxy)(4-methoxyphenyl)methyl)pyridine 22

277.14 mg of 4-bromophenylboronic acid (1.38 mmol, 3 eq) was added. After FCC, the
2-((4-bromophenoxy)(4-methoxyphenyl)methyl)pyridine 22 was afforded as a white solid
(140 mg) in 83% yield. TLC: CyHex/EtOAc: 60/40, Rf = 0.5. IR ν (cm−1): 3066 (νCsp2-H);
2974, 2919 (νCsp3-H); 2837 (νOMe); 1615, 1588, 1510 and 1488 (νC=C); 1228 (νasym C-O-C); 1019
(νsym C-O-C), 811 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6 ) δ (ppm): 8.51 (ddd,
J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.79 (td,
J10–9,10–11 = 7.7 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.57 (d, J9–10 = 7.9 Hz, 1H, H9), 7.42–7.37 (m,
4H, H3, H7, H15, H17), 7.29–7.25 (m, 1H, H11), 6.96 (d, J14–15, 18–17 = 9 Hz, 2H, H14, H18),
6.89 (d, J4–3, 6–7 = 8.8 Hz, 2H, H4, H6), 6.40 (s, 1H, H1), 3.70 (s, 3H, H19, OMe). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 159.9 (C13), 158.9 (C5), 156.5 (C8), 149.1 (C12), 137.2 (C10),
132.1 (C15, C17), 131.7 (C2), 128.3 (C3, C7), 122.8 (C9), 120.5 (C11), 118.2 (C14, C18), 113.9
(C4, C6), 112.4 (C16), 81.17 (C1), 55.0 (C19). LRMS: (ES+, CV = 30) m/z: 370.02 [M + H]+;
214.1 [M − C6H4Br]+; 198.16 [M − C6H4OBr]+. HRMS: calcd. for C19H16BrNO2H [M + H]+

(370.0437); found (370.0439).

2.4.7. 2-((4-fluorophenoxy)(4-methoxyphenyl)methyl)pyridine 23

193 mg of 4-fluorophenylboronic acid (1.38 mmol, 3 eq) was added. After FCC, the
2-((4-fluorophenoxy)(4-methoxyphenyl)methyl)pyridine 23 was afforded as a transparent
oil (139 mg) in 98% yield. TLC: CyHex/EtOAc: 60/40, Rf = 0.67. IR ν (cm−1): 3055, 3005
(νCsp2-H); 2920 (ν Csp3-H); 2838 (νOMe); 1600, 1588, 1501 and 1467 (νC=C); 1242 (νasym C-O-C);
1029 (νsym C-O-C); 823 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6 ) δ (ppm): 8.50
(ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.78 (td, J10–9,10–11 = 7.7 Hz,
J10–12 = 1.8 Hz, 1H, H10), 7.58 (d, J9–10 = 7.9 Hz, 1H, H9), 7.40 (d, J3–4,7–6 = 8.7 Hz 2H, H3, H7),
7.28–7.24 (m, 1H, H11), 7.07–6.97 (m, 4H, H14, H15, H17, H18), 6.89 (d, J4–3, 6–7 = 8.7 Hz,
2H, H4, H6), 6.63 (s, 1H, H1), 3.70 (s, 3H, H19, OMe). 13C NMR (100 MHz, DMSO-d6)
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δ (ppm): 160.2 (C5), 158.8 (C8), 155.4 (C13), 153.5 (C16), 149.1 (C12), 137.2 (C10), 131.9
(C2), 128.3 (C3, C7), 122.8 (C9), 120.5 (C11), 117.3 (C15, C18), 115.9 (C14, C7), 113.8 (C4,
C6), 81.5 (C1), 55.0 (C19). LRMS: (ES+, CV = 30) m/z: 311.23 [M + 2H]+; 310.14 [M + H]+;
214.12 [M − C6H4F]+; 198.12 [M − C6H4FO]+. HRMS: calcd. for C19H16FNO2H [M + H]+

(310.1238); found (309.2037).

2.4.8. 2-((4-methoxyphenyl)(4-(trifluoromethyl)phenoxy)methyl)pyridine 24

215.79 mg of 4-trifluorophenylboronic acid (1.38 mmol, 3 eq) was added. After FCC,
the 2-((4-methoxyphenyl)(4-(trifluoromethyl)phenoxy)methyl)pyridine 24 was afforded
as a yellow oil (105.9 mg) in 64% yield. TLC: CyHex/EtOAc: 60/40, Rf = 0.6. IR ν

(cm−1): 3058, 3009 (νCsp2-H); 2990, 2934 (νCsp3-H); 2839 (νOMe); 1613, 1588, 1511 and 1468
(νC=C); 1238 (νasym C-O-C); 1029 (νsym C-O-C); 834 (δCsp2-H p-substitution). 1H NMR (400 MHz,
DMSO-d6 ) δ (ppm): 8.53 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12),
7.80 (td, J10–9,10–11 = 7.7 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.61–7.58 (m, 3H, H9, H15, H17), 7.44
(d, J3–4,7–6 = 8.7 Hz 2H, H3, H7), 7.30–7.27 (m, 1H, H11), 7.17 (d, J14–15, 18–17 = 8.5 Hz, 2H,
H14, H18), 6.91 (d, J4–3, 6–7 = 8.8 Hz, 2H, H4, H6), 6.54 (s, 1H, H1), 3.71 (s, 3H, H19, OMe).
13C NMR (100 MHz, DMSO-d6) δ (ppm): 160 (C13), 159.6 (C5), 158.9 (C8), 149.2 (C12),
137.3 (C10), 131.4 (C2), 128.3 (C3, C7), 126.9 (C16), 125,7 (C20), 122.9 (C9), 121.6 (C11), 120.5
(C15, C17), 116.3 (C14, C18), 113.9 (C4, C6), 81 (C1), 55.0 (C19). LRMS: (ES+, CV = 30)
m/z: 361.19 [M + 2H]+; 360.12 [M + H]+; 214.13 [M − C7H4F3]+; 198.14 [M − C7H4F3O]+.
HRMS: calcd. for C20H16F3NO2H [M + H]+ (360.1206); found (360.1207).

2.4.9. 2-((4-methoxyphenyl)(4-nitrophenoxy)methyl)pyridine 25

230 mg of 4-nitrophenylboronic acid (1.38 mmol, 3 eq) was added. After FCC, the 2-((4-
methoxyphenyl)(4-nitrophenoxy)methyl)pyridine 25 was afforded as a yellow oil (151.5mg)
in 98% yield. TLC: CyHex/EtOAc 60:40, Rf = 0.5. IR ν (cm−1): 3079, 3006 (νCsp2-H);
2932 (νCsp3-H); 2838 (νOMe); 1610, 1588, 1509 and 1467 (νC=C); 1238 (νasym C-O-C); 1025
(νsym C-O-C); 843 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6 ) δ (ppm): 8.54 (ddd,
J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 8.15 (d, J15–14, 17–18 = 9.2 Hz, 2H, H15,
H17), 7.82 (td, J10–9,10–11 = 7.8 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.60 (d, J9–10 = 7.9 Hz, 1H, H9),
7.45 (d, J3–4,7–6 = 8.7 Hz, 2H, H3, H7), 7.32–7.28 (m, 1H, H11), 7.21 (d, J14–15, 18–19 = 9.2 Hz,
2H, H14, H18), 6.91 (d, J4–3, 6–7 = 8.7 Hz, 2H, H4, H6), 6.64 (s, 1H, H1), 3.71 (s, 3H, H19,
OMe). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 162.5 (C13), 159.1 (C5), 159 (C8), 149.3
(C12), 141.0 (C16), 137.4 (C10), 131 (C2), 128.4 (C3, C7), 125.8 (C15, C17), 123 (C9), 120.7
(C11), 116.3 (C14, C18), 114 (C4, C6), 81.4 (C1), 55.1 (C19). LRMS: (ES+, CV = 30) m/z:
359.09 [M + Na]+; 337.16 [M + H]+; 214.16 [M − C6H4NO2]+; 198.15 [M − C6H4NO3]+.
HRMS: calcd. for C19H16N2O4H [M + H]+ (337.1183); found (337.1184).

