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Abstract

This thesis focuses on the efficient numerical solution of frequency-domain wave prop-
agation problems using finite element methods. In the first part of the manuscript,
the development of domain decomposition methods is addressed, with the aim of over-
coming the limitations of state-of-the art direct and iterative solvers. To this end, a
non-overlapping substructured domain decomposition method with high-order absorb-
ing conditions used as transmission conditions (HABC DDM) is first extended to deal
with cross-points, where more than two subdomains meet. The handling of cross-points
is a well-known issue for non-overlapping HABC DDMs. Our methodology proposes an
efficient solution for lattice-type domain partitions, where the domains meet at right
angles. The method is based on the introduction of suitable relations and additional
transmission variables at the cross-points, and its effectiveness is demonstrated on sev-
eral test cases. A similar non-overlapping substructured DDM is then proposed with
Perfectly Matched Layers instead of HABCs used as transmission conditions (PML
DDM). The proposed approach naturally considers cross-points for two-dimensional
checkerboard domain partitions through Lagrange multipliers used for the weak cou-
pling between subproblems defined on rectangular subdomains and the surrounding
PMLs. Two discretizations for the Lagrange multipliers and several stabilization strate-
gies are proposed and compared. The performance of the HABC and PML DDM
is then compared on test cases of increasing complexity, from two-dimensional wave
scattering in homogeneous media to three-dimensional wave propagation in highly het-
erogeneous media. While the theoretical developments are carried out for the scalar
Helmholtz equation for acoustic wave propagation, the extension to elastic wave prob-
lems is also considered, highlighting the potential for further generalizations to other
physical contexts. The second part of the manuscript is devoted to the presentation of
the computational tools developed during the thesis and which were used to produce all
the numerical results: GmshFEM, a new C++ finite element library based on the appli-
cation programming interface of the open-source finite element mesh generator Gmsh;
and GmshDDM, a distributed domain decomposition library based on GmshFEM.
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Résumé

Cette thèse porte sur la résolution numérique efficace de problèmes de propagation
d’ondes dans le domaine fréquentiel avec la méthode des éléments finis. Dans la première
partie du manuscrit, le développement de méthodes de décomposition de domaine est
abordé, dans le but de surmonter les limitations des solveurs directs et itératifs de l’état
de l’art. À cette fin, une méthode de décomposition de domaine sous-structurée sans
recouvrement avec des conditions absorbante d’ordre élevé utilisées comme conditions
de transmission (HABC DDM) est d’abord étendue pour traiter les points de jonction,
où plus de deux sous-domaines se rencontrent. Le traitement des points de jonction est
un problème bien connu pour les HABC DDM sans recouvrement. La méthodologie
proposée mène à une solution efficace pour les partitions en damier, où les domaines
se rencontrent à angle droit. La méthode est basée sur l’introduction de variables de
transmission supplémentaires aux points de jonction, et son efficacité est démontrée sur
plusieurs cas-tests. Une DDM sans recouvrement similaire est ensuite proposée avec des
couches parfaitement adaptées au lieu des HABC (DDM PML). L’approche proposée
prend naturellement en compte les points de jonction des partitions de domaine en
damier par le biais de multiplicateurs de Lagrange couplant les sous-domaines et les
couches PML adjacentes. Deux discrétisations pour les multiplicateurs de Lagrange et
plusieurs stratégies de stabilisation sont proposées et comparées. Les performances des
DDM HABC et PML sont ensuite comparées sur des cas-tests de complexité croissante,
allant de la diffraction d’ondes dans des milieux homogènes bidimensionnelles à la pro-
pagation d’ondes tridimensionnelles dans des milieux hautement hétérogènes. Alors
que les développements théoriques sont effectués pour l’équation scalaire de Helmholtz
pour la simulation d’ondes acoustiques, l’extension aux problèmes d’ondes élastiques
est également considérée, mettant en évidence le potentiel de généralisation des mé-
thodes développées à d’autres contextes physiques. La deuxième partie du manuscrit
est consacrée à la présentation des outils de calcul développés au cours de la thèse et
qui ont été utilisés pour produire tous les résultats numériques : GmshFEM, une nou-
velle bibliothèque d’éléments finis C++ basée sur le générateur de maillage open-source
Gmsh ; et GmshDDM, une bibliothèque de décomposition de domaine distribuée basée
sur GmshFEM.
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Introduction

Large-scale wave propagation problems are common in many application areas, such
as acoustics, seismology, medical imaging, ground characterization, or electromagnetic
compatibility, just to name a few. In many practical applications, the complexity of the
propagation media induces reflections that delay the establishment of a steady-state.
In this context, time-domain modeling can require very long simulations to reach the
steady-state, especially when small time steps are needed. Frequency-domain modeling
is thus advantageous for such applications, and the associated computational cost often
becomes unbearable, especially if the range of working frequencies is quite restricted
and dominated by a few known frequencies of interest. Accurate and fast resolutions
of time-harmonic wave propagation problems remain a very challenging issue in engi-
neering though, especially in the high-frequency regime, when the wavelength is much
smaller than the geometrical dimensions of the domain of study [80, 183] while leads to
computationally large problems. Building accurate and fast solvers for such problems
requires both adequate mathematical methods and efficient numerical implementations
on modern computer architectures.

The present thesis is focused on the numerical solution of the most fundamental
equation encountered in frequency-domain wave propagation problems: the Helmholtz
equation. The Helmholtz equation is a second-order elliptic partial differential equa-
tion encountered in many domains of physics like acoustics, elasticity, fluid dynamics,
or electromagnetics. Indeed, in certain situations, the more complex time-harmonic
Maxwell equations for electromagnetics or the time-harmonic Navier equation for elas-
todynamics can be reduced to scalar or vector Helmholtz equations, which are thus at
the heart of linear time-harmonic wave propagation research.

Helmholtz equation and finite elements

Among the various approaches proposed to solve large-scale time-harmonic wave prob-
lems, the Finite Difference Method (FDM), based on the discretization of the strong
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form of the Helmholtz equation on a regular Cartesian grid, is not well-suited for ge-
ometries with complex boundaries. On the other hand, the Boundary Element Method
(BEM), based on the discretization of a boundary integral equation [156, 49, 126] is
a popular method to solve problems with complex boundaries but is limited to piece-
wise constant material properties. The Finite Element Method (FEM) is then a natural
choice for its ability to handle both complex geometrical configurations and materials
with heterogeneous properties.

The brute-force application of the FEM however faces three significant difficul-
ties [80]. First, to establish a numerical finite element model, the unbounded domain
must be truncated to become a bounded computational domain, using for example a fic-
titious boundary with an Absorbing Boundary Condition (ABC) [192, 24, 75, 12, 121] or
a fictitious boundary layer around the computational domain with a Perfectly Matched
Layer (PML) [29, 186, 35]. The definition of these accurate boundary operators is
crucial to minimize nonphysical wave reflections on the fictitious exterior boundaries.
Second, the pollution effect forces to use high-order interpolations, especially in the
high-frequency regime [114, 115]. In addition to the large number of unknowns needed
to capture the highly oscillatory nature of the fields, high-order discretizations produce
a sizeable finite element matrix with poorer sparsity than with low-order interpola-
tions, which is an issue for the scalability of direct linear solvers. Finally, the indefinite
nature of the Helmholtz operator leads to a poorly-conditioned complex-valued linear
system [149, 11, 77, 80] for which Krylov subspace iterative solvers exhibit slow con-
vergence or can even diverge, while efficiently preconditioning proves very difficult [80].

Domain decomposition methods

To tackle the aforementioned difficulties, Domain Decomposition Methods (DDMs)
provide a promising alternative. These methods rely on a partition of the compu-
tational domain into subdomains and on an iterative procedure linking the result-
ing subproblems, of smaller sizes, amenable to direct solvers (see e.g. [185]). Among
all DDMs, we can highlight Schwarz methods with overlap [48, 124, 87] or without
overlap [27, 58, 85], FETI algorithms [65, 83, 83, 82] and the method of polarized
traces [190, 191], which are eventually combined with preconditioning techniques (see
e.g. [61, 89, 96, 177, 178, 188, 63]).

The underlying mathematical concepts for overlapping DDMs were first proposed
by Schwarz [174] in 1870, and gained a lot of interest for their inherent parallelism in the
1980s, when coupled with the finite element method. In the 1990s, Lions proposed non-
overlapping DDMs for the Laplace equation [131], and Desprès subsequently proved
the convergence of non-overlapping DDMs with Robin-type transmission conditions for
the Helmholtz equation in 1991 [66]. Significant improvements have been made since
these early works, especially regarding transmission conditions, giving birth to the class
of methods referred to as optimized Schwarz methods [85]. For Helmholtz problems, a
recent overview of DDMs can be found in [88, 158, 159].

In this thesis, we focus on Schwarz-type domain decomposition algorithms with-
out overlap, which have shown to be robust and efficient for high-frequency acoustic
scattering problems [45], provided that accurate high-order transmission conditions
are used on the interfaces between subdomains. Treating the cases where more than
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two subdomains meet (leading to so-called “cross-points”) is still an open problem
when high-order transmission conditions are used, tough, and is a very active research
area [157, 67, 84, 54, 55, 158]. This thesis aims at developing a fast and efficient DDM
that tackles this problem, by combining high-order finite elements and high-order trans-
mission conditions with a dedicated, scalable cross-point treatment strategy.

Outline of the thesis and scientific contributions

This manuscript is organized as follows. This introduction is followed in Chapter 1
by an exposition of the state of the art of domain decomposition methods applied to
finite element discretizations of the Helmholtz equation. The first part of the thesis
(Chapters 2, 3 and 4) is then devoted to developing cross-point treatments for high-
order transmission conditions for checkerboard partitions. Chapters 2 and 3 present
two numerical strategies while Chapter 4 compares their performance. The last part
(Chapters 5 and 6) presents the open-source FEM and DDM solvers (GmshFEM and
GmshDDM) developed during the thesis, and that were used to produce all the nu-
merical results.

The thesis has led to the publication of the following articles:

• Modave, Axel, Royer, Anthony, Antoine, Xavier and Geuzaine, Christophe.
A non-overlapping domain decomposition method with high-order transmission
conditions and cross-point treatment for Helmholtz problems. Computer Meth-
ods in Applied Mechanics and Engineering, 368:113162, 2020 [148]. This article
constitutes the basis for Chapter 2.

• Anthony Royer, Eric Béchet, and Christophe Geuzaine. GmshFEM: An Efficient
Finite Element Library Based On Gmsh. In 14th World Congress on Computa-
tional Mechanics (WCCM), ECCOMAS Congress 2020, 2021 [167]. This article
constitutes the basis for Chapter 5.

• Royer, Anthony, Geuzaine, Christophe, Béchet, Eric and Modave, Axel. A non-
overlapping domain decomposition method with perfectly matched layer trans-
mission conditions for the Helmholtz equation. Computer Methods in Applied
Mechanics and Engineering, 395:115006, 2022 [168]. This article constitutes the
basis for Chapter 3.

It has also led to the following presentations at conferences or workshops:

• Optimized Multithreaded Assembly Using Hilbert Curves: In the Context of Do-
main Decomposition Methods Applied to Time-Harmonic Elastodynamic Prob-
lems. 13th World Congress on Computational Mechanics (WCCM) and 2nd
PANACM Congress 2018.

• An optimized non-overlapping Schwarz method with cross-point treatment for
high-frequency acoustic scattering problems. Groupe de Travail des Thésard·e·s
du LJLL (GTT), 2019.
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• A non-overlapping DDM with PML transmission conditions for Helmholtz prob-
lems. Rencontre jeunes chercheuses et jeunes chercheurs (JCJC 2020), 2020
(virtual workshop).

• A non-overlapping DDM with PML transmission conditions for Helmholtz prob-
lems. 26th International Domain Decomposition Conference, DD XXVI, 2020
(virtual conference).

• GmshFEM: An Efficient Finite Element Library Based on Gmsh. 14th World
Congress on Computational Mechanics (WCCM), ECCOMAS Congress 2020,
2021 (virtual conference).

• GetDP Workshop: GmshFEM - future direction, High Performance Computing.
GetDP Workshop, CERN, 2021 (virtual workshop).

• Comparison of optimized high-order domain decomposition methods with cross-
point treatment for Helmholtz problems. ICOSAHOM 2020, 2021 (virtual con-
ference).

• GmshFEM & GmshDDM: Efficient finite element and domain decomposition li-
braries based on Gmsh, Rencontre jeunes chercheuses et jeunes chercheurs (JCJC
2021), 2021.

Below is a list of the main original contributions of the thesis:

• The development, implementation and study of several variants of PML-based
non-overlapping DDMs with cross-points, as published in [168] and presented in
Chapter 3.

• The implementation and study of the HABC-based DDM proposed in [148] with
high-order finite elements, in a unified setting including both HABC- and PML-
based DDMs, allowing the comparison of the methods and the generation of the
numerical results presented in Chapter 2.

• The performance comparison of HABC- and PML-based DDMs on both homo-
geneous and heterogeneous acoustic problems with checkerboard partitions, as
well as the extension of PML-based DDMs to elastodynamics, as presented in
Chapter 4.

• The development of the open source GmshFEM and GmshDDM libraries:

– GmshFEM (https://gitlab.onelab.info/gmsh/fem.git) is a C++ finite
element library (about 40k lines of code) based on the application program-
ming interface of Gmsh, presented in [167] and in Chapter 5;

– GmshDDM (https://gitlab.onelab.info/gmsh/ddm.git) is a small C++
domain decomposition library (about 2k lines of code) based on GmshFEM,
presented in Chapter 6.
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The numerical results presented in the manuscript were obtained with GmshFEM
version 1.0.0 (https://gitlab.onelab.info/gmsh/fem/-/releases/gmshfem_
1_0_0) and GmshDDM version 1.0.0 (https://gitlab.onelab.info/gmsh/
ddm/-/releases/gmshddm_1_0_0), linked to Gmsh version 4.11.1 (https://
gitlab.onelab.info/gmsh/gmsh/-/releases/gmsh_4_11_1). Besides this the-
sis, the GmshFEM and GmshDDM libraries have been extensively used in three
other PhD theses [16, 134, 1], as well as in several journal articles [168, 135, 2,
138, 4, 17, 3, 53].
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State of the Art1

This chapter is dedicated to presenting the state of the art for solving the

Helmholtz equation with finite element methods. The first section presents

the Helmholtz problem considered in this thesis. Then in the second section,

a numerical finite element model for the Helmholtz problem is introduced.

The following three sections present the three main difficulties linked to finite

element modeling of Helmholtz problems, as mentioned in the Introduction,

namely the definition of accurate boundary conditions, the pollution effect, and

the indefinite nature of the Helmholtz operator. Finally, the last section is

devoted to an overview of non-overlapping Domain Decomposition Methods

(DDMs) for Helmholtz problems.

1 The Helmholtz problem

To introduce the Helmholtz problem of interest, let us consider an arbitrary set of
open subsets ⌦scat of Rd where d is the dimension, with �scat denoting the union of
their boundary, such that the complementary of the union of their closed subset, ⌦+

is connected (see Figure 1.1a). The boundary �scat is divided into two subsets �D

scat

and �N

scat
such that �scat = �̄D

scat
[ �̄N

scat
. A Dirichlet boundary condition is imposed on

�D

scat
, while a Neumann boundary condition is imposed on �N

scat
. The open domain ⌦+

is made of non-dissipative media assumed to be at rest and characterized by a phase
velocity c, assumed to be strictly positive. Under these assumptions, the behavior
of a time-harmonic complex-valued scalar wave field u is described by the following
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⌦scat ⌦+ ⌦tot ⌦ext

�scat �ext

(a) The unbounded domain. (b) The truncated domain

with absorbing boundary.

(c) The truncated domain

with absorbing boundary

layer.

Figure 1.1: Open and truncated computational domains.

Helmholtz problem [113, 133, 166]:

8
>>>>><

>>>>>:

� u+ k
2
u = �f in ⌦+

,

u = uD on �D

scat
,

@nu = uN on �N

scat
,

lim
kxk!1

kxk
d�1
2
�
@kxk � ◆ k

�
u = 0,

(1.1)

where k = !/c is the strictly positive wavenumber with ! the angular frequency, f is
a source term and n is the outgoing normal to ⌦scat, and where @n denotes the normal
derivative.

A Sommerfeld radiation condition [192] is enforced by the fourth equation of (1.1)
so that the system has a unique solution by selecting only the outgoing waves (radi-
ating solution); it enforces a null incoming energy flux at infinity. Indeed, solutions
of (1.1) can be sorted into three types of waves: an ingoing wave, an outgoing wave,
and standing waves that are built by the superposition of the two previous ones. Fur-
ther, the linearity of the Helmholtz equation implies that every linear combination of
these waves is also a solution. Therefore, selecting only the purely outgoing solution
makes (1.1) well-posed.

This Helmholtz equation models the steady-state solutions ũ(x, t) = Re[u(x)e� ◆ !t],
with t the time, of the following time-domain acoustic wave equation [113]:

� ũ(x, t)�
1

c2

@
2
ũ(x, t)

@t2
= 0. (1.2)
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2 The truncated Helmholtz problem

To establish a numerical finite element model, the unbounded domain ⌦+ must be
truncated to become a bounded computational domain ⌦tot, assumed to be Lipschitz
continuous. The truncation can be performed by introducing a fictitious boundary �ext

with an Absorbing Boundary Condition (ABC) [192, 24, 75, 12, 121] (see Figure 1.1b)
or a fictitious boundary layer ⌦ext around the computational domain where �ext =
⌦̄tot\ ⌦̄ext with a Perfectly Matched Layer (PML) [29, 186, 35] (see Figure 1.1c). Both
methods are based on an approximation of the exact Dirichlet-to-Neumann map (DtN),
⇤, related to the complementary of ⌦tot and defined by [122, 95]:

⇤ : H
1/2(�ext)! H

�1/2(�ext),

u|�ext
7! (@nu)|�ext

= ⇤(u|�ext
),

(1.3)

where H1/2(·) and H
�1/2(·) are the Sobolev spaces of the Dirichlet and Neumann traces,

respectively [78, 37]. In a nutshell, this operator links the Dirichlet trace on the ficti-
tious boundary �ext to the Neumann trace that would correspond if the domain was
not truncated. System (1.1) is reduced to the bounded approximation system

8
>>><

>>>:

� u+ k
2
u = �f in ⌦tot,

u = uD on �D

scat
,

@nu = uN on �N

scat
,

@nu� Bu = 0 on �ext,

(1.4)

where B is a boundary operator that approximates of the DtN operator. The definition
of B depends on the ABC or PML enforced on the fictitious boundary.

In the following chapters of this thesis, three acoustic problems will be investigated:
the scattering of an incident plane wave by a soft object or by a hard object and the
propagation of point source excitations. The scattering problems model the scattered
field resulting from the scattering of an incident plane wave uinc = e

◆k·x with k = kkk
by the objects ⌦scat. The total acoustic field is defined by the sum of the computed
scattered field and the incident plane wave. These scattered fields are modeled by
System (1.4) without any source term, i.e. f = 0. For the soft scattering problem,
a Dirichlet condition uD = �uinc is enforced on the whole object boundary, i.e. �N

scat

is empty, while for the hard scattering problem, a Neumann condition uN = �@nuinc

is enforced on the whole object boundary, i.e. �D

scat
is empty. The propagation of

point source excitations is also modeled by Equation (1.4) by assuming source terms
defined by the sum of Dirac impulses on every source s located at xs inside ⌦tot, i.e.
f(x) =

P
s
�(xs � x).

3 Accurate boundary conditions

Historically, low-order Absorbing Boundary Conditions (ABCs) [192, 24] are amongst
the first methods that were used to deal with unbounded problems. They are the least
expensive in terms of computing cost and memory usage but are also the least accu-
rate, especially in high-frequency regimes. On the opposite, non-local non-reflecting

9
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boundary conditions [94, 43] are the most accurate but with significant additional
computational cost. In between, local High-order Absorbing Boundary Conditions
(HABCs) [75, 12, 121], where the accuracy and the cost can be controlled by choosing
the order of the HABC, provide a good compromise.

The second family, the layer techniques, are another common way to truncate an
unbounded problem. Where ABCs truncate the domain by enforcing an equation at
the boundary to approximate the DtN, layer techniques add a layer around the compu-
tational domain where fields are treated to be dissipated over the thickness of the layer.
This approach can be compared with techniques employed to insulate a room acousti-
cally or construct an anechoic chamber where dissipating materials are applied on the
walls. Perfectly matched layers (PMLs) were proposed in 1994 by Bérenger [29, 186, 35].
One great advantage of this family of layers is that they are perfectly matched, which
means that every outgoing mode is perfectly transmitted from the computational do-
main to the layer. In other words, there is no reflection on the interface between the
computational domain and the layer. Initially introduced for 2D temporal electromag-
netic problems [29], they were quickly extended to 3D electromagnetic problems [31],
then to acoustic problems [112] as well, elastodynamics [107]. The design of PMLs for
time-harmonic problems is presented in numerous references [35, 33, 36, 22, 20, 106, 50].

3.1 The exact half-space Dirichlet-to-Neumann map
Non-reflective high-order boundary conditions are obtained by approximating the exact
DtN as boundary operator. However, an analytic expression of the DtN can only be
found in simple configurations. For instance let us consider the Problem (1.1) with an
interior region ⌦int := {(x, y, z) 2 R3

, x < 0} and a free-of-source and homogeneous
exterior region ⌦ext := {(x, y, z) 2 R3

, x > 0} such that the unbounded domain ⌦+

is made by the union of the interior and exterior region. The interface between the
interior of exterior region defines the fictitious boundary �ext := {(x, y, z) 2 R3

, x =
0}. To seek the exact DtN related to the exterior domain, let us solve the exterior
Helmholtz problem with a Dirichlet source imposed on the fictitious boundary u|�ext

=
uD(y, z). In order to deal with the unbounded nature of ⌦ext, let us define the following
multidimensional Fourier transform in the tangential direction t : (y, z)

Fyz[f ] =

Z

R2

f(x, y, z)e� ◆ t·⇠ dt, (1.5)

and the inverse Fourier transform by

F
�1
yz

[f̂ ] =
1

2⇡

Z

R2

f̂(x, ⇠y, ⇠z)e
◆ t·⇠ d⇠, (1.6)

where ⇠ : (⇠y, ⇠z) is the dual variable of t in the Fourier space. Let us apply this Fourier
transform Fyz to the Helmholtz equation to obtain

�
@
2
x
+ k

2
� ⇠

2
y
� ⇠

2
z

�
Fyz[u](x, ⇠y, ⇠z) = 0, for x > 0, ⇠y 2 R and ⇠z 2 R. (1.7)

The homogeneous solution of this ordinary differential equation for Fyz[u](x, ⇠y, ⇠z) is

Fyz[u](x, ⇠y, ⇠z) = Ae
x�+(⇠y ,⇠z) +Be

x��(⇠y ,⇠z), (1.8)

Chapter 1. State of the Art 10



Accurate boundary conditions

where �+ and �� are defined as

�+,� = ± ◆

q
k2 � ⇠2

y
� ⇠2

z
= ± ◆ k

2

r
1�

⇠2
y
+ ⇠2

z

k2
, (1.9)

and A and B are constants to be determinated through boundary conditions. Namely,
A is fixed to Fyz[uD](⇠y, ⇠z) thanks the Dirichlet condition on �ext and B is fixed to zero
because only outgoing traveling waves are considered. In the context of this half-space
problem, the Neumann trace is retrieved by the derivative of (1.8) given by

@xFyz[u](x, ⇠y, ⇠z) = �+(⇠y, ⇠z)Fyz[u](x, ⇠y, ⇠z). (1.10)

Applying the inverse Fourier transform F
�1
yz

leads to

@xu(x, u, z) = F
�1
yz

[�+(⇠y, ⇠z)Fyz[u](x, ⇠y, ⇠z)] (x, y, z). (1.11)

The exact DtN ⇤half-space is obtained by taking the restriction on �ext [94, 181]:

@xu|�ext
= Op

 
◆ k

2

r
1�

⇠2
y
+ ⇠2

z

k2

!
u|�ext

= ◆ k
2

r
1 +

��ext

k2
u|�ext

:= ⇤half-space
u|�ext

,

(1.12)
where ��ext

= @
2
y
+ @

2
z

is the Laplace-Beltrami operator over �ext.
Note that, if one considers a smooth surface �ext instead of the half-space domain

studied above, the half-space DtN is not exact, and two methods can be used to derive
an approximated boundary operator B of the DtN. A formal one approximates the
exact DtN (1.12) on the tangent plane, and a rigorous one applies the technique of
microlocal diagonalization for hyperbolic systems. However, these approaches are not
accurate for gazing modes (k ⇡ k⇠k), namely modes in the transition zone from the
propagating modes (k > k⇠k) to the evanescent one (k < k⇠k), due to the singularity
of the symbol at k = k⇠k. To model the behavior in the transition zone, one can
introduce a regularization by adding a small damping parameter ✏ to the wavenumber
k✏ = k + ◆ ✏, leading to the regularized non-local operator [12, 45]

⇤half-space

✏
:= ◆ k✏

s

1 +
��ext

k2
✏

. (1.13)

3.2 High-order absorbing boundary conditions
The exact half-space DtN 1.12 is a non-local operator. In order to construct a local ap-
proximation, one can consider zeroth or first order Taylor approximation of the function
f(X) =

p
1 +X = 1+ 1

2X+O(X2), which lead to following low-order ABCs [192, 24]:

Bo0 = ◆ k (1.14)

Bo2 = �
1

2 ◆ k
��ext

+ ◆ k. (1.15)

Many previous works have been devoted to extensions of these low-order ABCs, first to
the case of a circular boundary [75, 25, 145, 150], and eventually for more general sur-
faces [125, 119, 10] by considering additional terms that depend on the local curvature
of the boundary.
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Instead of the Taylor approximation, a Padé approximation was proposed by En-
gquist and Majda [75] to obtain a local representation of the function f(X) = (1+X)1/2.
The classical (2NHABC +1)th-order Padé approximation of the function f is written as
the rational series [19, 98]

f
Padé

2NHABC+1(X) = 1 +
2

M

NHABCX

i=1

aiX

1 + biX
, (1.16)

or alternatively,

f
Padé

2NHABC+1(X) = 1 +
2

M

NHABCX

i=1

ci
ci + 1

ci + 1 +X
, (1.17)

with M = 2NHABC + 1, ai = sin2(i⇡/M), bi = cos2(i⇡/M) and ci = tan2(i⇡/M).
Unfortunately, a direct implementation of the Padé approximation leads to a boundary
operator that is inaccurate for evanescence modes [143]. Milinazzo et al. [143] proposed
to rotate the branch cut of the square root by some angle � to obtain the high-order
absorbing boundary operator:

B
Padé

HABC
= ◆ ke

◆ �/2

"
1 +

2

M

NHABCX

i=1

ci
e
◆ �(ci + 1)

e◆ �(ci + 1) +��ext
/k2

#
. (1.18)

Generally speaking, the approximation of the square root function f(X) as a sum
of prime fractions (1.17) can also be rewritten as a rational fraction of X defined by
the following recursive relation [19]:

f
Padé

m
(X) = 1 +

X

1 + f
Padé

m�1 (X)
for m = 2 . . .M,

f
Padé

1 (X) = 1.

(1.19)

As a result, the HABC operator (1.18) written as a sum of prime fraction is a particular
case of more general boundary conditions, called Complete Radiation Boundary Con-
ditions (CRBCs), that approximate the square root function f(X) with the following
rational fraction of X:

fm(X) = ↵m +
1� ↵2

m
+X

↵m + fm�1(X)
for m = 2 . . .M,

f1(X) = ↵1,

(1.20)

where {↵m}m=1...M are complex coefficients. The equivalence between the CRBC rep-
resentation (1.20) and the Padé representation as rational fraction (1.19) is obtained
when ↵m = 1 for all m. Compared to the Padé approximation, CRBCs can deal with
both propagative and evanescent modes but require M parameter optimizations, i.e.
all ↵m, while the Padé approximation has only the branch cut rotation parameter, i.e.
the angle �, to tune. Such approximations of the square root function with continued
fractions are called continuous fraction ABCs (CFABCs).

In practice, the high-order boundary operator (1.18) is written as a system of wave-
like equations that define NHABC auxiliary fields 'i with i = 1 . . . NHABC defined on the
boundary �ext [56, 57, 130]:

��ext
'i + k

2
⇥
(e◆ �ci + 1)'i + e

◆ �(ci + 1)u
⇤
= 0, on �ext, (1.21)
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that are coupled with the Dirichlet trace of u on the boundary to define

B
Padé

HABC
u = ◆ ke

◆ �/2

"
u+

2

M

NHABCX

i=1

ci(u+ 'i)

#
on �ext. (1.22)

While Equation (1.22) is nothing more than a more sophisticated boundary condition
than (1.14) and (1.15), Equation (1.22) is a wave-like equation applied to the boundary.
For this reason, when HABC are applied to a polyhedron domain with corners, special
boundary conditions must be used to act as a boundary condition for these auxiliary
fields [147].

In Chapter 2, HABCs will be used as transmission condition for acoustic DDM,
and a strategy to deal with cross-points in the presence of HABCs will be presented.
Furthermore, numerical applications that implement HABCs with the proposed cross-
point treatment will be studied in Chapter 4.

3.3 Perfectly matched layers

3.3.1 The Bérenger PML model

To introduce the Bérenger PML model, let us start with a homogeneous time-domain
scalar wave equation defined on a square domain ⌦tot : {x : x 2 ]�1, 1[3}

1

c2

@
2
p̃

@t2
�� p̃ = 0, in ⌦tot, (1.23)

where p̃ is a real unknown field and c is the phase velocity. This equation can be
decomposed into the following system of first-order equations by defining a vector field
ṽ 8

>><

>>:

@p̃

@t
+ ⇢0c

2 div ṽ = 0 in ⌦tot,

@ṽ

@t
+

1

⇢0
grad p̃ = 0 in ⌦tot,

(1.24)

where ⇢0 is a positive constant. In the case of acoustic waves, p̃ is the acoustic pressure,
i.e. the local variation of the ambient pressure, ṽ is the local particle velocity, and ⇢0

is the ambient density, i.e. the density at rest when there is no wave perturbing it.
Knowing that p̃ = c

2
⇢ with ⇢ the local variation of the ambient density, the first equa-

tion of (1.24) is a linearization of the continuity condition while the second equation
is the linearized Euler equation. Assuming a time dependency of e� ◆ !t for fields p̃ and
ṽ, one can deduce from (1.24) the following time-harmonic wave system:

8
<

:

� ◆ kp+ ⇢0c div v = 0 in ⌦L,

� ◆ kv +
1

⇢0c
grad p = 0 in ⌦L,

(1.25)

where p and v are defined through the relation p̃(x, t) = Re[p(x)e� ◆ !t] and ṽ(x, t) =
Re[v(x)e� ◆ !t].

The idea behind the Bérenger PML is to extend the domain ⌦tot by a dissipating
a layer of thickness �, building the domain ⌦all : x 2 [�1 � �, 1 + �]3} such that the
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ex

ey

(0,�y)

(0, 0)

•

(�x,�y)

• (�x, 0)

(a) A two-dimensional PML configura-

tion in a Cartesian coordinate system.

ex

ey

ez

(0,�y, 0)

(0,�y,�z)

(0, 0,�z)

•(0, 0, 0)

• (�x,�y, 0)

• (�x,�y,�z)

• (�x, 0, 0)

• (�x, 0,�z)

(b) A three-dimensional PML configuration in a

Cartesian coordinate system.

Figure 1.2: Absorption functions � in a Cartesian coordinate system. The blue region
is the computational domain, while the orange regions are the PML domain.

PML region ⌦PML is defined by ⌦̄all = ⌦̄tot [ ⌦̄PML. Then (1.25) is written over ⌦all,
split over the three spatial coordinates and a damping term is added leading to

8
>>>>>><

>>>>>>:

� ◆ kpx + ⇢0c@xvx = ��xpx, � ◆ kvx +
1

⇢0c
@xp = ��xvx,

� ◆ kpy + ⇢0c@yvy = ��ypy, � ◆ kvy +
1

⇢0c
@yp = ��yvy,

� ◆ kpz + ⇢0c@zvz = ��zpz, � ◆ kvz +
1

⇢0c
@zp = ��zvz,

(1.26)

where v : (vx, vy, vz), px, py and pz are formal variables such that p = px + py + pz

and �x(x), �y(y) and �z(z) are the absorption functions. These absorption functions
are non-zero only in the PML regions that are extruded in the corresponding direction
(see Figure 1.2).

Taking the spatial derivative of the Euler equations in (1.26) and combining with
the continuity equations leads to [29]

8
>>>>>>><

>>>>>>>:

(�x � ◆ k) px � @x


1

�x � ◆ k
@xp

�
= 0 in ⌦all,

(�y � ◆ k) py � @y


1

�y � ◆ k
@yp

�
= 0 in ⌦all,

(�z � ◆ k) pz � @z


1

�z � ◆ k
@zp

�
= 0 in ⌦all.

