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Abstract 

Mid-infrared spectra (MIRS) can effectively reflect the chemical bonds in milk, which has been 

widely used in dairy herd improvement. However, the relationship between MIRS and animal 

evolution remains largely unclear. This study firstly found great differences in MIRS and the 

components of milk by analyzing MIRS information of 12 different mammal species. A five-level 

discriminant model of evolutionary level based on MIRS was established with a test set kappa 

coefficient >0.97. In addition, a regression model of genetic distance was also established to 

estimate the genetic distance of different animal species with a correlation coefficient of R >0.94. 

These results showed that this method could be used for accurate mammalian evolutionary 

relationship assessment. We further clarified the potential relationship between MIRS and genes, 

such as PPP3CA and SCD that could change MIRS by regulating specific milk components. In 

conclusion, we expand the application of MIRS in animal species identification and evolution 

research and provide new perspectives for the research on the formation mechanism of different 
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animal milk special components. 

 

 

Introduction 

To meet the need for timely and rapid detection of animal milk and dairy products, infrared 

spectrum (IRS) was used in 1967 to measure the fat content (FP, fat percentage), protein content (PP, 

protein percentage), and lactose content (LP, lactose percentage)[1]. Mid-infrared spectra (MIRS) are 

the fundamental frequency absorption band of organic matter and inorganic ions. The position, 

shape, number, and intensity of MIRS characteristic peaks of animal milk can reflect the 

components and content of milk, and thus it is especially suitable for liquid milk analysis[2,3]. MIRS 

detection technology has been widely used in milk component detection and global dairy herd 

improvement (DHI) due to its multiple advantages of low cost, simplicity, rapidity, batch, accuracy, 

and non-destructiveness. 

Different species of mammals (referred to as animals) exhibit great differences in the content of 

milk components. The Perissodactyla horse and ass milk have low FP (1.21%) and high LP (6.37%) 

[4-6]. The milk of Artiodactyla camel has lower FP and PP (6% and 4%) than that of pigs (9.97% and 

5.25%), while the PP of pig colostrum is as high as 17%[7, 8]. FP and PP (5.3-9.3% and 4.5-6.6%) of 

goat and sheep milk are higher than those of cows [9, 10]. FP and PP (8.5% and 4.5%) of buffalo milk 

are higher than those of Holstein cattle with a high fatty acid content[11, 12]. The contents of FP, PP, 

and calcium in yak milk are 1.68-2 times as high as those in Holstein milk[13]. PP (3.32%-3.61%) in 

Jersey and Simmental milk is higher than that in Holstein, whereas FP and PP in Holstein milk are 

not less than 3.4% and 2.9%[14, 15]. 

There are also great differences in MIRS among different animals. The CH2 absorption bands of 

goat milk, sheep milk, and cow milk are different at 2927cm-1, and the MIRS absorption peak rises 

with the increasing FP. The MIRS absorption peaks associated with PP (amide I near 1654cm-1 and 

amide II near 1544cm-1) and LP (1159 cm−1 and 1076 cm−1) of sheep milk are higher than those of 

cow milk and goat milk[ 16]. At present, only the research on the MIRS bands corresponding to the 

main milk components has been carried out, but no reports on more characteristic MIRS bands and 

their application have been available. 
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MIRS wave points are hereditary. The heritability of 1060 wave points of MIRS is 0.003-0.42, 

which is similar to the estimated value of milk-related traits, indicating that milk MIRS is as 

heritable as milk components[17]. The heritability of MIRS wave points can reach the medium level 

and above (0-0.63), and thus it could be speculated that genes affect MIRS wave points by 

regulating milk components[18]. The heritability of MIR wave points in Holstein and Jersey ranges 

from 0 to 0.31, and MIR wave points and genomes are significantly correlated[19]. Our previous 

study has shown that the heritability of 1060 MIRS wave points is 0.04 on average, which is similar 

to the heritability of FP, PP, and LP[20]. 

MIRS-based classification or regression models can be established by MIRS feature selection, 

training, testing, and primary model optimization based on machine learning. The MIRS features 

can be selected using principal component analysis (PCA) and uninformative variable elimination 

(UVE). In addition, random forest (RF), support vector machines (SVM), partial least squares 

regression (PLSR), and artificial neural network (ANN) are employed to establish classification and 

regression models, and the optimal model is selected according to accuracy and kappa coefficient. 

Animal evolutionary relationships are mainly established by such algorithms as the 

neighbor-joining method (NJ) or Bayes method based on the differences in genome nucleic acid 

sequences[21,22]. With the gradual implementation of The Earth BioGenome Project (EBP), the 

genetic maps and evolutionary relationships of a large number of organisms have been published[23]. 

Although the method of constructing phylogenetic trees based on nucleic acid sequence is accurate, 

the cost of whole genome sequencing is high, and thus it is necessary to develop a method that can 

replace genetic material to construct the evolutionary relationship of animals. 

To sum up, there are differences in the contents of milk components and MIRS among different 

animals. MIRS can reflect the characteristics of milk components, and it is hereditary. Based on this, 

it could be speculated that it is feasible to use MIRS to construct animal evolutionary relationships. 

At present, the genome is mainly used to analyze animal evolution, and there have been few 

literature reports on animal evolution research based on MIRS. MIRS technology has multiple 

advantages such as inexpensive, rapidity, batch, accuracy, simplicity, and non-destructiveness. 