2.4.10. 4-((4-methoxyphenyl)(pyridin-2-yl)methoxy)-N,N dimethylaniline 26

227.7 mg of 4-dimethylaminophenylboronic acid (1.38 mmol, 3 eq) was added. After
FCC, the 4-((4-methoxyphenyl)(pyridin-2-yl)methoxy)-N,N-dimethylaniline 26 was af-
forded as a blue oil (80 mg) in 52% yield. TLC: CyHex/EtOAc 60:40, Rf = 0.6. IR ν (cm−1):
3049 (νCsp2-H); 2933, 2898 (νCsp3-H); 2837 (νOMe); 1610, 1589, 1509 and 1457 (νC=C); 1338
(νC-N-C); 1225 (νasym C-O-C); 1025 (νsym C-O-C); 813 (δCsp2-H p-substitution). 1H NMR (400 MHz,
DMSO-d6 ) δ (ppm): 8.49 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12),
7.77 (td, J10–9,10–11 = 7.6 Hz, J10–12 = 1.8 Hz, 1H, H10), 7.58 (d, J9–10 = 7.8 Hz, 1H, H9),
7.38 (d, J3–4, 7–6 = 8.6 Hz, 2H, H3, H7), 7.26–7.23 (m, 1H, H11), 6.89–6.83 (m, 4H, H6, H4,
H14, H18), 6.61 (d, J15–14, 17–18 = 9.1 Hz, 2H, H15, H17), 6.2 (s, 1H, H1), 3.70 (s, 3H, H19,
OMe), 2.70 (s, 6H, H20). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 160.9 (C5), 158.7 (C8),
150.87 (C13), 148.9 (C12), 145.6 (C16), 137 (C10), 132.6 (C2), 128.2 (C3, C7), 122.6 (C9), 120.4
(C11), 116.8 (C14, C18), 113.9 (C15, C17), 113.7 (C4, C6), 81.7 (C1), 55 (C19), 40.9 (C20).
LRMS: (ES+, CV = 30) m/z: 336.26 [M + 2H]+; 335.19 [M + H]+; 214.14 [M − C8H10N]+;
198.16 [M − C8H10NO]+. HRMS: calcd. for C21H19NO3H [M + H]+ (335.1754);
found (335.1755).



Biomolecules 2023, 13, 54 12 of 31

2.4.11. 1-(4-((4-methoxyphenyl)(pyridin-2-yl)methoxy)phenyl)ethanone 27

189 mg of 4-acetylphenylboronic acid (1.38 mmol, 3 eq) was used. After FCC, the
1-(4-((4-methoxyphenyl)(pyridin-2-yl)methoxy)phenyl)ethanone 27 was afforded as a trans-
parent oil (131 mg) in 78% yield. TLC: CyHex/EtOAc 60:40, Rf = 0.3. IR ν (cm−1): 3054,
3003 (νCsp2-H); 2931 (νCsp3-H); 2837 (νOMe); 1673 (νC=O); 1604, 1580, 1507 and 1467 (νC=C);
1234 (νasym C-O-C); 1025 (νsym C-O-C); 831 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-
d6 ) δ (ppm): 8.53 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.86 (d,
J15–14, 17–18 = 8.9 Hz, 2H, H15, H17), 7.80 (td, J10–9,10–11 = 7.7 Hz, J10–12 = 1.8 Hz, 1H, H10),
7.58 (d, J9–10 = 7.9 Hz, 1H, H9), 7.44 (d, J3–4,7–6 = 8.7 Hz 2H, H3, H7), 7.30–7.27 (m, 1H, H11),
7.09 (d, J14–15, 18–17 = 8.9 Hz, 2H, H14, H18), 6.90 (d, J4–3, 6–7 = 8.8 Hz, 2H, H4, H6), 6.55
(s, 1H, H1), 3.71 (s, 3H, H19, OMe), 2.46 (s, 3H, H21). 13C NMR (100 MHz, DMSO-d6) δ
(ppm): 196.2 (C20), 161 (C13), 159.7 (C5), 158.9 (C8), 149.2 (C12), 137.3 (C10), 131.5 (C2),
130.3 (C15, C17), 130.1 (C16), 128.4 (C3, C7), 122.9 (C9), 120.5 (C11), 115.6 (C14, C18), 113.9
(C4, C6), 81 (C1), 55 (C19), 26.4 (C21). LRMS: (ES+, CV = 30) m/z: 335.19 [M + 2H] +;
214.14 [M − C8H7O]+; 198.14 [M − C8H7O2]+. HRMS: calcd. for C21H19NO3H [M + H]+

(334.1438); found (334.1439).

2.5. Preparation of N-oxides
2.5.1. 2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 1-oxide 28

To a solution of 2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 10a
(0.288 mmol, 99 mg) in anhydrous DCM was added the 3-chloroperbenzoic acid (m-CPBA)
(0.288 mmol, 50 mg, 1 eq) under argon. The reaction mixture was stirred at room tem-
perature during 3 h. After reaction completion, a solution of KOH (40%) was added to
the mixture until pH 8–9. The mixture was washed then with water and extracted with
DCM. The organic layer was dried under anhydrous MgSO4, filtered and concentrated. The
crude residue was purified by FCC on silica gel (DCM/MeOH.NH3 (7N): 98/2) to afford
the 2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 1-oxide 28 as a white
solid in 53% yield. TLC: DCM/MeOH: 95/5, Rf = 0.25. IR ν (cm−1): 3676 (νOH); (νCsp2-H);
2986 (νCsp3-H); 2983 (νO-Me); 1405 (νC=C); 1254 (νC-O); 894 (δCsp2-H p-substitution). 1H NMR
(400 MHz, CDCl3) δ (ppm): 8.39 (d, J= 6.5 Hz, 1H, H12 ), 7.31–7.27 (m, 1H, H9), 7.7.23 (s,
1H, H, H13), 7.20–7.16 (m, 6H, H10, H11, H3, H7, H15, H19), 6.98 (d, J15–16 = J 18–19 = 8.36
Hz, 2H, H16, H18), 6.86 (d, J4–3 = J6–7 = 8.8 Hz, 2H, H4, H6), 3.7 (s, 3H, H20, OMe), 1.24 (s,
9H, H22). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.64 (C5), 150.88 (C8), 140.47 (C12),
133.35 (C1), 133.27 (C10), 131.53 (C17), 130.38 (C14), 129.00 (C2), 128.50 (C4, C6), 127.20 (C3,
C7), 125.75 (C15, C19), 125.42 (C13), 125.29 (C9), 114.31 (C16, C18), 55.47 (C20), 34.69 C21),
31.32 (C22).

2.5.2. 2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)vinyl)pyridine 1-oxide 29

To a solution of 2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 10a
(0.288 mmol, 99 mg) in anhydrous DCM was added the m-CPBA (0.288 mmol, 50 mg, 1 eq)
under argon. The reaction mixture was stirred at room temperature during 3 h. After
reaction completion, a solution of KOH (40%) was added to the mixture until pH 8–9.
The mixture was washed then with water and extracted with DCM. The organic layer
was dried under anhydrous MgSO4, filtered and concentrated. The crude residue was
purified by FCC on silica gel (DCM/MeOH.NH3 (7N): 98/2) to afford the 2-(2-(4-(tert-
butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 1-oxide 28 as a white solid in 53% yield.
TLC: DCM/MeOH: 95/5, Rf = 0.25. IR ν (cm−1): 3676 (νOH); (νCsp2-H); 2986 (νCsp3-H); 2983
(νO-Me); 1405 (νC=C); 1254 (νC-O); 894 (δCsp2-H p-substitution). 1H NMR (400 MHz, CDCl3) δ
(ppm): 8.39 (d, J = 6.5 Hz, 1H, H12), 7.31–7.27 (m, 1H, H9), 7.7.23 (s, 1H, H, H13), 7.20–7.16
(m, 6H, H10, H11, H3, H7, H15, H19), 6.98 (d, J15–16 = J 18–19 = 8.36 Hz, 2H, H16, H18), 6.86
(d, J4–3 = J6–7 = 8.8 Hz, 2H, H4, H6), 3.7 (s, 3H, H20, OMe), 1.24 (s, 9H, H22). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 159.64 (C5), 150.88 (C8), 140.47 (C12), 133.35 (C1), 133.27
(C10), 131.53 (C17), 130.38 (C14), 129.00 (C2), 128.50 (C4, C6), 127.20 (C3, C7), 125.75 (C15,
C19), 125.42 (C13), 125.29 (C9), 114.31 (C16, C18), 55.47 (C20), 34.69 C21), 31.32 (C22).
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2.5.3. 2-((4-methoxyphenyl)(phenoxy)methyl)pyridine 1-oxide 30

