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Abstract 
To profile putative regulatory variants in the bovine and test their validity, we first 
characterized ~1 million putative regulatory elements by ‘Assay for Transposase Accessible 
Chromatin using Sequencing (ATAC-Seq)’ in 77 distinct types of tissues and cells. The 
elements collectively accounted for 10.3% of the genome, from which we identified 938,374 
common DNA variants. We then analyzed bovine blood and liver RNA-Sequencing data and 
identified 5,336 and 3,613 cis-expression Quantitative Trait Loci (eQTL), respectively. 
Credible sets of DNA variants that drive these cis-eQTL were enriched in tissue-specific as 
well as tissue-shared putative regulatory elements identified by ATAC-Seq. These results pave 
the way to utilizing ATAC-Seq information to improve genomic selection. 
 
Introduction 
Genomic selection has had a tremendous impact on livestock selection in the last ten years (e.g., 
Georges et al., 2019). The accuracy of selection nonetheless remains inferior to what may be 
expected given the heritability of the selected traits. This could be due to a number of factors 
including that all variants are generally given an equivalent weight in computing the additive 
relationship between animals for Restricted Maximum Likelihood analyses or equivalent prior 
probabilities of variant effects in Bayesian approaches. Only a minority of variants are indeed 
causative, with the remainder being (at best) passenger variants in linkage disequilibrium (LD) 
with one or more of the causative variants. It is generally believed that knowing the causative 
variants, or at least those that are more likely to be, may help further improve the accuracy of 
genomic selection. 
Amongst causative variants, coding variants (including missense, nonsense, frameshift and 
splice site variants) are easily recognized. However, these account for only a limited part of the 
genetic variance for complex phenotypes. It is increasingly apparent that most of the genetic 
variation for complex traits is due to regulatory variants that act either by perturbing the 
expression profile of genes located in cis, or by perturbing the gene regulatory network and 
affecting the expression profile of a restricted number of core genes in trans. Active regulatory 
elements can be recognized by virtue of epigenetic features including chromatin accessibility, 
histone marks, transcriptional activity, their participation in loop structures, and transcription 
factor occupancy. However, regulatory variants remain difficult to identify, as the effect of 
polymorphisms on the functionality of proximal and distant cis-acting regulatory elements is 
difficult to predict. 
In an effort to identify putative regulatory variants in the bovine, we herein report (i) the 
generation of a comprehensive catalogue of bovine putative regulatory elements identified by 
Assay for Transposase Accessible Chromatin using Sequencing (ATAC-Seq), (ii) the 



generation of a catalogue of common DNA variants that map to identified proximal and distal 
putative regulatory elements, (iii) the demonstration that variants that drive expression 
Quantitative Trait Loci (eQTL) in liver and blood are more likely to map to regulatory elements 
that are active in the relevant tissue, and hence that variants in these regulatory elements are 
more likely to be causative.  
 
Materials & Methods 
ATAC-Seq. Libraries were constructed following Corces et al. (2017) using 78 tissues (65 
tissue-types) collected from two juvenile males and 11 archived frozen samples (4 tissue 
types). Additionally, fifteen public ATAC-Seq data sets (eight tissue/cell-types) were 
included (Fang et al., 2019, Foissac et al., 2019, Halstead et al., 2020, Johnston et al., 2021). 
The ATAC-Seq reads were mapped to the bovine reference genome (ARS-UCD1.2) using 
Bowtie2 (Langmead and Salzberg, 2012) and peaks called with Macs2 (Zhang et al., 2008). 
Peaks were merged across samples to build a reference chromatin accessibility map 
following Meuleman et al. (2020). The complexity of peak patterning was decomposed using 
non-negative matrix factorization (NMF) (Meuleman et al., 2020). We used transcriptome 
data from Fang et al. (2020) for a correlation analysis. 
eQTL analysis.  224 blood and 176 liver RNA-Seq samples collected from Holstein-Friesian 
cows were analyzed (Wathes et al., 2021, Lee et al., 2021). The reads were mapped to the 
reference genome using HISAT2 (Kim et al., 2015). Transcript abundances were estimated 
using StringTie (Pertea et al., 2015) based on a reference gene annotation (Bos_taurus.ARS-
UCD1.2.105.gtf). The data were normalized within sample using DESeq2 (Anders and Huber, 
2010) and across samples using inverse normal transformation. Genotypes obtained with 770 
K single nucleotide polymorphism (SNP) arrays were further imputed to whole genome using 
Minimac4 (Das et al., 2016) with the Damona population as a reference, yielding 8.4 million 
SNPs and 1.3 million insertion-deletions (INDELs) with minor allele frequency (MAF) > 0.02. 
Cis-eQTL analyses were conducted using residuals corrected for country and hidden PEER 
factors (Stegle et al., 2010) under an additive model using QTLtools (false discovery rate 
(FDR) < 0.001) (Delaneau et al., 2017). Enrichment analyses of eQTL variants in ATAC-Seq 
peaks were conducted following Trynka et al. (2017). 
 