Therefore, the main purpose of this study is to (1) construct the evolutionary relationship of animals 

by using MIRS; (2) identify the evolution-related milk components and their characteristic 

wavebands, and analyze their change regularity in the evolution process; (3) reveal the relationship 
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between characteristic wavebands and genes to resolve the functions and genetic information of 

MIR characteristic spectra. The significance of the research lies in (1) breaking through the 

traditional technology dependent on genetic materials to clarify the evolutionary relationship of 

animals, and creating a new technology for establishing an animal evolutionary relationship based 

on MIRS; (2) revealing the formation mechanism of different animal milk-specific or highly 

expressed components, and providing new methods and perspectives for the research on the 

evolution processes and characteristics of different animal species. 

 

Results 

2.1 Great differences in milk components and MIRS among different species of mammals 

2.1.1 Differences in milk components among different animals 

The contents of 23 milk components in 12 animal species (Table 2, except OBY with small sample 

size) were compared. As shown in Table S2, horses and asses exhibited the highest lactose 

percentage (LP, 7.04%, 6.51%), and lowest fat percentage (FP, 0.54%, 0.35%), protein percentage 

(PP, 1.38%, 1.35%), and total solid contents (TS, 9.81%, 8.84%). Buffalo had the highest FP 

(7.66%) and a relatively higher level of other milk components. Goat and camel milk displayed 

moderate milk component contents. Yak showed relatively high contents of FP (6.45%) and TS 

(17.03%) and low content of fatty acids. Taken together, the 12 animal milk components were quite 

different in their own characteristics. 

2.1.2 Differences of MIRS among different animals 

The mean spectrum (Fig. 1a) showed the differences in the mean MIRS and the differences in the 

components of different animal milk samples. The MIRS absorbance of milk fat of buffalo milk and 

yak milk was higher than that of horse milk and ass milk. The MIRS absorbance of milk protein 

absorption area of pig milk and sheep milk was higher than that of horse milk and ass milk. The 

MIRS absorbance of the lactose absorption area of horse milk and ass milk was higher than that of 

pig milk. 

The 30 samples were randomly selected from different animals with Holstein cows used as the 

representative of 4 cattle breeds. To reveal the differences in MIRS among 9 different animal 

species, TSNE (T-distributed stochastic neighbor embedding) dimension reduction and clustering 
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were performed on the MIRS of 9 animal species. As shown in Fig.1b, the clustering effects of all 9 

animals were desirable with MIRS of the same species clustered together. Notably, the milk 

components of the horse, ass, and pig exhibited great differences from those of other species, and 

they clustered together far away from those of other animals with the best clustering effects. Goat 

milk and cow milk were clustered close to each other because of their similar components. Our 

results were similar to the reports by Nicolaou et al. (2010) [16]. The composition of yak milk was 

similar to that of camel milk and buffalo milk, and their MIRS was also clustered in adjacent 

positions. Taken together, the MIRS of the 9 animals were quite different which might be attributed 

to the difference in their milk components. Therefore, MIRS could be used to study the 

evolutionary relationship of different species of animals. 
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Fig. 1 Mean MIRS spectrum and TSNE dimensionality-reduced cluster of 9 animals.(a) Mean 

MIRS spectrum of 9 animals. (b) TSNE dimensionality reduction cluster of MIRS of 9 animals 

 

2.2 MIRS-based model construction of animal evolutionary relationships 

To explore the use of MIRS in the study of animal evolutionary relationships, the genetic distances 

(Table S3) of 12 mammals (Table 2, except OBY) were estimated by using whole-genome DNA 

sequences, and a phylogenetic tree (Fig. S1) was constructed, which provided a reference for 
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establishing animal evolutionary relationships (trees). According to the traditional biological 

classification, 12 kinds of animals were categorized into Perissodactyla (horse, ass) and 

Artiodactyla. Artiodactyla was subdivided into Suidae (pig), Camelidae (camel), and Bovidae, and 

Bovidae was subdivided into Capra (goat), Ovis (sheep), Bubalus (buffalo), and Bos. Bos was 

divided into Bos grunniens (yak) and Bibos which included Simmental, Holstein, Jersey and Swiss 

brown (XJB), and other different species. The genetic distance between animals assigned to 

different evolutionary levels was greater than that between animals assigned to the same level. For 

example, the genetic distance between pigs and buffalo (0.16229) was greater than that between 

Jersey and Holstein (0.0018). Additionally, the phylogenetic trees established in this study were 

similar to those generated by the NCBI Taxonomy Common Tree, indicating the accuracy of the 

phylogenetic trees of 12 animals constructed in this study, therefore, they could provide the 

reference for the MIRS-based study of the evolutionary relationship of animals. 

To establish the evolutionary relationship (tree) of animals based on MIRS, it is necessary to use 

MIRS to establish DMEL to determine the branches of the phylogenetic tree reflecting evolutionary 

level and RMGD to predict the length of the evolutionary tree branches representing genetic 

distance. 

2.2.1 Establishment of DMEL using 8 animal MIRS 

In the early stage of this study, 2 algorithms (RF and SVM) and 12 spectral preprocessing methods 

were compared, and different combinations were formed to establish classification models, 

respectively. The model established by the 12 preprocessing methods in the combination of the RF 

algorithm achieved the desired effect, especially, the D1 and D2 preprocessing methods combined 

with the RF algorithm had a bet classification effect on different animals, and the accuracy and 

kappa coefficient of the cross-validation sets and test sets were as high as 0.99-1, and thus the 

combinations of D1+ RF and D2+RF were selected for modeling. The 973 samples from 8 animals 

were divided into a training set (70%) and a test set (30%) (Table 2), and 5 discrimination models 

for 5 evolutionary levels were established by using MIRS of 8 animal species. According to the 

accuracy of the model, a set of optimal models was screened including (1) D1+RF 

(n_estimators=50, max_depth=8) at order level; (2) D1+RF ( n_estimators=50, max_depth=8) at 

family level; (3) D1+RF (n_estimators=49, max_depth=15) at genus level; (4) D2+RF 

(n_estimators=50,max_depth =8) at subgenus level; (5) D1+RF (n_estimators=49, 
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max_depth=15)at breeds level). The cross-validation accuracy of these five models was 100%, and 

the test accuracy was 97% and above (Figure 2a-2e, Table S4), indicating that milk MIRS could be 

used to establish a very good animal DMEL. 