To a solution of 2-((4-methoxyphenyl)(phenoxy)methyl)pyridine 17 (0.288 mmol, 84 mg)
in anhydrous DCM was added the m-CPBA (1.55 mmol, 348 mg, 5.3 eq) under argon. The
reaction mixture was stirred at room temperature during 3 h. After reaction completion, a
solution of KOH (40%) was added to the mixture until pH 8–9. The mixture was washed
then with water and extracted with DCM. The organic layer was dried under anhydrous
MgSO4, filtered and concentrated. The crude residue was purified by FCC on silica gel
(DCM/MeOH.NH3 (7N): 98/2) to afford the 2-((4-methoxyphenyl)(phenoxy)methyl)pyridine
1-oxide 81c as a white oil in 99% yield (87.7 mg). TLC: DCM/MeOH: 95/5, Rf = 0.2. IR
ν (cm−1): 3062 (νCsp2-H); 2935 (νCsp3-H); 2836 (νOMe); 1587, 1511 and 1488 (νC=C); 1286
(νN-O), 1221 (νC-O); 751 (δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6) δ (ppm):
8.28 (ddd, J12–11 = 4.7 Hz, J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.67 (m, 1H, H9), 7.46 (d,
J3–4, 7–6 = 8.7 Hz, 2H, H3, H7), 7.37 (m, 2H, H10, H11), 7.29–7.23 (m, 2H, H15, H17),
6.96–6.90 (m, 5H, H4, H6, H14, H16, H18), 6.85 (s, 1H, H1), 3.73 (s, 3H, H19, OMe). 13C NMR
(100 MHz, DMSO-d6) δ (ppm): 159.68 (C13), 157.17 (C5), 150.40 (C8), 139.78 (C12), 130.16
(C15, C17), 129.89 (C2), 129.33 (C3, C7), 126.13 (C10), 125.89 (C11), 124.17 (C16), 121.89
(C9), 115.89 (C14, C18), 114.28 (C4, C6), 73.52 (C1), 55.59 (C19). LRMS: (ES+, CV = 30) m/z:
637.31 [2M + Na]+; 330.17 [M + Na]+; 308.24 [M + H]+; 214.16 [M − C6H4O]+. HRMS:
calcd. for C19H17NO3Na [M + Na]+ (330.1101); found (330.1101).

2.5.4. 2-((4-bromophenoxy)(4-methoxyphenyl)methyl)pyridine 1-oxide 31

To a solution of 2-((4-bromophenoxy)(4-methoxyphenyl)methyl)pyridine 22
(0.389 mmol, 144 mg) in anhydrous DCM was added the m-CPBA (2 mmol, 469 mg,
5 eq) under argon. The reaction mixture was stirred at room temperature during 3 h. After
reaction completion, a solution of KOH (40%) was added to the mixture until pH 8–9. The
mixture was washed with water and extracted with DCM. The organic layer was dried
under anhydrous MgSO4, filtered and concentrated. The crude residue was purified by
FCC on silica gel (DCM/MeOH NH3, 7N, 2 to 10% of MeOH.NH3, (7N)) to afford the
2-((4-bromophenoxy)(4-methoxyphenyl) methyl)pyridine 1-oxide 31 as a brown solid in
88% yield (132 mg). TLC: DCM/MeOH: 95/5, Rf = 0.2. IR ν (cm−1): 3065, 3019 (νCsp2-H);
2931 (νCsp3-H); 2837 (νOMe); 1610, 1582 and 1511 (νC=C); 1278 (νN-O), 1225 (νC-O); 764
(δCsp2-H p-substitution). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.29 (ddd, J12–11 = 4.7 Hz,
J12–10 = 1.9 Hz, J12–9 = 0.9 Hz, 1H, H12), 7.68–7.64 (m, 1H, H9), 7.48–7.36 (m, 6H, H3, H7,
H15, H17, H10, H11), 6.93–6.90 (m, 4H, H6, H4, H14, H18), 6.84 (s, 1H, H1), 3.73 (s, 3H,
H19, OMe). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.30 (C13), 156.00 (C5), 149.53
(C8), 139.36 (C12), 132.36 (C15, C17), 132.03 (C2), 128.95 (C3, C7), 125.70 (C10), 125.55 (C11)
123.74 (C9), 117.87 (C14, C18), 112.9 (C16), 113.86 (C4, C6), 73.49 (C1), 55.14 (C19). LRMS:
(ES+, CV = 30) m/z: 795.02 [2M + Na]+; 386.10 [M]+; 370.24 [M − O]+; 304.93 [M − Br]+

230.24 [M − C6H4Br]+.

2.6. Bioassays
2.6.1. Materials

Dulbecco’s modified eagle medium (DMEM, Roswell Park Memorial Institute medium
(RPMI) 1640 medium, fetal bovine serum (FBS), L-glutamine and penicillin-streptomycin
were purchased from Gibco BRL—Fisher Scientific (Cergy-Pontoise, France). Trypsin was
purchased from Pan-Biotech (Dutscher, Bernolsheim, France). 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), DMSO and β-actin antibody were obtained
from Sigma-Aldrich—Merck (Saint-Quentin-Fallavier, France). Caspase-3, cleaved caspase-
3, poly-ADP-ribose polymerase (PARP) as well as P-Akt, Akt, P-ERK, ERK, P-p38, p-
38 antibodies and goat anti-rabbit IgG secondary antibody conjugated to horseradish
peroxidase (HRP) were acquired from Cell Signaling Technology—Ozyme (Saint-Quentin-
en-Yvelines, France). Rabbit anti-mouse IgG, IgM (H+L) secondary antibody conjugated
to HRP was obtained from Invitrogen—Fisher Scientific and PVDF membranes from GE
Healthcare Life Science—Fisher Scientific. Immobilon Western Chemiluminescent HRP
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Substrate Cell death was acquired from Millipore—Fisher Scientific. Protease inhibitors
(Complete™ Mini) and detection enzyme-linked immunosorbent assayPLUS (ELISA) were
purchased from Roche Diagnostics—Merck (Lyon, France).

2.6.2. Cells Lines, Cell Culture and Treatment

Human CRC HCT116 and HT-29 adherent cell lines were purchased from the American
Type Culture Collection (ATCC—LGC Standards, Molsheim, France). We chose these
human CRC cell lines because they are of different stages in order to evaluate possible
resistance to our treatments: the HCT116 CRC line was isolated from a stage I colorectal
carcinoma of an adult male. The HT-29 CRC line was derived from a stage II colorectal
adenocarcinoma from a 44-year-old woman.

Cells were grown in DMEM medium for HT-29 cells and RPMI 1640 medium for
HCT116 cells, supplemented with 10% FBS, 1% L-glutamine and 100 U/mL penicillin
and 100 µg/mL streptomycin. Cultures were maintained in a humidified atmosphere
containing 5% CO2 at 37 ◦C. Stock solutions of each compound were used at 10−2 M in
DMSO and then diluted in culture medium to obtain the appropriate final concentrations.
The same amount of vehicle (percentage of DMSO did not exceed 0.5%) was added to
control cells. L929 cell line is a non-cancer cell line derived from L-strain (L cells) and has
been grown in the Peptinov laboratory for years. L929 cells are murine adherent fibroblasts
from subcutaneous connective tissue (areolar and adipose tissues). Cells were grown in
DMEM medium supplemented with 10% FBS, 1% L-glutamine and 100 U/mL penicillin
and 100 µg/mL streptomycin and maintained in a humidified incubator at 37 ◦C, 5% CO2.
When confluence is at 80%, cells are trypsinyzed for 3 min and diluted in fresh medium.
Each batch of cells is kept for 15 passages before being discarded and a new batch thawed.