(1.27)

Finally, using p = px + py + pz, Equations of (1.27) can be combined into [29, 30, 31]

div (Dgrad p) +Dk
2
p = 0, (1.28)

where D(x) is the dissipation tensor and D(x) is the dissipation scalar defined as

D(x) = diag

✓
�y(y)�z(z)

�x(x)
,
�x(x)�z(z)

�y(y)
,
�x(x)�y(y)

�z(z)

◆
, (1.29)

D(x) = �x(x)�y(y)�z(z). (1.30)

The stretching functions �x(x), �y(y) and �z(z) are defined as

�x(x) = 1 +
◆ �x(x)

k
, �y(y) = 1 +

◆ �y(y)

k
, and �z(z) = 1 +

◆ �z(z)

k
. (1.31)

Chapter 1. State of the Art 14



Accurate boundary conditions

3.3.2 The reflection coefficient and some well-known absorbing function

families

To study some properties of the PML and motivate the choice of absorption function,
let us consider the previous half-space domain ⌦int with an PML region of thickness
�, ⌦PML := {(x, y, z) : x 2 ]0, �[}. The Helmholtz equation with PML (1.28) and
with a homogeneous Neumann condition on the exterior boundary of the PML, i.e.
{x : x = �}, is considered on this half-space domain with the PML, ⌦int [ ⌦PML.
Furthermore, let us also follow the change of coordinate inside the PML region proposed
in [51],

x
?(x) =

Z
x

0

�x(s) ds = x+
◆

k

Z
x

0

�x(s) ds, (1.32)

such that,
@

@x?
=

1

�x

@

@x
. (1.33)

Hence, the general solution of Equation (1.28) of this half-space problem is

p(x) =
�
Pi + Pr1e

�2 ◆ kxx
�
e
◆k·x in ⌦int, (1.34)

p
?(x?) =

�
Pt + Pr2e

�2 ◆ kxx?�
e
◆k·x? in ⌦PML, (1.35)

where x
? : (x?

, y, z), kx = k · ex, p
? is the pressure field into de PML expressed in

coordinate (x?
, y, z) and Pi, Pr1 , Pt and Pr2 are the incident wave amplitude, the

amplitude of reflected wave by the PML, the amplitude of the transmitted wave inside
the PML and the amplitude of the reflected wave by the end of the PML, respectively.
By defining the attenuation factor by

↵(x) = cos ✓

Z
x

0

�x(s) ds, (1.36)

where ✓ is the angle between ex and the incident, the integration of (1.32) inside (1.35)
leads to

p(x) =
�
Pte

�↵(x) + Pr2e
�2 ◆ kxxe

↵(x)
�
e
◆k·x

. (1.37)

Considering the continuity of the acoustic pressure and the local particle velocity
at the interface between the PML and the interior domain, one can obtain that Pi = Pt

and Pr1 = Pr2 , which means that for every incident angle, the incident wave is perfectly
transmitted to the PML layer, i.e. without reflections on the interface.

Moreover, considering the homogeneous Neumann condition imposed at the end of
the PML, the following reflection coefficient can be obtained,

� =

����
Pr1

Pi

���� = exp [�2↵(�)] , (1.38)

which gives an indication on the choice of absorption function. Indeed, the reflection
coefficient is zero if

↵(�) = cos ✓

Z
�

0

�x(s) ds = +1. (1.39)

In practice, classical techniques proposed to take a bounded absorbing function such
that the integral of (1.38) is large enough. Basically, the following linear and parabolic
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absorbing functions varying form zero at the beginning to �? have been proposed [30,
60],

�l(X) = �
?
X

�
and �q(X) = �

?

✓
X

�

◆2

, (1.40)

where X is the coordinate starting to zero at the beginning of the PML and increasing
inside the thickness of the PML until its end at X = �. Note that this family of PML
requires to perform an optimization of the parameter �?. Another popular technique
proposes to take an unbounded function such as the following hyperbolic or shifted-
hyperbolic function,

�h(X) =
1

� �X
or �sh(X) =

1

� �X
�

1

�
. (1.41)

These choices are compared with linear or quadratic PML in [35, 32, 53]. Note that
compared to linear or quadratic PML there is no parameter to optimize for this family
of PMLs.

Finally, note that the continuous fraction expansions of the exact DtN presented in
Section 3.2 can be compared with the PML introduced in this section. Indeed, finite
continuous fraction expansions of the exact DtN like (1.20) lead to the development
of so called continuous fraction absorbing boundary conditions (CFABCs) [101, 99,
100, 15]. These expansions of the exact DtN like (1.20) can be seen as an absorbing
finite mesh built around the domain that is comparable with PMLs. These PMLs
built using a continuous fraction expansions are called perfectly matched discrete layer
(PMDLs) [101].

In Chapter 3, strategies to deal with cross-points in the presence of PML conditions
will be presented. In addition, numerical applications that implement PMLs with cross-
point treatment will be studied in Chapter 4.

4 The pollution effect
Application of low-order FEM, e.g. with classical piece-wise linear shape functions, to
the Helmholtz equation leads to numerical errors that grow with the wavenumber k

if a simple “rule of the thumb” of the form kh = const, where h is the characteristic
element size, is used [114, 115]. More precisely, the relative FE error in H

1-seminorm
|✏|H1(⌦) := |uex � u|H1(⌦)/|uex|H1(⌦) with uex the exact solution follows

|✏|H1(⌦)  C1(p)

✓
kh

2p

◆p

+ C2(p)k

✓
kh

2p

◆2p

, (1.42)

where C1(p) and C2(p) are constant independent of h and k but not of p and | · |H1(⌦) =
kgrad (·)kL2(⌦) is the H

1-seminorm such that k · kH1(⌦) = k · kL2(⌦) + | · |H1(⌦). The
first term of the right-hand side is called the approximation error while the second one
is called the pollution effect. The approximation error is a local property than can be
studied for each element independently. On the opposite, the pollution error is a global
property of the Helmholtz equation’s FE simulation that induces a dispersion on the
numerical solution, i.e. a difference of phase between the exact solution and the FE
one.
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In practice, (1.42) implies that high-frequency FE Helmholtz simulations require
high-order FE basis functions. Indeed the approximation term decreases as the power
of p while the pollution term decreases as the power of 2p. The high-order basis
functions tend to increase the FE assembly time and reduce the sparsity pattern of
the FE matrix. The increase in FE assembly time directly results from two leading
causes: first, an increase of the number of quadrature points is needed to integrate the
high-order basis functions over the elements; second, increasing the elementary matrix
size over each element increases the computational intensity.

In this thesis, we will always use at least second-order polynomial basis functions,
and at most polynomial order ten. Implementing an algorithmically efficient finite
element matrix assembly for high orders drove the development of GmshFEM, which
will be presented in Chapter 5 of Part II of this manuscript. The huge memory footprint
of matrix factorizations at high order further plead for a sub-structured DDM, where
the size of subdomains can be chosen small enough for the factorization to hold in
memory.

5 The indefinite nature of the Helmholtz operator
The resolution of Helmholtz problems with classical iterative methods such as Krylov
methods is not effective, due to the indefinite nature of the Helmholtz operator [80].
Below we briefly review this property, as well as two major theorems that we be needed
in later chapters to assess of the well-posedness of our proposed formulations for han-
dling cross-points.

The finite element method does not discretize the Helmholtz equation in strong
form, as written in (1.4), but rather discretizes its weak formulation, also called varia-
tional formulation. Multiplying the first equation of (1.4) by a test function v 2 H

1
0 (⌦),

integrating over ⌦ and using Green’s first identity, leads to
Z

⌦

gradu ·grad v�k
2
uv d⌦�

Z

�ext

Buv d�ext =

Z

⌦

f(x)v d⌦+

Z

�N
scat

uNv d�N

scat
(1.43)

with the overline · denoting the complex conjugate. Equation (1.43) is of the form

h(u, v) = f(v), (1.44)

with
h(u, v) =

Z

⌦

gradu · grad v � k
2
uv d⌦�

Z

�ext

Buv d�ext (1.45)

a sesquilinear form, and

f(v) =

Z

⌦

f(x)v d⌦+

Z

�N
scat

uNv d�N

scat
(1.46)

a continuous antilinear form.
Equation (1.43) follows the general form of a weak formulation for complex scalar

field given by:

find u 2 V such that a(u, v) = f(v) holds for all v 2 V , (1.47)
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with V a complex Hilbert space, a(·, ·) : V⇥V ! C a sesquilinear form, and f : V ! C
an antilinear form.

A general problem such as (1.47) is well-posed, i.e. it exists an unique solution
that depends continuously upon the specified datum f , if the following Lax–Milgram
theorem is applicable [79]:

Theorem 1. Let V be a Hilbert space and a(·, ·) a sesquilinear form on V ⇥ V, which
is

bounded: |a(u, v)|  CkukVkvkV for all u, v 2 V (1.48)
coercive: |a(v, v)| � ↵kvk

2
V for all v 2 V . (1.49)

with C > 0 and ↵ > 0. Then, for any f in V
0, i.e. the dual of V, there is a unique

solution u 2 V to (1.47) and it holds

kukV 
1

↵
kfkV 0 . (1.50)

Note that (1.48) is called the continuity condition and (1.49) is called either coerciv-
ity or V-ellipticity depending on the authors. The indefinite nature of the Helmholtz
operator is another way the tell that the Helmholtz operator is not coercive.

Let us consider the Helmholtz problem (1.4) with a homogeneous wavenumber and
with a 0th order impedance ABC on the exterior boundary, i.e. B = ◆ k. The varitional
formulation of this problem reads

himp(u, v) = fimp(v), (1.51)

with

himp(u, v) =

Z

⌦

gradu · grad v � k
2
uv d⌦�

Z

�ext

◆ kuv d�ext, (1.52)

fimp(v) =

Z

⌦

f(x)v d⌦+

Z

�N
scat

uNv d�N

scat
. (1.53)

The continuity of (1.52) follows by the Cauchy–Schwarz inequality and the continuity of
the trace map from H

1(⌦) to L
2(@⌦). Then it is clear that (1.52) cannot be bounded

below by kvk2V for all k and all v 2 V . Indeed, let us consider that the squared
wavenumber k2 is equal to one eigenvalue of the negative Laplacian with homogeneous
Dirichlet boundary conditions on �ext. Under this condition,

himp(v, v) =

Z

⌦

grad v · grad v � k
2
vv d⌦�

Z

�ext

◆ kvv d�ext, (1.54)

is null for v corresponding to the eigenfunction since the two first terms cancel each
other out and the last one vanishes as v = 0 on �ext. Therefore, himp(u, v) is not
coercive, and the resulting algebraic system will be sign-indefinite. Furthermore, the
algebraic system is also non-Hermitian because of the ABC, himp(u, v) 6= himp(v, u),
thus the complex eigenvalues are spread on both side of the imaginary axis. This fact
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strongly contributes to the solving difficulty of the Helmholtz equation with iterative
solvers; see reviews [11, 77, 80] for more details. Note that it is possible to have a sign-
definite formulation of the Helmholtz equation under impedance boundary conditions
with some modification of the space H

1 on star-shaped domains [149].
Although the Lax-Milgram theorem is not fulfilled by the Helmholtz problem with a

homogeneous wavenumber and a 0th order impedance ABC on the exterior boundary,
it is well-posed because the Lax-Milgram theorem is a sufficient condition of well-
posedness. The following Banach–Nečas–Babuška (BNB) theorem [79] gives the nec-
essary and sufficient condition of well-posedness.

Theorem 2. Let U be a Banach space and let V be a reflexive Banach space. Let a(·, ·)
be a bounded sesquilinear form on U ⇥ V and let f 2 V

0. Then the problem (1.4) is
well-posed iff:

inf
u2U

sup
v2V

|a(u, v)|

kukUkvkV
:= ↵ > 0, (1.55)

8v 2 V , [8u 2 U , a(u, v) = 0]) [v = 0] . (1.56)

Moreover, the error estimate kukU  1
↵
kfkV 0 holds. The first condition (1.55) is often

called the inf-sup condition.

In Chapter 3, the BNB theorem will be used to analyze the stability of proposed
strategies to efficiently deal with cross-points when interface conditions based on PMLs
are used. In particular, a numerical test will be employed to evaluate the parameter ↵
of Equation (1.55), also called the inf-sup constant.

6 The non-overlapping domain decomposition
method

6.1 The sub-structuring algorithm
To describe the standard DDM, let us consider the simple Helmholtz problem (1.4).
The total domain ⌦tot is decomposed into N non-overlapping subdomains ⌦n, with
n = 1 · · ·N . Let us define �D

n,scat
and �N

n,scat
such that �D

scat
=
S

N�1
n=0 �D

n,scat
and �N

scat
=S

N�1
n=0 �N

n,scat
. Furthermore, let us define �n,ext as the boundary of subdomain ⌦n. The

boundary �n,ext can be decomposed into the union of a exterior boundary that belongs
to the boundary of ⌦tot (i.e. �n,ext\@⌦tot), and an interior boundary that is shared by
two subdomains. Let us further decompose the interior boundary of each subdomain
⌦n as the union of interfaces,

S
n2Nn

⌃n,m where Nn is the set of neighbor subdomains
of subdomain ⌦n. For each subdomain ⌦n, let us consider the local solution un of the
subproblem 8

>>>><

>>>>:

� un + k
2
un = �f in ⌦n,

un = uD on �D

n, scat
,

@nun = uN on �N

n,scat
,

@nnun � Tnun = gn,m on �n,ext,

(1.57)
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where nn is the outgoing normal of subdomain ⌦n, Tn is a transmission operator defined
as

Tn : H1/2(@⌦n)! H
�1/2(@⌦n) : un|@⌦n 7! (@nnun)|@⌦n (= Tnun|@⌦n). (1.58)

and gn,m is a transmission variable defined as

gn,m :=

(
0 on �n,ext \ @⌦tot,

@nnum � Tnum on each ⌃n,m,
(1.59)

where um is the local solution on ⌦m, the neighboring subdomain of ⌦n.
At every step of an iterative procedure, a subproblem similar to Problem (1.57) is

solved for every subdomain ⌦n. Then, the transmission variables are updated and ex-
changed between the subdomains. Since System (1.59) is defined for every transmission
variable, the update condition

gm,n := @nmun � Tmun on ⌃n,m for each n 2 Nm, (1.60)

is prescribed on the interface. Assuming that the transmission operator is symmetric,
i.e. Tn = Tm, Combining the interface equation of (1.57) and the update condi-
tion (1.60) gives:

gm,n = �gn,m � 2Tnun on ⌃m,n for each n 2 Nm. (1.61)

The sub-structuring DDM algorithm at iteration `+ 1 can be described as follow:

a. For all n = 1 · · ·N , compute the solution u
(`+1)
n by solving Subproblem (1.57),

that can be rewritten as

u
(`+1)
n

= Sn(uD, uN, g
(`)), (1.62)

where g(`) is the vector collecting all gn,m. In the following uD and uN will be
called the physical sources, as opposed to g which will be called the artificial
source.

b. For all n = 1 · · ·N and m 2 Nn, update the interface unknowns through interface
problem (1.61), which can be rewritten as

g
(`+1)
m,n

= Im,n(g
(`)
n,m

, u
(`+1)
n

). (1.63)

Note that by linearity and for every ` 2 N, the field u
(`+1)
n can be decomposed into

a sum of a physical source contribution and an artificial source contribution, u(`+1)
n =

u
(`+1)
n,P

+ u
(`+1)
n,A

such that

u
(`+1)
n,P

= Sn(uD, uN, 0) and u
(`+1)
n,A

= Sn(0, 0, g
(`)). (1.64)

As the physical source contribution is independent of the iteration, it will be denoted
un,P hereafter. Equation (1.63) then becomes

g
(`+1)
m,n

= Im,n(g
(`)
n,m

, u
(`+1)
n,A

)� 2Tnun,P . (1.65)
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Let us define the vector b that collects all bm,n = �2Tnun,P |⌃n,m and the operator
A : g(`) 7! Ag(`) (

u
(`+1)
n,A

= Sn(0, 0, g
(`)),

(Ag(`+1))m,n = Im,n(g
(`)
n,m

, u
(`+1)
n,A

),
(1.66)

such that (1.65) can be rewritten as

g(`+1) = Ag(`) + b. (1.67)

The interface problem written in this way can be interpreted as one iteration of a
Jacobi algorithm applied to the linear system

(Id �A)g = b, (1.68)

where Id is the identity operator. While the Jacobi algorithm will only converge if the
spectral radius of Id�A is smaller than one, any iterative linear solver can be applied
to (1.68), for instance Krylov subspace solvers such as GMRES [169], BiCGSTAB [187],
or ORTHODIR [170]. The convergence rate of these algorithms strongly depends on the
spectrum of Id�A, which itself depends on the transmission operator Tn enforced on the
interface between the subdomains. One can easily see that the optimal convergence
is obtained by imposing the DtN map (1.12) introduced in Section 3.1, related to
the complementary of each subdomain [152, 151], which leads to A ⌘ 0. Since the
cost of computing the exact DtN is prohibitive, following the same idea as for the
boundary conditions detailed in Section 3.2, operators based on low-order absorbing
boundary conditions to approximate the DtN have been developed since the late ’80s
and early ’90s [103, 66, 153], followed in the late ’90s and early ’00s by (optimized)
second-order transmission conditions [85, 161]. More recently, domain decomposition
strategies were developed with high-order transmission conditions [45, 46, 123, 136]
based on HABCs presented in Section 3.2, transmission conditions based on PMLs [177,
188] as introduced in Section 3.3 and non-local transmission operators [179, 128, 127,
59]. In general, high-order and PML-based conditions accelerate the convergence of
DDMs compared to low-order conditions, with an extra cost per iteration that can be
controlled thanks to the order of the conditions or the thickness of the PMLs. Non-
local approaches are more expensive per iteration in terms of computational cost, but
they have the best convergence rate, and a solid theoretical background is available
[58, 127, 59].

It is important to note that in the sub-structured DDM, the iteration unknowns are
surface quantities, i.e. fields gn,m, and not the volume ones. The whole sub-structuring
DDM algorithm is summed up in pseudo-code in Figure 1.3.

6.2 Cross-points
Most of the DDMs with high-order, PML-based, and non-local transmission operators
have initially been tested and studied for configurations with one-dimensional domain
partitions, as depicted on Figure 1.4a (e.g. layered partitions, or partitions of spherical
shells into onion peels). Such partitions do not exhibit (interior) cross-points (i.e. points
where more than two subdomains meet), which simplifies the implementation and
avoids technical difficulties with the transmission conditions. However, for large-scale
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Data: N subdomains
Data: All Nn connectivity data
1. Compute the right-hand size b:
for n=0; n < N do

Compute un,P = Sn(uD, uN, 0);
foreach m in Nn do

Compute bm,n = Im,n(0, un,P );
end

end

Gather all bm,n into the vector b;
Initialize g with zeros;
2. Solve the interface problem (Id �A)g = b iteratively using a
Krylov subspace solver. At each iteration:

for n=0; n < N do

Compute u
`+1
n,A

= Sn(0, 0, g`);
foreach m in Nn do

Evaluate (Ag(`+1))m,n = Im,n(g
(`)
n,m, u

(`+1)
n,A

);
end

end

3. Compute the final solution:
for n=0; n < N do

Compute un = Sn(uD, uN, g`);
end

Figure 1.3: Pseudo-code of the sub-structuring DDM algorithm.

(a) The layer partition.

• • •

(b) The checkerboard parti-

tion. Note the three cross-

points appearing between

the three vertical interfaces

and the horizontal one.

(c) The automatic mesh

partition.

Figure 1.4: Three kind of partitions of a computational domain.

two- and three-dimensional applications, one-dimensional partitions are not optimal,
as the amount of interface data can be minimized with more general multi-dimensional
partitions, e.g. Cartesian checkerboard partitions leading to right-angle cross-points
(as in Figure 1.4b), Cartesian lattice-type with arbitrary-angle cross-points, or general
partitions generated with automatic mesh partitioners (as in Figure 1.4c). The cross-
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⌦1 ⌦2

⌦3 ⌦4

(a) A square domain is partitioned into

four subdomains, building a two-times-

two grid with an interior cross-point at the

intersection between the four subdomains.

⌦1 ⌃1,2

⌃1,3
T1

(b) Zoom inside the subdomain ⌦1 and

around the cross-point. A DtN operator

T1 is prescribed on the whole boundary of

⌦1.

Figure 1.5: A cross-point between four subdomains.

points require some care with such partitions, especially when transmission conditions
with differential or integral operators are used. Specific strategies to deal with cross-
points have been proposed for DDMs with low-order transmission conditions and nodal
finite element discretizations (e.g. [86, 28, 82]). Recently, cross-point treatments have
been proposed for DDMs with second-order conditions [157, 67, 84] and non-local
approaches [54, 55, 158] in order to address general domain partitions.

In this thesis, we propose an alternative local treatment of cross-points that can
deal with high-order transmission operators based on high order ABCs or PMLs and
that does not lead to a global system coupling all subdomains. This is crucial for the
scalability of the methods on massively parallel architectures, as will be demonstrated
in Chapter 4.

To set the stage for the cross-point treatments introduced in the next two chapters,
let us give an operator view of the sub-structuring DDM with a single cross-point.
We consider a two-by-two grid partition (i.e. with four subdomains) with a single
interior cross-point, as shown in Figure 1.5a. Then let us focus on the expression of
the transmission operator in the first subdomain ⌦1 with interior boundary called ⌃1,2

and ⌃1,3. In order to keep things simple, let us assume that on the exterior boundary,
a boundary condition is enforced, such that T1 is only defined on ⌃1,2[⌃1,3. Moreover,
let us reformulate the transmisson operator around the interior cross-point as shown
in Figure 1.5b as

T1u1|⌃1,2[⌃1,3 =


D

1,2
1 C

1,2
1

C
1,3
1 D

1,3
1

� 
u1|⌃1,2

u1|⌃1,3

� ✓
=


(@u1)|⌃1,2

(@u1)|⌃1,3

�◆
, (1.69)
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where the operators are defined as

D
1,2
1 : H1/2(⌃1,2)! H

�1/2(⌃1,2) : u1|⌃1,2 7! (D1,2
1 u1)|⌃1,2 , (1.70)

D
1,3
1 : H1/2(⌃1,3)! H

�1/2(⌃1,3) : u1|⌃1,3 7! (D1,3
1 u1)|⌃1,3 , (1.71)

C
1,2
1 : H1/2(⌃1,3)! H

�1/2(⌃1,2) : u1|⌃1,3 7! (C1,2
1 u1)|⌃1,2 , (1.72)

C
1,3
1 : H1/2(⌃1,2)! H

�1/2(⌃1,3) : u1|⌃1,2 7! (C1,3
1 u1)|⌃1,3 . (1.73)

In a nutshell, D1,2
1 and D

1,3
1 are “direct” operators that link a Dirichlet to a Neumann

trace defined on the same interface. In contrast, C1,2
1 and C

1,2
1 are “coupling” operators

that link a Dirichlet trace defined on an interface to the Neumann trace defined on the
other one. Note that in the case of a local ABC, such as a simple impedance condition,
C
1,2
1 = C

1,3
1 = 0 since the Neumann trace on one point depends only on the Dirichlet

trace on this same point and not on the others.
The transmission condition on the neighbor subdomain ⌦2 can also be rewritten as

T2u2|⌃2,1[⌃2,4 =


D

2,1
2 C

2,1
2

C
2,4
2 D

2,4
2

� 
u2|⌃2,1

u2|⌃2,4

�
. (1.74)

Furthermore, if the same transmission condition is used on subdomains ⌦1 and ⌦2

then D
1,2
1 = D

2,1
2 but C

1,2
1 6= C

2,1
2 . Following the same reasoning as done to derive

Equation (1.61), one can find

g2,1 = �g1,2 �
⇥
2D1,2

1 C
1,2
1 + C

1,2
2

⇤ u1|⌃1,2

u1|⌃1,3

�
, (1.75)

which is almost the same as (1.61), excepted that the transmission operator Ti cannot
be considered as symmetric due to coupling operators C

1,2
1 and C

2,1
2 that do not have

the same domain of definition. Both HABC-based and PML-based DDMs presented
in Chapters 2 and 3 propose to define two operators P1,2

1 and P
2,1
2 such that C1,2

1 P
1,2
1 =

C
2,1
2 P

2,1
2 . The exact definition of these operators depends on the considered method

and will be detailed later on. In short, they give a mapping between the Dirichlet trace
of one or more fields defined on a geometric entity shared by subdomain ⌦1 and ⌦2

with the Dirichlet trace of u1 and u2 on ⌃1,3 and ⌃2,4, respectively.
Let us go a bit further in the decomposition of the cross-point problem by defining

the interface fields g as the sum of direct interface fields g
D and coupling interface fields

g
C

g2,1 = g
D

2,1 + g
C

2,1, (1.76)
g1,2 = g

D

1,2 + g
C

1,2, (1.77)

where direct and coupling interface fields are defined as

g
D

2,1 :=
�
@n2u1 � n

C

1

�
�D

2,1
2 u1, (1.78)

g
D

1,2 :=
�
@n1u2 � n

C

2

�
�D

1,2
1 u2, (1.79)

and

g
C

2,1 := n
C

1 �
�
C
2,1
1 + C

2,1
2

�
u1, (1.80)

g
C

1,2 := n
C

2 �
�
C
1,2
1 + C

1,2
2

�
u2, (1.81)
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with n
C

1 and n
C

2 are auxiliary fields used to decouple the direct and coupling interface
fields. Using this definitions, Equation (1.75) becomes:


g

D

2,1

g
C

2,1

�
= �


g

D

1,2

g
C

1,2

�
�


2D1,2

1 0
0 C

1,2
1 + C

2,1
2

� 
u1|⌃1,2

u1|⌃1,3

�
, (1.82)

and the coupling equation of System (1.57) becomes:

(@n1u1)|⌃1,2 � n

C

1

n
C

1

�
�


D

1,2
1 0
0 C

1,2
1

� 
u1|⌃1,2

u1|⌃1,3

�
=


g

D

1,2

g
C

1,3

�
. (1.83)

Compared with the global interface transmission operator (1.69), which fully cou-
ples the update on interfaces ⌃1,2 and ⌃1,3, the introduction of auxiliary corner variables
allows to “localize” the updates on each interface plus the cross-point. These interface
fields are the cornerstone of the strategies that will be presented in Part I to deal with
cross-points when HABC (Chapter 2) or PML (Chapter 3) are used as transmission
conditions for the DDM. Their local nature will allow for an efficient parallelization on
distributed HPC clusters, as will be demonstrated in Chapter 4 for large scale acoustic
and elastic simulations.
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9

Cross-points for high-order transmission condi-
tions2

In this chapter, a non-overlapping DDM with HABC-based transmission con-

ditions is extended to efficiently deal with cross-points for lattice-type parti-

tionings. The cross-point treatments when the HABC operator is used in the

transmission conditions and when it is used in the exterior boundary condition

are both addressed. The proposed cross-point treatments rely on corner condi-

tions developed for Padé-type HABCs. Two-dimensional numerical results with

a nodal finite-element discretization are presented to validate the approach, in-

cluding convergence studies with respect to the frequency, the mesh size and the

number of subdomains. These results demonstrate the efficiency of the cross-

point treatment for settings with regular partitions and homogeneous media.

Numerical experiments with distorted partitions and smoothly varying hetero-

geneous media show the robustness of the approach for partitionings exhibiting

less regularity.

1 Introduction

In this chapter, a domain decomposition approach with non-overlapping subdomains,
which minimizes the data transfer between subdomains, is investigated. In the perspec-
tive of large-scale applications, the DDMs must be applicable with domain partitions
having interior cross-points (where more than two subdomains meet) and exterior cross-
points (that belong to both the exterior boundary and at least two subdomains). For
non-overlapping DDMs, the cross-points require special care at both continuous and
discrete levels.

In the present chapter and following [45], we consider an optimized non-overlapping
DDM with a transmission condition based on a Padé-type HABC operator (Equa-
tion 1.18). Here, we address the question of the cross-point treatment when the HABC
operator is used in the transmission condition, or when it is used in the exterior bound-
ary condition, or both. For a complete definition of the local problems defined on
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the subdomains, additional conditions are required at the interior corners of the sub-
domains. Following the recent contribution [147] on the treatment of corners with
HABCs, we introduce suited corner conditions into the variational formulation of the
subproblems and additional transmission variables at the cross-points. The obtained
cross-point treatment accelerates the convergence of the method with a very limited
overcost. When a HABC is used as an exterior condition, the cross-point treatment is
actually necessary, since the method cannot converge without it. While the approach is
designed for regular lattice-type domain partition (i.e. with only parallel and perpen-
dicular interfaces), we will show that it actually also gives good results with distorted
partitions. The main results of this chapter have been published in [148].

The chapter is organized as follows. In Section 2, we present the Helmholtz
boundary-value problem with a HABC and its suitable corner treatment based on
adding suitable boundary conditions. The nodal FEM formulation is given next. Sec-
tion 3 introduces the optimized Schwarz DDM with high-order transmission boundary
conditions. The cross-point treatment is detailed for two subdomains and then for the
multi-subdomain decomposition. The FEM formulation is next stated and some tech-
nical aspects about the algorithmic procedure are discussed. In Section 4, we propose
some numerical examples to analyze the behavior of the proposed method. Two model
configurations with lattice-type partitions are considered for the convergence study.
The sensitivity of the method to the tuning parameters of the HABC operator is stud-
ied, as well as the influence of the frequency, the mesh refinement and the number of
subdomains. After, a numerical investigation with distorted partitions is proposed.

2 Helmholtz problem with HABC and corner treat-
ment

To describe the method, we consider a two-dimensional bounded Helmholtz prob-
lem (1.4) introduced in Chapter 1 where ⌦tot is rectangular computational domain.
Furthermore, we assume a constant positive wavenumber and a source term f(x) such
that in the numerical simulations, the source term is replaced with a scattering object
to model scattering problems introduced in Section 2 of Chapter 1. The boundary of
�ext is split into four edges �f with f = 1 . . . 4 such that the problem is written as

(
� u+ k

2
u = �f in ⌦tot,

@nu� Bfu = 0 on �f ,
(2.1)

For each edge �f , @nf
is the (exterior) normal derivative and Bf is the boundary

operator on f which takes into account the behavior of waves outside the computational
domain, that we suppose to be the free-space here.

To simulate wave propagation in free-space, the simplest boundary condition is the
Sommerfeld Absorbing Boundary Condition (ABC), which corresponds to using the
impedance operator Bf = � ◆ k on the edges. This condition is cheap and easy to use,
but the accuracy is known to be poor. In this work, we consider HABCs [75, 121,
12, 147], which provide a better accuracy. To preserve the accuracy at the corners of
the rectangle, a specific treatment based on compatibility relations derived in [147] is
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used leading to very low spurious reflections at the boundary. For the HABC, a finite
element implementation of the problem is described later. Let us remark that other
alternative solutions could be considered for truncating the free-space, like for example
by using the well-known PML. This approach will be studied in Chapter 3.

2.1 High-order absorbing boundary condition (HABC)
The Padé-type HABC is obtained by approximating an exact non-reflecting boundary
condition derived for planar boundaries as detailed in Section 3.1 of Chapter 1. In
Section 3.2 of Chapter 1, this operator is localized by using a Padé approximation of
the square-root after a rotation of the branch-cut. For each face �f , this leads to the
HABC impedance operator

B
Padé

HABC,f
= ◆ k↵f

2

41 + 2

Mf

NHABC,fX

i=1

cf,i

↵
2
f
(cf,i + 1)

↵
2
f
(cf,i + 1) +��f

/k2

3

5 , (2.2)

with ↵f = e
◆ �f/2, cf,i = tan2(i⇡/Mf ) and Mf = 2NHABC,f + 1. The accuracy of the

Padé-type HABC depends on the number of terms NHABC,f and the angle of rotation
�f (see [147, 121] for further details). In particular, the parameters NHABC,f = 0 and
�f = 0 yield Bf = ◆ k, which corresponds to the basic ABC.

Let us remember that for the effective implementation of the HABC, NHABC,f auxil-
iary fields {'f,i}i=1...NHABC,f

are defined on �f , and the boundary condition is rewritten
as

@nf
u� B

Padé

HABC,f

�
u, {'f,i}i=1...NHABC,f

�
= 0, on �f , (2.3)

with the operator B
Padé

HABC,f
defined as

B
Padé

HABC,f
u = ◆ k↵f

2

4u+
2

Mf

NHABC,fX

i=1

cf,i(u+ 'f,i)

3

5 . (2.4)

The additional fields are governed by the auxiliary equations

��f
'i + k

2
⇥
(↵2

f
cf,i + 1)'f,i + ↵

2
f
(cf,i + 1)u

⇤
= 0, on �f , (2.5)

The operator B
Padé

HABC,f
will be simply refeered as Bf to simplify the expressions in the

next of the chapter.

