Bulletin of the AAS • Vol. 54, Issue 8

High-resolution, nearinfrared observations of **Rosetta target** 67P/Churyumov-**Gerasimenko with NASA IRTF/iSHELL:** Placing ground based and spacebased measurements in context

Erika Gibb¹ Nathan Roth² Younas Khan³ Mohammad Saki³ Boncho Bonev⁴ Chemeda Ejeta¹ Michael DiSanti⁵ Hideyo Kawakita⁶ Anita Cochran⁷ Neil Dello Russo⁸ Ronald Vervack⁹ Adam McKay¹⁰ Martin Cordiner² Stefanie Milam² Emmanuel Jehin¹¹ Nicolas Biver¹²

¹University of Missouri - St. Louis, ²NASA Goddard Space Flight Center, ³University of Missouri, St. Louis, ⁴American University, ⁵NASA's GSFC, ⁶Kyoto Sangyo University, ⁷University of Texas at Austin, ⁸Johns Hopkins Applied Physics Lab, ⁹Johns Hopkins, APL, ¹⁰NASA GSFC/USRA, ¹¹Liège Universitè, ¹²Obs. de Paris

Published on: Oct 20, 2022

URL: https://baas.aas.org/pub/2022n8i411p01

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

The Rosetta mission, which orbited comet 67P/Churyumov-Gerasimenko from 2014-2016, provided the most detailed study of a comet to date. However, the mission also left us with several unresolved questions. 67P had a favorable apparition for ground-based studies in 2021 during which we acquired several nights of high-resolution, near-infrared spectroscopic observations with the iSHELL spectrograph at the NASA Infrared Telescope Facility (this work), along with complementary NIRSPEC spectra acquired at the W. M. Keck Observatory (Bonev et al. presentation in this meeting). These data represent the best opportunity for studying 67P until its next favorable apparition in 2034. The data include pre-perihelion, near-perihelion, and post-perihelion dates spanning October-December 2021. The goals of our study include comparing ground-based and space-based observations in context), testing potential pre- and post-perihelion asymmetries in outgassing as observed by Rosetta, and resolving discrepancies in the CH₃OH abundance reported by the ROSINA and MIRO instruments. In this presentation, we report rotational temperatures, production rates and abundances (or meaningful upper limits) for H₂O, C₂H₆, HCN, C₂H₂, NH₃, CH₃OH, and H₂CO. We compare our results to the Rosetta measurements of coma composition as well as to other comets studied with near-infrared techniques.

Acknowledgments: This work was supported by NSF Astronomy and Astrophysics Research Grants, as well as by the NASA Earth and Space Science Fellowship, Emerging Worlds, Solar System Workings, and Solar System Observations Programs and the NASA Missouri Space Grant Consortium.