2.6.3. Cell Metabolic Activity

All compounds were tested on the metabolic activity of the cells using the MTT
colorimetric assay [29]. Briefly, cells were seeded in 96-well microplates at 8 × 103 cells/well
for human CRC HT-29 cells and 5 × 103 cells/well for human CRC HCT116 cells and
grown for 24 h in appropriate culture medium prior to exposure or not to compounds
(6–27) with concentration ranges from 1 to 50 µM. After 48 h of treatment, MTT (5 g/L
in Phosphate-buffered saline (PBS)) was added and incubated for another 3 h. The MTT
was then removed from the wells and 100 µL/well of DMSO were added to dissolve
formazan. The optical density was detected with a microplate reader (Thermoscientific,
Multiskan FC) at 550 nm and cell viability was expressed as a percentage of each treatment
condition compared to control cells. IC50 values were calculated for all compounds from
the dose–response curve.

Cell viability of L929 cell line was evaluated in presence of synthesized compounds
on. Briefly, cells were trypsinyzed and seeded in 96-well microplates at 4 × 104 cells/well
for 24 h in a humidified incubator at 37 ◦C, 5% CO2. The following day, 100 µL of a mix
containing serial diluted compounds, in constant 0.5% DMSO, were added to the cells and
plates were incubated for 24 h in a humidified incubator at 37 ◦C, 5% CO2. 100 µL of a mix
containing 0.5% of DMSO was added to untreated cells (control cells). After removing the
mix, 100 µL of 0.5 mg/mL of MTT were added to the cells and plates were incubated for
2 h in an humidified incubator at 37 ◦C, 5% CO2. MTT was then removed and 200 µL of
DMSO were added to the wells to dissolve formazan crystals. Optical density was then
read with a spectrophotometer (Multiskan, Fisher Scientific, Illkirch, France) at 560 nm.
Cell viability was expressed as percentages compared to untreated cells.

2.6.4. Protein Extraction and Western Blot Analysis

Human CRC HT-29 and HCT116 cells were treated or not with the determined IC50
values of compounds (12a, 10a, 10b) for indicated times (6, 12, 24 and 48h) and then
harvested with trypsin. For total protein extraction, collected samples of each condition
were washed with PBS. Then, the total cell pool was centrifuged at 200× g for 5 min
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at 4 ◦C and homogenized in RIPA lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl,
1% sodium deoxycholate, 1% NP-40, 0.1% Sodium Dodecyl Sulfate (SDS), 20 mg/mL of
aprotinin) containing protease inhibitors according to the manufacturer’s instructions as
previously described [30]. Proteins (60 µg) were separated on 12.5% SDS-PAGE gels and
transferred to polyvinylidene difluoride (PVDF) membranes. Membranes were probed with
respective human antibodies against caspase-3, cleaved caspase-3, PARP and Akt, ERK, p38
MAP Kinases and its phosphorylated forms according to the manufacturer’s instructions.
After incubation with appropriate secondary antibodies, blots were developed using the
«Immobilon Western» substrate following the manufacturer’s protocol and G:BOX system
(Syngene, Ozyme). Membranes were then reblotted with human anti-β-actin used as a
loading control.

2.6.5. Apoptosis Quantification by DNA Fragmentation Analysis

Human CRC HT-29 and HCT116 cells were treated or not with the determined IC50 val-
ues of compounds (12a, 10a, 10b) for 24 and 48 h and then harvested with trypsin. Histone
release from the nucleus during apoptosis was analyzed using the Cell Death Detection
ELISAPLUS as previously described [6]. Cytosol extracts from 105 cells of each condition
were obtained and DNA fragmentation was measured according to the manufacturer’s
protocol. Results were reported as n-fold compared to control cells.

2.6.6. Statistical Analysis

Data are expressed as the arithmetic means ± standard error of the mean (SEM) of at
least three separate experiments. Statistical significance was evaluated by the two-tailed
unpaired Student’s t-test and expressed as: * p < 0.05; ** p < 0.01 and *** p < 0.001.

2.7. Molecular Modeling
2.7.1. Protein and Compounds Preparation

The protein structures of the five potential targets were extracted from the Protein
Data Bank (PDB): [31] AKT (PDB ID: 6S9W), ERK-1 (PDB ID: 4QTB), ERK-2 (PDB ID:
6SLG), PARP (PDB ID: 4ZZZ) and caspase-3 (PDB ID: 6CKZ). The structure of ERK-2
was superimposed on the structure of ERK-1 to allow comparison of the binding modes
obtained on these two isoforms. All the structures were prepared using the DockPrep tool
from UCSF Chimera [32] and MGL tools [33].

Three dimensional structures of compounds 12a and 10a were generated using iCon [34],
the LigandScout v.4.3. conformer generator (defaults settings of the BEST option were used,
except for the maximum number of conformations that was setted to 2000). Compounds
were protonated at pH 7.4 using the cxcalc plugin of the Chemaxon suite [35] and converted
in .pdbqt format.

2.7.2. Docking Study and Protein-Ligand Interactions Analysis

For all the five target, the docking study was conducted using smina and the vinardo
scoring function [36]. For each target, a search space was defined with a size of
20 Å × 20 Å × 20 Å and the following x, y, z grid center coordinates: −12.729, −15.248,
13.193 for AKT, 36.683, −54.826, 49.926 for ERK-1 and ERK-2, 63.412, 6.484, 9.593 for PARP
and 39.023, 11.547, 71.322 for caspase-3.

The predicted binding mode of each ligand in each binding site was analyzed using
the Protein-Ligand Interaction (PLIP) webserver.

2.7.3. ADME Profile and Drug-Likeness

Predictions of ADME properties and drug-likeness for the most promising compounds
were conducted in SCHRÖDINGER Maestro v11.9 software, using the Molecular Properties
Panel from QikProp v5.9 platform [37]. Structure Minimization was performed using
Force field OPLS3e, [38] the Polak-Ribier method of Conjugate Gradient (PRCG), with a
convergence threshold of 0.05 and a maximum of 2500 iterations.
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3. Results and Discussion
3.1. Chemistry

The general synthetic pathway followed to synthesize two series of functionalized
DAM: olefinic and aryloxy is shown in Scheme 1. Details about the synthetic protocol and
chemical characterization of all intermediates are given in the Supplementary Information
(SI-1).
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Scheme 1. Synthesis of olefinic and aryloxyDAM a: n-BuLi, anhydrous THF, −78 ◦C, r.t., 24 h b:
iPrMgCl, THF, r.t., 2 h, c: O2, NaOH, toluene, reflux, 12 h d: TiCl4, Zn, THF 85%, 2 h, then para-
substituted aromatic aldehyde (24) 10–30 min, e: para-substituted arylboronic acid (25), Cu(OAc)2,
pyridine, DCM, MS (4Å), Ar, r.t., 22–24 h.

First, the synthesis of carbinol 3 was performed from bromopyridine 1 and anisalde-
hyde 2 by a bromine-magnesium exchange using isopropylmagnesium chloride in tetrahy-
drofuran at room temperature [39]. The reaction was also performed by a bromine-lithium
exchange following the procedure of Seto et al. [40]. Nevertheless, this latter protocol led to
only 22% of the corresponding carbinol and to a by-product 4 not previously described in
the literature. The corresponding arylketone 5 was synthesized from carbinol 3 in excellent
yield (98%) via a base-promoted aerobic oxidation using air as a free and clean oxidant [41].

The key step to obtain the desired olefinic diarylmethanes involved a McMurry cross-
coupling reaction between the aryllketone 5 and the corresponding para-substituted aro-
matic aldehyde in presence of TiCl4/Zn in THF. After the in situ formation of the catalytic
entity (TiCl2) by the reduction of TiCl4 using Zn in THF at reflux for 2 h, an equimolar mix-
ture of the arylketone 5 and the benzaldehyde 2 in THF was added dropwise to the reaction
medium. Depending on the aromatic aldehyde used, containing electron-withdrawing,
electron-donating and halogen groups, the reaction time varies between 10 and 30 min
after the addition of reagents. The expected DAM were obtained in two separable E and Z
isomers except for compound 11 (Scheme 1). No selectivity was observed in the formation
of major isomers. The Z and E isomers were easily distinguished by NMR analysis. Thus,
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it is noted that the chemical shift of the olefinic proton in NMR for E isomer is higher than
for Z isomer (7.7 ppm for E isomer versus 7.0 ppm for Z isomer).