2.2 Corner treatment
When the HABC is prescribed on a boundary with corners, a specific treatment must be
used at the corners. Because of the second-order spatial derivative in (2.5), boundary
conditions must be added on the auxiliary fields at the extremities of each edge, which
are at the corners of the domain. In a previous work [147], several strategies have been
analyzed to preserve the accuracy of the solution at the corners. For configurations
with right angles, the best approach consists in using a different set of auxiliary fields
for each edge, with compatibility relations to couple the auxiliary fields of adjacent
edges at the common corner.
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Let us consider two adjacent edges �f and �f 0 meeting at the corner Pf,f 0 = �̄f\�̄f 0 .
Two sets of surface fields {'f,i}i=1...NHABC,f

and {'f 0,i0}i0=1...N
HABC,f 0 are defined on �f

and �f 0 , respectively. Globally, a total of NHABC,f + NHABC,f 0 boundary conditions
must be written on these auxiliary fields at the corner Pf,f 0 . Following the approach
detailed in [147], well-suited conditions are such that

@nf 0'f,i � Bf 0

⇣
'f,i, { ff 0,ii0}i0=1...N

HABC,f 0

⌘
= 0 on Pff 0 (i = 1 . . . NHABC,f ) (2.6)

@nf
'f 0,i0 � Bf

�
'f 0,i0 , { f 0f,i0i}i=1...NHABC,f

�
= 0 on Pff 0 (i0 = 1 . . . NHABC,f 0), (2.7)

with NHABC,f ⇥ NHABC,f 0 corner auxiliary variables { ff 0,ii0}i=1...NHABC,f ,i
0=1...N

HABC,f 0

defined as

 ff 0,ii0 = �
↵
2
f 0(cf 0,i0 + 1)'f,i + ↵

2
f
(cf,i + 1)'f 0,i0

↵
2
f
cf,i + ↵

2
f 0cf 0,i0 + 1

on Pff 0

(i = 1 . . . NHABC,f , i
0 = 1 . . . NHABC,f 0) (2.8)

Let us remark that  f 0f,i0i =  ff 0,ii0 . In a nutshell, the HABC defined on the field
u on one edge is also imposed on the auxiliary fields living on the adjacent edge at
the common corner [147], with new auxiliary variables defined at the corner. For
instance, the HABC set on �f 0 is also forced on the fields {'f,i}i=1...NHABC,f

at Pf,f 0

(Equation (2.6)).
As a particular case, let us consider a configuration with a HABC given on �f and

the basic ABC set on the adjacent edge �f 0 , i.e.

@nf
u� Bf

�
u, {'f,i}i=1...NHABC,f

�
= 0 on �f , (2.9)

@nf 0u� ◆ ku = 0 on �f 0 . (2.10)

At the corner Pf,f 0 , NHABC,f boundary conditions must be imposed on the auxiliary
fields living on �f . Following the approach, the basic ABC must be prescribed

@nf 0'f,i � ◆ k'f,i = 0 on Pf,f 0 (i = 1 . . . NHABC,f ) (2.11)

which corresponds to equation (2.6) with NHABC,f 0 = 0 and �f 0 = 0.

2.3 Finite element formulation

The problem finally consists in solving the main field u on the rectangular domain
with a HABC on each edge by (2.3). Auxiliary fields defined on the edges are governed
by 1D Helmholtz equations through (2.5) and are coupled at the corners by auxiliary
relations (2.6)-(2.7) and auxiliary variables using (2.8). If the basic ABC is given for
the main field on an edge, there is no auxiliary field on that edge, and the basic ABC
is prescribed on the auxiliary variables living on the adjacent edges at the common
corners.

In order to solve the problem with a finite element scheme, we straightforwardly
adapt the bilinear form of the Helmholtz equation. The variational formulation of
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the problem reads: find u 2 H
1(⌦tot) and 'f,i 2 H

1(�f ), for f = 1 . . . 4 and i =
1 . . . NHABC,f , such that

Z

⌦tot

gradu · grad v � k
2
uv d⌦tot �

4X

f=1

Z

�f

Bf

�
u, {'f,i}i=1...NHABC,f

�
v d�f

=

Z

⌦tot

fv d⌦tot, (2.12)

holds for all v in H
1(⌦tot) and

Z

�f

grad'f,i · grad ⇢f,i � k
2
�
(↵2

f
cf,i + 1)'f,i + ↵

2
f
(cf,i + 1)u

�
⇢
f,i

d�f

�

X

f 0

h
Bf 0

⇣
'f,i, { ff 0,ii0}i0=1...N

HABC,f 0

⌘
⇢
f,i

i

Pff 0
= 0, (2.13)

holds for all ⇢
f,i

in H
1(�f ). In the last equation, the index f

0 corresponds to any edge
�f 0 adjacent to �f , and the variables { ff 0,ii0}i0=1...N

HABC,f 0 are defined on Pff 0 by (2.8).
Standard Lagrange or arbitrary high-order hierarchical basis functions can then be
used to discretize the problem.

3 Domain decomposition method with HABC and
cross-point treatment

In this section, we present a non-overlapping DDM for lattice-type partitions of the
domain. The convergence of the method is accelerated by using a Padé-type HABC as
a transmission condition with a novel strategy to deal with cross-points. This strategy
relies on the corner treatment derived for the HABCs in the previous section. The
DDM and the cross-point strategy are presented in Sections 3 and 3.2, respectively.

Let us consider a partition of the rectangular domain ⌦tot into a grid of N rectan-
gular non-overlapping subdomains ⌦n. The edges of each subdomain ⌦n are denoted
by �n,f (f = 1 . . . 4). Let us recall that each edge is either an exterior boundary if it
belongs to the boundary of the global domain (�n,f ⇢ @⌦tot)), or an interior boundary
if there is a neighboring subdomain beyond the edge (⌃n,m = {�n,f 6⇢ @⌦tot}. In this
decomposition, two kinds of points deserve attention: the exterior cross-points that
belong to two subdomains and that touch the boundary of the global domain, and the
interior cross-points belonging to four subdomains and that do not touch the boundary
of the global domain. These edges and points are illustrated in Figure 2.1 for a 2 ⇥ 2
partition.

3.1 Optimized sub-structuring domain decomposition method

According to Equation 1.57 of Chapter 1, the global problem (2.1) is decomposed into
local subproblems defined on the subdomains. The solution un for the subdomain ⌦n
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Exterior boundary

Interior boundary

⇤ Corner point

• Exterior cross-point

� Interior cross-point

, Interface transmission variables

Figure 2.1: Terminology and transmission variables across the interface edges. In this
example, the continuity of the local solution u1 and u2 on the interface edge �1,f = �2,g

is ensured thanks to the transmission variables g1,f and g2,g.

is obtained by solving
(

� un + k
2
un = �f in ⌦n,

@nnun � Tn,fun = gn,f on �n,f ,
(2.14)

where Tn,f is an impedance operator, gn,f is a transmission variable which is set to
zero if �n,f is an exterior boundary, while it depends on the local solution belonging to
the neighboring subdomain if �n,f is an interior boundary and Tn,f is the transmission
operator. Following the derivation of the transmission update equation of Section 6 of
Chapter 1, the following interface update is obtained

gn,f = �gm,g + 2Bm,gum. (2.15)

Following [45], the transmission operators Tn,f for the transmission conditions are
based on Padé-type HABCs, i.e. it is chosen to use the same transmission operator
as the boundary operator defined in (2.4): Tn,f = Bf such that in the following no
distinction between the boundary operator Bf and the Tn,f (i.e. Bn,f ) is made. For
each subdomain ⌦n, the local solution un verifies

(
� un + k

2
un = �f in ⌦n,

@nnun � Bn,f

�
un, {'n,f,i}i=1...NHABC,n,f

�
= gn,f on �n,f ,

(2.16)

with the transmission variable gn,f that verifies

gn,m :=

(
0 on �n,ext \ @⌦tot,

� gm,g + 2Bm,g

�
um, {'m,g,j}j=1...NHABC,m,g

�
on each ⌃n,m,

(2.17)

The second equation of system (2.16) is a boundary condition if �n,f is an exterior
boundary, or a transmission condition if �n,f is an interior boundary. In both cases,
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if NHABC,n,f > 0, auxiliary fields {'n,f,i}i=1...NHABC,n,f
are defined on the edge, and are

governed by

�'n,f,i + k
2
⇥
(↵2

n,f
cn,f,i + 1)'n,f,i + ↵

2
n,f

(cn,f,i + 1)un

⇤
= 0 on �n,f , (2.18)

with i = 1 . . . NHABC,n,f . The parameters of the transmission conditions used on both
sides of an interface edge must be the same (i.e. NHABC,n,f = NHABC,m,g and �n,f = �m,g,
with �n,f = �m,g), since we assumed that the transmission operators are the same on a
shared interface. For consistency, the same boundary condition must be prescribed on
the boundary edges of the subdomains and on the corresponding edges of the global
domain.

Boundary conditions must be set on the auxiliary fields at the extremities of the
edges because of the second-order partial derivative in the governing equation (2.18).
The extremities of an edge are at corners of a subdomain, and correspond to interior
cross-points, exterior cross-points or corners of the global domain. The cross-point
treatment, described in the next section, actually provides the missing boundary con-
ditions at the cross-points.

3.2 Dealing with cross-points
The cross-point treatment relies on the corner treatment described in Section 2. It is
applied at the corners of the subdomains. Depending on the configuration, it provides
boundary conditions or transmission conditions for the auxiliary fields at the cross-
points. In the latter case, new transmission variables are defined at the cross-points.

3.2.1 Two-subdomain case

To describe the approach, we first consider a partition of the rectangular domain ⌦tot

into two rectangular subdomains with an interface � and two exterior cross-points.
Three configurations, represented on Figure 2.2, are studied: the basic ABC prescribed
on @⌦ with a HABC-based transmission condition on � (Configuration 1), a HABC on
@⌦ with a transmission condition based on the basic ABC on � (Configuration 2), and
the HABC operator used both for @⌦ and � (Configuration 3). Because the HABC is
used on the exterior boundary and/or the interface, a specific treatment must be used
at the exterior cross-points.

In the first configuration (Figure 2.2a), auxiliary fields are defined on both sides
of the interface. These fields require boundary conditions at the extremities of the
interface, which are corners of the subdomains. The basic ABC is set on the adjacent
edges (i.e. the upper and lower boundary edges). Following the strategy of Section 2,
the basic ABC is also given on the auxiliary fields at the boundary cross-points.

In the second configuration (Figure 2.2b), a HABC is given on each global edge
�f in the global problem, auxiliary fields are defined on each edge and the corner
treatment is used. After the domain partition, a HABC is imposed on each boundary
edge �n,f of each subdomain ⌦n, and a set of auxiliary fields is defined on each of
these edges. For the consistency of the global problem, the parameters of the HABC
on �n,f must be the same as the parameters of the HABC given on the global edge
�n � �n,f . For a global edge �f that has been divided by the partitioning (upper and
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Figure 2.2: Three configurations for two-subdomain case. The exterior boundary con-
dition is a basic ABC or a HABC, and the transmission condition is based on the
HABC operator or the basic ABC operator. The thin gray lines illustrate the position
of auxiliary fields. The black arrows indicate where boundary conditions are required
for auxiliary fields. The blue arrows indicate transmission conditions on the edge or at
the cross-points.

lower edges in Figure 2.2b), the continuity of the auxiliary fields must be enforced at
the cross-points. As the ABC-based transmission condition is used on the main field
on the interface, this transmission condition is also used on each auxiliary field at the
boundary cross-points and auxiliary transmission variables are defined at these points.

The last configuration combines the difficulties. The exterior boundary condition
and the transmission condition are based on HABCs (Figure 2.2c). The auxiliary fields
living on every edge require boundary conditions at the boundary cross-points. To deal
with this case, we recall that the operators used on the edges of each subdomain should
approximate the DtN map of the free-space if the exterior medium relative to each
subdomain is homogeneous. If the transmission variables are canceled, it corresponds
to forcing a HABC on every edge. Therefore, we apply the corner treatment described
in Section 2 to all the corners of the subdomains, which gives boundary conditions
for the auxiliary fields. If the transmission variables are not canceled, the continuity
of the fields {un}n=1,2 is enforced at the interface thanks to the right-hand side of the
second equation of system (2.16). For the auxiliary fields living on the boundary edges,
the boundary conditions at the cross-point become transmission conditions by adding
transmission variables in the right-hand sides, as for the second configuration. These
transmission variables verify relations similar to equation (2.18) at the cross-points.

3.2.2 Multi-subdomains case

In the general case, the rectangular domain ⌦tot is partitioned into a grid of rectangular
subdomains, with interior and exterior cross-points. The strategy relies on the following
principles, which generalize the approaches used for the three previous configurations:

• The same transmission condition is used on both sides of each interface. The
boundary condition used on each boundary is the same as the one prescribed on
the corresponding edge of the global domain. In the domain partition, the HABC
operators used on edges that are on a same line have the same parameters (e.g.
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Figure 2.3: Transmission variables across the exterior and interior cross-points, if the
HABC operator is used both in the exterior boundary condition and in the interface
conditions. In the example, the continuity of the auxiliary fields '1,f 0,i and '2,g0,i

(defined on the aligned edges �1,f 0 and �2,g0) at the interior cross-point P1,ff 0 = P2,gg0 is
ensured thanks to the transmission variables g1,f 0f,i and g4,g0g,i. These variables verify
equation (2.20).

in Figure 2.3: the top edges of ⌦1 and ⌦2, the top edges of ⌦3 and ⌦4, the left
edges of ⌦1 and ⌦4, ...).

• If auxiliary fields are defined on an edge �n,f of a subdomain ⌦n, boundary
conditions or transmission conditions must be set on these fields at the extremities
of this edge (which can be interior cross-points, exterior cross-points, or corners
of ⌦). These conditions are given by the condition already used for un on the
adjacent edges. If a transmission condition is used on un on an adjacent edge,
transmission conditions are considered on the auxiliary fields at the cross-point,
and new transmission variables are introduced.

• The corner treatment described in Section 2 is used at the corners of each sub-
domain, which gives boundary conditions to the auxiliary fields living on the
edges. At the cross-points, these conditions can become transmission conditions
by adding transmission variables in the right-hand sides, which are similar to
Equation (2.17).

Following these principles, the description of the problem with domain decomposition
can be completed.

For each subdomain ⌦n, the local solution un verifies Equations (2.16). For each
edge �n,f , the transmission variable gn,f satisfies Equation (2.17). Each auxiliary field
'n,f,i (i = 1 . . . NHABC,n,f ) defined on a exterior or interior boundary �n,f is such that
8
<

:

�'n,f,i + k
2
�
(↵2

n,f
cn,f,i + 1)'n,f,i + ↵

2
n,f

(cn,f,i + 1)un

�
= 0 on �n,f ,

@nn,f 0'n,f,i � Bn,f 0

⇣
'n,f,i, { n,ff 0,ii0}i0=1...N

HABC,n,f 0

⌘
= gn,ff 0,i on each Pn,ff 0 ,

(2.19)
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with the transmission variable gn,ff 0,i

gn,ff 0,i =

8
<

:

0 on �n,f 0 ⇢ @⌦tot,

� gn,gg0,i + 2Bm,g

⇣
'm,g,i, { m,gg0,ii0}i0=1...N

HABC,m,g0

⌘
on ⌃n,m.

(2.20)
In these relations, �n,f 0 is any edge that is adjacent to �n,f , and Pn,ff 0 = �n,f \ �n,f 0

is the corner that is shared by these edges. The second equation of system (2.19) is
a boundary condition if �n,f 0 is an exterior boundary, or a transmission condition if
�n,f 0 is an interface boundary, also called an interface ⌃n,m between ⌦n and ⌦m. The
transmission variable is set to zero in the former case, and it depends on the solution
of the other side of �n,f 0 in the latter case. The variables  n,ff 0,ii0 are defined using
Equation (2.8).

In Equation (2.20), the indices are chosen in such a way that ⌦m is the neighboring
subdomain on the other side of �n,f 0 , the edge �m,g0 is shared by the subdomains (i.e.
�n,f 0 = �m,g0), and the edge �m,g is aligned with �n,f (i.e. f = g), as illustrated in
Figure2.3. The variable gm,gg0,i is used in a transmission condition for an auxiliary field
'm,g,i living on �m,g. Therefore, the transmission conditions enforce the continuity of
the auxiliary fields 'n,f,i and 'm,g,i, which live on edges that are on the same line.
Let us note that, since the HABC parameters are the same for edges that are aligned,
NHABC,n,f = NHABC,m,g and �n,f = �m,g.

3.3 Finite element scheme and algorithmic procedure

Each step of the DDM iterative procedure consists in solving a local subproblem on
each subdomain, and updating the transmission variables both on the interface edges
and at the cross-points. The numerical solution of the subproblems is performed with
a standard nodal finite element scheme built on a conformal mesh made of triangles or
quadrangles. For each subdomain ⌦n, the variational formulation of the subproblem
reads: Find un 2 H

1(⌦n) and 'n,f,i 2 H
1(�n,f ), with i = 1 . . . NHABC,n,f and f = 1 . . . 4,

such that

Z

⌦n

gradun ·grad vn�k
2
unvn d⌦n�

4X

f=1

Z

�n,f

Bn,f

�
un, {'n,f,i}i=1...NHABC,n,f

�
vn d�n,f

=

Z

⌦n

fvn d⌦n +
4X

f=1

Z

�n,f

gn,fvn d�n,f (2.21)

holds for all vn in H
1(⌦n), and

Z
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grad'n,f,i · grad ⇢n,f � k
2
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n,f
cn,f,i + 1)'n,f,i + ↵

2
n,f

(cn,f,i + 1)un
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n,f

d�n,f
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X

f 0

h
Bn,f 0

⇣
'n,f,i, { n,ff 0,ii0}i0=1...N

HABC,n,f 0

⌘
⇢
n,f

i

Pn,ff 0
=
X

f 0

⇥
gn,ff 0,i⇢n,f

⇤
Pn,ff 0

,

(2.22)
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holds for all ⇢n,f in H
1(�n,f ). In the last equation, the index f

0 corresponds to any
edge �n,f 0 adjacent to �n,f , and Pn,ff 0 = �n,f \�n,f 0 is the shared corner. The variables
 n,ff 0,ii0 are defined using (2.8). This variational formulation is an extension of the one
used in [45] (see Equation (62) in that reference). In that work, there is only one set
of auxiliary fields and equations on the subdomain boundary @⌦n. Here, there is one
set for each edge �n,f of the subdomain, and new terms appear in (2.22) to deal with
the corners of the subdomain.

In the DDM iterative procedure, the transmission variables computed at an iteration
` are used in the right-hand side of Equations (2.21)-(2.22) to compute the local fields of
the iteration `+1. The transmission variables are then updated using Equations (2.17)-
(2.20). Therefore, at each iteration, the interface transmission variables are computed
using

g
(`+1)
n,f

= �g(`)
m,g

+ 2Bm,g

⇣
u
(`+1)
m

, {'
(`+1)
m,g,j

}j=1...NHABC,m,g

⌘
, (2.23)

for each interface �m,f 6⇢ @⌦tot. Similarly, the cross-point transmission variables are
updated through

g
(`+1)
n,ff 0,i = �g

(`)
m,gg0,i + 2Bm,g

⇣
'
(`+1)
m,g,i

, { 
(`+1)
m,gg0,ii0}i0=1...N

HABC,m,g0

⌘
, (2.24)

at each cross-point Pn,ff 0 , with �n,f 0 6⇢ @⌦tot.

4 Numerical results
This section reports some finite element simulations to study the HABC-based domain
decomposition method with cross-point treatment. After a description of three bench-
marks in Section 4.1, we analyze the convergence history (Section 4.2), the sensitivity
to the HABC parameters (Section 4.3) and the influence of the wavenumber, the mesh
density and the number of subdomains on the convergence rate (Section 4.4). Finally,
configurations with distorted domains partitions is investigated in Section 4.5.

4.1 Description of the benchmarks
The reference benchmark used through this section is the scattering of an incident
plane wave uinc(x) = e

◆ kx by a sound-soft circular scatterer. For a circle of radius R

centered at the origin, the scattered field is given by

uref(r, ✓) = �
1X

i=0

✏i ◆
i

Ji(kR)

H
(1)
i

(kR)
H

(1)
i

(kr) cos(i✓) r � R, (2.25)

where (r, ✓) are the polar coordinates, Ji is the i
th-order Bessel’s function, H(1)

1 is the
1th-order first-kind Hankel function, and ✏i is the Neumann function which is equal to
1 for m = 0 and 2 otherwise.

Two configurations are considered. For the first configuration (Figure 2.4a), the
finite element simulations are performed on the square computational domain [0, 6]⇥
[0, 6] with checkerboard partitions. The scatterer is the circle of radius R1 = 0.5
centered at the origin. The basic ABC, i.e. @nu � ◆ ku = 0, is set on the exterior
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�1.09 0.0 1.09

(a) Configuration 1 (b) Configuration 2

Figure 2.4: Scattering benchmarks: real part of the scattered field of the reference
numerical solution for the three configurations with k = 4⇡. The basic ABC and a
HABC are set on the exterior border, respectively.

boundary of the domain. Because this boundary condition is a rather inaccurate non-
reflecting boundary treatment, the numerical solution contains both the scattered field
and spurious waves reflected on the exterior boundary. For the second configuration
(Figure 2.4b), the HABC is used on the edges of the square domain with the suited
treatment at the corners. The HABC parameters NHABC = 6 and � = 0.3⇡ have been
selected to avoid any visible modeling error in the numerical solution (i.e. the numerical
error due to the finite element scheme is significantly larger than the modeling error
due to the approximate boundary condition, see [147]).

For all the configurations, the finite element scheme is based on meshes made of
straight triangular elements and second-order hierarchical polynomial basis functions.
The Dirichlet boundary condition u = �uinc is set at the boundary of the (sound-soft)
scatterer. By default, the wavenumber is k = 4⇡ and the characteristic number of
vertices per wavelength is ⌘h = 15. The meshes of the square domain is made of 74
370 triangles. For the two configurations, the relative L

2-errors of the finite element
solutions compared to the reference solution (2.25) are 1.89 ⇥ 10�1 and 4.61 ⇥ 10�4,
respectively.

In contrast to [148], where the numerical results were obtained with GetDDM
[182], the numerical results presented hereafter were obtained with GmshDDM (Chap-
ter 6). The related implementation of the test cases is available at the follow-
ing address: https://gitlab.onelab.info/gmsh/ddm/-/tree/master/examples/
helmholtz/crossPoints.
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4.2 Convergence analysis
We begin by analyzing the convergence of the DDM procedure with cross-point treat-
ment for both configurations. The relative L

2-errors and the relative residuals are
plotted as functions of the number of the GMRES iterations in Figure 2.5 for both
configurations. The L

2-error is calculated by comparing the solution obtained in each
subdomain to the reference numerical solution computed on the same mesh without
domain decomposition. In every case, HABC-based transmission conditions with dif-
ferent numbers of auxiliary fields are tested (NHABC = 0, 2, 4 and 6 with � = 0.3⇡).
The effect of the cross-point treatment is analyzed by keeping or removing the cor-
responding terms in the finite element scheme. The latter case consists in setting a
homogeneous Neumann boundary condition on the auxiliary fields at the cross-points.
On all the figures, the dotted lines are associated to results without the cross-point
treatment.

For the first configuration (i.e. square domain with basic ABC), the relative resid-
ual and the relative error have the same order of magnitude in all the cases (Fig-
ures 2.5a-2.5b) and decrease during the iterations. Using the cross-point treatment
clearly accelerates the convergence, especially for transmission conditions with large
values of NHABC. The number of iterations to reach a relative error of magnitude 10�6

is reduced by 20% to 40% thanks to the treatment. When the cross-point treatment
is enabled, the decay of residual and error can be accelerated further, up to a certain
point, by taking a number of auxiliary fields NHABC sufficiently large. Taking higher
values for NHABC does not change the results, while, without the cross-point treatment,
increasing NHABC slightly slows down the decays.

The good results obtained with the cross-point treatment and NHABC sufficiently
large can be interpreted by looking at the numerical solution after each iteration (Fig-
ure 2.6). At the initialization, the right-hand side term of the iteration system is
computed by solving each subproblem with source terms only (see Section 3). Here,
only the subdomain containing the scattering disk has a source, and then non-zero
solution (Figure 2.6a). The numerical solution in this subdomain is already rather
accurate since the transmission condition acts as a HABC, and the cross-point treat-
ment behaves as the suited corner treatment. Since there is neither source nor very
significant reflected waves generated outside the subdomain, the HABC and the cor-
ner treatment constitute a very good boundary treatment for the subdomain. During
the iterations, the signal is propagated from subdomain to subdomain. At the fourth
iteration, the signal reaches the last subdomain. This coincides with a sharp reduction
of both the residual and error by an order one in magnitude.

For the second configuration (i.e. square domain with HABC), the impact of the
cross-point treatment is more important. When the cross-point treatment is not en-
abled, the residuals decrease with the iterations (Figure 2.5c), but the relative errors
reach a plateau and stagnate at 10�1 (Figure 2.5d). This can be explained by noting
the only difference with the previous configuration: a HABC is prescribed on the exte-
rior boundary instead of a basic ABC, and auxiliary fields defined on the edges of the
domain ⌦tot. Without the cross-point treatment, the derivative of these auxiliary fields
is set to zero at the boundary cross-points. Then, the problem with domain decompo-
sition is not compatible with the original problem, and the iterative schemes converge
towards a wrong solution. To fix this, the continuity of the auxiliary fields living on the

41



Numerical results

NHABC = 0 NHABC = 2 NHABC = 4 NHABC = 6

0 10 20 30

10�5

10�3

10�1

GMRES iteration

Re
la

tiv
er

es
id

ua
l

(a) Residual history for configuration 1

0 10 20 30

10�5

10�3

10�1

GMRES iteration

Re
la

tiv
e
!

2 -
er

ro
r

(b) L
2
-error history for configuration 1

0 10 20 30

10�5

10�3

10�1

GMRES iteration

Re
la

tiv
er

es
id

ua
l

(c) Residual history for configuration 2

0 10 20 30

10�5

10�3

10�1

GMRES iteration

Re
la

tiv
e
!

2 -
er

ro
r

(d) L
2
-error history for configuration 2

Figure 2.5: Evolution of relative residual (left) and relative L2-error (right) in the course
of the GMRES iterations for the two configurations represented in Figure 2.4. HABC-
based transmission conditions with NHABC = 0, 2, 4, 6 auxiliary fields and � = 0.3⇡
are used. The dotted lines correspond to the results obtained when the cross-point
treatment is not used. Handling the cross-point procedure is represented by continuous
lines.

exterior boundaries must be enforced at the exterior cross-points. With the cross-point
treatment, transmission conditions are set at the exterior cross-points, and the error
decays together with the residual, as it should be. It is worth to note that the absence
of cross-point treatment in the first configuration does not break the convergence of
the error because no auxiliary fields are defined on the boundary edges. In that case,
the problem with domain partition is compatible with the original problem.

When comparing the results of the two first configurations for high values of NHABC,
we observe that the error decays faster for the second configuration, especially between
the iterations 3 and 4, where the error drops by at least 3 orders of magnitudes.
This tremendous result is likely due to the specificity of the benchmark: the exact
scattering solution verifies the exact free-space boundary condition on the boundary
and the interfaces. Since the HABC is used both as exterior boundary condition
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�1.09 0.0 1.09

(a) Solution after initializa-

tion

(b) Solution after 1 iteration (c) Solution after 2 iterations

(d) Solution after 3 iterations (e) Solution after 4 iterations (f) Solution after 5 iterations

Figure 2.6: Evolution of the solution during the GMRES iterations for configuration
1 and the HABC-based transmission condition with NHABC = 4 and � = 0.3⇡. The
first picture is obtained after initialization of the right-hand side of the transmission
system.

and transmission condition, the exact behavior of the solution is captured with a few
iterations. By contrast, when the basic ABC is used as exterior BC, small waves
reflected on the ABC must travel towards the subdomains.

4.3 Sensitivity to the HABC parameters
The efficiency of the transmission condition depends on the number NHABC of auxiliary
fields and the rotating angle �. To study the sensitivity of the convergence to these
parameters, we perform the DDM procedure with several values of NHABC and � for the
three configurations. The number of GMRES iterations to reach the relative residual
10�6 is reported in Figure 2.1 for the first configuration.

For any given �, increasing the number of auxiliary fields NHABC accelerates the
convergence, up to a certain limit, as already mentioned in the previous section. The
only exception is for � = 0. Nevertheless, increasing NHABC leads to a higher com-
putational cost and the amount of data to exchange at the cross-points. It is then
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Number of auxiliary fields (NHABC)
0 1 2 3 4 5 6 7 8 9 10

R
ot

at
in

g
an

gl
e

(�
)

0⇡ 83 101 204 254 315 374 537 415 501 556 559
74 47 40 36 34 32 30 30 29 27 26

0.1⇡ 67 37 32 28 26 25 23 22 22 21 20
62 33 29 26 24 23 22 21 21 20 20

0.2⇡ 57 31 27 25 23 22 21 20 20 20 20
54 30 26 23 22 21 20 20 20 19 19

0.3⇡ 53 29 25 23 21 21 20 19 19 19 19
54 28 24 22 21 20 19 19 19 19 19

0.4⇡ 56 28 24 22 21 20 19 19 19 19 19
58 28 23 22 21 20 19 19 19 19 19

0.5⇡ 61 28 23 22 20 20 19 19 19 19 19

Table 2.1: Number of GMRES iterations to reach the relative residual 10�6 in configu-
ration 1 for different values of the number of auxiliary fields NHABC and rotating angle
�. For each column (i.e. each value of NHABC), cells in blue correspond to the minimal
number of iterations, while cells in orange are up to 10% from the minimal number of
iterations.

advantageous to take the smallest NHABC yielding the best convergence. For practical
applications, the optimal NHABC would likely depend on the configuration.

The selection of the parameter � is an important matter, because it accelerates the
convergence of the iterative process at no additional cost. We observe first that the
Padé case (� = 0) gives the worst result in all the cases, and it should be avoided. The
optimal value for �, represented for each NHABC by blue cells in Figure 2.1, depends on
the number NHABC of auxiliary fields. This can make the parameter selection rather
tricky. Fortunately, the number of iterations is not very sensitive to � as soon as � is
sufficiently large (i.e. larger than ⇡/4 here). The range of the nearly-optimal values of
�, represented by the orange zone in Figure 2.1, is indeed rather wide.

The results for the other configurations lead to similar conclusions. They are not
reported here for the sake of conciseness. In the remainder of the chapter, we always
use � = 0.3⇡, which is a nearly-optimal value for all the configurations.

4.4 Influence of the wavenumber, the mesh density and the
number of subdomains

In this section, we study the sensitivity of the method with respect to the wavenumber
k, the characteristic number of vertices per wavelength ⌘h and the number of subdo-
mains. High frequency simulations are challenging because they require fine meshes
with high mesh densities to avoid the pollution effect. The efficiency of the method for
large values of k and ⌘h is therefore an important issue.

Figure 2.7 shows the number of iterations to reach the relative residual 10�6 with
respect to k and ⌘h for the various configurations and several values of NHABC. For
configuration 1, the dotted lines correspond to cases where the cross-point treatment is
not used. As discussed in Section 4.2, the compatibility is not ensured for configuration
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2 if the cross-point treatment is not used.
We first analyze the influence of k on the convergence. For NHABC = 0, the number

of iterations increases with respect to k in all the cases (Figures 2.7a and 2.7c). The
increase is very slow for the second configuration. For higher values of NHABC, the
convergence does not change significantly with k when the cross-point treatment is
used. As already observed, higher values of NHABC accelerate the convergence, and the
convergence is slower if the cross-point treatment is not used.

For the first configuration, the number of iterations increases with the character-
istic number of vertices per wavelength ⌘h for all the values of NHABC (Figure 2.7b).
Fortunately, the number of iterations can be kept constant when increasing ⌘h by tak-
ing NHABC larger: the number of iterations then remains approximately 20 for the
first configuration. Therefore, a convergence independent of the mesh density can be
achieved provided that NHABC is sufficiently large. This was already observed in [45]
on benchmarks without cross-points treatment. The results are slightly different for
the second configuration (Figure 2.7d): the number of iterations increases very slowly
for NHABC = 0 and 2, while it decreases until a plateau for NHABC = 6. This is likely
due to the fact that the numerical solution is closer to the exact free-space scattering
solution, and that the HABC-based transmission condition is perfectly suited to this
specific case.