 

Fig. 2 Confusion matrix predicted by five-level DMEL and correlation between genetic distance (GD) 

predicted based on RMGD and that calculated based on genome-wide. (a) The confusion matrix 

predicted by the order-level model. (b) The confusion matrix predicted by the family-level model. (c) The 

confusion matrix predicted by the genus-level model. (d) Confusion matrix predicted by the subgenus-level 

model. (e)Confusion matrix predicted by the breeds-level model. (f) Correlation between GD of 8 animal 

species predicted based on the MIR model and that calculated based on the whole genome. (g) The 

correlation between GD of animals that did not participate in the modeling in 8 animal species was predicted 

based on the MIR model prediction and calculated based on the whole genome. (h) Correlation between GD 
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of 4 animal species (for external verification) based on genome-wide calculations and that based on MIR 

model prediction 

2.2.2 Establishment of animal RMGD using 8 animal MIRS 

Similar to the establishment of DMEL, the optimal model (D1+SNV+PLSR, n_components=14) 

was screened from the combination of two D1+SNV preprocessing methods and the PLSR 

algorithm according to the accuracy of the cross-validation set. Namely, the genetic distance was 

established by using MIRS of 8 animal species ). The correlation coefficient of the cross-validation 

set of this model was 0.99, and the ratios of GD of the 8 animal species predicted based on the 

MIRS model to that calculated based on the whole genome were all close to 1 (Fig. 2f, Table S5). 

2.3 Better validation and application effects of animal evolutionary relationship model 

established based on MIRS 

To verify the effect of the established animal evolutionary relationship model, our established 5 

DMELs and 1 RMGD were used to establish the evolutionary relationships of the animals that did 

not participate in the modeling in 8 species (horse, camel, goat, yak, buffalo, Holstein, Jersey, 

Simmental) and the animal species that did not participate in the modelings in 5 species (ass, pig, 

sheep, OBY, and XJB). 

2.3.1 Established evolutionary relationships of 8 animals that did not participate in modeling 

are satisfactory 

MIRS and DMEL were used to determine the evolutionary levels of the animals that did not 

participate in the modeling among 8 animal species (horse, camel, buffalo, goat, yak, Holstein, 

Simmental, and Jersey). Horses were classified into Perissodactyla by the first-level discriminate 

model (DM), and camels were classified into Camelidae by the second-level DM. Buffaloes were 

classified into Bubalus by the third-level DM. Goats were classified into Capra by the third-level 

DM, and yak was classified into the Bos grunniens by the fourth-level DM. Holstein, Jersey, and 

Simmental cows were assigned to the corresponding breeds by the fifth-level DM. The population 

confidence level of the animals that did not participate in the modeling among the 8 animal species 

was 1. The evolutionary levels of 705 animals (24 horses, 30 camels, 137 buffaloes, 26 goats, 46 

yaks, 212 Holsteins, 185 Simmentals, and 61 Jerseys) out of 721 animals were discriminated 

correctly with the discrimination accuracy rate of 0.98 (Table S6). Therefore, our established five 

DMELs exhibited excellent discrimination effects at both the population level and individual level 
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of 8 animal species. The evolution levels discriminated based on MIR were the same as those 

determined based on the whole genome. 

Using MIRS and RMGD, we predicted the genetic distance of the 8 animals that did not participate 

in the modeling with the correlation coefficient of the cross-validation set of 0.97. The genetic 

distance predicted based on the MIR model was very close to that calculated based on the whole 

genome (except for yak, Holstein cows, and goats) with the ratio of these two GD values close to 1 

(Fig. 2g, Table S7). 

2.3.2 Evolutionary relationships established for the five animals that did not participate in the 

modeling are desirable 

MIRS and DMEL were used to judge the evolutionary level of the five animals that did not 

participate in the modeling (Table S8). The 5 animals (ass, pig, sheep, OBY, and XJB) that did not 

participate in the modeling were gradually classified into the correct evolutionary levels. The ass 

was classified into Perissodactyla by the first-level DM. When the pig was classified by the 

second-level DM, the confidence level was only 0.66, and thus it could not be classified into 

Camelidae or Bovidae, instead, it was classified into other families. When sheep were classified by 

the third-level DM, the confidence level was only 0.33, and thus it could not be classified into 

Bubalus, Capra, or Bos, instead, it was classified into other genera. In addition, the OBY was 

classified into the Bos grunniens by the fourth-level DM. OBY was a hybrid of bull and female yak, 

and its evolutionary level was correctly identified, indicating that our model could be used to 

discriminate the evolutionary level of the hybrid. When XJB was classified by the fifth-level DM, 

the confidence level was only 0.53, and thus it was classified into other breeds. These results 

showed that our established five DMELs could be used to effectively discriminate the evolutionary 

level of animal species including those animal hybrids. 

Using MIRS and RMGD, we predicted the genetic distance of 4 animals that did not participate in 

the modeling (ass, pig, sheep, and XJB) with the correlation coefficient of the cross-validation sets 

of 0.95. The genetic distance predicted based on the MIR model was highly similar to that 

calculated based on the whole genome (except for XJB, Jersey, and yak) with their ratio close to 1 

(Fig. 2c and Table S9). 