As a continuation of the medicinal chemistry program to obtain new DAM, we were
also interested in the synthesis of the bioisosteric analogues (13–17). To achieve this purpose
and after optimization, a set of aryloxyDAM were synthesized from carbinol 3 and the
corresponding para functionalized phenylboronic acids (25). The reaction was performed
in presence of pyridine and copper (II) diacetate in DCM at room temperature following
the procedure of Sui et al. for the O-arylation of lactose [42]. The desired aryloxyDAM
(17–27) were obtained in goods yields ranging between 64–98%.

The introduction of the N-oxide moiety has been highly considered in medicinal
chemistry programs. Indeed, N-oxides provide interesting physicochemical properties
such as improved solubility and the capability to increase affinity with receptor sites [28].
Considering these arguments and based on biological results (Section 2.2), the two Z isomers
of the olefinic DAM 10a and 12a as well as the two aryloxyDAM 17 and 22, were N-oxidized
using m-chloroperbenzoic acid (m-CPBA) in dichloromethane at room temperature.

For the olefinic compounds 10a and 12a, the oxidation was performed using only
1 equivalent of m-CPBA in order to avoid undesirable oxidation of the double bond.
However, for the aryloxyDAM 17 and 22, as these derivatives do not present any other
oxidizable site, 5 equivalents of m-CPBA were used. The olefinic oxidized compounds were
obtained in yields of 45% and 50%, respectively. Furthermore, the corresponding pyridine
N-oxides of aryloxyDAM are obtained in 99% and 88% yields (Scheme 2).
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3.2. Biological Evaluation
3.2.1. Cell Viability, Cell Proliferation Inhibition, and IC50 Determination

First, cell viability was evaluated using MTT assay. Eighteen olefinic DAM and eleven
aryloxyDAM previously synthesized) were evaluated on human CRC cell lines HT-29 and
HCT116 at 50 µM for 48 h. In this screening, olefinic DAM series displayed a higher cell
viability proliferation inhibition than their aryloxyDAM analogues. In addition, for two
series HT-29 cells seems to be more sensitive to the compounds than HCT116 cells. This
observation is more pronounced for olefinic DAM (Figures 3 and 4).
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viability (%) after exposure to the DAM was measured by MTT assay. Compounds 6a-b, 7a-b, 8a, 9a-b,
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percentage ± SEM from at least three independent experiments (n = 3). Cell viability lower than 50%
was considered cytotoxic. ** p < 0.01 and *** p < 0.001 significantly different from the control.
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Figure 4. Screening of aryloxyDAM series on human HT-29 and HCT116 CRC cell lines viability.
Cell viability (%) after exposure to the DAM was measured by MTT assay. Compounds 17–27 were
assayed at 50 µM for 48 h. Each chart represents the mean percentage ± SEM from at least three
independent experiments (n = 3). Cell viability lower than 50% was considered cytotoxic. * p < 0.05;
** p < 0.01 and *** p < 0.001 significantly different from the control.

Eleven olefinic DAM (6a, 7a-b, 8a, 9b, 10a-b, 12a, 13a, 14a, 15a) displayed a cell
viability lower of 50% for HT-29 and while only six compounds of this series (6a, 10a, 12a,
13a, 13b, 14a) displayed cell viability lower of 50% for HCT116 (Figure 3). For the aryloxy
DAM series, only compound 22 for HT-29 and HCT116 cells displayed a cell viability lower
of 50% (Figure 4).
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The determination of a median inhibitory concentration (IC50) at 1 to 50 µM (1, 10,
20, 30, 40 and 50 µM) was performed at 48 h on the two human CRC cell lines used for
compounds with cell viability <50% (Table 1).

Table 1. IC50 values of synthesized compounds against the human CRC cell lines HT-29 and HCT116.
a IC50 values (µM) are indicated as the mean ± SEM of at least three independent experiments.
b HT-29 and HCT116 cells were treated with different concentrations of the compounds for 48 h. Cell
viability was measured by the MTT assay as described in the Experimental Section.

DAM R n◦ Isomer
IC50 ± SEM (µM) a

HT-29 b HCT116 b
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H 17 - >50 >50

Me 18 - >50 >50

OMe 19 - >50 >50

C(CH3)3 20 - >50 >50

Cl 21 - >50 >50

Br 22 - 37.86 ± 1.87 41.51 ± 1.48

F 23 - >50 >50

CF3 24 - >50 >50

NO2 25 - >50 >50

N(CH3)2 26 - >50 >50

Ac 27 - >50 >50

The obtained results highlight that only five compounds displayed an IC50 lower than
30 µM (10a-b, 12a, 13a, 14a) for HT-29 and three compounds (10a, 12a, 13b) displayed an
IC50 below 35 µM for HCT116. These results allowed us to establish the first elements of
the structure-activity relationships (see Section 3.2.2).
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3.2.2. Structure Activity Relationship Considerations

The cell proliferation inhibition induced by the DAM allowed a comprehensive
structure-activity relationship (SAR) analysis. We considered the spatial configuration
of either E or Z, the impact of olefinic carbon or the oxygen atom, the nature of the func-
tionalization and the influence of N-oxide moiety.

In the olefinic DAM series, compounds with Z configuration displayed better antipro-
liferative activity compared to their corresponding E analogues except for compounds
functionalized with bulky alkyl groups (isopropyl 9b vs. 9a and tert-butyl 10b vs. 10a)
on human CRC HT-29 cells. The Z isomers containing Cl, Br, and CF3 groups (14a, 13a
and 12a) as well as the two Z and E isomers bearing the tert-butyl group (10a-b) showed a
better antiproliferative activity on the human CRC HT-29 cell line with IC50 values of 28.48,
24.03, 23.02, 25.70 and 25.15 µM, respectively. The brominated E isomer (13b), the Z isomer
bearing a CF3 moiety (12a) as well as a Z isomer bearing a tert-butyl group (10a) displayed
the best antiproliferative activity on the human CRC HCT116 cell line with IC50 of 26.13,
31.44 and 33.61 µM, respectively (Table 1).

These results suggested that in a general, Z isomers have a more interesting antiprolif-
erative activity than the E isomers. These results are in agreement with those described in
the literature for ferrocenyl derivatives of tamoxifen with IC50 = 11 µM for the Z isomer
and IC50 = 60 µM for the E isomer [43].

Concerning the aryloxy DAM series, most of the compounds were found to be inactive
towards the cell proliferation inhibition at concentrations lower than or equal to 50 µM.
Only the brominated derivative 22 showed a potential antiproliferative activity on the two
human CRC cell lines evaluated. These results suggested that the introduction of an oxygen
atom decreases activity. Thus, this structural modification did not appear to be crucial for
the antiproliferative activity on the human CRC cell lines evaluated (Table 1).

To study the influence of the introduction of an N-oxide pyridine motif, compounds
10a and 12a from the olefinic series and compounds 17 and 22 from the aryloxyDAM series
were N-oxidized. The molecules were selected based on their antiproliferative activity and
an inactive compound 17 was also selected in order to compare. The synthesized N-oxides
were also tested at a concentration between 1 to 50 µM for 48 h.

For two series, the results displayed that pyridine N-oxides induce a loss of antipro-
liferative activity on both human CRC cell lines at a concentration of up to 50 µM. These
results could suggest that non-substituted nitrogen atom in the pyridine ring is required
for the biological activity.

3.2.3. Mechanism of Action Investigation

The compounds 10a, 10b and 12a, that showed the best biological activity were selected
for further investigation of the mechanism of action. To elucidate the potential target of
the antiproliferative activity on the human CRC cell lines, the study of some anti-apoptotic
cell survival signaling pathways (phospho-ERK, phospho-Akt) and apoptotic signaling
pathways (phospho-p38) were performed. In addition, the evaluation of pro-apoptotic
markers (caspase-3 and PARP cleavage, DNA fragmentation) was also carried out.

Evaluation of pro-apoptotic markers of the survival and apoptosis signaling pathways was
performed to complete the study of the mechanism of action.