These results then indicate that the method is well-adapted to high-frequency prob-
lems with high density meshes, provided that NHABC is sufficiently large.

Figure 2.8 shows the evolution of the number of GMRES iterations with respect
to the number of subdomains for both configuration. The simulations have been per-
formed with increased numbers of subdomains in the x- and y-directions for the square
domain (resp. Ndom,x and Ndom,y). The size of the domains increases with the number
of subdomains: the square domain is [0, 2Ndom,x]⇥ [0, 2Ndom,y].

The scaling behavior of the method is as expected: the number of iterations in-
creases linearly with the number of subdomains in each direction (Figures 2.8a and
2.8b). Indeed, since the transmission of propagating waves from subdomain to subdo-
main is local with the transmission conditions, a larger number of iterations is required
to allow the propagation of waves across a larger number of subdomains. Precondition-
ing techniques based on sweeps (e.g. [76, 177, 180, 188, 189]) and coarse spaces (e.g.
[39, 61, 83, 14]) allow for global transmissions of information between the subdomains
with improved convergences. The combination of our approach with preconditioning
techniques is currently under investigation.

4.5 Experiments with non-right angles

The proposed DDM is a priori suited only to wave propagation in lattice-type domain
partitions with right angles. Indeed, the compatibility relations used in the cross-point
treatment are derived for corners with right angles (see Section 2). Nevertheless, the
HABC can be used as a good approximation with smoothly-varying heterogeneous
media, since it can represent locally the transmission of waves at the interface (see e.g.
[146]). The compatibility relations derived for right-angle corners can be used as an
approximate treatment with non-right angles [147].

To analyze the method for partitions with non-right angles, we consider the scatter-
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Figure 2.7: Number of GMRES iterations to reach the relative residual 10�6 as a
function of the wavenumber k with a fixed number of vertices per wavelength ⌘h = 15
(left) or as a function of ⌘h with a fixed wavenumber k = 4⇡ (right) to assert the scaling
of the solution with k and ⌘h.
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Figure 2.8: Number of GMRES iterations to reach the relative residual 10�6 for
different number of subdomains to assert the scaling of the procedure. The size of
the main domain increases with the number of subdomains in the x- and y-directions.
Both configuration are run with NHABC = 6.

(a) Shift of 0% (b) Shift of 20% (c) Shift of 40% (d) Shift of 60%

Figure 2.9: Snapshot of the distorted partitions for the square domain.

ing benchmark and the two configurations described in Section 4.1. The partitions are
deformed by moving the cross-points, which create acute and obtuse angles, as shown
in Figure 2.9. The points are shifted for both configurations (by a factor of 20%, 40%
and 60%). In every case, HABC-based transmission conditions with different numbers
of auxiliary fields are tested (NHABC = 0, 2, 4 and 6 with � = 0.3⇡). The effect of the
cross-point treatment is analyzed by keeping or removing the corresponding terms in
the finite element scheme. The terms implemented for the right-angle case are used
without modification for non-right angles.

Table 2.2 shows the number of GMRES iterations to reach the relative residual
10�6 for each case. The relative L2-error (not shown for the sake of shortness) is always
close to 10�6, except for the second configuration (i.e. square domain with a HABC
on the exterior border) without cross-point treatment. As discussed in Section 4.2, the
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Configuration 1 Configuration 2
0% 20% 40% 60% 0% 20% 40% 60%

NHABC = 0 53 63 68 80 75 78 78 85
No cross-point NHABC = 2 35 38 39 42 37 39 40 42

treatment NHABC = 4 34 33 36 37 34 33 36 37
NHABC = 6 35 30 32 33 36 30 32 33
NHABC = 0 53 63 68 80 52 64 69 80

With cross-point NHABC = 2 25 28 30 34 20 27 30 33
treatment NHABC = 4 21 23 24 28 15 22 24 27

NHABC = 6 20 20 22 25 13 19 21 24

Table 2.2: Number of GMRES iterations to reach the relative residual 10�6 for the
different configurations with distorted domain partitions. The final relative L

2-error
is also approximately 10�6 for every case, except for the second configuration without
cross-point treatment (results not shown) where the method is not consistent.

compatibility is not ensured at the boundary cross-points for that case. It has been
observed that, when using the cross-point treatment, the method converges towards
the correct solution, even with an important distortion of the partition. In that case,
several interfaces starting from boundary cross-points are not perpendicular to the
exterior border.

In nearly all the cases, the number of GMRES iterations increases when the dis-
tortion of the partitions is amplified. For the first configuration, the increase is rather
small, with and without cross-point treatment. For the second one, the number of iter-
ations increases more rapidly when the cross-point treatment is used. Nevertheless, in
all the cases, using the cross-point treatment accelerates the convergence. The speedup
is smaller for the third configuration, but it is still significant. For the most distorted
configurations (i.e. shift with 1.5 and twist with 0.3⇡), the smallest numbers of itera-
tions always correspond to the cases with both the largest NHABC and the cross-point
treatment. These results show the robustness of the approach with non-right angles.

5 Conclusion

In this chapter, a non-overlapping DDM with HABC-based transmission operators
was considered for the parallel finite-element solution of scattering and wave propa-
gation problems. We presented a suitable way to tackle the cross-point problem for
settings with lattice-type domain partitions. In particular, we addressed cases where
a Padé-type HABC operator is used for the transmission condition (to accelerate the
convergence of the procedure), for the exterior boundary condition (to improve the
accuracy of the solution) or for both conditions.

To handle the cross-points, suitable relations and additional transmission variables
were introduced at the points. Numerical results have shown that the convergence rate
of the obtained DDM is improved. Systematic studies on the way the convergence
depends on the tuning parameters of the method as well as the frequency, the mesh re-
finement and the number of subdomains were presented. Configurations with distorted
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partitions were tested. While the method was conceived for lattice-type partitions with
right angles, it also performed very well with partitions having non-right angles.

In Chapter 4, the HABC-based DDM will be applied to more challenging het-
erogeneous and three-dimensional test cases, and its performance compared with the
PML-based DDM that we will introduce in the next chapter.
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9

Cross-points for perfectly matched layer transmis-
sion conditions3

In this chapter, a non-overlapping substructured DDM with PML transmission

conditions for checkerboard (Cartesian) decompositions that takes cross-points

into account is presented. In such decompositions, each subdomain is sur-

rounded by PMLs associated to edges and corners. The continuity of Dirichlet

traces at the interfaces between a subdomain and PMLs is enforced with La-

grange multipliers. This coupling strategy offers the benefit of naturally com-

puting Neumann traces, which allows to use the PMLs as discrete operators

approximating the exact Dirichlet-to-Neumann maps. Two possible Lagrange

multiplier finite element spaces are presented, and the behavior of the corre-

sponding DDM is analyzed on several numerical examples.

1 Introduction

In this chapter, we present a non-overlapping DDM with PML-based transmission con-
ditions for two-dimensional Helmholtz problems. The method, designed for checker-
board domain partitions, takes naturally into account interior and exterior cross-points,
with PMLs considered as operators imposed on interfaces through Lagrange multipli-
ers. Two different discretization strategies for the Lagrange multipliers are studied.
The main results of this chapter have been published in [168].

The chapter is organized as follows. In Section 2 the Helmholtz problem is intro-
duced on a rectangular domain, and the coupling with surrounding PMLs (i.e. four
PMLs associated to the edges of the rectangle, and four PMLs associated to the corners)
using Lagrange multipliers is presented. Two discretizations for the Lagrange multipli-
ers are introduced, and the solvability and the stability of the resulting finite element
problems are analyzed. Then, in Section 3, the DDM with PML-based transmission
operators is introduced. The cross-point treatments are naturally taken into account
through the PMLs used at the corners of the rectangular subdomains. In Section 4,
some numerical examples are presented to analyze the behavior of the proposed meth-
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Figure 3.1: A square domain ⌦ in blue with PML regions in orange.

ods. After an analysis of the influence of the PML parameters, the convergence of the
domain decomposition algorithm is studied on representative finite element problems
with homogeneous media.

2 Weak-coupling of PMLs with Lagrange multipliers

2.1 Definition of the problem
We consider the two-dimensional Helmholtz problem (1.4) of Chapter 1 defined on a
square domain ⌦, which is surrounded with PML regions associated to the edges and
the corners of ⌦. These families of PML, respectively called edge PMLs and corner
PMLs, are illustrated in Figure 3.1. The edges and the corners of ⌦ are denoted �i

(with i = 1, . . . , 4) and Ci,j (with i, j = 1, . . . , 4, such that �i and �j are adjacent),
respectively. The edge PML and corner PML associated to �i and Ci,j are denoted ⌦i

and ⌦i,j, respectively. The interface between a corner PML ⌦i,j and an edge PML ⌦i

is denoted �i,j. Let us note that ⌦i,j = ⌦j,i but �i,j 6= �j,i. The exterior boundaries of
the edge PMLs and the corner PMLs are denoted with �ext

i
and �ext

i,j
, respectively.

Denoting the union of the domain ⌦, the edge PMLs and the corner PMLs as ⌦all,
the global problem reads

(
div (Dgradw) +Dk

2
w = �f, in ⌦all,

ntot · (D gradw) = 0, on @⌦all,
(3.1)

where k is the (positive) wavenumber, the tensor field D(x) and the scalar field D(x)
are material properties as defined in Section 3.3 of Chapter 1, f(x) is a source term,
and nall is the outgoing normal. Inside the domain ⌦, the material properties are
D = diag (1, 1) and D = 1, and they depend on absorption functions in the PML
regions. The definition of D(x) and D(x) in the PML regions is discussed in Section 4.
The natural functional space for the global solution w is H

1(⌦all).
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The global problem (3.1) can be rewritten as the coupling of nine subproblems as-
sociated to the square domain ⌦ and the edge/corner PML regions. The corresponding
local solutions are denoted u, ui and ui,j, for ⌦, ⌦i and ⌦i,j, respectively. Let us note
that ui,j = uj,i. The global solution w is simply obtained by combining these local
solutions. This approach is quite non-standard for such problems. Indeed, one usu-
ally directly solves Problem 3.1 with the field w defined in H

1(⌦all). Nevertheless, this
classical approach would require additional treatments to compute the Neumann traces
needed to build a sub-structuring DDM on the interfaces as explained in Section 2.2
and further in Section 3. Choosing the Lagrange multipliers formulation will allow us
to gain direct access to the Neumann traces. The nine coupled subproblems read as
follows:

• Subproblem associated to the square domain ⌦:
(
� u+ k

2
u = �f in ⌦,

@nu = n · (Di gradui) on each �i,
(3.2)

where n is the outgoing normal with respect to ⌦;

• Subproblems associated to each edge PML ⌦i (with i = 1, . . . , 4):
8
>>><

>>>:

div (Di gradui) +Dik
2
ui = 0 in ⌦i,

ni · (Di gradui) = 0 on �ext

i
,

ui = u on �i,

ni · (Di gradui) = ni · (Di,j gradui,j) on each �i,j,

(3.3)

where ni is the outgoing normal with respect to ⌦i;

• Subproblems associated to each corner PML ⌦i,j (with i, j = 1, . . . , 4 such that
�i and �j are adjacent):

8
>>><

>>>:

div (Di,j gradui,j) +Di,jk
2
ui,j = 0 in ⌦i,j,

ni,j · (Di,j gradui,j) = 0 on �ext

i,j
,

ui,j = ui on �i,j,

ui,j = uj on �j,i,

(3.4)

where ni,j is the outgoing normal with respect to ⌦i,j.

In a nutshell, each local solution verifies the Helmholtz equation and a homogeneous
Neumann condition on the exterior boundary (if any), and the coupling is performed
by enforcing the continuity of the Dirichlet and Neumann traces at the interfaces.

2.2 Variational formulation with Lagrange multipliers
In the domain decomposition procedure, every rectangular subdomain of the checker-
board partition will be surrounded with edge and corner PMLs. The standard varia-
tional formulation based on System (3.1) could be used for each subproblem. However,
the drawback of this approach lies in the lack of direct availability of the Neumann

53



Weak-coupling of PMLs with Lagrange multipliers

traces at the interfaces between each subdomain and the corresponding surrounding
PMLs, while the domain decomposition procedure requires the knowledge of both
Dirichlet and Neumann traces at these interfaces. In this work, we consider an al-
ternative variational formulation based on the coupled systems (3.2), (3.3) and (3.4),
where the continuity conditions at the interfaces are enforced by using Lagrange multi-
pliers. This approach offers the benefit to naturally give access to the Neumann traces
thanks to the Lagrange multipliers.

Let us introduce four edge Lagrange multipliers �i on the interfaces �i (with i =
1, . . . , 4), and eight corner Lagrange multipliers �i,j on �i,j (with i, j = 1, . . . , 4 such
that �i and �j are adjacent). These multipliers will be used to enforce the following
continuity conditions:

u� ui = 0 on each �i,

ui � ui,j = 0 on each �i,j.
(3.5)

The dualization of these continuity conditions leads to Lagrange multipliers that weakly
verify

�i = ni · (Di gradui) on each �i,

�i,j = ni,j · (Di,j gradui,j) on each �i,j,
(3.6)

which corresponds to the required Neumann traces that appear in the definition of the
subproblems. Let us note that �i,j 6= �j,i.

In order to write the variational formulation in a concise form, we introduce the
set of u-fields, denoted uall, defined such that the restriction of uall on ⌦, ⌦i and ⌦i,j

is respectively u, ui and ui,j. Similarly, the set of �-fields, denoted �all, is defined such
that the restriction of �all on �i and �i,j is respectively �i and �i,j. The sets of fields
uall and �all belong to the following functional spaces:

U := H
1(⌦)�

M

i

H
1(⌦i)

�
�

M

i,j

H
1(⌦i,j)

�
, (3.7)

L :=

M

i

H
�1/2(�i)

�
�

M

i,j

H
�1/2(�i,j)

�
, (3.8)

where H
�1/2(·) is the dual space of the Dirichlet trace space H

1/2(·). The variational
formulation of the problem then reads: Find (uall,�all) 2 U ⇥ L such that

(
h(uall, vall) + c(�all, vall) = l(vall),

c(uall, µall) = 0,
(3.9)

holds for all test functions (vall, µall) 2 U ⇥ L, where the sesquilinear forms and the
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antilinear form are defined as

h(uall, vall) :=

Z

⌦

�gradu · grad v̄ + k
2
uv̄ d⌦

+
X

i

Z

⌦i

�Di gradui · grad v̄i +Dik
2
uiv̄i d⌦i

+
X

i,j

Z

⌦i,j

�Di,j gradui,j · grad v̄i,j +Di,jk
2
ui,j v̄i,j d⌦i,j, (3.10)

c(uall, µall) :=
X

i

Z

�i

(u� ui)µ̄i d�i +
X

i,j

Z

�i,j

(ui � ui,j)µ̄i,j d�i,j, (3.11)

l(vall) := �

Z

⌦

fv̄ d⌦. (3.12)

The form h(·, ·) is the standard sesquilinear form for the Helmholtz equation with the
PML material parameters, and the form c(·, ·) corresponds to the coupling with the
Lagrange multipliers. The overline ·̄ denotes the complex conjugate of a field.

Note that in the case of the classical approach for handling PMLs mentioned above,
one could define a field on each interface, namely �i on each �i and �i,j on each �i,j.
However, a singularity would remain for each corner formulation since there will be
two unknowns associated to the corner node, i.e. one for the fields �i,j and one for the
field �j,i.

2.3 Finite element discretizations
For the finite element discretization of Problem (3.9), we consider two conformal ap-
proximation spaces, Uh

⇢ U and L
h
⇢ L, and the discrete fields uh

all
2 U

h and �h
all
2 L

h.
The approximate variational formulation then reads: Find

�
u
h

all
,�

h

all

�
2 U

h
⇥ L

h such
that (

h(uh

all
, v

h

all
) + c(�h

all
, v

h

all
) = l(vh

all
),

c(uh

all
, µ

h

all
) = 0,

(3.13)

holds for every test function
�
v
h

all
, µ

h

all

�
2 U

h
⇥ L

h. This formulation leads to the
following linear system: ✓

U LT

L 0

◆✓
uh

all

lh
all

◆
=

✓
f
0

◆
, (3.14)

where U is a block matrix derived form the sesquilinear form h(·, ·), L is a block matrix
coming form the sesquilinear form c(·, ·) and f is the source vector. The vectors uh

all
and

lh
all

contain the degrees of freedom associated to the discrete solution and the Lagrange
multipliers, respectively. Let us note that U does not depend on the approximation
space L

h, while L does.
In this work, the space U

h is built by using standard hierarchical H1-conforming
basis functions. The approximation space for the Lagrange multipliers, Lh, is based
either on hierarchical H

1-conforming basis functions (choice called “continuous dis-
cretization”) or on the projection of hierarchical H(div)-conforming basis functions
on the normal of the each interface (choice called “discontinuous discretization”). As
we will see, this choice influences the well-posedness of Problem (3.13): the algebraic
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system may not be solvable and stability issues may arise. Both discretizations are
described and strategies to address these issues are discussed in Sections 2.3.1 and
2.3.2.

We recall herafter the conditions for the well-posedness of Problem (3.13) (see
e.g. [37, 79]).

Theorem 3. (Well-posedness) Problem (3.13) is well-posed if and only if there exist
positive constants � and �, independent of the mesh-size h, such that

inf
u
h
all2K

sup
v
h
all2K

|h(uh

all, v
h

all)|

kuh

allkUhkuh

allkUh

� � (3.15)

inf
µ
h
all2Lh

sup
u
h
all2Uh

|c(uh

all, µ
h

all, )|

kuh

allkUhkµh

allkLh

� � (3.16)

where k · kUh and k · kLh are norms associated to the approximation spaces U
h and L

h,
and K is the kernel of the operator associated to the sesquilinear form c(·, ·) in U

h.

This theorem can be derived from Theorems 1 and 2 of Chapter 1 applied to
problems written as (3.13). It also implies the existence and the uniqueness of the
solution for any given mesh, and the stability of the problem with stability constants
independent of the mesh. The following theorem gives the solvability conditions for
System (3.14).

Theorem 4. (Solvability) For a given mesh, the matrix of problem (3.14) is non
singular if and only if the following two conditions are both satisfied:

a. UKK : K ! K is surjective (or, equivalently, is injective),

b. L : Cn
! Cm is surjective (or, equivalently, LT is injective),

where UKK is the projection of U into the kernel K of L.

If the solution belongs to the kernel of L, the second line of System (3.14) is verified.
This line corresponds to relations that are enforced with the Lagrange multipliers.
Assuming that the approximate solution is continuous at the interfaces thanks to the
Lagrange multipliers, the resulting problem corresponds to the discretization of the
standard Helmholtz problem with PML over ⌦all, which is well-posed [34, 35, 36].

2.3.1 Strategies with continuous Lagrange multipliers

In the first approach, the approximation space L
h is built by using hierarchical H1-

conforming basis functions on each interface. Then, the Lagrange multipliers are con-
tinuous over each interface. We assume that the same polynomial degree is used for
both L

h and U
h. The basis functions used for Lh then correspond to the restriction on

the interfaces of the basis functions used for U
h. The very first basis functions corre-

spond to standard P1 finite elements, and the high-order basis functions are built by
using the approach described e.g. in [176]. The basis functions for the one-dimensional
case are represented on Figure 3.2.
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Figure 3.2: Hierarchical H1-conforming basis functions

Unfortunately, the direct implementation of Problem (3.13) with continuous La-
grange multipliers leads to algebraic systems that are not solvable. Indeed, L is not
surjective (or, equivalently, LT is not injective), and the second solvability condition
of Theorem 4 is not met. It can be shown by considering the relations verified on the
interfaces around the cross-point C1,2, represented on Figure 3.1c. The continuity of
the discrete solution is enforced weakly by using the following relations:

Z

�1

(uh
� u

h

1)µ̄
h

1 d�1 = 0, (3.17)
Z

�2

(uh
� u

h

2)µ̄
h

2 d�2 = 0, (3.18)
Z

�1,2

(uh

1 � u
h

1,2)µ̄
h

1,2 d�1,2 = 0, (3.19)
Z

�2,1

(uh

2 � u
h

1,2)µ̄
h

2,1 d�2,1 = 0, (3.20)

where the test functions belong to the approximation spaces associated to the Lagrange
multipliers. In these relations, the discrete solutions, u

h, u
h

1 , u
h

2 and u
h

1,2, can be
replaced by their representations with the basis functions. Only the degrees of freedom
associated to the interfaces are involved in these relations. The discrete solutions
appearing in Equation (3.17) can be written as

u
h
|�1 =

X

j

u
h,j
�j|�1 and u

h

1 |�1 =
X

j

u
h,j

1 �1,j|�1 , (3.21)

where �j and �1,j denote basis functions of uh and u
h

1 associated to the interface �1.
The sums are preformed over the J degrees of freedom of uh associated to �1 and the J1
degrees of freedom of uh

1 associated to �1. Finally, substituting these expressions into
Equation (3.17), and using the basis functions of the Lagrange multipliers, { 1,i}i=1,...,I ,
as test functions leads to

Z

�1

 
X

j

u
h,j
�j �

X

j

u
h,j

1 �1,j

!
 1,i d�1 = 0 for i = 1, . . . , I. (3.22)

57



Weak-coupling of PMLs with Lagrange multipliers

⌦ ⌦1

⌦2 ⌦1,2

•

•

•

•

•

•

•

•

•

•

•

•

•

u
C

•

u
C
1

•
u
C
2

•

u
C
1,2

•
C1,2

�uC

�uC

1

�uC

2

�uC

1,2

••

• •

••

•

••

•

• •

•

••

•

••

• •

 �C

1

 �1

 �C

2

 �2

 �C

1,2

 �1,2

 �C

2,1

 �2,1

Figure 3.3: Degrees of freedom and P1 basis functions involved around the cross-point
C1,2

Denoting uh and uh1 the vectors of degrees of freedom associated to the interface �1, we
obtain

M�1u
h
�M1,�1u

h

1 = 0, (3.23)

where
(M�1)ij =

Z

�1

�j  1,i d� and (M1,�1)ij =

Z

�1

�1,j  1,i d� (3.24)

are mass matrices of size I⇥J and I⇥J1, respectively. If the same polynomial degree is
used for the finite element approximation of the fields uh, uh

1 and µ
h

1 , the corresponding
basis functions are identical on the interface �1. Then, Equation (3.23) can be rewritten
as

Mcont

�1

�
uh � uh1

�
= 0, (3.25)

and Mcont

�1
is a standard square mass matrix. Since this matrix is non-singular, we

have uh = uh1 , and then u
h
|�1 = u

h

1 |�1 . In particular, the degrees of freedom of uh

and uh1 associated to the cross-point C1,2 are equal, i.e. uC = u
C

1 . The basis functions
associated to the cross-point C1,2 are represented on Figure 3.3. The same reasoning
can be carried out for the other interfaces around the cross-point C1,2, leading to the
following relations,

u
C = u

C

1 , (3.26)
u
C = u

C

2 , (3.27)
u
C

1 = u
C

1,2, (3.28)
u
C

2 = u
C

1,2, (3.29)

where u
C

2 and u
C

1,2 are the degrees of freedom at the cross-point associated to u
h

2 and
u
h

1,2. Because these relations are linear dependent, there is also a linear dependency
between the relations resulting from the discretization of (3.17)-(3.20). Therefore, L is
not surjective, and Problem (3.14) is not solvable.

Several approaches can be used to recover the surjectivity of matrix L, and then to
make Problem (3.14) solvable:
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a. An additional constraint on the unknowns can be added in order to avoid the lin-
ear dependency between Equations (3.26)-(3.29). This can be done by introduc-
ing an additional Lagrange multiplier, denoted �C , associated to the cross-point.
In this work, the following constraint is used:

�
C

1 � �
C

2 + �
C

1,2 � �
C

2,1 = 0, at C1,2, (3.30)

where �C1 , �C2 , �C1,2 and �
C

2,1 are the Lagrange multipliers associated to the in-
terfaces around the cross-point C1,2. Then, terms involving �

C are introduced
in the relations associated to these multipliers, in such a way that Equations
(3.26)-(3.29) become

u
C = u

C

1 + �
C
, (3.31)

u
C = u

C

2 � �
C
, (3.32)

u
C

1 = u
C

1,2 + �
C
, (3.33)

u
C

2 = u
C

1,2 � �
C
. (3.34)

These relations are not longer linearly dependent, and Problem (3.14) with the
supplementary equation becomes solvable. A similar strategy was used by Peng
and Lee [160] to improve a domain decomposition method for time-harmonic
electromagnetic problems.

b. A penalization strategy (see e.g. [37]), where a mass matrix is added in Prob-
lem (3.14), can be used to obtain the following modified system:

✓
U LT

L ⌧M

◆✓
uh

all

lh
all

◆
=

✓
f
0

◆
, (3.35)

where ⌧ is a penalization parameter to be tuned and M is the standard mass
matrix associated to the Lagrange multiplier space Lh. Because of the new block,
the continuity conditions (3.5) are not exactly verified. They become

u� ui = ⌧�i, on each �i,

ui � ui,j = ⌧�i,j, on each �i,j.
(3.36)

Thanks to the penalty, a right-hand-side term is added to Equation (3.25), and
the linear dependency between the relations at the corner is avoided.

c. A last strategy consists in taking approximate fields with different polynomial
degrees in the domain and the PML regions. In preliminary tests (not shown),
we have observed that, if the polynomial degree in the edge PMLs and the corner
PMLs is larger by one and two, respectively, than in the domain, then the system
is solvable. This strategy, which involves much more degrees of freedom than the
others, will not be investigated further in this work.

Let us highlight that continuity of the Dirichlet traces at the interfaces is preserved
exactly with the first strategy, but it is relaxed with the two last ones.
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Figure 3.4: Hierarchical H(div)-conforming basis functions

2.3.2 Strategies with discontinuous Lagrange multipliers

For the second approach, the basis functions of the approximation space L
h corre-

spond to the projection of hierarchical H(div)-conforming basis functions (defined on
the domain and the PML regions) on the normal to the interfaces. In two dimensions,
the hierarchical H(div)-conforming basis functions correspond to the 90-degree rota-
tion of H(curl)-conforming basis functions. The first-order H(curl)-conforming basis
functions are the Nédélec basis functions [155, 154], and the higher-order functions are
associated to the edges and the face of the elements (see e.g. [176]). The first basis
functions for the Lagrange multipliers are represented on Figure 3.4. By contrast with
the previous discretization, the basis functions are discontinuous between the elements,
and the continuity of the Lagrange multipliers is not ensured. This approach is called
the discontinuous discretization.

Depending on the polynomial degree used for the discontinuous Lagrange multi-
pliers, the solvability issue discussed in the previous section can be naturally avoided.
Indeed, with the discontinuous discretization, System (3.22) can be rewritten as

Mdisc

�1

�
uh � uh1

�
= 0, (3.37)

where Mdisc

�1
is a rectangular mass matrix associated to the discontinuous basis functions

{ 1,i}i used for the Lagrange multipliers and the continuous basis functions {�j}j used
for the discrete solutions (see Equation (3.24)). This matrix cannot be square. If the
polynomial degree of the Lagrange multipliers is lower than or equal to the degree
of the discrete solution, then the system is underdetermined and uh = uh1 does not
hold. In this case, the continuity of the discrete solution at the interfaces is not exactly
verified, but the system is solvable since L is full-rank. In the opposite case, Equation
(3.37) is a homogeneous overdetermined system, and uh = uh1 is the trivial solution.
The problem in not solvable because L is not surjective, but the penalization strategy
developed in the previous section can be used to make it solvable.

Unfortunately, we have observed that the problem is not stable if the same poly-
nomial degree is used for both the discontinuous Lagrange multipliers and the discrete
solutions. In that case, the first inf-sup condition of Theorem 3 is a priori not met, and
the problem is not well-posed. For many practical situations, it is difficult to prove the
first inf-sup condition. This is why, a numerical Chapelle-Bath test [23, 26] is applied
to evaluate the inf-sup constant � for the different discretizations. In a nutshell, a
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modified version of the system is considered,
✓
U LT

L �
1
s
M

◆✓
uh

all

lh
all

◆
=

✓
f
0

◆
, (3.38)

where s is a positive constant and M is the mass matrix associated to the Lagrange
multipliers. Taking s ! 1 brings back the original system (3.14). The inf–sup test
consists in checking that, using a sequence of meshes with decreasing mesh size h, the
first non-vanishing eigenvalue ↵h of the problem

1

h
(LTM�1L)vh = ↵hU

T vh, (3.39)

does not depend too much on the mesh size h. Further, the inf-sup constant is given
by � = minh �h, with �h := ↵

2
h
.

In Figure 3.5a, the value �h is plotted for the continuous and the discontinuous
discretizations of the Lagrange multipliers with several stabilization strategies. These
results are obtained for a benchmark with the square domain [�1, 1]⇥ [�1, 1], meshes
with cell sizes from h = 0.03 to 0.32, the polynomial degree p = 2 for the discrete
solution, and the penalization parameter ⌧ = 0.002 h

2. When the discontinuous dis-
cretization is used with the same polynomial degree for both the Lagrange multipliers
and the discrete solution, the value �h decreases significantly with 1/h, which indicates
that the formulation is not stable, as mentionned earlier. By contrast, we observe that
the other combinations are stable.

To study the effect of the discretization of the Lagrange multipliers on the discrete
solution, we consider the relative continuity error at the interfaces, defined as

✏ =

P
i

R
�i
ku

h
� u

h

i
k
2 d�i +

P
i,j

R
�i,j
ku

h

i
� u

h

i,j
k
2 d�i,j

P
i

R
�i
kuhk2 d�i +

P
i,j

R
�i,j
kuh

i
k2 d�i,j

. (3.40)

This error is plotted according to the mesh size on Figure 3.5b for the different ap-
proaches. As expected, only the continuous discretization with the additional con-
straint leads to the perfect continuity of the Dirichlet trace (i.e. the relative error ✏ is
close to the machine epsilon). Only that approach enforces exactly the continuity of the
discrete field, while the continuity is relaxed with the other ones. The Neumann trace
computed on the upper interface of Figure 3.1, namely on �3,2 [ �2 [ �1,2, is shown
on Figure 3.5c for the different approaches. The trace obtained with the unstable
discontinuous discretization clearly oscillates, while the others are smooth.

3 DDM with PML transmission conditions for
checkerboard domain partitions

In this section, the non-overlapping domain decomposition method (DDM) presented
in Section 6 of Chapter 1 is applied with the PML ransmission conditions for checker-
board (Cartesian) domain partitions. Transmission operators based on PMLs have
been used to accelerate domain decomposition solvers [177, 188] and precondition-
ing techniques [184, 172, 14, 129]. However, for domain decomposition solvers with
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Figure 3.5: Interface issues and Neumann traces.

checkerboard domain partitions, an inappropriate treatment of the interior cross-points
(i.e. points where more than two subdomains meet) and the exterior cross-points
(i.e. points where an interface meet an exterior border) may degrade convergence or
even lead to incorrect results. In this work, the PML is used as a DtN operator thanks
to the strategies developed in the previous section, leading to a domain decomposition
method that naturally takes into account cross-points. Based on the standard non-
overlapping DDM is presented in Section 6 of Chapter 1, modifications to use PMLs
as transmission operators and to address cross-points are explained in Sections 3.1 and
3.2.
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times and the domains are represented with
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Figure 3.6: Four subdomains and a cross-point X between them.

3.1 The PML-based transmission operator

The PML can be used rather naturally as a DtN operator thanks to the weak coupling
introduced in the previous section. With that approach, the continuity of the solution
at the interface between the PML and a given domain is enforced weakly thanks to a
Lagrange multiplier, and the value of this multiplier can be interpreted as the Neumann
trace of the solution. Therefore, the PML can be seen as an operator taking a Dirichlet
trace and returning the corresponding Neumann trace. For the interface edge ⌃n,i of
subdomain ⌦n, the transmission operator Tn,i is formally defined as

Tn,i : H
1/2(⌃n,i) 7! H

�1/2(⌃n,i) : un|⌃n,i 7! Tn,iun := �n,i, (= @nn,iun|⌃n,i)
(3.41)

where �n,i is the Lagrange multiplier used to prescribed the continuity of the solution
at the interface between the subdomain and the PML.