Therefore, the animal evolutionary model (including DMEL and RMGD) established in this study 

exhibited desirable application effect in the establishment of animal evolutionary relationships not 
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only on the animals that did not participate in the modeling among 8 animal species (horse, camel, 

buffalo, goat, yak, Holstein Simmental, and Jersey, or new unknown animals) but also on 4 animal 

species that did not participate in the evolutionary relationship modelings (ass, pig, sheep, and XJB, 

or new unknown animals). 

2.3.3 Formulation of application strategies of animal evolutionary relationship model 

To better apply the MIRS-based animal evolutionary relationship model, the model application 

operation flowchart was designed based on the actual applications of the model and analysis of its 

effect analysis (Fig. 3). The procedures for using the animal evolutionary relationship model were 

as follows: 

The first step was to use the established 5 DMELs to judge the evolutionary level of animals as 

follows. (1) The same method of modeling was used to remove abnormal samples from animal milk 

samples, and 579 MIRS wave points were screened from normal samples; (2) For animal 

population evolutionary level discrimination, firstly the MIRS mean value of a certain animal was 

calculated, and the obtained MIRS mean value was introduced as the representative MIRS of this 

animal species into 5 DMELs for discrimination and classification. After the introduction to the 

first order level of DMEL, if the confidence level of the animal was 0.9 and above, the animal was 

classified as Perissodactyla or Artiodactyla. From the second to the fifth level of DMELs, the same 

level of DMEL confidence level (0.9) was used for discriminating the evolution level of the animals; 

(3) For animal individual evolutionary level discrimination, all the MIRS values of a certain animal 

species were substituted into each of 5 DMELs for discrimination and classification. According to 

the discrimination results of each MIRS in each model, if the discrimination accuracy rate of an 

animal was higher than 0.9, this animal was determined at this evolutionary level. The 

discrimination result at the individual level of this animal could be used as the reference for 

discriminating animal evolution at the population level. 

The second step was to use the RMGD to calculate the GD of a certain animal and other animal 

species as follows. (1) Firstly, abnormal samples were removed, and a total of 278 MIRS wave 

points of normal samples were screened; (2) The MIRS mean values of this animal and other 

animal species were calculated, respectively, and the absolute value of MIRS difference between 

this animal and other animal species was calculated, and 278 MIRS wave points differences 

between this animal and other animals were obtained. (3) The MIRS wave point difference values 
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were introduced into RMGD to predict the GD between this animal and other animals to clarify the 

relatedness and evolution degree of this animal and other animals. 

If only one or a small number of animal milk samples of a species were available due to the 

difficulty of obtaining samples, only the animal evolution level discrimination could be performed 

according to the first step, and the GD prediction in the second step cannot be implemented. In this 

case, firstly, the MIRS was substituted into DMEL. If the discriminant confidence of the sample at 

each level was higher than 0.9, the discrimination results of the evolutionary level of this animal 

were credible. If the confidence level was within 0.8-0.9 at a certain level, the sample had to be 

subjected to secondary determination. If the confidence level remained stable or at a high level, the 

discrimination results were credible. If the discrimination confidence level was lower than 0.8, the 

animal evolution level discrimination results were not credible. 

 

Fig. 3 Application flowchart of animal evolutionary relationship model established based on 

MIRS. 

 

2.4 A close relationship among MIRS characteristic waves of different mammalian species, 

milk components, and their regulatory genes 

2.4.1Close relationship between animal milk MIRS and milk components 

Animal milk MIRS was closely related to milk composition, and the large differences in milk 

components among different animals led to great differences in MIRS (Fig. 1). Perissodactyla and 

Artiodactyla exhibited large differences in most of the MIRS wave points after removing the water 

absorption area. For example, the MIRS of horses and asses, both of which belonged to 
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Perissodactyla, had very little difference in absorbance in most bands, but they were quite different 

from that of other mammals. Camelidae, Suidae, and Bovidae exhibited significantly different 

absorbances in most bands. The lactose characteristic MIRS absorbance of Suidae was significantly 

lower than that of Bovidae and Camelidae, and the absorbance of other MIRS regions of Suidae and 

Camelidae was significantly higher than that of Bovidae. The absorbance of milk fat absorption 

area of Bubalus was significantly higher. The Bubalus and Ovis displayed significantly different 

MIRS. Similarly, Bos grunniens and Bibos exhibited significantly different MIRS, and their 

absorbance in most areas was significantly higher than Bibos. Among the four cattle breeds, the 

MIRS difference between Jersey and XJB was small, and that between Simmental and Holstein was 

also small. 

The differences in milk components and MIRS of different animals gradually decreased with the 

increase in evolutionary level, and the differences in milk components and MIRS between 

Perissodactyla and Artiodactyla (the first level) were significantly higher than those among the four 

cattle breeds (the fifth level) (Fig. 1, Fig. 4, Table S2). The milk components and MIRS of horses 

and asses, both of which were Perissodactyla, differed very little, while they differed greatly from 

other Artiodactyla animals. The MIRS of Camelidae, Suidae, and Bovidae were significantly 

different. Similarly, Bubalus and Ovis exhibited an obvious difference in MIRS. The MIRS of Bos 

grunniens was higher than that of Bibos. 