P-Akt, Akt, P-ERK, ERK, P-p38, p-38 sourced from human CRC HCT116 cells line
were investigated. These cells were treated or not with IC50 values of compounds 12a and
10a for 6 and 12 h. Total lysates were collected and expression of Akt, ERK and p38 MAPK
proteins and their phosphorylated forms were determined by Western blot analysis.

Protein kinase B (Akt), is a protein involved in the cell death and survival process,
playing a pivotal role in several interconnected cell signaling mechanisms ultimately en-
gaged in cell metabolism, growth and division, apoptosis suppression and angiogenesis.
Once phosphorylated, this protein generates consequently the P-Akt (phosphorylated Akt)
which ultimately participates in the process of oxidative stress and plays a prognostic role
in cancer. The inhibition of the Akt as well as the signaling pathway for its phosphory-
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lation prevents cell regeneration and thereby causes cell death. Analyzing the effects of
compounds 12a and 10a on this Akt and the P-Akt, we observed that P-Akt is downreg-
ulated after 6 h of treatment with 12a, and this inhibition effect is enhanced at 12 h. This
inhibition is also observed with 10a but this effect is not time-dependent as the level of
P-Akt expression remains the same between 6 and 12 h (Figure 5).
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Figure 5. Effects of compounds 10a and 12a on MAP Kinases-related protein expression in human
CRC HCT116 cells. β-actin was used as a loading control. Blots shown are representative of three
separate experiments.

Extracellular signal-regulated kinases (ERKs), are member of the mitogen-activated
protein kinase (MAPK) involved in a series of physiological processes, such as the regula-
tion of cell survival and proliferation as well as cell differentiation [44–46]. Colon tumor
epithelial cells are dependent on mitogen activated protein kinase (MAPK) p38 for pro-
liferation and survival [47,48]. We investigated the role of ERK and p38 in the observed
antiproliferative effect. The results showed that ERK appeared unaltered compared to
the control. On the other hand, compounds 12a and 10a drastically decreased ERK phos-
phorylation as early as 6 h of treatment, with the latter remaining at the same level of
expression after 12 h of treatment with compound 10a. In addition, no p38 activation was
observed, suggesting that compounds 12a and 10a do not influence this pro-apoptotic
signaling pathway (Figure 5).

Evaluation of pro-apoptotic markers.
Once the DNA in cancer cells is fragmented, enzymes such as poly(ADP-ribose)

polymerase (PARP), involved in DNA reparation and consequently regeneration of the
cancer cells, are mutated or inactivated by a pro-apoptotic process. Likewise, caspase-3 is
an apoptosis related protein that is involved and activated during apoptosis [49]. In order
to determine whether the inhibition of human CRC HCT116 and HT-29 cells line indeed
affected the DNA reparation, the potential of the compounds 10a, 10b and 12a to inhibit
these apoptosis related proteins PARP and caspase-3 were analyzed [50,51].
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Cells were treated or not for 24 and 48 h, with IC50 values of compounds 10a, 10b and
12a, for human CRC HT-29 cells and compounds 10a and 12a for human CRC HCT116 cells.
Total lysates were collected, and expression of apoptosis-related proteins was determined
by Western blot analysis.

Only compound 12a showed inhibition of both pro-apoptotic proteins. Treatment of
human CRC HT-29 cells with the compound 12a showed a high expression of the cleaved
form of caspase-3 within 48 h of treatment (Figure 6A). Similarly, the treatment of human
CRC HCT116 cells, provides the cleavage of caspase-3 over 24 h of treatment and its
expression is enhanced after 48 h (Figure 6B).
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Figure 6. Effects of compounds 10a, 10b, 12a on apoptosis-related protein expression in human CRC
HT-29 (A) and HCT116 (B) cells. β-actin was used as a loading control. Blots shown are representative
of three separate experiments.

In human HT-29 cells, the cleaved PARP expression is slightly enhanced for the
compound 12a within 24 h and turns overexpressed at 48 h. However, for compounds
10a and 10b native PARP remains constant and cleaved PARP has never been expressed
either at 24 h or 48 h (Figure 6A). In human CRC HCT116 cells, compound 12a induces a
significant increase of cleaved PARP at 24 and 48 h (Figure 6B).

DNA fragmentation capacity was studied on human CRC HT-29 and HCT116 cell lines
in two time points at 24 and 48 h. The compounds 10a, 10b and 12a were evaluated at 25.70,
25.15 and 23.02, µM, respectively (IC50 values) on human CRC HT-29 cells. For human
CRC HCT116 cells, only 12a and 10a were evaluated. DNA fragmentation was quantified
by ELISA. The results expressed as n-fold compared to control and are shown in Figure 7.
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Figure 7. Effects of compounds 10a, 10b, 12a on DNA fragmentation in human CRC HT-29 cells
(A) and effects of compounds 10a and 12a on DNA fragmentation in human CRC HCT116 cells (B).
Data are shown as mean ± SEM (n = 3). ** p < 0.01 and *** p < 0.001.

On human CRC HT-29 cells, compounds 10a and 10b showed a slight DNA fragmen-
tation compared to the control. However, significant fragmentation was observed with
compound 12a at 24 and 48 h, 2.90- and 3.25-fold, respectively compared to the control
(Figure 7A). On human CRC HCT116 cells, no significant DNA fragmentation was ob-
served after 24 h showing only 1.46-fold with compound 12a compared to the control.
However, very high fragmentation of the DNA was observed at 48 h showing 6.97-fold
compared to the control as illustrated in Figure 7B. It can be noticed that compound 12a
has an immediate effect on human CRC HT-29 cells while on HCT116 cells, the effect is
more delayed and is observed only at 48 h.

3.2.4. Normal Cell Line Viability

Cell viability of L929 cell line (murine fibroblasts) was evaluated in presence of syn-
thesized compounds using the MTT colorimetric assay. At the concentrations evaluated
(between 0.78 and 100 µM), all compounds have no effect on the cell viability of these
normal cells. The figures and graphs concerning these results are reported in the supple-
mentary data section (SI-2).
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3.3. in silico Studies
3.3.1. Molecular Modeling

In order to study the potential binding mode of compounds 10a and 12a in the biolog-
ical targets previously identified, a docking approach was used.

For AKT (PDB ID: 6S9W), the predicted binding modes obtained for compounds
10a and 12a were quite identical and also very similar to a part of the co-crystallized
ligand (Figure 8A). Indeed, our compounds were predicted to share similar hydrophobic
interactions with the residues of the AKT binding site (with W80, L264, V270 and Y272) and
π- stacking (W80), than the co-crystallized ligand (Figure 8B). Additionally, to these shared
interactions, our compounds 10a and 12a are predicted to establish a hydrogen bond (HB)
with K268.
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Figure 8. Predicted binding modes of compounds 10a (in salmon) and 12a (in orange) in the AKT
binding site (PDB ID: 6S9W) (A) in comparison with the 6S9W co-crystallized ligand (in blue) and
(B) with detailed information about the interactions established between our compounds and the
AKT binding site obtained using PLIP [52] (plain line blue: HB; green dotted lines: π- stacking; grey
dotted lines: hydrophobic.

We also evaluated the potential binding mode of our compounds 10a and 12a in the
two isoforms of the ERK proteins, namely ERK-1 and ERK-2. The binding site of these two
proteins are highly similar, however the predicted binding mode in these proteins were
dissimilar (Figure 9).
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Figure 9. (A) Difference in the predicted binding mode of compound 12a in the ERK-1 (in orange)
and in the ERK-2 (in brown) binding sites. (B) Difference in the predicted binding mode of compound
10a in the ERK-1 (in pink) and in the ERK-2 (in magenta) binding site.

In the ERK-1 binding site (PDB ID: 4QTB), our compounds are predicted to present
different binding modes (Figure 10A) but with some similarities. Indeed, compounds 10a
and 12a are both predicted to be able to establish hydrophobic interactions with ERK-1
residues, among which Y53, K71 and L173, are also involved in hydrophobic interactions
with the 4QTB co-crystallized ligand. Additionally, compound 12a predicted binding mode
includes a halogen bond with the ERK-1 binding site residue E88, which is engaged in a salt
bridge with the 4QTB co-crystallized ligand (Figure 10B). For compound 10a, additional
interactions are π-stacking with Y53 and π-cation interaction with K71 (Figure 10C).