In order to clarify the use of the PML-based DtN operator in the DDM, let us con-
sider a rectangular waveguide partitioned into successive layers, with a homogeneous
Neumann boundary condition on the lateral borders. In this configuration, every sub-
domain ⌦n has two neighbors, expect both subdomains that are at the extremities of the
partition. At both interface edges, denoted ⌃n,1 and ⌃n,2, the subdomain is extended
with two PMLs, denoted ⌦n,1 and ⌦n,2, respectively. The variational formulation as-
sociated to ⌦n can be written as: Find (un, un,1, un,2) 2 H

1(⌦n)⇥H
1(⌦n,1)⇥H

1(⌦n,2)
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and (�n,1,�n,2) 2 H
�1/2(⌃n,1)⇥H

�1/2(⌃n,2) such that
Z

⌦n

�
� gradun · grad v̄n + k

2
unv̄n

�
d⌦n

+
X

i

Z

⌦n,i

�
� Dn,i gradun,i · grad v̄n,i +Dn,i k

2
un,iv̄n,i

�
d⌦n,i

+
X

i

Z

⌃n,i

�n,i(v̄n � v̄n,i) d⌃n,i = �

Z

⌦n

fv̄n d⌦n �

X

i

Z

⌃n,i

gn,iv̄n d⌃n,i, (3.42)

holds for all test functions (vn, vn,1, vn,2) 2 H
1(⌦n)⇥H

1(⌦n,1)⇥H
1(⌦n,2), and

X

i

Z

⌃n,i

(un � un,i)µ̄n,i d⌃n,i = 0 (3.43)

holds for all test functions (µn,1, µn,2) 2 H
�1/2(⌃n,1)⇥H

�1/2(⌃n,2). The transmission
variables are updated using the Lagrange multipliers. The update formula (1.61) of
Chapter 1 becomes

g
(`+1)
n,i

= �g(`)
m,i0 + 2�(`)

m,i0 . (3.44)

To summarize, every subdomain is extended with PMLs (second term in Equa-
tion (3.42)) and Lagrange multipliers are used as Neumann traces in the subdomain
(third term in Equation (3.42)) and the update formula (Equation (3.44)). Note that,
compared to an overlapping DDM, no communication between subdomains is needed
in the PMLs, which can be generated (“grown”) completely independently.

3.2 DDM with PML transmission conditions and cross-point
treatment

The approach can be applied to the Helmholtz problem (1.4) of Chapter 1 with a
checkerboard domain partition. If there is only one subdomain (i.e. N = 1), the
variational formulation (3.42) should correspond to the original problem with PMLs
at the boundaries, leading to the variational formulation (3.9). If there are more than
one subdomain, the same variational formulation can be used for every subdomain,
but terms with transmission variables must be added in the right-hand side of the first
equation in order to enforce the coupling between the subproblems.

To write the subproblem associated to subdomain ⌦n, we introduce the sets of
un-fields and �n-fields, denoted un,all and �n,all, which contain the solutions and the
Lagrange multipliers associated to the domain ⌦n, the surrounding PML regions and
the interfaces. The corresponding functional spaces are denoted Un and Ln. More
precise definitions of these objects are provived in Section 2.2 for the problem associated
to ⌦. The discretization strategies discussed in Section 2.3 will be used.

In the general case, the subproblem associated to ⌦n reads: Find (un,all,�n,all) 2
Un ⇥ Ln such that

(
hn(un,all, vn,all) + cn(�n,all, vn,all) = ln(vn,all),

cn(un,all, µn,all) = 0,
(3.45)
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where the sesquilinear forms hn(·, ·) and cn(·, ·) are defined similarly to h(·, ·) and c(·, ·)
(see Equations (3.10) and (3.11)), and the antilinear form ln(·) is defined as

ln(vn,all) := �

Z

⌦n

fv̄n d⌦n �

X

i

Z

⌃n,i

gn,iv̄n d⌃n,i �

X

i,j

Z

⌃n,i,j

gn,i,j v̄n,i d⌃n,i,j. (3.46)

The second term in the right-hand side member of the previous equation introduces
a coupling at the interface subdomain-PML for subproblems corresponding to neigh-
boring subdomains. The last term corresponds to a coupling at interfaces PML-PML.
These couplings are illustrated on Figure 3.6b. Let us not that these terms appear only
if ⌃n,i is an interface edge of the subdomain. In that case, the transmission variables
are updated using the update relations

g
(`+1)
n,i

= �g(`)
m,i0 + 2�(`)

m,i0 on ⌃n,i (3.47)

g
(`+1)
n,i,j

= �g(`)
m,i0,j0 + 2�(`)

m,i0,j0 on ⌃n,i,j, (3.48)

where the variables gn,i and gn,i,j can be considered as edge and corner transmission
variables, respectively, and the Lagrange multipliers �m,i0 and �m,i0,j0 are computed
in the subproblem associated to the neighboring subdomain ⌦m. The overscript `
corresponds to quantities computed at step ` of the iterative procedure. This version
of the DDM naturally takes into account cross-points through the definition of the
corner transmission variables.

In what follows, the subproblems are solved by using the finite element schemes
described in the Section 2. The same discretizations are used for both the Lagrange
multipliers and the transmission variables.

4 Numerical results

The performance of the proposed DDM and the discretization strategies for the La-
grange multipliers and the transmission variables are studied by using a reference
two-dimensional benchmark described in Section 4.1. First, the continuous and dis-
continuous discretizations and the different stabilization techniques are compared in
Section 4.2, and two approaches are selected. For the selected approaches, the param-
eters of the PML transmission conditions, namely the absorbing function and the layer
thickness, are discussed in Sections 4.3 and 4.4, respectively. Finally, the influence of
the wavenumber and the mesh density on the convergence of the DDM is analyzed in
Section 4.5. The method will be tested with a smoothly varying heterogeneous medium
in Chapter 4.

4.1 Description of the reference benchmark and PML parame-
ters

Let us consider the same scattering benchmark as the one introduce in Section 4.1
of Chapter 2. The simulations are performed with a square computational domain,
⌦tot = [L�x, Lx] ⇥ [L�y, Ly], surrounded with PMLs of thickness �PML. The material
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parameters D and D are defined as

D(x, y) = diag

✓
�y(y)

�x(x)
,
�x(x)

�y(y)

◆
and D(x, y) = �x(x)�y(y), (3.49)

where �x(x) and �y(y) defined in Equations 1.31 of Chapter 1. The absorption functions
functions �x(x) and �y(y) are set to zero inside the domain, and they increase along
the associated Cartesian directions inside the PMLs. Shifted hyperbolic absorbing
functions are used inside the PMLs. Then, the function �x(x) is defined as

�x(x) =

8
><

>:

1
�
(�PML � (L�x � x))� 1

�
�PML if x 2 [L�x � �PML, L�x],

0 if x 2 [L�x, Lx],

1
�
(�PML � (x� Lx))� 1

�
�PML if x 2 [Lx, Lx + �PML].

(3.50)

The definition is similar for �y(y). These functions form a couple such that a PML
extruded in the x-direction (i.e. ⌦1 and ⌦3 on Figure 3.1a) is associated to (�x(x), 0), a
PML extruded in the y-direction (i.e. ⌦2 and ⌦4) is associated to (0, �y(y)), and corner
PMLs are associated to (�x(x), �y(y)).

For the PML transmission conditions, the material parameters are defined similarly.
Let us note that the absorbing functions and the layer thicknesses can be different for
the interface edges (i.e. in the transmission conditions) and the boundary edges (i.e.
for the exterior boundary condition) of the domain partition. Different combinations
are tested in Sections 4.3 and 4.4.

In the following sections, the DDM is tested with the same checkerboard partition
of ⌦tot into a 3⇥3 grid as presented in Chapter 2. The disk of radius R = 0.5 is placed
in the middle of the lower left subdomain, and the borders of the square subdomains
are of length 2. Every subdomain is meshed with triangular elements having straight
edges, and the surrounding PMLs are generated with extruded square elements. The
wavenumber is k = 4⇡ and the characteristic mesh size is h ⇡ 1/30. The numerical
results were obtained with GmshDDM (Chapter 6) and the related implementation of
the test cases is available at the following address: https://gitlab.onelab.info/
gmsh/ddm/-/tree/master/examples/helmholtz/crossPoints.

4.2 Comparison of the discretization strategies for the La-
grange multipliers and the transmission variables

The convergence histories for both continuous and discontinuous discretizations and
the different stabilization strategies are presented in Figure 3.7. For each case, the
relative GMRES residual is plotted as a function of the number of GMRES iterations
(on the left). The relative L2-error between the numerical solution and a reference
numerical solution is also shown (on the right). This error is computed by comparing
the DDM solution un in each subdomain with the reference numerical solution umono

computed on ⌦glo with the same mesh without domain decomposition procedure,

error =

vuut
P

N

n=1

R
⌦n

|un � umono|
2 d⌦nR

⌦glo

|umono|
2 d⌦glo

. (3.51)
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Figure 3.7: Convergence of the relative residual and the relative error for each dis-
cretization and stabilization strategy. The computations are performed for NPML = 6,
and polynomial degrees p = 2 and 4.

The u-fields are discretized with hierarchical H1-conforming basis functions of poly-
nomial degree p equal to 2 and 4. For both boundary and transmission conditions,
the PML thickness corresponds to NPML = 6 mesh cells (i.e. �PML = 6h) and shifted
hyperbolic absorbing functions are used.

Let us note that the reference numerical solution umono is not exactly the same in
all the cases. Then, the comparison is not carried out with the same reference problem.
Indeed, because the discretization of the Lagrange multipliers is the same for both the
exterior boundary condition and the transmission conditions, the reference problem
depends on the considered discretization. This approach is chosen because in practice,
when a discretization is chosen, it will be used everywhere.

For p = 2, the best convergence rate is provided by the continuous discretization
(both versions) and the discontinuous discretization with both the polynomial degree
p + 1 and the penalty term (Figure 3.7a). The decay of residual is slower with the
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p = 2 p = 4
Continuous + corner eq. 60 160

Continuous + penalty 60 160
Discontinuous(p) 56 154

Discontinuous(p� 1) 26 100
Discontinuous(p) + penalty 56 154

Discontinuous(p+ 1) + penalty 98 220

Table 3.1: The number of degrees of freedom by element thickness for each strategy.
The computations are performed for NPML = 6, and polynomial degrees p = 2 and 4.

other approaches based on the discontinuous discretization. However, in nearly all
the cases, the relative error decreases until a plateau, which the level depends on
the case (Figure 3.7b). This behavior can be explained because, if the discontinuous
discretization and/or the penalty strategy is used, the equivalence between the reference
problem and the coupled subproblems is not exactly ensured, which introduces an
error. The discontinuous discretization with both the higher polynomial degree and
the penalty is the notable exception. Similar results are obtained with p = 4, except
that both the relative residual and the relative error reach 10�6 more rapidly with the
continuous discretization and the additional corner equation than with all the other
approaches.

In order to quantify the relative cost of each strategy, we report in Table 3.1 the
number of degrees of freedom required for the PML-based DtN, per element on the
interfaces ⌃n,i or ⌃n,i,j. Among the methods exhibiting the best convergence rate, the
continuous approach are cheaper than the discontinuous discretization with polynomial
degree p + 1. While in this 2D setting, the resulting difference in computational cost
is not significant, it should be investigated further for 3D problems.

In the next sections, only the continuous discretization with the additional corner
equation (called selected continuous discretization) and the discontinuous discretiza-
tion with the higher polynomial degree and the penalty (called selected discontinuous
discretization) are considered for the analyses.

For both selected discretizations, there is a sharp decay of the residual and the
L2-error between the third and the fourth GMRES iterations. This can be interpreted
by considering that, at each iteration, information can be transferred only between
neighboring subdomains. Given the considered domain partition and the position of the
source in the lower left subdomain, four iterations are required to propagate the source
accross all the subdomains. Because PML transmission conditions are particularly
well-suited for this benchmark, the DDM solution is very close to the physical solution
after only four iterations. Let us mention, that the relative error between the reference
numerical solution (with any discretization) and the analytic solution (2.25) is equal to
6.8⇥ 10�3 for p = 2 and 6.3⇥ 10�3 for p = 4. These errors are higher that the relative
errors observed between the DDM solutions and the reference solution after the four
iterations.
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4.3 Influence of the absorbing function in the transmission con-
dition

Different absorbing functions as introduced by Equations (1.40) and (1.41) of Chap-
ter 1 can be used in the PMLs. Smoothly increasing functions such as polynomial
and hyperbolic functions are frequently chosen. In this work, we consider quadratic,
hyperbolic and shifted hyperbolic functions defined as

�q(x) = �
?(x� Lx)

2
�
�
2
PML

, (3.52)
�h(x) = 1

�
(�PML � (x� Lx)), (3.53)

�hs(x) = 1
�
(�PML � (x� Lx))� 1

�
�PML, (3.54)

respectively. These functions are written for a PML in the x-direction with x 2

[Lx, Lx+ �PML], like the last line in Equation (3.50). The definitions are similar for the
other PMLs. In the quadratic function, the parameter �? must be tuned. Here, the
values �? = 86.435 and 186 have been used for NPML = 1 and 6, respectively.

Figure 3.8 shows the convergence history of the DDM process when the PML trans-
mission conditions are tested with the different absorbing functions, and PML thick-
nesses corresponding to NPML = 1 (dashed lines) and 6 (plain lines). The computations
are performed for both selected discretizations, and second-degree polynomial basis
functions. In all the cases, the hyperbolic absorbing function and NPML = 6 have been
used for the PMLs on the exterior border of the global domain. Therefore, for a given
discretization, the reference numerical solution remains the same.

We observe that, with six-cells PMLs in the transmission conditions, the conver-
gence is similar with the different absorbing functions for each discretization. With
one-cell PMLs, the convergence is slower in all the cases. The differences between the
absorbing functions remain rather small in the discontinuous case, but they are sig-
nificant in the continuous case. These observations can be related to the quality of
the PML as a good absorbing boundary treatment. The accuracy of the technique is
not very sensitive to the choice of the absorbing function with thick layers, but the
choice is much more critical with very thin layers. Therefore, we can expect that the
choice is not critical in the DDM procedure with thick layers. In the remainder, shifted
hyperbolic functions are used for both exterior conditions and transmission conditions.

4.4 Influence of the PML thickness in the transmission condi-
tion

In order to study the influence of the PML thickness in the transmission conditions on
the efficiency of the procedure, the convergence history with PML thicknesses corre-
sponding to NPML = 1, 2, 4 or 6 mesh cells is presented in Figures 3.9 and 3.10. The
results obtained with the standard impedance transmission condition proposed by De-
sprés [66] are also presented (dashed lines). In all the cases, PMLs with NPML = 6 are
used for the exterior border of the global domain, and the shifted hyperbolic absorbing
function is used for both PML-based transmission and boundary conditions. The se-
lected continuous and discontinuous discretizations have been tested with second and
fourth degree basis functions for the u-fields.
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Figure 3.8: Convergence history of the second degree PML-based DDM for different
PML types. The dashed curves show the convergence history of the one-layer-size
PMLs while the plain ones show the convergence history of the six-layer-size PMLs.

In all the cases, the relative residual and the relative L2-error decrease with the
number of iterations. They have approximately the same order of magnitude at each
iteration. We observe that an increase of the PML thickness accelerate the convergence
of the DDM process up to a particular point where an increase of NPML does not change
the convergence rate anymore. The convergence is not much faster with the NPML = 6
than with NPML = 4. For the cheapest PML, with only one mesh cell in the thickness,
the convergence is slower than with thicker PMLs, but it is much faster than with
standard impedance transmission conditions. The results are similar with second and
fourth degree basis functions.

It is interesting to compare these results with those obtained using high-order ABCs
(HABCs) presented in Section 4.2. Provided that the HABCs are complemented with
appropriate corner compatibility conditions as presented, the overall performance of
HABCs is very similar to the performance of the PML-based conditions proposed here.
This is actually to be expected, as a formal equivalence between some type of HABCs
(like CFABCs) and PMLs can be derived [100, 14]. Also note that the DDM based
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Figure 3.9: History of the relative GMRES residual (left) and the relative mono-domain
L
2-error for different basis function orders and different number of layers in the PML.

The dashed black curve corresponds to the results obtained when a 0th order transmis-
sion condition is imposed on interface edges while a six-layer-size PML is still imposed
on the boundary edges of the domain (the reference problem) (2nd degree).
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Figure 3.10: History of the relative GMRES residual (left) and the relative mono-
domain L2-error for different basis function orders and different number of layers in
the PML. The dashed black curve corresponds to the results obtained when a 0th order
transmission condition is imposed on interface edges while a six-layer-size PML is still
imposed on the boundary edges of the domain (the reference problem) (4th degree).
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on Perfectly Matched Discrete Layers (PMDLs) proposed in [14] implements a similar
cross-point treatment at the discrete level, i.e. on the matrix form. Indeed, the node
associated to a cross-point has to be known to build the matrix M referenced at the
bottom of p. 77, under Equation (7) of [14]; see also Equation (2.2) of [132].

Before analyzing the influence of the wavenumber and the mesh density, let us
also mention that the PML-based DDM scales as expected (and in the same way as
HABC-based DDMs): the number of iterations increases linearly with the number of
subdomains in each direction, which is normal for a one level domain decomposition
solver without coarse grid.

4.5 Influence of the wavenumber and the mesh density

It is well known that the solution of high-frequency wave problems requires fine meshes
with high-degree polynomial basis functions to decrease the dispersion error. Therefore,
the efficiency of the solution procedures for large wavenumbers and fine meshes is a
critical issue. Ideally, the influence the wavenumber and the mesh refinement on the
convergence of the iterative procedure should be limited.

Figure 3.11 shows the number of GMRES iterations required to reach a relative
residual lower than 10�6 as a function of the wavenumber k (left) and the characteristic
number of vertices per wavelength ⌘h (right). The computations are performed for a
given mesh density (number of mesh vertices by wavelength equal to 15) in the first
case, and for a given wavenumber (k = 4⇡) in the second case. The results are presented
for PML-based transmission conditions with NPML = 1, 2, 4 or 6, and second and fourth
degree basis functions for the u-fields.

In all the cases, the number of GMRES iterations slightly increases with the
wavenumber and the mesh density for very thin PMLs (i.e. with only one or two
mesh cells in the thickness), while it remains very stable for thick PMLs. The re-
sults are similar for second and fourth degree basis functions. These results indicate
that the PML-based transmission conditions are efficient for high-frequency scattering
problems, as soon as the layers are sufficiently thick.

5 Conclusion

In this chapter we have proposed a non-overlapping DDM with PML transmission
conditions for the Helmholtz equation. The approach naturally takes into account
cross-points for two-dimensional checkerboard domain partitions. It relies on Lagrange
multipliers used for the weak coupling between subproblems defined on the rectan-
gular subdomains and the surrounding PMLs. They are also used to compute the
transmission variables for the DDM procedure. Two discretizations for the Lagrange
multipliers and several stabilization strategies were compared. The best two converging
approaches are the continuous discretization with additional corner equation, and the
discontinuous discretization with higher polynomial degree and penalty. In addition to
convergence rates, selecting the best approach among all presented discretizations and
stabilization strategies might however depend on the user’s software implementation
and accuracy requirements. Indeed, H(div)-conforming basis functions might not be
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Figure 3.11b: Number of GMRES iterations needed to reach the relative residual of
10�6 as a function of the wavenumber k with a constant number of point by wavelength
of 15 (left graphs) and as a function of the inverse of the characteristic number of
vertices per wavelength ⌘h with a fixed wavenumber k = 4⇡ (right graphs), for different
basis function orders and different number of layers in the interface PML.
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implemented in all finite element codes; and adding corner treatments requires geomet-
rical identifications and algebraic constraints that could be more or less straightforward
to deal with depending on the computational framework.

In Chapter 4, the PML-based DDM will be applied to more challenging heteroge-
neous and three-dimensional test cases, and its performance compared with the HABC-
based DDM that we will introduce in the previous chapter. In addition, the PML-based
DDM will be also further extended to handle 2D and 3D elastodynamic simulations.
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In this chapter, the performance of the methods presented in Chapters 2 and

3 is compared on acoustic applications and extensions to elastic applications.

Two- and three-dimension mono-domain problems are considered first; domain

decomposition resolutions are then addressed on both homogeneous and het-

erogeneous problems. Finally, the PML-based method of Chapter 3 is extended

to elastic waves allowing the modelization of two- and three-dimension elastic

problems.

1 Introduction

The accurate and fast resolutions of acoustic problems are crucial for applications such
as ground characterization through inverse problems, as stated in the Introduction.
Inverse problems require the resolution of a considerable number of direct problems.
Therefore the resolution of these direct problems must be optimized. This is the goal
of this chapter: numerical methods presented in Chapters 2 and 3 are applied in the
computational frameworks GmshFEM and GmshDDM introduced in Part II to solve
relevant acoustic and elastic problems.

This chapter is divided into six sections. First, Section 2 describes the com-
puting environment in which the numerical benchmarks are run. Then 2D and 3D
acoustic scattering problems in homogeneous media are considered in Section 3, and
the mono-domain problem implementation in GmshFEM is studied with a focus on
shared-memory parallel efficiency. Then, their DDM versions are addressed and the
distributed-memory parallel efficiency is studied. While 2D numerical results are ob-
tained with methods presented in Chapters 2 and 3, numerical results of 3D DDM
scattering problem are presented using an 3D extension of the methods presented on
Chapters 2 and 3. The 3D extension of cross-point treatment of HABC-based DDM
are based on the corner treatment of HABC presented in Modave and al. [147]. Finally,
a comparison of PML-based and HABC-based on 2D scattering problems is made to



Description of the computing environment

link the computation cost with the numerical accuracy of both methods. In Section 4,
the resolution of heterogeneous underground acoustic problems using the DDM with
cross-points treatment is presented. These problems are designed to use the maximal
computational resources available in the running environment. The numerical results
were obtained with GmshDDM (Chapter 6) and the related implementation of the test
cases is available at the following address: https://gitlab.onelab.info/gmsh/ddm/
-/tree/master/examples/helmholtz/crossPoints. In Section 5, 2D and 3D elastic
scattering problems in homogeneous media are considered. These problems are similar
to acoustic ones presented in Section 3. The study of these mono-domain problems in
GmshFEM presents the shared-memory parallel efficiency. Finally, the DDM algorithm
applied to heterogeneous problems similar to the acoustic 2D Marmousi and 3D Salt
problems is presented in Section 6 as a future perspective of this thesis. Once again,
the numerical results were obtained with GmshDDM (Chapter 6) and the related im-
plementation of the test cases is available at the following address: https://gitlab.
onelab.info/gmsh/ddm/-/tree/master/examples/navier/crossPoints.

2 Description of the computing environment
Computations are made on the NIC5 super-computer hosted at the University of Liège.
This cluster consists of 70 compute nodes interconnected by a 100 Gbps Infiniband HDR
interconnect. Each node is made of two 32 cores AMD Epyc Rome 7543 CPUs (second
generation) running at the fixed frequency of 2.9 GHz and with 256 GiB of RAM. The
memory is spread across sixteen 16 GiB DDH4 RAM modules at a frequency of 1600
MHz offering a data rate by RAM module of 3200 Mb/s. The motherboard has eight
memory channels, and the maximum theoretical memory bandwidth is 190 GiB/s.
One channel and eight cores build a NUMA node such that a cluster node is made of 8
NUMA nodes. One NUMA node’s maximum theoretical memory bandwidth (i.e. on
memory channel) is 23.75 GiB/s.

Before running any jobs on NIC5, this architecture must be considered, especially
the thread placement that plays a vital role in the efficiency of GmshFEM. Indeed
if threads move from one CPU core to another, data cache and NUMA data locality
are lost. Therefore, threads are pinned to the cores for each run using the OpenMP
environment variable OMP_PLACES=cores. An efficient NUMA node must contain all
data needed to run a job assigned to its eight threads. Otherwise, data must be
recovered for another NUMA node, and the overall efficiency is bounded by the per-
channel bandwidth (i.e. 23.75 GiB/s) and not by the global memory bandwidth (i.e.
190 GiB/s).

The second important parameter defines the way threads are distributed over
cores. This behavior is controlled using the OpenMP environment variable
OMP_PROC_BIND=spread that asks to spread threads over all available cores such that
from 1 to 8, threads are scattered on different NUMA nodes, then from 9 to 64, NUMA
nodes are filled by keeping the number of threads by NUMA node well-balanced. It is
the behavior used to run the applications of this chapter. The other available parame-
ter is OMP_PROC_BIND=close that is used to ask to keep the thread as close as possible.
Therefore from 1 to 8 threads, only the first NUMA node will be filled. Then for 9 to
15, the second NUMA node is filled, and so on. The spread policy is better for our

Part I. Numerical methods – Chapter 4. Performance comparisons 78

https://gitlab.onelab.info/gmsh/ddm/-/tree/master/examples/helmholtz/crossPoints
https://gitlab.onelab.info/gmsh/ddm/-/tree/master/examples/helmholtz/crossPoints
https://gitlab.onelab.info/gmsh/ddm/-/tree/master/examples/navier/crossPoints
https://gitlab.onelab.info/gmsh/ddm/-/tree/master/examples/navier/crossPoints


Acoustic scattering problems
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(a) Geometry of the 2D problem.

•�ext

•
�scat

(b) Geometry of the 3D problem.

Figure 4.1: Geometries of the scattering problems.

application since it allows us to use the memory channel mechanism even with a small
number of threads. For instance, a code running with eight threads has a maximum
theoretical memory bandwidth of 190 GiB/s with the spreading policy, while only 23.75
GiB/s with the close one.

3 Acoustic scattering problems

This section studies academic acoustic scattering problems similar to those presented
in Chapters 2 and 3. The scattering of an incident plane wave uinc = e

◆ kx, traveling
in the direction of the basis vector ex, on either a soft cylinder (2D problem) or a soft
sphere (3D problem) is computed. These problems are both modeled by the following
problem on the domains of Figures 4.1a or 4.1b,

8
><

>:

�u+ k
2
u = 0 on ⌦,

u = �uinc on �scat,

@nu� Bu = 0 on �ext,

(4.1)

where B is a boundary operator. The computational domain is made of a square box
(resp. a cube box) of size 10 with a disk (resp. a sphere) of diameter size of 1 at the
center of the box. The space between the box and the scattering object is meshed with
first-order simplex elements (i.e. triangles in 2D and tetrahedra in 3D). The mesh size
is chosen so that the number of points by wavelength equals 10.

In the following subsections, the multi-threaded efficiency of GmshFEM will be first
studied on the mono-domain application of Problem 4.1. Then its domain decompo-
sition resolution with both cross-point treatments will be presented. In addition, the
efficiency of GmshDDM will be analyzed too.
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Basis degree 2D 3D
2 1,164,044 789,172
4 4,652,496 6,222,228
6 10,465,356 20,873,608
8 18,602,624 //
10 29,064,300 //

(a) Problem size (number of DoFs) of the

2D and 3D acoustic scattering problem for

different basis function degrees.

Basis degree 2D 3D
2 3.24 38.0
4 14.9 657
6 39.6 ?
8 84.4 //
10 ? //

(b) Estimated memory needed to fac-

torize the finite element matrix using

MUMPS. The data are given in gibibyte

(GiB). Character ‘?’ means that MUMPS

could not compute the estimated factor-

ization memory cost.

Table 4.1: Number of degree of freedoms and estimated memory needed to store the
LU factorization for the 2D and 3D acoustic scattering problems.

3.1 The mono-domain acoustic scattering problem

This section studies 2D and 3D mono-domain acoustic problems. The basis functions
degrees are set to 2, 4, 6, 8, and 10,for the 2D problem and, 2, 4, and 6 for the
3D one. The Gauss quadratures used are exact to integrate a polynomial of degree
twice the degree of the basis functions such that the mass term of Equation 4.1 is
exactly integrated. Wavelengths are chosen such that the number of wavelengths over
the geometry equals 50 for the 2D and 10 for the 3D problems. By doing so, and
knowing that the discretization of 10 points par wavelength is kept, the total number
of triangles for the 2D problem is 581,102, while the total number of tetrahedra for the
3D problem is 4,371,840. The resulting problem sizes are given in Table 4.1a which
reports the number of degrees of freedom (i.e. the finite element system size) for each
configuration.

The reported timings focus on the pre-processing and assembly part of GmshFEM.
Indeed, as the sparse system is solved using the third-party library MUMPS [7, 8], we do
not have any control over its multi-threaded efficiency. As explained earlier, the mem-
ory scaling in the 3D case (see Table 4.1b) is the primary limitation of mono-domain
simulations, and motivate the DD approach, whose performance will be analyzed in the
next section. In a nutshell, the pre-processing phase builds the dictionary of degrees of
freedom and computes the pattern of the finite element matrix. The assembly phase
is divided in two steps: first, an initialization step evaluates at all Gauss points the
basis functions, the Jacobians and the functions involved in the formulation; then the
entries of the finite element matrix are computed. These algorithmic phases will be
explained in detail in Chapter 5.

For each simulation, a full node is reserved (i.e. 64 CPU cores), so timing cannot be
skewed by other processes that may run on the same node. Figure 4.2 reports both wall
and CPU times of the pre-processing (Figures 4.2a and 4.2b) and of the assembly part
(Figures 4.2c and 4.2d) for the 2D benchmark. The same results for the 3D benchmark
are reported by Figure 4.3.

The results show that the pre-processing phase does not scale very well. These
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(a) Pre-processing wall time.
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(b) Pre-processing CPU time.
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(c) Assembling wall time.
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(d) Assembling CPU time.

Figure 4.2: Pre- and assembly time of the 2D scattering problem for different basis
function degrees. Both wall and CPU time are reported such that the influence of the
memory allocation can be estimated.

results are coherent with the expectation since sequential memory allocations dom-
inate pre-processing. Indeed as will be explained in Section 3.1 of Chapter 5, the
pre-processing is in charge of both building the degree of freedom dictionary and com-
puting the pattern of the finite element matrix. These two operations need memory
allocation during execution; therefore, the parallel efficiency cannot be optimal. Nev-
ertheless, by looking at the CPU time instead of the wall time (Figures 4.2b and 4.3b),
one can observe that the part of the pre-processing that can be parallelized (e.g. the
Dirichlet condition evaluation, the DoF ordering algorithm, etc.) scale ut to eight
threads.

The multi-threaded efficiency of the assembly process is significantly better than
the pre-processing one. Nevertheless by looking to Figures 4.2c and 4.3c, the scaling
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(d) Assembling CPU time.

Figure 4.3: Pre- and assembly process time of the 3D scattering problem for different
basis function degrees. Both wall and CPU time are reported such that the influence
of the memory allocation can be estimated.

is not optimal when low-degree basis functions are used, especially in 2D. This can be
explained by looking at Figure 4.4, which shows the part of the wall assembly time
spent on allocating the finite element matrix based on the pattern computed in the
pre-processing step and the amount that is spent on the initialization of the assembly
process. The allocation of the matrix (one array of size equal to the number of non-
zeros) is done, if necessary, at the beginning of the assembly part for code design
purposes. The initialization of the assembly process computes the Jacobians, the basis
functions, and allocates the array of finite element matrix indices. These two steps are
mainly dominated by memory allocations of larger arrays, namely, the matrix array,
the Jacobian array, and the indices array.

As expected, Figures 4.4a and 4.4b show that allocation times are almost constant
no matter the number of threads used. Even if between 1 to 8 threads, the wall time of
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the matrix allocation seems to decrease a bit, probably due to a kind of NUMA effect
during the initialization of the array. On a single thread, the part of the time spend
on this memory allocation is negligible over the total assembly time. Indeed, it from
0.63% with second-degree basis functions to 1.23% with tenth-degree basis functions
for the 2D benchmark, while for the 3D benchmark, it goes from 0.33% to 0.43%.
Nevertheless, when the number of threads increases, this effect cannot be neglected
anymore. At 64 threads, the ratio of allocation time over the total assembly time goes
from 6.42% to 29.05% for the 2D benchmark and from 4.76% to 9.68% for the 3D
benchmark.

An analysis of Figures 4.4c and 4.4d indicates that the assembly initialization time
is approximately reduced by 2 from 1 to 4 threads, for both benchmarks and all de-
grees. This is because the assembly initialization is not entirely dedicated to memory
allocations but also some parallelized computations of Jacobian. Nevertheless, as our
mesh is made of first-order simplex elements, the Jacobian computation is cheap such
that memory allocations remain dominant in the initialization process. Opposite to
the matrix allocation, the ratio of the initialization time over the total assembly time
decreases when the basis function degree increases. On a single thread, it varies from
13.71% with second-degree basis functions to 0.67% with tenth-degree basis functions
for the 2D benchmark and from 6.53% with second-degree basis functions to 0.43%
with sixth-degree basis functions. Again, when the number of threads increases, the
time spent on the assembly initialization over the total assembly time increases.

When both the matrix allocation wall time and the initialization wall time are
subtracted from the total wall time of the assembly process as show in Figures 4.2c
and 4.3c, Figures 4.4e and 4.4f are obtained. These remainder wall times are close to
the CPU times reported on Figures 4.2d and 4.3d. Therefore it is decided to present
in Figure 4.5 the multi-threaded parallel efficiency of the assembly algorithm on the
CPU time to extract unparallelizable memory allocation effects.
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(a) Matrix allocation wall time for the 2D
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(d) Assembling initialization wall time for the

3D benchmark.
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(e) Remainder wall time obtained by sub-

tracting the total assembly wall time from

the finite element matrix allocation wall time

and the assembly initialization wall time of

the 2D benchmark.
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Figure 4.4: Comparison of the finite element matrix allocation wall time, the assembly
initialization wall time, and the remainder wall time obtained by subtracting the total
assembly wall time from the two previous ones.
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(a) Efficiency of the 2D assembly process.
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(b) Efficiency of the 3D assembly process.