The MIRS wave points represented by fat, protein, lactose, and others were selected according to 

the correlation between MIRS wave points in 649.03-3998.59cm-1 and milk components (Table 1, 

Fig. 4), which was consistent with the previous report on the MIRS corresponding to fat, protein, 

and lactose[2, 24]. There was also a correlation between the wave points selected according to the 

milk components. For example, the MIRS bands selected by protein and total-CN were the same, 

and the MIRS bands selected by κ-CN and β-CN were similar to those selected by protein. TS and 

fat exhibited the same bands. These results indicated that the milk components were significantly 

correlated with MIRS. 
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Table 1 Characteristic wavebands of different milk components 

Milk components MIRS characteristic band 

Fat 1180.55-1257.71cm-1 1728.38-1770.82cm-1 2839.49-2966.80cm-1 

Lactose 1014.65-1134.25cm-1 1311.72-1373.45cm-1 

Protein & Total-CN 1396.60-1415.89cm-1 1431.32cm-11473.76cm-1 1405.62-1585.64cm-1 

TS 1219.13-1273.14cm-1 

κ-CN 1435.18-1473.76cm-1 1504.62-1581.78cm-1 

β-CN 1219.13-1265.42cm-1 1446.75-1570.21cm-1 

αS1-CN 3695.96-3703.68cm-1 

α-LA 925.92-1006.94cm-1 

Total_AA 1709.09-1720.67cm-1 

Arg 1477.614-1593.354cm-1 

TAU 3533.93cm-1 

PETH 1292.43-1346.44cm-1 

FA 1427.46-1481.47cm-1 3067.11-3155.84cm-1 

 

In addition, animal DMEL was established based on 23 milk components. It turned out that the 

discrimination effect of this model was desirable with the kappa coefficient of cross-validation sets 

and test sets reaching 90% (Table S10), but the discrimination accuracy of the milk 

component-based model was lower than that of the MIRS-based DMEL (kappa coefficient 

of >97%), indicating that MIRS was closely related to milk components and that MIRS contained 

more information on milk components (more than 23 milk components). Therefore, it could be 

concluded that MIRS could more comprehensively represent the characteristics of different animal 

milk components and that it was feasible to use MIRS for discriminating animal evolutionary 

levels. 
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Fig. 4 Variation patterns of milk components and their characteristic wavebands during 

evolution. (a) Change patterns of milk components. (b) Characteristic wavebands corresponding to 

different milk components 
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Fig. 5 Correlation between 50 genes and 4 main milk components. (a)Heat map of correlation 

between 50 genes and four main milk components. (b)Cluster analysis of genes with the highest 

correlation with four main milk components. (c) Correlation between genes with the highest 

correlation with four main milk components and mean MIRS. 

2.4.2 Milk components corresponding to MIRS characteristic bands are closely related to 

genes 

According to gene function and literature reports, 50 genes related to milk quality were screened. 

Correlation analysis was carried out between the differences in the average content of milk 
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components corresponding to MIRS characteristic bands of different animals and the genetic 

distances of 50 genes between different animals (Fig. 5a). The results showed that these genes were 

closely correlated with milk components. For example, genes PPP3CA (R=0.8623) and PPARD 

(R=0.7768) were correlated with lactose; PRKAA1 (R=0.7820) and FABP3 (R=0.7439) were 

correlated with fat; ACBD6 (R=0.9570) and SCD (R=0.9315) were correlated with protein; and 

SCD (R=0.7094) ) and ACBD6 (R=0.6961) were highly correlated with TS. Therefore, the four 

genes (PPP3CA, PRKAA1, ACBD6. and SCD) with the highest correlation with the four milk 

components were selected, and the four genes from different animals were subjected to multiple 

sequence alignment to construct A phylogenetic tree. Figure 5b showed that for most mammals, 

single gene alignment-based phylogenetic trees were similar to whole-genome sequence 

alignment-based ones. However, there were also a few exceptions, for example, the ACBD6, 

PPP3CA, and SCD genes of pigs were clustered separately, but the PRKAA1 gene was clustered 

with the camel. The possible reason for these exceptions might be that pig colostrum and normal 

milk had higher milk protein, higher milk fat, total solid contents, and lower lactose content than 

those of other animals, further indicating that these genes regulated the corresponding milk 

components. 

2.4.3 Animal MIRS is closely related to genes 

To further analyze the relationship between MIRS characteristic waves and genes, the correlation 

analysis was carried out between the differences in the genetic distances of the above-mentioned 

four genes (PPP3CA, PRKAA1, ACBD6, and SCD) among different animals and the differences in 

MIRS characteristic waves of different animals. Figure 5c showed that the MIRS characteristic 

waves with the highest correlation with the gene ACBD6 were 1087.96-1091.81 cm-1, 

1477.61-1516.19cm-1, and 3097.97-3132.70 cm-1; the MIRS characteristic waves with the highest 

correlation with PPP3CA were 1003.08-1060.95 cm-1, 1739.96-1743.82 cm-1, and 2847.20-2966.80 

cm-1; the MIRS characteristic waves with the highest correlation with PRKAA1 were 

1192.12-1222.99 cm-1, 1743.82-1759.25 cm-1 and 2959.09-2974.52 cm-1; those with the highest 

correlation with SCD were 1057.09-1057.09 cm-1, 1512.34-1581.78 cm-1, and 1581.78-3136.55 

cm-1. 

The MIRS characteristic waves with high gene correlation (R>0.6) were compared with MIRS 

characteristic waves representing different milk components (screened based on the correlation 
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between MIR characteristic waves and milk components). The results showed that most of the 

MIRS characteristic waves screened by these two methods were overlapped, such as lactose LL 

absorption areas Lactose I and Lactose II, and milk fat LF absorption areas Fat I, Fat II, and Fat III, 

and others. (Fig. 1 and Fig. 5c). The genes ACBD6 and SCD showed a high correlation even in the 

water absorption area. In addition, more bands were screened based on the correlation between 

genes and MIR characteristic waves, which also included bands that could not be screened out 

according to the correlation between milk components and MIR characteristic waves (such as 

2469.12-2476.84 cm-1). 