Biomolecules 2023, 13, 54 25 of 31

Biomolecules 2022, 12, x FOR PEER REVIEW 26 of 32 
 

additional interactions are π-stacking with Y53 and π-cation interaction with K71 (Figure 

10C). 

 

Figure 10. Predicted binding modes of compounds 12a (in orange) and 10a (in salmon) in the ERK-

1 binding site (PDB ID: 4QTB) (A) in comparison with the 4QTB co-crystallized ligand (in cyan) and 

with detailed information about the interactions obtained using PLIP [53] (green dotted lines: π- 

stacking; orange dotted lines: π- cation interactions; grey dotted lines: hydrophobic; green line: hal-

ogen bond) and established between the ERK-1 binding site and (B) compounds 12a or (C) com-

pound 10a. 

In the ERK-2 binding site (PDB ID: 6SLG), our compounds are predicted to interact 

in a similar way, but differently from both the co-crystallized ligand (Figure 11A) and as 

previously mentioned, the predicted ERK-1 binding modes. Our compounds are pre-

dicted to interact with the ERK-2 binding sites (Figure 11B) through numerous hydropho-

bic interactions (with residues A18, Y19, V22, K37, I39 and D150) and hydrogen bonds 

(with residues Y19, K37 and R50). 

 

Figure 11. Predicted binding modes of compounds 10a (in salmon) and 12a (in orange) in the ERK-

2 binding site (PDB ID: 6SLG) (A) in comparison with the 6SLG co-crystallized ligand (in blue) and 

(B) with detailed information about the interactions established between our compounds and the 

ERK-2 binding site obtained using PLIP [53] (grey dotted lines: hydrophobic, blue lines: HB). 

The predicted binding modes of compounds 12a and 10a are very similar in the PARP 

binding site (4DZZ) but they are not superimposed with the co-crystallized ligand NMS-

P118 due to a lack of structural similarity (Figure 12A). However, our compounds shared 

hydrophobic interactions (with residues Y896 and Y907) and π-stacking (with Y907) with 

the reference NMS-P118/PARP complex (Figure 12B). Moreover, our compounds are pre-

dicted to establish additional hydrophobic interactions (with Y889), π-stacking (with 896Y 

and 889Y) and HB (with M890 vs. E863 in the reference NMS-P118/PARP complex). 

A B C  1 

A B 1 

Figure 10. Predicted binding modes of compounds 12a (in orange) and 10a (in salmon) in the
ERK-1 binding site (PDB ID: 4QTB) (A) in comparison with the 4QTB co-crystallized ligand (in
cyan) and with detailed information about the interactions obtained using PLIP [52] (green dotted
lines: π- stacking; orange dotted lines: π- cation interactions; grey dotted lines: hydrophobic; green
line: halogen bond) and established between the ERK-1 binding site and (B) compounds 12a or
(C) compound 10a.

In the ERK-2 binding site (PDB ID: 6SLG), our compounds are predicted to interact
in a similar way, but differently from both the co-crystallized ligand (Figure 11A) and as
previously mentioned, the predicted ERK-1 binding modes. Our compounds are predicted
to interact with the ERK-2 binding sites (Figure 11B) through numerous hydrophobic
interactions (with residues A18, Y19, V22, K37, I39 and D150) and hydrogen bonds (with
residues Y19, K37 and R50).
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Figure 11. Predicted binding modes of compounds 10a (in salmon) and 12a (in orange) in the ERK-2
binding site (PDB ID: 6SLG) (A) in comparison with the 6SLG co-crystallized ligand (in blue) and
(B) with detailed information about the interactions established between our compounds and the
ERK-2 binding site obtained using PLIP [52] (grey dotted lines: hydrophobic, blue lines: HB).

The predicted binding modes of compounds 12a and 10a are very similar in the
PARP binding site (4DZZ) but they are not superimposed with the co-crystallized ligand
NMS-P118 due to a lack of structural similarity (Figure 12A). However, our compounds
shared hydrophobic interactions (with residues Y896 and Y907) and π-stacking (with Y907)
with the reference NMS-P118/PARP complex (Figure 12B). Moreover, our compounds are
predicted to establish additional hydrophobic interactions (with Y889), π-stacking (with
896Y and 889Y) and HB (with M890 vs. E863 in the reference NMS-P118/PARP complex).
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Figure 12. Predicted binding modes of compounds 12a (in orange) and 10a (in salmon) in the PARP
binding site (PDB ID: 4ZZZ) (A) in comparison with the 4ZZZ co-crystallized ligand (in blue) and
(B) with detailed information about the interactions established between our compounds and the
PARP binding site obtained using PLIP [52] (plain line blue: HB; green dotted lines: π- stacking; grey
dotted lines: hydrophobic.

The caspase-3 binding site is formed by different sub-pockets. Our compounds
12a and 10a are less flexible than the co-crystallized ligands of caspase-3 and are thus
predicted to establish interactions with different subpockets than other co-crystallized
ligands. Nevertheless, the pyridine moiety of our compounds is predicted to be located
in a similar hydrophobic pocket than part of a few co-crystallized ligands of caspase-3
(Figure 13A). Compounds 10a and 12a are predicted to establish both π-stacking and
hydrophilic interactions with residues Y204, W206 and F256 of the caspase-3 binding site
(Figure 13B).

Biomolecules 2022, 12, x FOR PEER REVIEW 27 of 32 
 

 

Figure 12. Predicted binding modes of compounds 12a (in orange) and 10a (in salmon) in the PARP 

binding site (PDB ID: 4ZZZ) (A) in comparison with the 4ZZZ co-crystallized ligand (in blue) and 

(B) with detailed information about the interactions established between our compounds and the 

PARP binding site obtained using PLIP [53] (plain line blue: HB; green dotted lines: π- stacking; 

grey dotted lines: hydrophobic. 

The caspase-3 binding site is formed by different sub-pockets. Our compounds 12a 

and 10a are less flexible than the co-crystallized ligands of caspase-3 and are thus pre-

dicted to establish interactions with different subpockets than other co-crystallized lig-

ands. Nevertheless, the pyridine moiety of our compounds is predicted to be located in a 

similar hydrophobic pocket than part of a few co-crystallized ligands of caspase-3 (Figure 

13A). Compounds 10a and 12a are predicted to establish both π-stacking and hydrophilic 

interactions with residues Y204, W206 and F256 of the caspase-3 binding site (Figure 13B). 

 

Figure 13. Predicted binding modes of compounds 10a (in salmon) and 12a (in orange) in the 

caspase-3 binding site (PDB ID: 6CKZ, 1GFW) (A) in comparison with the 6CKZ co-crystallized 

ligand (in blue) and the 1GFW co-crystallized ligand (in cyan) and (B) with detailed information 

about the interactions established between our compounds and the caspase-3 binding site obtained 

using PLIP [53] (green dotted lines: π- stacking; grey dotted lines: hydrophobic). 

The predicted binding modes of our compounds in the AKT, ERK-1 and ERK-2, 

PARP and caspase-3 binding sites complement and support the biological results obtained 

for these targets. According to the analysis of these predicted binding modes (and also the 

docking scores), the most promising biological target for compounds 10a and 12a seems 

to be the AKT protein. 

3.3.2. Prediction of ADME Properties and Druglikeness 

A B  1 

A B  1 

Figure 13. Predicted binding modes of compounds 10a (in salmon) and 12a (in orange) in the caspase-
3 binding site (PDB ID: 6CKZ, 1GFW) (A) in comparison with the 6CKZ co-crystallized ligand (in
blue) and the 1GFW co-crystallized ligand (in cyan) and (B) with detailed information about the
interactions established between our compounds and the caspase-3 binding site obtained using
PLIP [52] (green dotted lines: π- stacking; grey dotted lines: hydrophobic).

The predicted binding modes of our compounds in the AKT, ERK-1 and ERK-2, PARP
and caspase-3 binding sites complement and support the biological results obtained for
these targets. According to the analysis of these predicted binding modes (and also the
docking scores), the most promising biological target for compounds 10a and 12a seems to
be the AKT protein.
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3.3.2. Prediction of ADME Properties and Druglikeness

The prediction of several properties and molecular descriptors allowed us to suggest
the ADME profile and drug-likeness of the three promising drug candidates 10a, 10b, and
12a (Figure 14).