Figure 4.5: Multi-threaded parallel efficiencies of the finite element assembly process
computed on the CPU time for both 2D and 3D scattering problems.
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Number of subdomain in the Total number Number of Wavenumber
x-direction y-direction of subdomains CPUs (k)

1 3 3 24 10 ⇡
1 5 5 40 12.91 ⇡
3 3 9 72 17.32 ⇡
3 5 15 120 22.36 ⇡
5 5 25 200 28.87 ⇡

(a) 2D benchmark.

Number of subdomain in the Total number Number of Wavenumber
x-direction y-direction z-direction of subdomains CPUs (k)

1 1 3 3 24 ⇡

1 1 5 5 40 1.19 ⇡
1 3 3 9 73 1.44 ⇡
1 3 5 15 120 1.71 ⇡
3 3 3 27 216 2.08 ⇡

(b) 3D benchmark.

Table 4.2: Parameters used for the weak scaling analysis.

3.2 The domain decomposition acoustic scattering problem
As shown in the previous section, when high-frequency simulations are considered,
the number of unknowns and the LU factorization memory cost rapidly overtake the
available memory on a single super-computer node. That is why the DD strategy is
used.

In this section, the distributed memory parallelization efficiency is addressed on
both the 2D and 3D scattering problems using the HABC-based or PML-based DDM
with cross-point treatment presented in Chapters 2 and 3, respectively. Then a com-
parison of both approaches in terms of numerical precision and computational cost is
carried out.

3.2.1 Distributed-memory parallel efficiency

A weak scalability test is assessed on the 2D and 3D scattering problems to study the
computation efficiency. The total number of unknown is increased in a same way as the
number of subdomain by refining the mesh; the wavenumber is chosen to keep 10 points
by wavelength. Each subdomains are assigned to one MPI process. Furthermore, based
on the shared-memory efficiency of Section 3.1, it is chosen to use eight cores by MPI
process.

The square domain of Figure 4.1a and the cube domain of Figure 4.1b are parti-
tioned in rectangles, or in rectangular parallelepipeds such that all cross-points have
right angles. Moreover, the partition strategy is chosen such that the scattering object
(the cylinder or the sphere) is contained inside only one subdomain. The problem size
with the number of subdomains, the wavenumber, and the total number of CPUs used
are listed in Table 4.2. Note that each subdomain is attached to a process placed on a
unique node.
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Figure 4.6: Weak scaling analysis of GmshDDM using the HABC with cross-point
treatment as presented in Chapter 2.

In Figures 4.6 and 4.7, the weak scaling analysis shows the efficiencies of the
distributed-memory implementation when both methods presented in Chapters 2 and
3 are used. Furthermore, the benckmark is run using transmission condition of level
6 i.e., namely the number of HABC auxiliary fields (NHABC) or the number of PML
layers (NPML). In addition, second-, forth-, and sixth-degree basis functions are used.
Concerning the HABC-based DDM, all simulations are run using the rotation param-
eter � equal to 0.3⇡. Concerning the PML-based DDM, all computations are limited
to the continuous approach with hyperbolic-shifted PML as presented in Chapter 3.

As seen in Figures 4.6b, 4.6d, 4.7b, and 4.7d, the distributed-memory efficiency
is almost perfect for all configurations. The overall efficiencies are between 90% and
100%.
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Figure 4.7: Weak scaling analysis of GmshDDM using the PML with cross-point treat-
ment as presented in Chapter 3.

3.2.2 Comparison between HABC- and PML-based DDM

In this section a comparison with the HABC-based and PML-based DDM with cross-
point treatment as presented in Chapters 2 and 3 is carried out. The analysis is done
on the 2D scattering problems partitioned into a 3 ⇥ 3 grid. The frequency is set to
4⇡ with a mesh density chosen such that they are 10 points by wavelength. Once
again, the HABC rotation parameter � equal to 0.3⇡, and the continuous approach
PML-based DDM with hyperbolic-shifted type are considered.

First, let us consider a benchmark where a Sommerfeld radiation condition is en-
forced on the exterior boundaries, while a HABC or a PML with a varying NPML or
NHABC is enforced on the interfaces. The GMRES residual is set to 10�8. Fields are
discretized using fourth-degree hierarchical basis functions. As can be seen in Fig-
ure 4.8 the PML-based DDM is faster at low-degree, namely at degree 1 and 2. Above,
the HABC-based DDM becomes faster than the PML one. Furthermore, note that
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Figure 4.8: Influence of NPML or NHABC on the DDM the computational time when
0th boundary condition is imposed on exterior boundary of the global domain.
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Figure 4.9: Influence of NPML or NHABC on the DDM the computational time when
the exterior boundary condition is the same as the transmission boundary condition
one.

the complexity of the PML-based DDM in terms of NPML is higher than the HABC in
terms of NHABC. This behavior is explained by comparing the over-cost induced by the
assembly in the surface PML region for the PML method versus the over-cost caused
by the assembly on the interfaces for the HABC method. As the assembly cost on the
surface is much higher than the one on line elements, the PML-based DDM is more
influenced by the method degree than the HABC one.

The previous analysis is interesting since the mono-domain problem are the same
because the exterior boundary condition is the same for both methods. Nevertheless,
using high-order transmission conditions with a simple inefficient low-order condition on
the exterior boundaries is a bit non-sense. Let us, therefore, run the same simulations
but with the same interior and exterior boundary conditions to obtain the results as
shown in Figure 4.9. The change in exterior condition does not impact the observation.
The PML-based DDM is still more efficient than the HABC-based one for NPML = 1
and 2; above, the HABC-based DDM is faster.

Since the exterior boundary condition is modified for each simulation, the numerical
error at the convergence of the GMRES is not identical. Therefore a comparison
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Figure 4.10: Comparison of HABC- and PML-based DDM in term of numerical error
at convergence and computation time. The label next to the nodes indicates the value
of NHABC or NPML. A basis function of degree 4 is used.

between the numerical error at convergence versus the solving time is presented in
Figure 4.10. In practice, NHABC and NPML are increased from 1 to 10, while the
numerical error at convergence and the solving time are measured for both methods.

As noticed, the PML-based method is more precise than the HABC one at a low-
order. Indeed, the HABC with NHABC = 4 has approximately the same precision
(around 10�4) as the PML with NPML. Furthermore, the PML with NPML = 1 is a
bit faster than the HABC with NHABC = 4. Nevertheless, the solving time of the
PML-based approach grows faster than the HABC-based approach.

On Figure 4.11, the same analysis is reproduced using second- and eighth-degree
basis functions. Once again, the PML-based DDM is more accurate than the HABC-
based one at a low order, and this behavior is inverted at a high order.

Using second-degree basis functions (Figure 4.11a), the PML-based approach is
stuck to an accuracy of about 10�3 for all considered degrees, probably because the
accuracy of this method is better than the numerical error in this configuration. There-
fore, the PML-based accuracy is bounded by this numerical error. As observed with
the fourth-degree basis function, the HABC-based method reaches the same accuracy
as the PML-based one at NHABC,PML = 4. Then as for the PML-based approach,
increasing NHABC does not improve the efficiency due to the numerical error.

The results obtained with eighth-degree basis functions (Figure 4.11b) confirm that
the PML-based approach is more accurate than the HABC-based on at low order.
Nevertheless, the HABC-based method is faster than the PML-based one, except for
NHABC = 1. The error can decrease with NHABC or NPML because the numerical
error does not bound the accuracy as with the second-degree basis functions. It can
be noticed that the accuracy of the HABC-based method increases faster than the
PML-based one and for a constant computational time. In addition, an increase in
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Figure 4.11: Comparison of HABC- and PML-based DDM in terms of numerical error
at convergence and computation time with basis functions of degree 2 and 8. The label
next to the nodes indicates the level of the method NHABC or NPML.

NPML also increases the computational time. Therefore, the HABC-based approach is
recommended over the PML-based one at the eighth-degree basis functions.

In conclusion, for 2D problems, the PML-based approach with a low order should
be recommended over the HABC-based approach if a medium accuracy is required and
low-degree basis functions are used. Conversely, the HABC-based approach is more
suitable for high-precision requirements and when high-degree basis functions are used.

4 Acoustic problems in complex heterogeneous media

This section is devoted to the resolution of underground acoustic simulations. Therefore
the material property, i.e. the sound velocity and consequently the wavenumber, is no
longer constant. The accurate and fast resolution of these problems are crucial for
applications such as ground characterization through inverse problems, as stated in
the Introduction.

Figure 4.12 shows how the heterogeneous wavenumber distribution are considered
inside methods presented in Chapters 2 and 3. For the HABC-based method, the
wavenumber appearing in the mathematical expressions of Chapter 2 are simply eval-
uated at each Gauss points on the interface using a bi- or tri-linear interpolation of
the material property map, without any substantial modification of the methods. For
the PML-based method, the wavenumber distribution on each interface are extruded
inside the edge PMLs and the wavenumber distrubution on each PML boundary are
extruded inside the corner PMLs as depicted in Figure 4.12b.

In the following subsections, 2D and 3D underground benchmarks are presented.
The 2D benchmark is based on the Marmousi model [47]. It is an artificial underground
acoustic model developed in 1990 to represent complex structures comparable to those
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(a) HABC-based DDM and heterogeneous

wavenumber.

(b) PML-based DDM and heterogeneous

wavenumber.

Figure 4.12: Treatment of the heterogeneous wavenumber distribution applied to the
HABC- and PML-based DDM methods presented in Chapters 2 and 3. The examples
show an schematic underground with four layers of material (one color by layer).

that are met in real applications. The 3D benchmark is also based on a synthetic data
set called the Salt 3D model [81]. The frequency of each problem is chosen in both
cases to fit the maximum resources available to a user on the NIC5 super-computer,
i.e. 230 CPUs with a total memory of 920 GiB.

4.1 The Marmousi model

The Marmousi data is based on a heterogeneous sound velocity distribution in a 9192-
meter-long and 2904-meter-deep underground. The sound velocity goes form 1500 m/s
to 5500 m/s. The wave frequency is set to 100 Hz such that the wave number dis-
tribution is between 0.11 m�1 and 0.42 m�1 as Figure 4.13 depicts. This leads to a
wavelength between 15 m and 57 m such that the number of wavelengths over the
domain is between 96 and 368. The characteristic mesh size is set to 3 m such that
the number of points by wavelengths is between 5 to 19, leading to 6.7 millions of
straight triangles. All computations are made with fields discretized using forth-degree
hierarchical basis functions. The integration scheme is exact for a polynomial of degree
9.

This mesh is partitioned into a grid of 10 by 4 leading to a total of 40 subdomains.
Each of them is assigned to an MPI process that runs on 8 CPUs such that the total
number of CPUs used is equal to 320, the maximal number of CPUs available to a
user on NIC5. HABCs or PMLs with NHABC or NPML equal to 2, 4, and 6 are imposed
on the exterior and interior boundaries. A punctual Dirichlet condition is enforced on
each cross-point on the top boundary; see the blue dots of Figure 4.13. Note that an
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0. 0.25 0.5

Figure 4.13: Wavenumber distribution of the 2D Marmousi benchmark. The blue dots
on the top boundary indicate the position of the sources.

Transmission # DoF Factorization size Factorization Convergence
condition (million) by subdomain (GiB) time (min) time (min)
Low order ⇡ 54 ⇡ 3.9 1.8 7.0

HABC NHABC = 2 ⇡ 55 ⇡ 4.0 2.6 7.1
HABC NHABC = 4 ⇡ 56 ⇡ 4.0 3.2 6.0
HABC NHABC = 6 ⇡ 57 ⇡ 4.1 3.7 6.9
PML NPML = 2 ⇡ 56 ⇡ 4.1 2.1 7.4
PML NPML = 4 ⇡ 58 ⇡ 4.3 2.4 8.5
PML NPML = 6 ⇡ 59 ⇡ 4.4 2.4 8.4

Table 4.3: Orders of magnitude of the Marmousi benchmark. The table show the
approximated total number of degrees of freedom, the approximated LU factorization
size by subdomain, the subdomain problem factorization time, and the time required
to converge to the residual of 10�6 using a GMRES solver.

absorbing condition is imposed on the four boundaries, even on the top one where the
sources are enforced.

The resulting subdomain problem size is around 1.4 millions of DoF for the low-
order methods; it slightly increases when the order increases but remains around
1.4 millions; the total number of unknowns is around 56 millions. The factorization of
the subdomain finite element matrix depends on the method and NHABC or NPML (see
Table 4.3). Note that the frequency of the problem could probably be pushed further
than 100 Hz.

To obtain the results of Figure 4.14, the overall computational time is around 12 min
no matter NHABC or NPML while the computation time using the zeroth-order trans-
mission condition takes around 20 min to converge. The DDM algorithm converges in
about 40 iterations (Figure 4.15), versus the 291 iterations required to converge with
the zeroth-order transmission condition. The PML-based DDM takes more iterations
to converge to a relative residual of 10�6. As observed with numerical analysis of both
methods in Chapters 2 and 3, the rate of convergence slightly increases with the degree
of the method.
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Figure 4.14: Real part of the numerical solution of the 2D Marmousi benchmark with
at zoom over some subdomain solutions. The frequency of the benchmark is 100 Hz,
leading to a number of wavelengths over the computational domain between 96 and
368.
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Figure 4.15: Convergence history of the 2D Marmousi benchmark. The black curve
corresponds to the convergence history using the 0th-order Sommerfeld condition as
transmission operator.

4.2 The Salt 3D model

The Salt 3D data is a 3D model comparable to the 2D Marmousi one. It is a 13500-
meter-long, 13500-meter-large, and 4180-meter-deep underground domain. The sound
velocity goes form 1500 m/s to 4482 m/s. The wave frequency is set to 4 Hz such that
the wave number distribution is between 5.6 10�3 m�1 and 1.6 10�2 m�1 as Figure 4.13
depicts. This leads to a wavelength between 375 m and 1120 m such that the number
of wavelengths over the domain is between 12 and 36. The characteristic mesh size is
set to 100 m such that the number of points by wavelength is between 4 to 11, leading
to 3.6 millions of linear tetrahedra. All computations are made with fields discretized
using third-degree hierarchical basis functions. The integration scheme is exact for a
polynomial of degree 7.

This mesh is partitioned into a grid of 8 by 10 by 2, leading to a total of 160
subdomains. Once again, each subdomain is assigned to an MPI process that runs on
2 CPUs. HABCs with NHABC equals to 2 and 4, and PMLs with NPML equals to 1
are imposed on the exterior and interior boundaries. A punctual Dirichlet condition
is enforced on each cross-point on the top boundary of Figure 4.16. Note that an
absorbing condition is imposed on the six boundaries, even on the top one where the
sources are enforced.

The resulting subdomain problem size is around 130, 000 DoF for the low-order
methods; it increases when the NHABC or NPML increase (see Table 4.4). Compared
with the 2D Marmousi benchmark, the factorization memory consumption behaves
differently since NHABC or NPML as a more significant impact on it. This is why, the
HABC with NHABC = 6, the PML with NPML = 4 or 6 cannot be run on the NIC5
super-computer.
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0.005 0.0105 0.016

Figure 4.16: Wavenumber distribution of the 3D Salt benchmark.

Transmission # DoF Factorization size Factorization Convergence
condition (million) by subdomain (GiB) time (min) time (min)
Low order ⇡ 21 ⇡ 2.6 5.8 42.7

HABC NHABC = 2 ⇡ 28 ⇡ 3.8 10.1 48.6
HABC NHABC = 4 ⇡ 36 ⇡ 5.5 13.5 80.4
HABC NHABC = 6 ⇡ 45 ⇡ 7.5 // //
PML NPML = 1 ⇡ 36 ⇡ 5.5 46.8 91.3
PML NPML = 2 ⇡ 49 ⇡ 8.7 // //

Table 4.4: Orders of magnitude of the Salt 3D benchmark. The table show the
approximated total number of degrees of freedom, the approximated LU factorization
size by subdomain, the subdomain problem factorization time, and the time required
to converge to the residual of 10�6 using a GMRES solver.
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Figure 4.17: Real part of the numerical solution of the 3D Salt benchmark. The
frequency of the benchmark is 4 Hz, leading to a number of wavelengths over the
computational domain between 12 and 36.

To obtain the results of Figure 4.17, the overall computational time is around 50 min
for the low-order method and around an hour for HABC methods. For this 3D problem,
the PML method is slower (it takes around 2 hours to converge) and compared with
the HABC method of the same degree, it requires more memory. The DDM algorithm
converges in about 40 iterations as Figure 4.18 depicted, while it requires 243 iterations
to converge with the zeroth-order transmission condition. The PML-based DDM takes
more iterations to converge to a relative residual of 10�6. As observed with the 2D
Marmousi benchmark, the rate of convergence slightly increases with NHABC or NPML,
but the increase is more important than with the 2D Marmousi benchmark.
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Figure 4.18: Convergence history of the 3D Salt benchmark. The black curve corre-
sponds to the convergence history using the 0th-order Sommerfeld condition as trans-
mission operator.

5 The mono-domain elastic scattering problem
In this section, academic elastic scattering problems similar to those presented in Sec-
tion 3 are studied. The scattering of an incident plane wave uinc = e

◆ kx
ey, traveling

in the direction of the basis vector ex, on either a soft cylinder (2D problem) or a soft
sphere (3D problem) are computed. These problems are both modeled by the following
problem on the domains of Figures 4.1a or 4.1b,

8
>>><

>>>:

1

k
2
P

grad divu�
1

k
2
S

curl curl u� u = 0 in ⌦tot,

u = �uinc on �scat,

�t(u)� Bu = 0 on �ext,

(4.2)

where B is a boundary operator and �t(·) as defined in Equation 5.10. The computa-
tional domains and the meshes are identical to the acoustic problems ones (Figure 4.1).
Once again, the mesh size is chosen such that the number of point by wavelength is
equal to 10.

In the following subsections, the multi-threaded efficiency of GmshFEM will be first
studied on the mono-domain application of Problem 4.2.

Equation 4.2 modeled using the same basis function degrees as done in the acoustic
analysis. As done with acoustic scaling analysis, the P-wavenumber kP are chosen
such that the number of wavelengths over the geometry is equal to 50 for the 2D
problem, and 10 for the 3D problem. The S-wavenumber kS are defined as half of the
P-wavelengths. The formulation is written using the CompoundField feature that will
be presented in Chapter 5.
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Basis degree 2D 3D
2 2,328,088 2,367,516
4 9,304,992 18,666,684
6 20,930,712 62,620,824
8 37,205,248 //
10 58,128,600 //

(a) Problem size (number of DoFs) of the

2D and 3D elastic scattering problem for

different basis function degrees.

Basis degree 2D 3D
2 11.6 312
4 57.2 5089
6 155 //
8 332 //
10 // //

(b) Estimated memory needed to fac-

torize the finite element matrix using

MUMPS. The data are given in gibibyte

(GiB). Character ‘?’ means that MUMPS

could compute the estimated factorization

memory cost; probably because it will be

too huge.

Table 4.5: Magnitudes (number of degree of freedoms and estimated memory needed
to store the LU factorization) of the 2D and 3D elastic scattering problems.

Tables 4.5 reports the problem size of both the 2D and 3D benchmark. Compared
to those of the acoustic problems 4.1, the total number of unknowns is multiplied by
a factor of 2 or 3, depending if the 2D or 3D problem is considered. Concerning the
estimated matrix factorization memory size, the computed values are much greater than
the equivalent acoustic problems of Chapter 4, and not only because of factor 2 or 3 on
the number of DoFs. For instance, let us compare the 2D acoustic scattering problem at
degree 6 which has around 10 millions of DoFs with the 2D elastic scattering problem at
degree 4 which has around 9 millions. In this situation, even if the number of DoFs for
this elastic problem is a bit lower than the acoustic one, and the basis function degree
is lower, the estimated matrix factorization storage is 44 % greater. This is explained
by the strong coupling between the elastic quantities over the elements that leads to a
number of non-zero in the finite element matrix that is not simply multiplied by 2 or 3
depending on the problem dimension. As a result, for comparable acoustic and elastic
problems (i.e. same mesh and same basis function degree) the finite element matrix
sparsity is lower for the elastic problems than for the acoustic ones. Therefore, elastic
problems are even harder to solve than acoustic ones.

Figures 4.19 and 4.20 report similar timings as done with the acoustic efficiency
analysis, namely the wall and CPU times of the pre and assembly part. Similar be-
haviors can be observed, the pre-processing does not scale as good the assembly part.
Nevertheless, two interesting observations could be pointed out. First, the difference
between the wall and CPU times is not as important as in the acoustic study. This is
simply because the arithmetic intensity of the elastic assembly process is greater than
the acoustic one. Therefore the ratio of time spent in the memory allocation over the
total assembly time is lower with elastic problems than with acoustic ones. Second, the
assembly efficiency (see Figure 4.21) is better with elastic problems than with acoustic
ones. This behavior is also explained by the arithmetic intensity that increases with
elastic formulations.
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Figure 4.19: Pre- and assembly time of the 2D scattering problem for different basis
function degrees. Both wall and CPU time are reported such that the influence of the
memory allocation can be estimated.
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Figure 4.20: Pre- and assembly process time of the 3D scattering problem for different
basis function degrees. Both wall and CPU time are reported such that the influence
of the memory allocation can be estimated.
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(b) Efficiency of the 3D assembly process.

Figure 4.21: Multi-threaded parallel efficiencies of the finite element assembly process
computed on the CPU time for both 2D and 3D scattering problem.
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6 Elastic problems in complex heterogeneous media

In a similar way to what has been done with acoustic heterogeneous problems (Sec-
tion 4), this section is devoted to the resolution of 2D and 3D underground elastic
simulations. This time, two parameters are considered, the P-wave and the S-wave
velocities, related to the primary and secondary waves of the elastodynamics equation.

The 2D benchmark is based on the Marmousi2 model [47]. It is an artificial un-
derground acoustic model developed in 2002 [139, 140], as the elastic version of the
acoustic Marmousi model. The 3D benchmark is also based the Salt 3D model [81]
where the P-wave velocity is given by the model and the S-wave velocity is half the
P-wave one.

6.1 The Marmousi2 model

The Marmousi2 is a 17, 000-meter-long and 2700-meter-deep underground model given
P-wave and S-wave velocity maps. The P-wave velocity map between 1028 m/s to
4700 m/s, and a S-wave velocity between 368.08 m/s to 2802 m/s. The wave fre-
quency is set to 15 Hz such that the P-wavenumber distribution is between 0.02 m�1

and 0.09 m�1 as Figure 4.22a depicts, and the S-wavenumber distribution is between
0.03 m�1 and 0.25 m�1 as shown in Figure 4.22b. This leads to a P-wavelength be-
tween 68 m and 313 m such that the number of wavelengths over the domain is between
54 and 248. The S-wavelengths are between 24 m and 186 m so that the number of
wavelengths over the domain is between 91 and 692. The characteristic mesh size is
set to 3 m such that the number of points by wavelengths is between 22 to 104 for the
P-wave and between 8 to 62 for the S-wave. The resulting number of straight triangles
is about 11.7 millions. Note that quadrangle elements are not used because they lead to
less-sparse finite element matrices that increase the factorization memory requirement.
Therefore even if quadrangle elements are theoretically more efficient to assemble, they
are not used. Furthermore, note that the assembly time is negligible over the all com-
putation time. All computations are made with fields discretized using forth-degree
hierarchical basis functions. The integration scheme is exact for a polynomial of order
9.

This mesh is partitioned into a grid of 32 by 4 leading to a total of 128 subdomains.
Each of them is assigned to an MPI process that runs on 8 CPUs such that the total
number of CPUs used is equal to 1024. This computation requires an extended reserva-
tion of 16 nodes of NIC5. PMLs of degrees 2, 4, and 6 are imposed on the exterior and
interior boundaries. A punctual Dirichlet condition is enforced on each cross-point on
the top boundary; see the blue dots of Figure 4.22a. Note that an absorbing condition
is imposed on the four boundaries, even on the top one where the sources are enforced.

The resulting subdomain problem size is about 1.6 millions for the low-order meth-
ods; it increases to about 1.8 millions; the total number of unknowns is around 206 and
236 millions, respectively (see Table 4.6). The factorization of the subdomain finite
element matrix takes around 10 GiB of memory for the PML problem with NPML = 6.

To obtain the results of Figure 4.14, the overall computational time is around
12 min no matter the method degree. As observed with numerical analysis of both
methods in Chapters 2 and 3, the rate of convergence slightly increases with NPML
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0.02 0.045 0.07

(a) P-wave wavenumber distribution.

0.03 0.14 0.25

(b) S-wave wavenumber distribution.

Figure 4.22: Wavenumber distribution of the 2D Marmousi2 benchmark. The blue
dots on the top boundary indicate the position of the source.

(a) The x-component.

(b) The y-component.

Figure 4.23: Real part of the numerical solution of the 2D Marmousi2 benchmark with
at zoom over some subdomain solutions. The frequency of the benchmark is 15 Hz,
leading to a number of wavelengths over the computational domain between 91 and
692.
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Transmission # DoF Factorization size Factorization Convergence
condition (million) by subdomain (GiB) time (min) time (min)
Low order ⇡ 190 ⇡ 8.0 1.9 33.6

PML NPML = 2 ⇡ 207 ⇡ 8.8 2.2 9.4
PML NPML = 4 ⇡ 221 ⇡ 9.2 2.2 7.8
PML NPML = 6 ⇡ 236 ⇡ 10.0 2.5 5.7

Table 4.6: Orders of magnitude of the Marmousi2 benchmark. The table show the
approximated total number of degrees of freedom, the approximated LU factorization
size by subdomain, the subdomain problem factorization time, and the time required
to converge to the residual of 10�5 using a GMRES solver.
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(a) The 2D Marmousi2 benchmark.
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(b) The elastic 3D Salt benchmark.

Figure 4.24: Convergence history of the 2D Marmousi2 and the elastic Salt 3D bench-
marks. The black curve corresponds to the convergence history using the 0th-order
Lysmer-Kuhlemeyer condition as transmission operator.

(see Figure 4.24). To reach a relative residual of 10�4, the elastic PML-based DDM
takes 131, 85, or 74 iterations with a PML with NPML equal to 2, 4, or 6, respectively.
These rates of convergence are compared with a DDM using the simple zeroth-order
Lysmer-Kuhlemeyer condition as transmission operator. This low-order method takes
902 iterations and three times the computation time of the PML-based method (around
36 min) to converge to the same residual.

6.2 The elastic Salt 3D model
The 3D benchmark is based on the acoustic Salt 3D data of Chapter 4, with the P-
wave velocity chosen equal to the acoustic sound velocity of the Salt 3D model, and
the S-wave velocity set to twice the P-wave velocity. The frequency is set to 2 Hz,
such that the P-wave number distribution lies between 2.8 10�3 m�1 and 8.3 10�3 m�1

(see Figure 4.22). This leads to P-wavelengths between 750 m and 2241 m, so that
the number of wavelengths over the domain is between 6 and 18. The S-wavelength is
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kP : 0.0025 0.0055 0.0085

kS : 0.00125 0.00275 0.00425

Figure 4.25: P- and S-wavenumber distribution of the elastic 3D Salt benchmark.

between 1500 m and 4482 m, with the number of wavelengths over the domain between
3 and 9. The characteristic mesh size is set to 200 m, such that the number of points by
wavelength is between 4 to 22, leading to about 893000 tetrahedra. All computations
are made with fields discretized using third-degree hierarchical basis functions. The
integration scheme is chosen to be exact for polynomials of order 7.

This mesh is partitioned into a grid of 16 by 16 by 4, leading to a total of 1024
subdomains. A Dirichlet condition is enforced on each cross-point on the top boundary.
A Zeroth-order transmission condition is enforced on the interior interfaces as well as on
the exterior boundaries, including on the top boundary where the sources are enforced.
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(a) The x-component.

(b) The y-component.

Figure 4.26a

Transmission # DoF Factorization size Factorization Convergence
condition (million) by subdomain (GiB) time (min) time (min)
Low order ⇡ 22 ⇡ 0.4 0.5 6.0

Table 4.7: Orders of magnitude of the elastic Salt 3D benchmark. The table shows the
approximated total number of degrees of freedom, the approximated LU factorization
size by subdomain, the subdomain problem factorization time, and the time required
to converge to the residual of 10�4 using a GMRES solver.
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(c) The z-component.

Figure 4.26b: Real part of the numerical solution of the elastic 3D Salt benchmark.
The frequency of the benchmark is 2 Hz, leading to a number of wavelengths over the
computational domain between 6 and 18.

7 Conclusion
In this chapter, the performance of the methods presented in Chapters 2 and 3 has
been compared on acoustic and elastic applications.

First of all, the study of 2D and 3D mono-domain acoustic and elastic scattering
problem in homogeneous problems have demonstrated the shared-memory efficiency of
GmshFEM (Sections 3.1 and 5).

Second, a study of the 2D and 3D acoustic scattering domain decomposition prob-
lem has shown the distributed efficiency of GmshDDM (Section 3.2). Besides, the
comparison of the PML-based and HABC-based cross-point treatments of Chapters 2
and 3 has exhibited comparable efficiency and accuracy for both methods. Depend-
ing on the required precision and the finite element degree, one can be recommended
over the other. Indeed, the PML-based method is more efficient (in terms of accu-
racy and computational time) at a low degree for a medium accuracy. Conversely, the
HABC-based method is recommended for high accuracy and with high-degree.

Finally, 2D and 3D acoustic and elastic heterogeneous problems have been presented
in Sections 4 and 6 to expose problems that can be run using the methods and libraries
developed during this thesis.
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GmshFEM, a finite element library5

GmshFEM is an open-source C++ finite element library based

on the application programming interface of Gmsh. Both share

the same design philosophy: to be fast, light, and user-friendly.

From the pre-possessing to the post-processing, each finite el-

ement processing stage is designed to be efficient for modern

multi-core CPUs by combining an efficient multi-threaded paral-

lelization with SIMD vectorization. The C++ interface allows the

implementation of finite element problems in a natural manner,

close to their mathematical definition, with as few programming

artifacts as possible.

1 Introduction

Many open-source finite element codes and libraries are currently available, with vary-
ing degrees of generality, performance, robustness, and user-friendliness. Among many
others, one can cite e.g. [68, 64, 13, 21, 164, 163, 6, 108, 92, 165, 9, 173, 104]... As
with any software, most excel in one or two of these areas; but compromises are in-
variably necessary to balance e.g. generality and user-friendliness (the ability to deal
quickly with various partial differential equations and physical models or to integrate
the code in complex workflows) with raw performance. Robustness and code maturity
are additional parameters to consider, as is community support.

In this chapter, we introduce the open-source C++ finite element library GmshFEM
(https://gitlab.onelab.info/gmsh/fem) that was developed in the context of this
thesis. GmshFEM is based on the application programming interface (API) of the
open-source finite element mesh generator, pre- and post-processor Gmsh [93], and
exhibits its own particular blend of features, sharing the same design philosophy as
Gmsh: to be fast, light, and user-friendly [93].

To be fast, GmshFEM is designed to gain the most significant benefits of multi-
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core CPUs by combining an efficient multi-threaded parallelization with SIMD vec-
torization. Particular attention was paid to data localities during all development,
resulting in excellent performances on multi-core chips. Moreover, native support for
complex arithmetic makes it a perfect framework for efficient time-harmonic finite el-
ement solvers.

To be light, GmshFEM extensively relies on Gmsh to manage geometries (with
direct access to the CAD boundary representation), meshes (structured, unstructured,
and hybrid with straight-sided or curved elements, in 1D, 2D, and 3D), interpolation
(arbitrary order Lagrange or hierarchical bases for H

1 and H(curl) [176]) and inte-
gration (numerical quadratures on all element shapes: lines, triangles, quadrangles,
tetrahedra, prisms, hexahedra, pyramids). GmshFEM relies on its own internal sparse
matrix storage, but interfaces with Eigen [102] for dense linear algebra and external
solvers like PETSc [18] and MUMPS [7, 8] for large sparse solvers required for implicit
formulations or SLEPc [111] for large sparse eigenproblem solvers.

Strongly inspired by the design of GetDP [92, 70], GmshFEM relies for generality
and user-friendliness on a symbolic, high-level description of variational formulations
which allows to define the problem to solve (including boundary conditions, source
terms, etc.) in a natural mathematical manner, and is amenable to scripting without
pre- or re-compilation, like GetDP [70] or FreeFEM++ [108] but unlike most other
libraries [13, 21, 6, 163, 165, 104]. Moreover, this genericity implies neither the hard-
coding of particular classes of PDEs [164], nor the use of a full-blown external scripting
language like Python [173, 6].