Therefore, the MIR characteristic waves of different animals were closely related to genes, and 

these correlations are mediated by specific substances in the milk components. The differences 

between the genes of different animals were reflected in the differences in the genetic distances of 

different genes, and thus the changes in genetic distances tended to result in the change in milk 

composition. The changes in milk composition were finally reflected by the MIR characteristic 

waves, and thus animal milk composition, animal MIRS, and animal genes were closely related 

(Fig. S2). MIRS could indirectly reflect gene differences and their genetic distances. Therefore, it 

was possible to use MIRS to establish the evolutionary relationship of mammals. 
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Discussion 

A new method for discriminating animal evolutionary relationships based on MIRS and its 

application effects 

This study associated mammalian milk MIRS with animal evolution for the first time, and 

established a novel method for analyzing animal evolutionary relationship models (including 5 

DMELs and 1 RMGD) based on MIRS and machine learning. It broke through the traditional 

animal evolution research pathway which mainly relied on animal gene nucleotide sequence 

technology [25-28]. 

This study employed the established MIR-based animal evolutionary relationship model to 

discriminate the evolutionary levels and estimate the genetic distance of 12 different species of 

animals (including those which did not participate in the modeling). The results showed that our 

model had ideal application effects in establishing animal evolutionary relationships at five levels 

of order, family, genus, subgenus, and species, in revealing genetic distance, and in discriminating 

the genetic relationships of animal individuals and populations. In our established evolutionary 

level identification model, MIRS was used to replace the whole genome for discriminating the 

animal evolution levels with an accuracy of up to 98%. Although our established RMGD could not 

completely replace the whole genome with MIRS to calculate the animal genetic distance, the 

genetic relationship of animals could be preliminarily determined according to the predicted genetic 

distance. The ratio of the GD predicted by our model to that obtained by the whole genome was 

close to 1. 

To make better use of our model, we formulated the protocols and strategies for using animal 

evolutionary relationship models. In DMEL, confidence was used as the main basis for confirming 

the evolutionary level of a certain animal. For example, among 5 different species of animals (ass, 

pig, sheep, OBY, and XJB), ass belonged to the existing branch in the model with its confidence 

level reaching 0.9, and the confidence level of OBY also reached 0.9. However, pigs, sheep, and 
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XJB cattle were the branches that did not exist in the model, and all their confidence levels were 0.7, 

and thus the confidence level could be used as a direct criterion in a model to determine whether an 

animal belonged to an existing branch in the model or not. As for the application of RMGD, if the 

genetic distance (GD) predicted by the model matched the determined animal evolution level, the 

results predicted by RMGD were reliable since the genetic distance was to discriminate the 

evolutionary differences between animal species from a quantitative point of view. 

Evidence and feasibility of establishing MIRS-based animal evolutionary relationship model 

MIRS is the fundamental absorption band of organic matter and inorganic ions, and it is most 

suitable for qualitative and quantitative analysis of substances[2]. When the contraction and bending 

vibration frequencies of specific chemical bonds of molecular functional groups in milk are 

consistent with the MIRS frequency, the molecular absorption energy rises from the ground-state 

vibrational energy level to the vibrational energy level with higher energy, and the mid-infrared 

light of this wavelength is absorbed by the substance, thus resulting in a light transmittance value, 

which is finally manifested as a specific mid-infrared absorption peak. This peak can be used to 

analyze the presence or absence and the content of a certain component in milk[24, 29]. Animal milk 

MIRS has been widely used in milk quality testing and DHI[30]. 

The DNA sequence of animal genes may change during evolution[31], which also affects the 

regulation of mammalian milk production and milk components, which is the main reason for the 

differences in milk components and corresponding MIRS among different animal species[32]. 

Animal milk MIRS can comprehensively reflect MIRS fingerprints of milk components, and can 

also be used as phenotypic data for milk quality traits[33]. In this study, five DMELs (order, family, 

genus, subgenus, breeds) established based on 23 milk components from 12 mammal species were 

used to predict the evolutionary level of animals. The results showed that the milk components of 

different animal species were quite different, that the correlation between MIR characteristic waves 

of different animals and genes was mediated by specific milk components, and that the genetic 

differences of different animals were reflected by the difference in genetic distance of different 

genes, that the change of genetic distance of genes led to the change of milk components, and that 

the change of milk components was finally reflected by the MIR characteristic waves. Therefore, 

MIRS could be used to indirectly reflect the difference in genes and their genetic distance, which 

was supported by one previous study using NIRS (Near-Infrared Spectroscopy) for the investigation 
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of the genetic distance of plants [34,35]. These findings preliminarily clarified the scientificity and 

feasibility of using MIRS for studying the evolutionary relationship of animals. 

MIRS-based animal evolutionary relationship model remains to be improved 

Due to the limited number of animal species (12 species) used in this study, the small sample size, 

and the limited distribution of samples, the MIRS feature information learned by the model may be 

limited. In addition, preliminary experiments in our laboratory showed that the established 

evolutionary relationship model had similar application effects in the colostrum and normal milk of 

Holstein cows, and thus the colostrum of pigs (with the milk of other animals used as normal milk) 

was collected as experiment materials to further explore the application effect of the model in 

colostrum. However, due to its high protein content and high dry matter content, pig colostrum 

needed to be diluted at a ratio of 1:1 before measurement. Furthermore, sheep MIRS was measured 

by BENTLEY milk composition analyzer, while MIRS of other animal milk samples was measured 

by FOSS milk composition analyzer. Since the band ranges of MIRS measurement of these two 

instruments were different, their common bands were selected for research. All these factors may 

have a certain impact on the research results[36], and thus it is necessary to collect more samples 

with high representativeness and diversity to further improve the model to increase the prediction 

ability and universality of the model. 