Results 
Generating a catalogue of bovine cis-acting gene regulatory elements. 89 in-house and 15 
publicly available ATAC-Seq data sets (including 77 tissue/cell types) were analyzed and 
identified on average 166,999 ATAC-Seq peaks per sample. To build a chromatin accessibility 
reference map, overlapping peaks were merged across the samples, yielding 977,261 chromatin 
accessible sites. 16 components (representing immune, liver, muscle, central nervous system, 
etc) were identified from the 977,261 chromatin accessibility × 104 sample matrix by NMF 
(Figure 1). Public RNA-Seq data for 58 tissue types were used to search for correlations 
between chromatin accessibility and gene expression levels to connect regulatory elements 
with target genes. Highly significant enrichment of positive correlations for genes ≤ 250 Kb 
from ATAC-Seq peaks were observed, i.e., potential enhancer effects, without any enrichment 
for negative correlations, which would be expected for silencers. 



 

Figure 1:  Identification of 16 components by NMF-decomposition of a 977,261 chromatin 
accessibility × 104 sample matrix and importance of the components in the bovine tissues.  
 
Generating a catalogue of common variants mapping to cis-acting regulatory elements. A 
catalog of DNA variants called from 264 Holstein-Friesian animals containing ~7.6 million 
SNPs and ~1.2 million INDELs with MAF > 0.05 were used. Of these 29,494 (0.34%) mapped 
to proximal and 909,074 (10.4%) to distal putative regulatory elements accounting respectively 
for 0.37% and 9.9% of sequence space, hence providing no strong evidence for detectable 
purifying selection. 
Identifying bovine cis-eQTL in blood and liver. To identify putative causative variants 
affecting gene expression, eQTL analyses using 224 blood and 176 liver RNA-Seq data were 
performed. 5,336 (37% of genes) and 3,613 (23%) significant eQTL in the blood and liver, 
respectively, were obtained. The proportion of blood-eQTL that would also operate in liver 
(𝜋𝜋1) was estimated by following Storey & Tibshirani (2003) at 74%, while the proportion of 
liver-eQTL that would also operate in blood was estimated at 81%. These unexpectedly high 
values could in part be due to blood irrigating the liver. 
eQTL-driving variants are enriched in variants mapping to ATAC-Seq peaks. It was assumed 
that, if variants mapping to ATAC-Seq peaks were indeed enriched in causative variants, they 
should be enriched in credible sets of variants driving cis-eQTL effects (i.e. the lead cis-eQTL 
SNPs and syntenic variants in LD with it). The significance of the overlap between cis-eQTL 
credible sets and ATAC-Seq peaks was evaluated by NMF components (by assigning each 
peak to its dominant NMF component). Credible variant sets (𝑟𝑟2 ≥ 0.8) for 3,336 blood-
specific cis-eQTL were significantly (p < 10-5) enriched in variants overlapping ATAC-Seq 
peaks that were assigned to the immune (1.21-fold enrichment), tissue-shared (1.17-fold) and 
pulmonary (1.15-fold) components. Credible sets for 1,613 liver-specific cis-eQTL were 
enriched in variants mapping to ATAC-Seq peaks assigned to the hepatic (1.42-fold), tissue-
shared (1.21-fold) and pulmonary (1.15-fold) components. Permutation testing conditional on 
proximal vs distal status of the ATAC-Seq peaks indicated that the observed enrichment was 
not due to an enrichment of variants mapping to promotor regions irrespective of ATAC-Seq 
chromatin accessibility. 
 
Discussion 
These results indicate that genetic variants causing cis-eQTL are enriched in variants that map 
to ATAC-Seq peaks marking accessible chromatin regions, and hence likely to active 
regulatory elements, in the corresponding tissue. This suggests that sets of variants overlapping 
ATAC-Seq peaks are enriched for regulatory variants, and hence potentially driving 



organismal phenotypes. Assigning such variants with extra weight in genomic selection may 
therefore improve its accuracy. However, this putative improvement will dependent on (i) the 
proportion of variants mapping to ATAC-Seq peaks that are indeed causative for a trait of 
interest, and (ii) the proportion of causative regulatory variants that map to ATAC-Seq peaks. 
Further analyses are in progress to estimate these features, and to evaluate the impact of the 
identified variants sorted by the NMF component on genomic selection. 
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