The chapter is organized as follows. In Section 2 we start by describing how to
express a finite element problem in GmshFEM, using the soft scattering Helmholtz
problem described in Chapter 1, Section 2 as a guiding example. We then describe in
Section 3 some implementation details for classical continuous finite elements, before
presenting features not directly linked to time-harmonic wave simulation in Section 4.
Numerical results are presented in Section 5 to highlight the efficiency of the library
on modern multicore CPUs.

2 Symbolic definition of the problem

To illustrate how a finite element problem is set up in GmshFEM, let us consider the
scattering of a time-harmonic incident acoustic plane wave uinc = exp (◆k · x) on a soft
object �scat, as presented in Chapter 1 in Equation (1.4). To keep things simple, a
Sommerfeld boundary condition is enforced on the exterior boundary, such that (1.4)
takes the following simpler form:

8
><

>:

� u+ k
2
u = 0 in ⌦tot,

u = �uinc on �scat,

@nu� ◆ ku = 0 on �ext,

(5.1)

with k a positive constant wavenumber and u the complex-valued scattered field.
The description of a finite element problem in GmshFEM is not based on the

strong form (5.1) but rather on the associated variational formulation. The variational
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(a) The Falcon plane used as a scattering ob-

ject.

(b) The meshed domain ⌦tot around the

plane.

Figure 5.1: Falcon plane as used in our example scattering problem (5.1).

formulation of Problem (5.1) reads: Find u 2 H
1(⌦tot) such that

Z

⌦tot

gradu · grad v � k
2
uv d⌦tot �

Z

�ext

◆ kuv d�ext = 0 (5.2)

holds for every test function v 2 H
1(⌦tot). The following sections describe how (5.2)

is transcribed in the GmshFEM library. All the classes and functions of GmshFEM
live in a gmshfem namespace such that the GmshFEM library can be used inside
complex codes without name conflicts. On this simple problem, the “using namespace
gmshfem;” directive was used for conciseness such that gmshfem:: can be omitted.

For the example, the scattering object in Problem (5.1) is chosen to be a Falcon
plane (see Figure 5.1a) that is 18.251 m long, 5.78 m high and 18.04 m large. The
plane is put inside a box such that the domain ⌦tot is built by the intersection of the
volume inside the box and the volume outside the plane. This volume is meshed by
about 2.7M first order tetrahedra, with a total of about 473k nodes (see Figure 5.1b).

2.1 Geometric objects
In GmshFEM, all the data related to the geometry, the mesh, and the topology is
manipulated with the help of child classes of the GeometricObject abstract class.
Currently three child classes are defined:

• a Domain class (Figure 5.2a), to manipulate mesh entities as they appear in the
mesh of the problem. For example, each time a function is piece-wise defined
over a part of a mesh, a Domain object is involved.

• a SkinLayer class (Figure 5.2b), to build a layer of mesh elements defined inside
a domain (the source) and adjacent to another domain (the tool).

• a PeriodicLink class (Figure 5.2c), to handle mesh entities that are linked by
periodic conditions.

A Domain is based on the notion of physical group in Gmsh [93], which is identified
by a pair of integers (dim, tag) corresponding to the geometric dimension of the
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physical group, and a unique tag associated to it. A unique name can also be associated
to the group. Therefore, a Domain class can be constructed either by giving this
pair of integers or by giving the associated name. While the first method can be
more convenient for automatically generated geometries with lots of different physical
groups, e.g. a coil with an arbitrarily large number of windings, the second can be
more readable for geometries with a small number of physical groups.

Among other operations, Domain objects can be manipulated using binary oper-
ations of set algebra: the union, the intersection, the symmetric difference, and the
complement of domains are respectively defined using the bitwise OR operator |, the
bitwise AND operator &, the bitwise XOR operator ^ and the bitwise NOT operator
⇠. The bitwise OR assignment operator |=, the bitwise AND assignment operator &=
and the bitwise XOR assignment operator ^= are also overloaded.

Listing 5.1 shows how the three domains ⌦, �scat and �ext used in Problem (5.1)
are defined using GmshFEM, if we assume that physical entites named “omega”, “gam-
maScat” and “gammaExt” are defined in the mesh.
domain :: Domain omega("omega");
domain :: Domain gammaScat("gammaScat");
domain :: Domain gammaExt("gammaExt");

Listing 5.1: Domain objects needed to model the scattering problem example.

2.2 Function objects
All symbolic mathematical expressions in GmshFEM are managed with the help of a
Function<T_Scalar, T_Degree> where:

• T_Scalar is the algebraic structure (the real or complex set) with a desired pre-

(a) A mesh made of two re-

gions: the inner disk and

the exterior square. Domain
classes can be used, for in-

stance, to tag them.

(b) Example of SkinLayer
class used to model elements

inside the disk that are ad-

jacent to the boundary be-

tween the disk and the ex-

terior square domain.

(c) A PeriodicLink class

that models a periodic con-

dition between the left and

the right boundary.

Figure 5.2: The three child classes of the GeometricObject abstract class that can be
used in GmshFEM to define a finite element problem.
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cision (single or double precision) of the function, i.e. std::complex<double>,
std::complex<float>, double or float.

• T_Degree is the tensor degree of the function, i.e. 0 for a scalar, 1 for a vector,
2 for a tensor of order 2 and 4 for a tensor of order 4.

For simplicity, the tensor degree template argument can be omitted if one of the fol-
lowing alias are used:

• ScalarFunction<T_Scalar>,

• VectorFunction<T_Scalar>,

• TensorFunction<T_Scalar> and

• TensorFunction<T_Scalar, 4 >.

Functions store symbolic expressions in a tree structure that is evaluated at runtime,
e.g. during pre-processing, assembly, residual calculation, or post-processing. The tree
structure is designed to optimize the memory consumption of each symbolic expression
evaluation. Each function can export a report in HTML format that shows the tree
structure of the function and the peak and current memory consumption by point
evaluation using the member function exportExecutionTree, that takes as arguments
a domain of evaluation, an output file name and an optional output path.

In addition, piece-wise functions can also be defined using classes:

• ScalarPiecewiseFunction<T_Scalar>,

• VectorPiecewiseFunction<T_Scalar>,

• TensorPiecewiseFunction<T_Scalar> and

• TensorPiecewiseFunction<T_Scalar, 4 >,

that are filled-in using the member function addFunction, which takes as arguments
a Function object of the same tensor degree as the PiecewiseFunction object and
a domain of definition. These PiecewiseFunction classes are very useful for defining
properties such as material parameters that vary from one physical group to another
in a model.

On the one hand, these classes are versatile, allowing the writing of various functions
such as transcendental functions, interpolation functions, mesh coordinates evaluations,
and finite element field evaluations. The C++ arithmetic operators are overloaded for
these classes, which makes it possible to write expressions in a compact form close to
their mathematical definition. New functions can, of course, be added by users, going
as far as hard-coding the full terms necessary for e.g. assembling complex variational
formulation or post-processing computations. This versatility can, for example, be ad-
vantageously used for multilevel methods, where a function can embed another solver;
or for optimization or inverse problems, where automatic differentiation engines can be
efficiently interfaced.
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On the other hand, the tree structure allows for writing external parsers that can
directly feed complex functional expressions to GmshFEM, allowing to embed Gmsh-
FEM in other codes and benefit from its high-performance C++ numerical kernel without
having to recompile the library; and still keep the user-friendliness and flexibility of
a scripted code, without incurring the runtime costs of scripted languages. This is
directly inspired by the design of GetDP [70], where all expressions are analyzed once
during a parsing phase and executed at runtime later on.

In our example scattering problem, the plane wave incident function uinc =
exp (◆k · x) = cos (k · x) + ◆ sin (k · x) must be defined. We chose an angle of inci-
dence such that x = (0.3, 1,�0.2). Listing 5.2 shows how this function can be de-
fined using the GmshFEM function setting. The x<T_Scalar>(), y<T_Scalar>() and
z<T_Scalar>() functions return the x-, y- and z-coordinate of each considered point
when it will be evaluated on a domain and the vector<T_Scalar>() function is used
to create a vector. Note that the clause using Scalar std::complex<double>; is
used such that Scalar stands as a shorter alias of std::complex<double>.
typedef std::complex <double > Scalar;
Scalar im(0. ,1.);
function :: VectorFunction <Scalar > xVec =

function ::vector <Scalar >(
0.3 * function ::x<Scalar >(),
1. * function ::y<Scalar >(),
-0.2 * function ::z<Scalar >()) / std::sqrt (0.3*0.3+1.+0.2*0.2);

function :: VectorFunction <Scalar > kVec =
function ::vector <Scalar >(k, k, k) / std::sqrt (3.);

function :: ScalarFunction <Scalar > uInc =
function ::cos(kVec * xVec) + im * function ::sin(kVec * xVec);

Listing 5.2: Definition of a scalar function used as boundary condition to model the
scattering problem example.

2.3 Field objects
The Field class is designed to store information about a finite element field, its asso-
ciated discrete function space, and the degrees of freedom (DoF) map. To write any
finite element problem based on its variational form, one or several instantiations of
the Field class are employed. Once the interpolation coefficients, i.e. the degrees of
freedom values, have been computed, these Field objects can be evaluated, for in-
stance, to be used in other formulations, to be saved as post-processing views with the
Gmsh API, or be exchanged across subdomains in domain decomposition algorithms.
A Field object is fully compatible with Function classes defined in the previous section
such that 0-form and 3-form fields can be considered as scalar functions, and 1-from
and 2-form fields can be considered as vector functions.

A Field<T_Scalar, T_Form> class has two templates: the first one, T_Scalar
is defined in the previous section, and the second, T_Form defines the mathematical
differential form of the field. The differential form is either Form0 for continuous scalar
fields, Form1 for vector curl-conform fields that ensure the continuity of the tangential
trace between elements, Form2 for vector div-conform fields that ensure the continuity
of the normal trace between elements and Form3 for scalar fields without any continuity
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constraint between elements. For instance, 0-forms (scalar fields) are needed in our
acoustic scattering example, while 1-forms will be needed for the electromagnetic time-
harmonic wave problems.

The simplest fields are instantiated in GmshFEM with three arguments: a name, a
domain of definition (through a Domain object), and the identifier of a discrete function
space. For non-isoparametric interpolations, a fourth argument specifies the desired
interpolation order. GmshFEM currently supports both Lagrange basis functions,
arbitrary order hierarchical basis functions for H

1 and H(curl) [176], and a constant
by element basis function for L

2 space.
The Field class also manages Dirichlet or periodic boundary conditions with the

help of addConstraint() and addPeriodicConstraint() member functions, respec-
tively. The member function addConstraint() takes two arguments: a Domain object
where the Dirichlet condition is imposed and a Function object corresponding to the
condition itself. Note that the function must be of the same tensor degree as the field,
i.e. as ScalarFunction for 0-form and 3-form fields and a VectorFunction for 1-
form and 2-form fields. The addPeriodicConstraint() also takes two arguments: a
PeriodicLink object giving the links between a master and a slave geometric region
and a T_Scalar coefficient such that the value of the field on the slave region is equal
to the field value on the master region times the coefficient.

In our acoustic scattering example, the discrete scalar field u
h approximating the

solution u of the variational form (5.2) is transcribed into a Field object templated
over the Scalar type defined in Listing 5.2, as shown in Listing 5.3. It is defined over
the open domain approximating ⌦, i.e. the Domain object named “omega” defined
in Listing 5.1, and we chose to interpolate it with a hierarchical basis function of or-
der 3. This basis function order is used to decrease the pollution effect presented in
Chapter 1, Section 4. In addition, we impose the incident plane wave defined in List-
ing 5.2 as Dirichlet condition on the scattered boundary named “gammaScat” defined
in Listing 5.1.
field::Field <Scalar , form::Form0 >

u("u", omega , functionSpaceH1 :: HierarchicalH1 , 3);
// Dirichlet BC: u = -u_inc on gammaScat
u.addConstraint(gammaScat , -uInc);

Listing 5.3: The 0-form field defined to model the acoustic wave scattering problem
example.

2.4 Formulation objects
The Formulation object stores the symbolic representation of the variational formula-
tion of the problem 5.2. It can evaluate linear and bilinear forms, store the correspond-
ing matrix systems, and request their solution through external linear algebra pack-
ages [7, 8, 18, 111]. The Formulation<T_Scalar> class is templated on the T_Scalar
type defined in Section 2.2.

For continuous Galerkin finite elements formulations, the Formulation object pro-
vides the integral member function, whose two first Function arguments are the
inner product arguments describing one term in the variational formulation: the first
can involve any linear function of an unknown field, denoted by dof(), or any function
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independent of any unknown field; the second must involve a linear function of the
test function, denoted by tf(). If the first argument involves an unknown field, it
evaluates a bilinear form; otherwise, it leads to evaluating a linear form. Each argu-
ment involving an unknown field is modeled as an instance of an Equation class that
stores an UnknownField object containing information about the unknown field and
the possible derivative operator applied to it, two Function objects multiplying the
UnknownField object by the left side and by the right side and the two associated
products (e.g. a scalar product, a vector product, a tensor product). The third argu-
ment specifies the domain over which the integration is performed, i.e a Domain or a
SkinLayer object, the fourth specifies the quadrature rule (e.g. Gauss8 for a Gauss
quadrature suited for integrating 8th order polynomials). Finally, the last argument
is optional and specifies the definition of the product used between the first and the
second argument; if the value is set to term::ProductType::Scalar, then no conju-
gation is applied, and therefore for complex arguments, the product is not an inner
product. Otherwise, if it is set to term::ProductType::Hermitian (the default value)
and the second argument is conjugated. Note that with real arguments, both product
types are equivalent and correspond to the definition of an inner product. The product
depends on the tensor degree of the left l and right r argument. It corresponds to a
scalar multiplication, lr, for scalar arguments; a scalar product (i.e. a dot product),
l · r = (l)i(r)i, for vector arguments; and a twice contracted product (i.e. a double dot
product), L : R = tr (LRT ) = (L)ij(R)ij, for tensor arguments.

Let us imagine a problem where a field u is involved. It is essential to understand
the difference between a term defined in a formulation with an expression containing
dof(u) and another containing only u. When the field is tagged using the function
dof(), it is considered an unknown field in the corresponding formulation. When the
field is not tagged, it is considered a simple function that will be evaluated during the
assembly of the system and not as an unknown. For instance, the term containing the
inner product “dof(u), tf(u)” is considered as a bilinear term that will be a part of
the left-hand side of the system, while the term “u, tf(u)” is processed as a linear
term that will be a part of the right-hand side of the system, i.e. a source term.

Some terms like the
R
⌦ gradu · grad v d⌦ of (5.2) require to express the exterior

derivative of the unknown field, i.e. the gradient of a 0-from, the rotational of a 1-
form or the divergence of a 2-form. This exterior derivative is expressed in GmshFEM
using the function d() where the argument is either dof(u) or u depending if we are
dealing with an unknown field or the evaluation of a known field. Every type of field
can be used with the exterior derivative function d(). Furthermore, field-type-specific
operators are also defined for convenience (grad(), curl() and div()); they can be
used as the operator d() and will produce the exact same results.

An arbitrary number of integral terms can be specified: they are all summed
to produce the final discrete variational formulation. This symbolic expression of the
variational form is identical to the one introduced by GetDP [72] and allows to han-
dle coupled and mixed formulations seamlessly. For simple implicit formulations, the
Formulation provides three member functions encapsulating the pre-processing phase,
i.e. the identification of degrees of freedom and constraints (pre()), the assembly of
the linear system (assemble()) and the solution of the linear system (solve()) or the
solution of the eigenvalue system (eigensolve()).
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In our acoustic scattering example, three bilinear terms (two in the volume, one on
the artificial boundary) encode the discrete version of the variational form (5.2) in a
Formulation object that we chose to name “helmholtz”: see Listing 5.4. Note that for
convenience’s sake, we introduce functions dof(), tf() and grad() defined into the
namespace equation and all functions defined into the namespace function into the
current namespace. As the variational form (5.2) is expressed with Hermitian products,
the last argument can be ignored as the Hermitian product is the default value.
using equation ::dof;
using equation ::tf;
using equation ::grad;
using namespace function;

problem :: Formulation <Scalar > formulation("helmholtz");

formulation.integral(grad(dof(u)), grad(tf(u)), omega , "Gauss8");
formulation.integral(- k*k * dof(u), tf(u), omega , "Gauss8");
formulation.integral(- im*k * dof(u), tf(u), gammaExt , "Gauss8");

formulation.pre ();
formulation.assemble ();
formulation.solve ();

Listing 5.4: Definition of the formulation for the acoustic wave scattering problem
example.

2.5 Post-processing functions
Once a problem is solved, fields can be post-processed with the help of any Function,
using a variety of operations. Currently three main post-processing features are avail-
able: direct data export on a mesh, evaluation of integrals and evaluation at arbitrary
points.

The simplest operation consists in exporting the data as a Gmsh post-processing
view through the save() function. Three versions of save() are defined. The first one
takes three mandatory arguments and six optional ones. The mandatory arguments
are: the function to export (i.e. any Function objects), a geometric object where the
function should be evaluated (i.e. a Domain or a SkinLayer object) and a file name.
The optional arguments are: a post-processing file format (the default value is msh),
an output path (the default is set to the current path), a boolean to activate if the
function has to be save in memory and not on disk, a “step” that specifies the identifier
(� 0) of the data in a sequence, a “time” argument associating a time value with the
data and a “partition” that allows one to specify data in several sub-sets. The second
version takes almost the same arguments as the first one, except the second parameter;
the geometric object is substituted by a Mesh object that models geometric primitives
such as circles, disks, lines, planes and spheres. The last version is a more efficient
version of the first one for 0-form fields discretized using iso-parametric or first order
hierarchical bases. It takes a 0-from field as mandatory argument and the same six
optional ones as the previous versions.

The integration post-processing function, integrate(), is declined in two versions
that both take three mandatory arguments and return the evaluation of the integral.
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The first one takes a Function object as integrand of the integral, a domain of integra-
tion (i.e. a Domain or a SkinLayer object) and a quadrature rule. The second version
allows to integrate over a Mesh object.

The last post-processing function, evaluate(), allows to evaluate any Function
object f , given as first argument, on any point P : (px, py, pz), where px, py and pz

are given by the last three arguments. The function returns the evaluation of f(P ).
Note that the return type of integrate() or evaluate() depends of the tensor de-
gree of the function argument. Both functions called with a Function<T_Scalar,
T_Degree> return an object of type MathObject<T_Scalar, T_Degree>::Object.
Note that MathObject<T_Scalar, Degree::Degree0>::Object is equivalent to the
type T_Scalar.
const double rho = 1.2; // [kg / m^3]
const double f = 200; // [Hz]
const double pi = 3.14159265359;

VectorFunction <Scalar > v = - im / (2. * pi * rho * f) * grad(u);

post::save(u, omega , "u");
post::save(v, omega , "v");

post:: Sphere sphere("sphere", -18., -0.7, 0.272 , 0.8, 100);
Scalar power =

post:: integrate(u * v * function ::normal <Scalar >(),
sphere , "Gauss8");

msg::info << "Power = " << power << "[W]" << msg::endl;

post::Plane cut("cut", -19., -2.23, 0.275, // cut -plane origin
20.38, 0., 0., // x vector
0., 5.55+2.23 , 0, // y vector
500, 190); // x & y discretization

post::save(u, cut , "u_cut", "pos");
post::save(v, cut , "v_cut", "pos");

Listing 5.5: Some post-processing operations applied to the acoustic wave scattering
problem example.

The application of those post-processing functions is shown in Listing 5.5. For our
example, we chose the save the pressure field u and the local particle velocity v on the
domain ⌦tot. The local particle velocity is given by Equation 1.25 of Chapter 1,

v = �
◆

2⇡⇢0f
gradu, (5.3)

where ⇢0 = 1.2 kg/m3 and f = 200 Hz. Figure 5.3 shows fields u and v evaluated on
the median plane of the Falcon. Furthermore, we also compute the sound power given
by

P =

Z

S

uv · n dS, (5.4)

where S is a sphere of radius 0.8 centered on the nose plane (�18,�0.7, 0.272) and n

is its outgoing normal. The Sphere object is constructed with a name, the coordinate
of its center, its radius, and the number of points used to discretize it. Finally, the
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(a) The real part of the pressure field. (b) The norm of the particle velocity field.

Figure 5.3: The solution to the acoustic scattering problem depicted on the median
plane.

solution is evaluated and exported on the median cut modeled by a plane Plane object
defined by a name, the coordinate of the origin of the cut-plane, the coordinate of its
base vectors x̂ and ŷ and the number of discretized points in the x̂ and ŷ direction,
respectively. Figure 5.3 shows the output pressure and particle velocity fields.

3 The C++ implementation
For implicit, low-order continuous Galerkin finite element formulations, the most time-
consuming part of the finite element process (CAD and meshing aside) resides in the
solution of the resulting large, sparse linear systems. However, high-order finite element
methods, which are increasingly used for complex simulations to alleviate the slow
grid convergence of the state-of-the-art (usually second order) methods provided by
most industrial codes, the mere process of assembling the finite element matrices,
or computing the residuals or the time iterates, rapidly becomes a bottleneck in the
computer implementation.

While high-order finite elements naturally lead to increased arithmetic intensity,
since the local element-wise matrices become larger and denser, the number of quadra-
ture points also dramatically increases. In such cases, the best way to achieve good per-
formance is to reformulate all the quadratures as dense matrix-matrix products [6, 137],
and by pre-computing as many of the underlying matrices as possible. While a nat-
ural decomposition resides in the separation of the metric-dependent and metric-
independent parts in the Galerkin terms [137], many codes trade off accuracy and
generality for performance by assuming, for example, that all parts of the integrands
are interpolated using the same bases as the unknown fields [6]. This is not suitable
for e.g. strongly nonlinear problems or multiscale problems, though, as the coefficients
do not have the same regularity. The cost of pre-computing and storing local matri-
ces is exacerbated when using hierarchical bases, or vector-valued basis functions for
e.g. H(curl) or H(div), where the basis functions depend on the orientation of the
elements [176, 137]. Storing all unassembled matrices in such cases rapidly leads to
prohibitive memory requirements, even in cases where direct linear solvers eventually
factorize the matrix.
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In GmshFEM, the efficient evaluation of linear and bilinear forms is based on a
compromise between processing time and memory usage. Good parallel performance
is obtained by carefully analyzing the effect of spatial and temporal data locality.

3.1 The pre-processing phase
Before any evaluation of linear or bilinear forms occurs, GmshFEM performs a pre-
processing phase, which builds a dictionary of degrees of freedom (identified by keys)
based on the input mesh, the fields with their associated function spaces, and the finite
element formulation. A unique tag is associated with each unknown DoF, correspond-
ing to an equation number. Tags are chosen, for example, such that “bubble” degrees
of freedom (which only depend on the element and are not shared between mesh en-
tities) are explicitly identified, which helps assemble them without locks due to their
one-element locality. For implicit formulations, the pre-processing phase also allocates
the arrays used to store the finite element matrices in a compressed row storage (CRS)
format. The sizes of these arrays are known by computing the pattern of the finite
element matrix by assuming that all local matrices (resulting from the integration over
one element) are dense. The parallel efficiency of the pre-processing is limited by the
performance of the hash map used to identify DoFs, locks required by the calculation
of the global matrix pattern, and the memory allocation needed to instantiate Dof
objects and the vectors used by the CRS format.

The pattern of the finite element matrix depends on the DoF ordering algorithm,
which can have an impact on the performance of the assembly. Indeed, to some extent,
the spatial and temporal locality can be optimized by choosing a good DoF ordering.
Currently, four algorithms are available in GmshFEM:

• No DoF ordering: DoFs are considered in the order returned by the Gmsh API.

• Hilbert sort (space filling curve) ordering: this keeps DoFs that are close spatially
close in memory [105, 171].

• Reverse Cuthill–McKee (RCM) ordering: this reduces the matrix bandwidth and
thus also improves memory locality [62].

• Default DoF ordering: this forces the bubble DoFs to be stored at the end of the
matrix while the other DoFs are sorted using the Hilbert sort algorithm.

The effect of DoF ordering on the pattern of a finite element matrix corresponding to
a small 3D scattering problem like the one described in the previous section can be
observed in Figure 5.4. As can be seen, with the default DoF ordering algorithm, the
block matrix corresponding to the bubble DoFs appears in the lower right corner.

3.2 The function tree structure
As explained in Section 2.2, each function is stored in memory as a tree struc-
ture. For instance, the incident plane wave 5.2 used in the scattering prob-
lem is described by the tree structure of Figure 5.5. Every tree node cor-
responds to a basic operation, e.g. arithmetic operation, transcendental func-
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(a) No DoF sort (b) Hilbert (c) RCM (d) Default

Figure 5.4: Spy plots of a small version of the example problem (5.2) (6600 DoFs) for
different DoF ordering algorithms.

tion, field evaluation, etc.; they are all an instance of child classes of the inter-
face ExecutionTree<T_Scalar> class. For instance, a node could be an instance
of NullaryNode<T_Op>, UnaryNode<T_Op>, BinaryNode<T_Op>, TernaryNode<T_Op>,
and so on, depending on the number of parameters, i.e. the arity of the associated func-
tion. Furthermore, advanced nodes such as FieldNode<T_Op> for operations related
to finite element fields, AnalyticalNode<T_Op> for pre-defined analytic expressions or
ScalarTypeNode<T_Op> for functions that will change the scalar type of a function
such as real() or imag() (that take a complex function in argument and return a real
function), are also defined.

All nodes all templated on a type T_Op, which corresponds to a child of an
Operation class. For instance, a BinaryNode class must be associated through a
BinaryOperator class as template type. The Operation classes have to override the
call operator operator() that is responsible for the computation of the needed func-
tion. For example, the first node of Figure 5.5 is a BinaryNode<Add> object, namely
a BinaryNode instantiated with a BinaryOperator class named Add as template type.
This node is responsible for the addition of two scalar parameters a and b, thus the
Add<T_Scalar> class must override the operator operator() as shown in Listing 5.6.
The function takes several arguments: first, a vector named values that will contain
the result of the node evaluation, two vectors of parameters (i.e. a and b), two vec-
tors containing the spatial coordinates and the reference local coordinates of where the
function has to be evaluated, and finally, the type of element and the entity on which
the function is evaluated.

void operator ()(std::vector < T_Scalar > &values ,
const InputVector < T_Scalar > &a,
const InputVector < T_Scalar > &b,
const std::vector < scalar ::Precision < T_Scalar > > &points ,
const std::vector < scalar ::Precision < T_Scalar > > &gaussPoints ,
const int elementType ,
const std::pair < int , int > &entity) const override

{
#pragma omp for

for(auto i = 0ULL; i < values.size (); ++i) {
values[i] = a[i] + b[i];

}
}
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BinaryNode<Add>

UnaryNode<Cos> BinaryNode<Mul>

NullaryNode<Value>,
with value = im

UnaryNode<Sin>BinaryNode<Mul>

BinaryNode<Mul>NullaryNode<Value>,
with value = k

NullaryNode<Value>,
with value = k

NullaryNode<X>

NullaryNode<X>

Figure 5.5: Function tree by GmshFEM to represent the incident plane wave of List-
ing 5.2.

Listing 5.6: Exemple of overriden call operator that compute the addition of two scalar
parameters a and b.

Nodes are optimized to reduce memory consumption and reduce slow allocation
calls during evaluation. For instance, an evaluation of the incident plane wave function
of Figure 5.5 has a peek memory consumption by evaluation point of 16 B, i.e. the
memory needed to store a complex number in double precision; that means only one
extra vector of complex numbers is allocated during its evaluation. Nodes are optimized
such that: on the one hand, constant expressions are not evaluated at each evaluation
point but only once; on the other hand, every operator returns some information that
the node can use to determine if it can reuse some intermediate arrays. For instance
the addition operator of Listing 5.6 can be optimized as

values[i] = values[i] + b[i];

where the input vector a uses the same vector as the output one. Furthermore, this
operator can be optimized a bit more if leaves a and b are identical,

values[i] = values[i] + values[i];

such that in this case, the BinaryNode does not need to allocate arrays to evaluate its
operator.

By inheritance, users can define their own operations. The simple but also less flex-
ible method is to define a new operator by inheriting from the appropriated Operator
class (definition of a custom node). For instance, if someone wants to define a new
operation that takes one argument, it has to create a class that inherits from the
UnaryOperator mother class and overrides the call operator as done in Listing 5.6.
This method is quite simple to implement and can keep the memory optimization of
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node classes. Nevertheless for some advanced uses, the user also has to redefine its own
node class which is a bit less simple (but still affordable for users accustomed to C++)
but offers enormous possibilities.

Finally, note that every post-processing function presented in Section 2.5 is also
related to this function evaluation algorithm. Indeed, both data exportations, integral
evaluations, or point evaluations are carried out by evaluating a given function.

3.3 The assembly phase
The assembly process can be seen as an algorithm that combines information of different
nature and stores the result in a finite element matrix. For instance, let us consider the
local stiffness matrix of the variational form (5.2) over any element ⌦e of the domain
⌦tot. This local stiffness matrix is given by the following general expression:

Aij =

Z

⌦e

h
f(x)J�T

grad �̂i

iT h
g(x)J�T grad �̂j

i
det(J) d⌦e. (5.5)

where f(x) and g(x) are functions equal to one for the stiffness matrix of the varia-
tional form (5.2), �̂i and �̂j are the basis functions associated with the i

th or jth degree
of freedom over ⌦tot, and J = @xi/@x̂j is the Jacobian matrix mapping the reference
coordinates (x̂) of the reference element to the mesh coordinates (x). The integrand is
a combination of geometric, i.e. metric-dependent, information (the Jacobian matrix
J and its determinant det(J)), metric-independent basis function data (grad �̂i and
grad �̂j), and arbitrary function evaluations (f(x) and g(x)). The metric-dependent
and metric-independent data are currently returned by the Gmsh API, while the func-
tion evaluations are computed by the tree structure presented in Section 2.2.

Depending on the nature of the field, the change of coordinates for the reference
element K̂ to the mesh element K is different. Given function f or f in the mesh element
coordinate system x and f̂ or f̂ is the reference element coordinate system x̂ = �

�1(x),
with � : K̂ ! K, the following changes of coordinate must be applied [176]:

• mapping of functions in H
1: f(x) = (f̂ ���1)(x),

• mapping of functions in H(curl): f(x) = (J�T
f̂ ��

�1)(x),

• mapping of functions in H(div): f(x) = (J det(J)�1
f̂ ��

�1)(x),

• mapping of functions in L
2: f(x) = (det(J)�1

f̂ ��
�1)(x).

The example equation (5.5) applies the H(curl) mapping to the basis functions, as
the gradient of a function defined in H

1 is computed. In GsmhFEM, the mapping
function is managed by the FieldEvaluator< T_Scalar, T_Form> classes that take as
argument the Jacobian matrix, its determinant, and the basis function. Mathematically
the FieldEvaluator classes are operators defined as:

FieldEvaluator : K̂ ! K

�̂ 7! �

(5.6)

where �̂ is a basis function in the reference space, and � is the corresponding basis
function in the mesh space.
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Once basis functions are expressed in the mesh space, expression of type F (x) ?L
�?RG(x), where F and G are scalar, vector or tensor functions, and ?L and ?R are any
product compatible with the tensor degree of F , � and G, must be evaluated. Note
that we consider here that ?L and ?R also induce the priority of operations such that
depending on their definition, the product should be understood as F (x)?L (�?RG(x))
or (F (x)?L�)?RG(x). For instance, in the expression (5.5), products f(x)�i and g(x)�j,
where f and g are scalar functions, have to be computed. In GmshFEM, these products
are computed by the EquationEvaluator classes templated on lots of parameters: the
scalar type (i.e. T_Scalar) the tensor degrees of F and G, the differential form of �
and the definition of products ?L and ?R with the associated priority. Mathematically,
these classes are operators that take the basis function and the functions F and G and
return a function of tensor degree depending on their parameters. Let us call L(x)
the function returned by the left expression and R(x) the function returned by the left
expression such that any local matrix assembly can be expressed by

Aij =

Z

⌦e

L(x)TR(x) det(J) d⌦e. (5.7)

For the left or right expression, the appropriate FieldEvaluator and
EquationEvaluator are respectively returned by the left or right Equation ob-
ject instantiated during the declaration the term as done in Listing 5.4.

This integral is then evaluated using a numerical quadrature rule, leading to a
weighted sum (with weights wq) of evaluations of the integrand at integration points
xq:

Aij ⇡

QX

q=1

L(xq)
T
R(xq) det(Jq)wq. (5.8)

Four kinds of data are therefore needed to assemble such a term over an element:

• Integration points and weights,

• Geometric information represented by the Jacobian matrix and its determinant
evaluated at integration points,

• Basis functions evaluation at integration points,

• Arbitrary function evaluated at the integration points.