Considering that a large number of mammalian milk samples can be collected non-invasively and 

conveniently, and MIRS detection technology has multiple advantages such as rapidity, high 

efficiency, and low cost, it is necessary to develop new technologies for MIRS-based animal 

evolution and genetic correlation research. 

Conclusion 

In this study, the relationships among the animal milk MIRS characteristic waves, the 

corresponding specific milk components, and regulatory genes were analyzed, which provided 

empirical evidence and a theoretical basis for establishing a mammalian evolutionary relationship 

based on animal milk MIRS. Based on animal milk MIRS, a mammalian evolutionary relationship 

model was further constructed including 5 animal DMELs and 1 animal RMGD. Within the scope 

of the test samples, the accurate evolutionary relationship among different mammals was 

established, and a good model application effect was achieved. However, our established models 

remain to be further improved and optimized by applying them to more samples with high 
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representativeness and diversity to improve the accuracy and universality of the model. Our data 

reveal that animal milk MIRS can replace the genome to evaluate the evolutionary level of 

mammals. Although MIRS can not completely replace the whole genome to calculate the genetic 

distance of animals, it can preliminarily predict the genetic distance of animals, thus estimating the 

genetic relationship. Since MIRS has multiple advantages such as rapidity, high efficiency, low cost, 

accuracy, and non-invasiveness, it is essential to develop a new animal milk MIRS-based 

technology for research on the animal evolutionary relationship. Overall, this study provides new 

approaches and perspectives for mammalian evolution and genetic research. 

 

Materials and Methods 

4.1 Collection of test materials 

Normal milk of twelve animal milk samples and pig colostrum (Table 2) were collected from 15 

provinces and regions in China, and a total of 10,287 milk samples were obtained. Following DHI 

milk collection and measurement technical regulations, 30-50ml milk was collected using a flow 

meter or manually and mixed evenly during the whole milking process. A small amount of 

Bronopol preservative was added to the collected milk sample to dissolve and mix evenly with the 

milk sample. The milk samples were quickly sent to the DHI laboratory at 2-4℃. 

Table2 Sample information used in this study 

Samples 

division 
Mammal 

 

Total 

 

Valid 

 

MIRS 

difference 

Modeling Application 

Discrimination Regression Discrimination Regression 

Modeling 

and 

application 

Horse 60 60 30 36 36 24 24 

Camel 115 115 30 83 83 32 32 

Buffalo 1897 1862 30 151 151 149 149 

Goat 65 65 30 38 38 27 27 

Yak 204 200 30 157 157 48 48 

Holstein 5301 5273 30 211 211 212 212 
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Simmental 2246 2246 0 185 185 185 185 

Jersey 173 173 0 112 112 61 61 

Application 

Ass 86 76 30 0 0 76 76 

Pig 56 55 30 0 0 55 55 

Sheep 50 50 30 0 0 50 50 

OBY* 3 3 0 0 0 3 0 

XJB* 49 49 0 0 0 49 49 

Total sample 10,287 10,227 270 973 973 971 968 

Notes: XJB, Xinjiang Brown; OBY, Offspring of a bull and a female yak. 

 

4.2 Determination of 4 main components and MIRS, data collection, and prediction of 19 milk 

component contents  

The Bentley.NexGen-400 milk composition analyzer (Minnesota, USA) was employed for the 

determination of sheep milk. The FOSS Milkoscan FT + milk composition analyzer (Hilleroed, 

Denmark) was used for the milk component determination of 13 types of animals. Due to the high 

dry matter content of pig colostrum, the determination was performed after 1: 1 dilution with water 

and the measured values of 4 main milk components was multiplied by 2. Four main milk 

components (milk fat, milk protein, milk lactose, and total solid (TS)) and MIRS data were 

collected.  

We predicted 19 milk component contents of different animal milk samples including 5 proteins 

(total casein, κ-CN, β-CN, αS1-CN, and α-LA, in g/L), 4 amino acids (total free amino acids, 

arginine, taurine, and phosphoethanolamine, nmol/L), and 10 fatty acids (total fatty Acids, saturated 

fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, C12:0, C14:0, C16:0, C18:0, 

C18:1, and C18:2, g/100g) using the milk MIRS-based prediction model (R>0.8, Table S1) 

established in our laboratory earlier work. Since the predicted values of three main component 

contents (protein percentage (PP), fat percentage (FP), total solid (TS)) by buffalo milk 

MIRS-based model (R>0.95) established in our laboratory earlier work (unpublished) were not 

significantly different from the measured values by cow milk model-based DHI detection method 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.517067doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

or the reference values measured by chemical method (P>0.05), the cow milk model could be used 

for predicting the contents of other animal milk components to a certain extent. 

We eliminated 60 abnormal samples with missing or incomplete MIRS data, MIRS-based 

Mahalanobis distance≥ 3, four major milk component contents below 0% by DHI detection, 

FP>25%, PP>19%, LP>7.5%, and TS>38%. After elimination, a total of 10,227 valid milk samples 

were screened from 10,287 milk samples collected from 13 animals (Table 1; OBY has 3 milk 

samples). 