Biomolecules 2022, 12, x FOR PEER REVIEW 28 of 32 
 

The prediction of several properties and molecular descriptors allowed us to suggest 

the ADME profile and drug-likeness of the three promising drug candidates 10a, 10b, and 

12a (Figure 14). 

 

Figure 14. ADME properties and druglikeness of compounds 10a, 10b and 12a calculated with 

QikProp platform [38] MW: molecular weight of the molecule (recommended value: 130–725 g/mol). 

Rot (Number of rotational bonds): bonds having free rotations (recommended value: 0–15). Dipole: 

Computed dipole moment of the molecule (range: 1.0–12.5). SASA: Total solvent accessible surface 

area in square angstroms using a probe with a 1.4 Å  radius (range: 300–1000). donorHB (Hydrogen 

bond donors): number of hydrogen bonds that would be given by the solute to water molecules in 

an aqueous solution (recommended value: 0.0–6.0). accptHB (Hydrogen bond acceptor): number of 

hydron bonds that would be accepted by the solute from the water molecules in an aqueous solution 

(recommended value: 2.0–20.0). PSA: Van der Waals surface area of polar nitrogen and oxygen at-

oms and carbonyl carbon atoms (range: 7–200). Ppolrz: Predicted polarizability in cubic angstroms 

(range: 13–70). PlogPo/w: Predicted octanol/water partition coefficient (recommended value: −2.0 to 

6.5). PlogS: Predicted aqueous solubility, log S. S in mol dm−3 is the concentration of the solute in a 

saturated solution that is in equilibrium with the crystalline solid (recommended value: −6.5 to 0.5). 

PlogBB: Predicted brain/blood partition coefficient for orally delivered drugs (recommended value: 

−3.0 to 1.2). PPMDCK: Predicted permeability of MDCK cells (mimic of the blood–brain barrier) in 

nm/sec (<25 is poor and >500 is great). PlogKp: Predicted skin permeability (recommended value: 

−8.0 to −1). PlogKhsa: Prediction of binding to human serum albumin (recommended value: −1.5 to 

1.5). PPCaco: Predicted permeability of Caco-2 cells (model of the intestinal barrier) in nm/s (<25 is 

low and >500 is great). HOA%: Predicted human oral absorption on 0 to 100% scale. (<25% is poor 

and >80 is high). Metab: Number of likely metabolic reactions (recommended <8). Stars: Property or 

descriptor values that fall outside the 95% range of similar values for known drugs (recommended 

<5). RuleOf3: Number of violations of Jorgensen’s rule of three. The three rules are: PlogS > −5.7, 

PPCaco > 22 nm/s, #Primary Metabolites < 7. Compounds with fewer (and preferably no) violations 

of these rules are more likely to be orally available. RuleOf5: Number of violations of Lipinski’s rule 

of five. The rules are MW < 500, PlogPo/w < 5, donorHB ≤ 5, accptHB ≤ 10. Compounds that satisfy 

these rules are considered drug-like (recommended < 4). 

Figure 14. ADME properties and druglikeness of compounds 10a, 10b and 12a calculated with
QikProp platform [37] MW: molecular weight of the molecule (recommended value: 130–725 g/mol).
Rot (Number of rotational bonds): bonds having free rotations (recommended value: 0–15). Dipole:
Computed dipole moment of the molecule (range: 1.0–12.5). SASA: Total solvent accessible surface
area in square angstroms using a probe with a 1.4 Å radius (range: 300–1000). donorHB (Hydrogen
bond donors): number of hydrogen bonds that would be given by the solute to water molecules in
an aqueous solution (recommended value: 0.0–6.0). accptHB (Hydrogen bond acceptor): number of
hydron bonds that would be accepted by the solute from the water molecules in an aqueous solution
(recommended value: 2.0–20.0). PSA: Van der Waals surface area of polar nitrogen and oxygen
atoms and carbonyl carbon atoms (range: 7–200). Ppolrz: Predicted polarizability in cubic angstroms
(range: 13–70). PlogPo/w: Predicted octanol/water partition coefficient (recommended value:
−2.0 to 6.5). PlogS: Predicted aqueous solubility, log S. S in mol dm−3 is the concentration of
the solute in a saturated solution that is in equilibrium with the crystalline solid (recommended
value: −6.5 to 0.5). PlogBB: Predicted brain/blood partition coefficient for orally delivered drugs
(recommended value: −3.0 to 1.2). PPMDCK: Predicted permeability of MDCK cells (mimic of the
blood–brain barrier) in nm/sec (<25 is poor and >500 is great). PlogKp: Predicted skin permeability
(recommended value: −8.0 to −1). PlogKhsa: Prediction of binding to human serum albumin
(recommended value: −1.5 to 1.5). PPCaco: Predicted permeability of Caco-2 cells (model of the
intestinal barrier) in nm/s (<25 is low and >500 is great). HOA%: Predicted human oral absorption
on 0 to 100% scale. (<25% is poor and >80 is high). Metab: Number of likely metabolic reactions
(recommended <8). Stars: Property or descriptor values that fall outside the 95% range of similar
values for known drugs (recommended <5). RuleOf3: Number of violations of Jorgensen’s rule of
three. The three rules are: PlogS > −5.7, PPCaco > 22 nm/s, #Primary Metabolites < 7. Compounds
with fewer (and preferably no) violations of these rules are more likely to be orally available. RuleOf5:
Number of violations of Lipinski’s rule of five. The rules are MW < 500, PlogPo/w < 5, donorHB ≤ 5,
accptHB ≤ 10. Compounds that satisfy these rules are considered drug-like (recommended < 4).
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Most of the physicochemical properties of the three selected candidates were within
the recommended ranges. However, low aqueous solubility (PlogS) and octanol/water
partition coefficient (PlogPo/w) values outside the recommended limit for the compounds
were predicted. The ADME properties that refer to the capacity to cross the blood–brain barrier
(PlogBB and PPMDCK), the intestinal barrier (PPCaco), or to bind to human serum albumin
PlogKhsa), as well as the predicted human oral absorption (HOA%) were all predicted as
good for the three compounds. Only the skin permeability (PlogKp) was not predicted within
the values considered recommended. Finally, several criteria (i.e., stars, RuleOf3, and RuleOf5)
demonstrated the drug-likeness compliance of the studied molecules.

4. Conclusions

In summary, two original series of DAM compounds, olefinic DAM and aryloxyDAM,
were straightforwardly synthetized using efficient synthetic strategies, characterized, and
biologically evaluated. The effects of the novel 33 DAM derivatives (18 olefinic DAM and
11 aryloxyDAM and 4 N-oxides derivatives) were evaluated in vitro on human CRC cell
lines HT-29 and HT116. The cell-based bioassays revealed that compounds 10a, 10b and
12a of the olefin series decreased the viability of cancer cells. The Z isomers seem to be
more active than their E analogues and the pyridine cycle is important for the activity. The
mechanism of action of compounds 10a, 10b, and 12a was investigated. We can conclude
that compound 12a has a very interesting anti-cancer potential. Thus, the effects of 12a in
inducing caspase-3 cleavage, and its inhibitory effect on PARP activity is correlated with
the increase of DNA fragmentation in cancer cells. Moreover, in silico molecular docking
studies were conducted to predict binding modes of compounds 10a and 12a in the AKT,
ERK-1 and ERK-2, PARP and caspase-3 binding sites confirming the biological results.
According to the analysis of the predicted binding modes and docking scores, the AKT
protein seems to be the most interesting biological target to study the antiproliferative
activity of the DAM. The docking study herein conducted can be used to guide further
optimization of compounds 10a and 12a.

The structural adequacy, absence of cytotoxicity as well as druglikeness and favorable
ADME profile, allow to suggest 10a, 10b, and 12a are a new leads compounds in the study
anticancer drugs. In general, these results could provide valuable insights to design new
potent anticancer drugs based on the DAM scaffold.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13010054/s1, S1: Synthesis and characterization of interme-
diates, S2: Cytotoxicity evaluation.
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