4.3 Construction of animal evolutionary tree based on the whole genome 

To effectively reflect the evolutionary relationship of animals, the whole genome sequences were 

used to construct the phylogenetic tree. The reference genomes of 12 animals (except OBY) were 

selected from NCBI, including Pig (GCF_000003025.6_Sscrofa11.1), Horse 

(GCF_002863925.1_EquCab3.0), Ass (GCF_016077325.2_ASM1607732v2), Camel 

(GCF_000767855555555) 0), Goat (GCA_001704415.1_ARS1), Sheep 

(GCA_016772045.1_ARS-UI_Ramb_v2.0), Yak (GCA_005887515.2_BosGru3.0), Buffalo 

(GCA_003121395.1_UOA_WB_1), and 4 cattle breeds Holstein 

(GCA_021347905.1_ARS-LIC_NZ_Holstein-Friesian_1), Jersey 

(GCA_021234555.1_ARS-LIC_NZ_Jersey), Simmental (GCA_018282465.1_ARS_Simm1.0), and 

Xinjiang brown cattle (XJB, since no XJB reference genome was available, brown Swiss cattle with 

relatively closest kinship (GCA_914753205.1_Brown_Swiss_cow) was selected as substitute). The 

genetic distances of 12 animals were estimated by running MASH software with default 

parameters[37], and the obtained genetic distances were submitted to ITOL (Interactive Tree Of Life) 

to construct an evolutionary tree[38]. 

 

4.4 Method for constructing animal evolutionary relationship model using MIRS  

The branch (evolutionary level) and branch length (genetic distance) in the animal phylogenetic tree 

(reflecting evolutionary relationship) were the main indicators of the evolutionary relationship of 

animals. Therefore, MIRS was used to establish the discriminant model of evolutionary level 

(DMEL) and regression model of genetic distance (RMGD), respectively, and then based on these 

two models, animal evolutionary level and genetic distance were obtained to further establish the 

animal evolutionary relationship. A total of 973 samples (Table 1) from 8 animals (Holstein, 
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Simmental, Jersey, yak, goat, buffalo, camel, and horse) were used for modeling. 

DMEL: According to the phylogenetic tree constructed based on the whole genome and the 

determined animal evolution level, A total of 5 DMELs of the 5 evolutionary levels (order, family, 

genus, subgenus, species) (5 in total) were established using MIRS (each DMEL)for one level. The 

specific steps were as follows: (1) MIRS (925.92-1543.2cm-1, 1720.67-2970.66cm-1, and 

3634.24-3998.59cm-1) which could be determined by both FOSS (925.92-5011.54cm-1, 1060 wave 

points) and Bentley (649.03-3998.59cm-1, 899 wave points) milk composition analyzers were 

selected to obtain 579 MIRS wave points for modeling; (2 ) The classification models were 

established based on two machine learning classification algorithms (random forest (RF) and 

support vector machine (SVM)) and the different combinations of 12 MIRS preprocessing methods 

(no preprocessing (None), normalization (MMS), standardization (SS), Zero-centered CT, standard 

normal variable (SNV), moving average (MA), smoothing filter Savitzky Golay SG, and 

multiplicative scatter correction (MSC), first difference method D1, second order difference D2, 

detrend correction (DT), wavelet transform (WAVE) to screen the optimal combination of machine 

learning algorithms and preprocessing methods, respectively; (3) Five animal DMELs for each of 5 

evolutionary levels were established based on 579 MIRS wave points from some (973) samples of 8 

animals and the optimal combination of preprocessing methods and algorithms, respectively; (4) 

The model effects were compared, and they were further compared with the whole-genome analysis 

results to screen one set of optimal animal DMELs (composed of 5 models). 

RMGD: Animal RMGD was established using the mean MIRS of each animal and animal genetic 

distance calculated based on the whole genome. The steps were as follows: (1) MIRS average 

values of 973 samples from 8 animals were calculated, and then the absolute values of the 

differences in MIRS average value between animals were calculated. A total of 28 MIRS difference 

values were obtained; (2) To establish the best regression model, 327 MIRS wave points were 

preliminarily screened from 579 wave points using 5 wave point selection algorithms (GA, UVE, 

SPA, Lars, and Cars) with 269, 1, 8, 40, and 54 screened from these 5 algorithms, respectively; (3) 

Using the genetic distance calculated based on the whole genome as the reference value, the 

modeling was performed on 28 MIRS difference values with 327 MIRS points based on different 

combinations formed from 12 preprocessing methods (None, MMS, SS, CT, SNV, MA, SG, MSC, 

D1, D2, DT, and WAVE) by partial least squares regression (PLSR) algorithm. The optimal 

combination of preprocessing method and PLSR algorithm was screened. Further modeling was 
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performed by the PLSR algorithm, and 278 MIR wave points were screened from 327 MIRS wave 

points by manual selection method to obtain optimal dimensionality reduction parameters; (4) The 

different model effects were compared, and further model effects and the whole genome prediction 

results were compared to screen the optimal RMGD. 

4.5 Analysis of relationship among animal milk characteristic wavebands, milk components, 

and genes 

Method 1: Firstly, we selected the milk components such as lactose, milk fat, and milk protein 

represented by animal MIR characteristic wavebands, and calculated the difference in the average 

content of a certain component among various animals. Secondly, combining literature reports, we 

selected important genes related to this component from the NCBI Orthologs gene database and 

submitted these gene sequences to NCBI's multiple sequence alignment tool COBALT 

(Constraint-based Multiple Alignment Tool) for alignment. Thirdly, we imported the alignment 

results (.aln) into MEGA11for processing with default parameters and calculated animal genetic 

distance based on gene sequences. Finally, correlation analysis was performed between the 

differences in average content of milk components and the gene sequence-based genetic distances 

of animals, and the results were visualized in the form of heat maps.  

Method 2: The difference in the MIR characteristic waves among different animals was directly 

selected, and the correlation between these MIR characteristic wave differences and the whole 

genome-based animal genetic distances was analyzed with the results visualized using ggplot2 in 

the R package.  
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