GmshFEM retrieves the first three data directly from the Gmsh API. For efficiency,
Gmsh and GmshFEM deal with such data for groups (“buckets”) of elements of the
same type so that data can be accessed efficiently in contiguous chunks of memory,
suitable for optimized vectorized operations. Three criteria define these buckets.

The first distinction is made on the type and geometrical order of the elements
(e.g. lines, triangles, quadrangles, tetrahedra, ..., straight-sided or curved). Indeed,
the integration points expressed in the reference coordinate system and their associated
weights are identical for a given type if the same quadrature order is used. Furthermore,
before assembling elements of the same type using the same quadrature order, basis
functions can be pre-computed at integration points for all possible orientations. Then
during the assembly process, each element has a tag that identifies its orientation.
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forall elementTypes do

basisFunctionsData  ComputeNeededBasisFunctions();
entities  GetEntitiesHavingCurrentElementType();
forall entities do

precomputedNeededFunctions();
geometricData  ComputeNeededGeometricData();
fieldPairs  GetFieldPairsDefinedOverCurrentEntity();
forall fieldPairs do

dofIndices  ComputeDOFIndices();
AssembleAndStoreInMatrix(basisFunctionsData, geometricData,
dofIndices);

end

end

end

Figure 5.6: Pseudo-code of the assembly algorithm.

The second distinction is made by geometrical entities, for which metric-dependent
information is computed in a single pass by Gmsh. Moreover, as variational form
integrals are defined over geometric entities, mathematical functions appearing in their
integrands can be pre-computed for all integration points at this stage.

The third distinction depends on the formulation. When a bilinear term is defined,
it involves a pair of fields, an unknown field, and test functions associated with the
same field or with another field. Once the problem is discretized, this pair corresponds
to a block in the finite element matrix. Therefore, it is suitable to assemble terms pair
by pair to avoid unnecessary displacements in memory that will negatively impact the
cache efficiency of the program.

Once this data is pre-computed (in parallel) and stored in arrays, the assembly pro-
ceeds in parallel for elements belonging to the same bucket. Each thread is responsible
for contiguous elements, and on each element, linear algebra operations are handled by
the Eigen [102] C++ template library for linear algebra. As threads assemble contiguous
elements, they combine contiguous parts of the pre-computed data. As a result, spatial
memory locality is maximized as data needed to process an element are always close
to each other, and temporal memory locality is also maximized as the needed data to
assemble the next element are close to the data used to assemble the current one.

Finally, the local matrix elements are pushed into the global matrix stored in CRS
format at locations given by pre-computed indexed arrays. As mentioned above, a
single atomic addition directive is applied to avoid race conditions, except for bubble
DoFs. The whole assembly procedure is summarized in Figure 5.6.

4 Other features

In order to present other features developed in GmshFEM, we have to step a bit
outside the main framework of this thesis. In Sections 4.1 and 4.2, the plane geometry
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of Figure 5.1a remains unchanged but the physics is adapted to model time-harmonic
elastodynamic and electromagnetic waves, respectively. In Sections 4.3 and 4.4, the
electrostatic modeling of a cylindrical capacitor is briefly considered to shed light on
some other interesting features of GmshFEM, which can be useful in a variety of
applications: infinite and axisymmetric transformations and the introduction of global
quantities.

4.1 Elastodynamic time-harmonic waves
Let us consider the counterpart of the scattering problem 5.1 in elastodynamics. The
keep the strong parallel with the other wave problem examples, let us consider the
unphysical problem of a plane inside a solid medium hit by a P-incident plane elastic
wave uinc = uinc x. This problem is modeled by the following vectorial Navier equation,

8
>>>><

>>>>:

1

k
2
P

grad divu�
1

k
2
S

curl curl u� u = 0 in ⌦tot,

u = �uinc on �scat,

�t(u)�
◆

kP
Inu�

◆

kS
I⌧u = 0 on �ext,

(5.9)

where k
2
P
= ⇢!

2
/(� + 2µ) and k

2
S
= ⇢!

2
/µ are the P-wave and S-wave wavenumbers,

with � and µ are Lamé parameters, In = n ⌦ n, I⌧ = I � In, u is the unknown
displacement field and �t(·) is the trace operator defined on a boundary � as

�t : u 7! u
t := 2µ@nu|� + �n divu|� + µn⇥ curl u|�. (5.10)

To express the variational formulation of Problem 5.9, let us use the following 4th order
elastic tensor C

(C)ijkl : = ��ij�kl + µ(�ik�jl + �il�jk), (5.11)

=

✓
1

k
2
P

�
2

k
2
S

◆
�ij�kl +

1

k
2
S

(�ik�jl + �il�jk) (5.12)

where �ij is the Kronecker delta, such that variational formulation is: Find u 2

[H1(⌦tot)]3 such that
Z

⌦tot

(C : gradu) : gradv � ⇢!
2
u · v d⌦pla = 0 (5.13)

holds for every test function v 2 [H1(⌦tot)]3.
For this elastodynamic problem, the 4th-degree elastic tensor C must be defined as

done in Listing 5.7. A constant 4th-order tensor object of type MathObject<Scalar,
Degree::Degree4>::Object is created using the definition (5.12), then a 4th-tensor-
degree function, i.e. a TensorFunction<Scalar, 4> object, is instantiated using this
constant object. In addition, the vector incident plane wave is also defined using
the acoustic incident wave definition, and the direction of propagation is defined in
Listing 5.2.
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typename MathObject <Scalar , Degree ::Degree4 >:: Object Ctmp;
for(int i = 0; i < 3; ++i) {

for(int j = 0; j < 3; ++j) {
for(int k = 0; k < 3; ++k) {

for(int l = 0; l < 3; ++l) {
if(i == j && k == l) {

Ctmp(i,j)(k,l) += 1./(kP*kP) - 2./(kS*kS);
}
if(i == k && j == l) {

Ctmp(i,j)(k,l) += 1./(kS*kS);
}
if(i == l && j == k) {

Ctmp(i,j)(k,l) += 1./(kS*kS);
}

}
}

}
}
function :: TensorFunction <Scalar , 4> C(Ctmp);
function :: VectorFunction <Scalar > uIncVec = uInc * xVec;
function :: VectorFunction <Scalar > n = function ::normal <Scalar >();
function :: TensorFunction <Scalar > In = function :: dyadic(n,n);
function :: TensorFunction <Scalar > It =

function ::identity <Scalar >() - function :: dyadic(n,n);

Listing 5.7: Definition of a the 4th degree elastic tensor and the normal function.

As suggested for the elastic problem, each component of the u field is defined
H

1. Such vector fields are modeled by a CompoundField< Scalar, form::Form0,
3> object (see Listing 5.8), where the last template parameter corresponds to the
dimension on the vector field, here 3. Once this field is instantiated, it can be used as
any other field presented before; for instance, the boundary condition can be applied
on the plane using the addConstraint() member function.
field:: CompoundField <Scalar , form::Form0 , 3>

u("u", omega , functionSpaceH1 :: HierarchicalH1 , 2);
// Dirichlet BC: u = -u_inc on gammaScat
u.addConstraint(gammaScat , -uIncVec );

Listing 5.8: The 0-form compound field defined to model the elastodynamic wave
problem.

Listing 5.9 presents the formulation of the elastodynamic problem 5.13. Once again,
this problem transcription is very close to the variational formulation (5.13). The
differential operator grad applied here corresponds to the vector gradient, while in the
acoustic example, the grad operator is the classical scalar gradient. Note that the
dyadic() function is used to compute the dyadic product n⌦ n and that the identity
matrix is returned with the function identity().
using equation ::dof;
using equation ::tf;
using equation ::grad;
using namespace function;

problem :: Formulation <Scalar > formulation("navier");
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formulation.integral(C*grad(dof(u)), grad(tf(u)), omega , "Gauss8");
formulation.integral(-dof(u), tf(u), omega , "Gauss8");
formulation.integral(-im/kP * In * dof(u), tf(u),

gammaExt , "Gauss8");
formulation.integral(-im/kS * It * dof(u), tf(u),

gammaExt , "Gauss8");

formulation.pre ();
formulation.assemble ();
formulation.solve ();

Listing 5.9: Definition of the formulation for the elastodynamic wave problem.

Finally, similar post-processing as shown in Listing 5.5 can be applied to the elas-
todynamic problem, where the displacement field is represented: see Listing 5.10 and
Figure 5.7a.
post::save(u, omega , "u");
post::save(u, cut , "u_cut", "pos");

Listing 5.10: Some post-processing operations applied to the elastodynamic wave prob-
lem.

4.2 Electromagnetic time-harmonic waves
Once again, let us consider the counterpart of the scattering problem 5.1, this time in
electromagnetics. This problem is modeled by the following vectorial Maxwell equa-
tion [175], 8

><

>:

curl curl e� k
2
e = 0 in ⌦tot,

�
T (e) = ��T (einc) on �scat,

�
t(curl e) + ◆ k�

T (e) = 0 on �ext,

(5.14)

where e is the unknown scattered electric field, einc is the incident plane wave enforced
on the scattering object (i.e. the plane) and �

t(·) and �
T (·) are the trace operators

defined on a boundary � as

�
t : e 7! e

t := n⇥ e|� and, �
T : e 7! e

T := n⇥ (e|� ⇥ n), (5.15)

where a⇥ b designed the cross product. The last equation of (5.14) is the equivalent
of the Sommerfeld condition for the electromagnetic problem, i.e. the Silver-Müller
radiation condition [175].

Once again, the description of a finite element problem in GmshFEM is based on
the variational formulation of Problem 5.14, namely: Find e 2 H(curl)(⌦tot) such that

Z

⌦tot

curl e · curl v � k
2
e · v d⌦tot �

Z

�ext

◆ k [n⇥ (e⇥ n)] · v d�ext = 0 (5.16)

holds for every test function v 2 H(curl)(⌦tot).
The geometric objects as described in Listing 5.1 remain valid, but the incident

plane wave must be modified. For this electromagnetic problem, we inject a vector
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plane wave polarized in the direction pe : (1,�0.3, 0) such that pe is orthogonal to
the direction of propagation x. Therefore, we instantiate a VectorFunction object
defined as the product of uInc by the polarized vector (1,�0.3, 0) divided by its norm
as shown in Listing 5.11. Note that to write the Silver-Müller condition, the normal
function must also be defined using the normal<T_Scalar>() function.
function :: VectorFunction <Scalar > eInc =

uInc * function ::vector <Scalar >(1. , -0.3 ,0.) / std::sqrt (1.09);
function :: VectorFunction <Scalar > n = function ::normal <Scalar >();

Listing 5.11: Definition of a vector function used as boundary condition to model the
elastodynamic scattering problem.

The electric field e is a 1-form field in H(curl), and is thus de-
fined as a Field<Scalar, form::Form1> object, with associated function space
functionSpaceHCurl (see Listing 5.12. The Dirichlet boundary condition is enforced
using the same addConstraint() member function as in the acoustic and elastody-
namic cases; note that the trace operators can be omitted as they are implicitly handled
at the discrete level by the choice of the HierarchicalHCurl basis functions.
field::Field <Scalar , form::Form1 >

e("e", omega , functionSpaceHCurl :: HierarchicalHCurl , 2);
// Dirichlet BC: gamma^T(e) = - gamma^T(e_inc) on gammaScat
e.addConstraint(gammaScat , -eInc);

Listing 5.12: The 1-form field defined to model the elastodynamic wave scattering
problem.

Listing 5.13 presents the formulation of the electromagnetic problem 5.16. It is
again close to the formal mathematical expression; it should just be noted that the
vector product is implemented by an overloading of the modulo operator %.

Finally, Listing 5.14 and Figure 5.7b present the same kind of post-processing as
done in the elastodynamic example.
using equation ::dof;
using equation ::tf;
using equation ::curl;
using namespace function;

problem :: Formulation <Scalar > formulation("maxwell");

formulation.integral(curl(dof(e)), curl(tf(e)), omega , "Gauss8");
formulation.integral(- k*k * dof(e), tf(e), omega , "Gauss8");
formulation.integral(- im*k * n % (dof(e) % n), tf(e),

gammaExt , "Gauss8");

formulation.pre ();
formulation.assemble ();
formulation.solve ();

Listing 5.13: Definition of the formulation for the elastomagnetic wave scattering prob-
lem.

post::save(e, omega , "e");
post::save(e, cut , "e_cut", "pos");
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(a) The real part of the norm of the displace-

ment field computed by the elastodynamic

example.

(b) The real part of the norm of the electric

field computed by the electromagnetic exam-

ple.

Figure 5.7: The solution of the electromagnetic and elastodynamic scattering problem
depicted on the cut-plane.

Listing 5.14: Some post-processing operations applied to the elastomagnetic wave scat-
tering problem.

4.3 Infinite shell and axisymmetric transformations

In order to introduce other interesting features of GmshFEM, let us consider the simple
electrostatic modeling of a planar capacitor, as shown in Figure 5.8a. The capacitor
is made of two parallel disks separated by a dielectric material of relative permittivity
"r = 5, surrounded by air. An electric potential of +1 and �1 Volt is enforced on the
top and bottom electrodes.

A change of coordinates from the 3D Cartesian system x̂ : (ex, ey, ez) to a 3D cylin-
drical system x̂

0 : (er, e✓, ez), combined with the axisymmetry of the problem, allows
to model the problem in the plane x̂2D : (ex, ey), with ex = er and ey = ez (see Fig-
ure 5.8b) provided that the Jacobian is modified accordingly [110, 109]. Furthermore,
an additional Jacobian modification can be considered to handle the homogeneous
boundary condition on the electric field at infinity, through the introduction of an “in-
finite” shell transformation. To this end, the “Air” domain in Figure 5.8b is extended
by a layer “Inf shell”, that maps its exterior boundary to infinity [110, 116].

In GmshFEM, all of these Jacobian modifications are handled by the Domain
class which can take as last optional argument an object inherited from the ab-
stract class: JacobiansModificator. Three classes are currently implemented
to describe infinite shell transformations (PolarShell, CylindricalShell and
SphericalShell), the Axisymmetry class encodes the asymmetric transformation, and
the AxisymmetryShell class combines the asymmetric and polar shell transformations.
Listing 5.15 shows how the Jacobian transformations are defined for the capacitor ex-
ample. The AxisymmetryShell takes as arguments the radius of the inner and outer
shell boundary of the shell.

Part II. Computational tools – Chapter 5. GmshFEM, a finite element library 132



Other features

•

Top electrode
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Bottom electrode
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Dielectric
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Symmetric axis

(a) The plane capacitor that is symmetric

around the dashed axis.

Air

Inf shell

•

Top electrode

•

Bottom electrode

•Dielectric

•

Symmetric axis

•
Inf

(b) The axisymmetric model of the capacitor

where the computational domain (i.e. the in-

ner half-disk) is surrounded by an infinite shell.

Figure 5.8: The 3D capacitor and the corresponding 2.5D plane model.

Every time a function is called by taking one of these domains in argument, the
associated Jacobian transformation is considered (if needed). In the same way, any FE
terms or post-processing functions will be evaluated using the Jacobian transformations
associated with the domain passed as argument.
domain :: Axisymmetry <Scalar > axisymmetry;
domain :: AxisymmetryShell <Scalar > axisymmetryShell (2., 2.5);

domain :: Domain air("air", axisymmetry );
domain :: Domain dielectric("dielectric", axisymmetry );
domain :: Domain top("top", axisymmetry );
domain :: Domain bottom("bottom", axisymmetry );
domain :: Domain axis("axis", axisymmetry );
domain :: Domain shell("inf shell", axisymmetryShell );
domain :: Domain inf("inf", axisymmetryShell );

domain :: Domain all = air | shell | dielectric;

Listing 5.15: Definition of the axisymmetric and infinite shell domains.

Note that this problem is also a good example to showcase the use of piecewise func-
tions to declare the permittivity in Listing 5.16. First a ScalarPiecewiseFunction
<T_Scalar> object is instantiated, then values are assigned depending on the domain
of definition.
const double eps0 = 8.854187e-12; // [F / m]
const double epsr = 5;

function :: ScalarPiecewiseFunction <Scalar > eps;
eps.addFunction(eps0 , air | shell);
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eps.addFunction(eps0 * epsr , dielectric );

Listing 5.16: The permittivity piecewise function.

4.4 Global quantities
In many applications one needs to impose non-local constraints, or to link non-local
(e.g. integral) quantities through external circuit-type equations. So-called global
quantities [74] allow for a natural handling of these non-local constraints and exter-
nal circuit couplings. Global quantities are associated with global basis functions,
introduced at the function space level, which are linear combinations of the classical
elementary shape functions.

In the case of the capacitor example, a global electric voltage can be defined on each
electrode, to which a global electric charge (its dual) is associated. A field named “v”
is instantiated in Listing 5.17, with a homogeneous Dirichlet condition at infinity. Two
GlobalQuantity objects are then instantiated (one by electrode), by taking a name
and a domain of definition as argument. Finally, they are both associated with the
field “v”.
field::Field <Scalar , form::Form0 > v("v", all ,

functionSpaceH1 :: Lagrange );
v.addConstraint(inf , 0.);

field:: GlobalQuantity <Scalar > vTop("vTop", top);
field:: GlobalQuantity <Scalar > vBottom("vBottom", bottom );
v.assignGlobalQuantity(vTop);
v.assignGlobalQuantity(vBottom );

Listing 5.17: The electric potential field and two global quantities use to impose the
potential on each electrode.

The formulation of the capacitor problem, as shown in Listing 5.18 is written as
usual (cf. Listing 5.16), with a homogeneous Neumann condition on the axis of sym-
metry. The two global quantities are integrated into it by fixing the primal values, i.e.
the global electric potential. The dual values, i.e. the global electric charges on the
electrodes, can be obtained once the system is solved.
problem :: Formulation <Scalar > formulation("capacitor");

formulation.integral(eps * grad(dof(v)), grad(tf(v)), all ,
"Gauss4");

formulation.integral (0., tf(v), axis , "Gauss4");

formulation.globalTerm(vTop , field:: FixedComponent ::Primal , -1.);
formulation.globalTerm(vBottom , field:: FixedComponent ::Primal , 1.);

formulation.pre (); formulation.assemble (); formulation.solve ();

msg::info << "The charge on the inner electrode " <<
vTop.getDualValue () << "[C/rad]" << msg::endl;

msg::info << "The charge on the outer electrode " <<
vBottom.getDualValue () << "[C/rad]" << msg::endl;
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Listing 5.18: The capacitor formulation.

5 Efficiency studies
In this section, the efficiency of the function tree evaluation is analyzed, based on the
benchmarks introduced in Sections 3 and 5 of Chapter 4. In addition, a comparison
with GetDP is presented.

5.1 Efficiency study of function tree evaluations
An important feature of GmshFEM is the function tree evaluation presented in Sec-
tion 3.2. In order to test the efficiency of the function tree evaluation, the scattering
benchmarks of Section 3, Chapter 4, are slightly modified by replacing the simple
Sommerfeld radiation with a PML around the square domain. The PML parameters
defined in (1.28) must be computed for each integration Gauss point inside the PML
region, which leads to a realistic stress-test for the function tree evaluator.

The efficiency of the function tree is studied on the 2D benchmark at order 10,
with a Gauss quadrature allowing to integrate exactly polynomials of order up to 20.
The efficiency of the function tree evaluation is assessed by comparing it with the use
of a custom node defined by inheritance (cf. Section 3.2), which hardcodes the same
mathematical expression for the tensor PML parameters D. This allows a comparison
between the user-friendly function definition, the optimized node definition, and the
maximum performance obtained by native code.

Listings 5.19 presents the definition of the tensor PML parameters D using the
natural definition through the GmshFEM functions. Three parameters are supposed
to be known: the domain size (L), the pml size (pmlSize), and the wavenumber (k).
The parameters D is a TensorPiecewiseFunction such that it definition is specified
inside each PML region surrounded the computational domain (i.e. the four edge
PMLs and the four corner PMLs). The implementation is related to the mathematical
definition of the PML parameter as presented in Chapter 1. First the distance inside
the PMLs are declared (distSigma*), followed by the absorption functions (sigma*).
Finally the stretching functions are defined (k*) and the dissipation tensor (D).
ScalarFunction < Scalar >

distSigmaN , distSigmaW , distSigmaS , distSigmaE;
distSigmaN = y< Scalar >() - L/2.;
distSigmaW = -L/2. - x< Scalar >();
distSigmaS = -L/2. - y< Scalar >();
distSigmaE = x< Scalar >() - L/2.;

ScalarFunction < Scalar > sigmaN , sigmaW , sigmaS , sigmaE;
sigmaN = 1. / (pmlSize - distSigmaN) - 1./ pmlSize;
sigmaW = 1. / (pmlSize - distSigmaW) - 1./ pmlSize;
sigmaS = 1. / (pmlSize - distSigmaS) - 1./ pmlSize;
sigmaE = 1. / (pmlSize - distSigmaE) - 1./ pmlSize;

Scalar im(0., 1.);
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ScalarFunction < Scalar > kN, kW , kS , kE;
kN = 1. + im * sigmaN / k;
kW = 1. + im * sigmaW / k;
kS = 1. + im * sigmaS / k;
kE = 1. + im * sigmaE / k;

TensorPiecewiseFunction < Scalar > D;
D.addFunction(tensorDiag < Scalar >(kN, 1./kN , kN), omegaN );
D.addFunction(tensorDiag < Scalar >(1./kW, kW , kW), omegaW );
D.addFunction(tensorDiag < Scalar >(kS, 1./kS , kS), omegaS );
D.addFunction(tensorDiag < Scalar >(1./kE, kE , kE), omegaE );
D.addFunction(tensorDiag < Scalar >(kN/kW, kW/kN , kN*kW), omegaNW );
D.addFunction(tensorDiag < Scalar >(kS/kW, kW/kS , kS*kW), omegaSW );
D.addFunction(tensorDiag < Scalar >(kS/kE, kE/kS , kS*kE), omegaSE );
D.addFunction(tensorDiag < Scalar >(kN/kE, kE/kN , kN*kE), omegaNE );

Listing 5.19: The tensor PML parameters D defined with the natural definition through
the GmshFEM functions.

In comparison, Listing 5.20 shows how an optimized hard-coded version of the
parameter D can be defined. All the computations are defined inside a single node,
bypassing the cost of traveling through the execution tree. While some user-friendliness
and the ability to wrap the higher level functions in a scripting language are lost,
the code should still be understandable for users familiar with C++. As explained in
Section 3.2, a new operation class Pml is inherited for the base class NullaryOperation.
In this new class, the computation of D is done in the operator() function. In addition
a function called pml() that returns a tensor function built over our new class Pml is
defined. Once defined, the tensor piece-wise function object can be filled by calling our
function pml() with the appropriate parameters.
template < class T_Scalar >
class Pml :

public NullaryOperation < T_Scalar , Degree :: Degree2 >
{
private:
int _region;
scalar ::Precision < T_Scalar > _pmlSize;
scalar ::Precision < T_Scalar > _k;
scalar ::Precision < T_Scalar > _l;

public:
Pml(const std:: string &region ,

const scalar ::Precision < T_Scalar > &pmlSize ,
const scalar ::Precision < T_Scalar > &k,
const scalar ::Precision < T_Scalar > &l) :

_pmlSize(pmlSize), _k(k), _l(l)
{

if(region == "N") _region = 0b0001;
else if(region == "W") _region = 0b0010;
else if(region == "S") _region = 0b0100;
else if(region == "E") _region = 0b1000;
else if(region == "NW") _region = 0b0011;
else if(region == "SW") _region = 0b0110;
else if(region == "SE") _region = 0b1100;
else if(region == "NE") _region = 0b1001;
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}

Pml(const Pml &other) :
NullaryOperation < T_Scalar , Degree :: Degree2 >(other),
_region(other._region), _pmlSize(other._pmlSize),
_k(other._k), _l(other._l)

{
}

void operator ()(
OutputVector < T_Scalar , Degree :: Degree2 > &values ,
const std::vector < scalar ::Precision < T_Scalar >,
numa::allocator <scalar ::Precision <T_Scalar >>> &points ,
const std::vector <scalar ::Precision <T_Scalar >> &gaussPoints ,
const int elementType ,
const std::pair < int , int > &entity) const

{
T_Scalar im(0., 1.);

#pragma omp for
for(auto i = 0ULL; i < values.size (); ++i) {

T_Scalar kN = 0., kW = 0., kS = 0., kE = 0.;

if(_region & 0b0001) {
scalar ::Precision < T_Scalar > distSigmaN =

points [3*i + 1] - _l/2.;
scalar ::Precision < T_Scalar > sigmaN =

1. / (_pmlSize - distSigmaN) - 1./ _pmlSize;
kN = 1. + im * sigmaN / _k;

}
if(_region & 0b0010) {

scalar ::Precision < T_Scalar > distSigmaW =
-_l/2. - points [3*i + 0];

scalar ::Precision < T_Scalar > sigmaW =
1. / (_pmlSize - distSigmaW) - 1./ _pmlSize;

kW = 1. + im * sigmaW / _k;
}
if(_region & 0b0100) {

scalar ::Precision < T_Scalar > distSigmaS =
-_l/2. - points [3*i + 0];

scalar ::Precision < T_Scalar > sigmaS =
1. / (_pmlSize - distSigmaS) - 1./ _pmlSize;

kS = 1. + im * sigmaS / _k;
}
if(_region & 0b1000) {

scalar ::Precision < T_Scalar > distSigmaE =
points [3*i + 0] - _l/2.;

scalar ::Precision < T_Scalar > sigmaE =
1. / (_pmlSize - distSigmaE) - 1./ _pmlSize;

kE = 1. + im * sigmaE / _k;
}

if(_region & 0b0001)
values[i] << kN ,0.,0., 0. ,1./kN , 0.,0.,0.,kN;

else if(_region & 0b0010)
values[i] << 1./kW ,0.,0., 0.,kW ,0., 0.,0.,kW;

else if(_region & 0b0100)
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values[i] << kS ,0.,0., 0. ,1./kS ,0., 0.,0.,kS;
else if(_region & 0b1000)

values[i] << 1./kE ,0.,0., 0.,kE ,0., 0.,0.,kE;

else if(_region & 0b0011)
values[i] << kN/kW ,0.,0., 0.,kW/kN ,0., 0.,0.,kN*kW;

else if(_region & 0b0110)
values[i] << kS/kW ,0.,0., 0.,kW/kS ,0., 0.,0.,kS*kW;

else if(_region & 0b1100)
values[i] << kS/kE ,0.,0., 0.,kE/kS ,0., 0.,0.,kS*kE;

else if(_region & 0b1001)
values[i] << kN/kE ,0.,0., 0.,kE/kN ,0., 0.,0.,kN*kE;

}
}

bool isConstant () const override { return false; }

std:: string name() const override { return "pml"; }

bool operator ==(
const NullaryOperation < T_Scalar , Degree :: Degree2 > &other)
const override { return false; }

};

template < class T_Scalar >
Function < T_Scalar , Degree :: Degree2 > pml(

const std:: string &region ,
const scalar ::Precision < T_Scalar > &pmlSize ,
const scalar ::Precision < T_Scalar > &k,
const scalar ::Precision < T_Scalar > &l)

{
return Function < T_Scalar , Degree :: Degree2 >(

new NullaryNode < Pml < T_Scalar > >(
Pml < T_Scalar >(region , pmlSize , k, l)

)
);

}

TensorPiecewiseFunction < Scalar > D;
D.addFunction(pml < Scalar >("N", pmlSize , k, l), omegaN );
D.addFunction(pml < Scalar >("W", pmlSize , k, l), omegaW );
D.addFunction(pml < Scalar >("S", pmlSize , k, l), omegaS );
D.addFunction(pml < Scalar >("E", pmlSize , k, l), omegaE );
D.addFunction(pml < Scalar >("NW", pmlSize , k, l), omegaNW );
D.addFunction(pml < Scalar >("SW", pmlSize , k, l), omegaSW );
D.addFunction(pml < Scalar >("SE", pmlSize , k, l), omegaSE );
D.addFunction(pml < Scalar >("NE", pmlSize , k, l), omegaNE );

Listing 5.20: The tensor PML parameters D hard-coded to gain the maximum of
performanc .

Figure 5.9 shows both the evaluation wall time (Figure 5.9a) and the measured
memory bandwidth (Figure 5.9b). First, the evaluation time with the natural defini-
tion through the GmshFEM functions is about five times slower than the optimized
version. This decrease in performance is expected and, in our opinion, utterly accept-
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Figure 5.9: Comparison of PML parameters D using the natural definition through the
GmshFEM functions (blue) or by defining a custom node by inheritance (orange).

able given the user-friendliness and flexibility offered by the GmshFEM functions. In
addition, compared to the total assembly time of Figure 4.2c in Chapter 4 the function
evaluations are really negligible. Thus for most applications, the natural definition will
not be a bottleneck in the overall performance of the resolution.

The hard-coded function possibility offers an elegant and well-integrated way to
get closer to the maximum performance for specific applications that are performance-
critical. Indeed, Figure 5.9b shows the measured memory bandwidth of both ap-
proaches. One can notice that the hard-coded version allows reaching a memory band-
width close to the theoretical one of NIC5 (about 77%).

5.2 Comparison with GetDP

Finally, we compare the performance of GmshFEM with the performance of GetDP [70]
by measuring both codes’ total pre-processing and assembly time. The considered
problem is the 2D scattering problem with the PML around the domain. GmshFEM
and GetDP do not have the same definition of hierarchical basis functions, so the
comparison is made using first-order iso-parametric basis functions, leading to 532,031
unknowns. An exact Gauss quadrature to integrate a fourth-order polynomial is used
in both codes, which are both compiled on the NIC5 cluster with optimization flags
switched on.

The results are reported on Figure 5.10. The single-thread comparison shows that
GmshFEM takes a bit less than half of the GetDP time to build the finite element
matrix of our problem. Furthermore, as the assembly algorithm in GetDP is not
a multithreaded, the performance difference increases as expected as the number of
threads is increased. The sum of the pre-processing assembly wall time can be reduced
by 87% compared to GetDP when the 64 cores of NIC5 are used.
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Figure 5.10: Comparison with GetDP

6 Conclusion and perspectives
In this chapter, we introduced GmshFEM, an open-source C++ finite element library
based on the Gmsh API. After an introduction to the basic philosophy of the library
with an acoustic example, we briefly presented several more advanced features that
distinguish GmshFEM from other FEM libraries. The analysis of the function tree
evaluation algorithm showed that its efficiency is of the same order of magnitude as
that of an optimized version of the function. Furthermore, we showed that the oppor-
tunity to implement a user-defined node in the execution tree, that replaces most of
the function tree structure, leads to a performance close to the maximal theoretical
interpretation of the hardware - at the cost of course the user-friendliness and inter-
activity that the evaluation tree provides. A brief comparison with GetDP allowed to
highlight the substantial performance gains on the high-order finite element problems
treated in this thesis.

The next chapter will present the GmshDDM domain decomposition library, based
on GmshFEM, which was used to solve all the numerical examples presented in Chap-
ters 2, 3 and 4.
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GmshDDM, the domain decomposition library6

GmshDDM is an open-source C++ domain decomposition li-

brary based on GmshFEM. Considered as an extension of Gmsh-

FEM, they both share the same design philosophy: to be fast,

light, and user-friendly with problem implementations close to

their mathematical definitions. Combining the efficient multi-

threaded parallelization and SIMD vectorization of GmshFEM

with a distributed memory parallelization of the domain decom-

position algorithm implemented in GmshDDM offers a suitable

environment for solving large-scale time-harmonic wave prob-

lems.

1 Introduction

In this chapter we introduce GmshDDM (https://gitlab.onelab.info/gmsh/ddm.
git), an open-source C++ domain decomposition library that is based on the Gmsh-
FEM library presented in Chapter 5. GmshDDM is a small add-on to GmshFEM
(about 2000 lines of C++ code) that offers features to implement optimized Schwarz
domain decomposition solvers. It shares with GmshFEM the same design philosophy
and functionalities: in particular, it manages both straight-sided or curved meshes
in 1D, 2D, or 3D on all element shapes supported by GmshFEM and supports all
GmshFEM interpolations. While GetDP inspired GmshFEM, GmshDDM is inspired
by GetDDM [182]: it relies on a high-level symbolic definition of the DDM formulation
and hides most technical aspects of the DDM algorithm, which allows users to focus
on the mathematical definition of their problems.

GmshDDM supports a two-level parallelization strategy based on both a
distributed- and a shared-memory architecture to scale to large problems. While the
subdomain computations, i.e. the pre-processing, the assembling, and the solving of
each subproblem are parallelized using OpenMP through GmshFEM, GmshDDM im-

https://gitlab.onelab.info/gmsh/ddm.git
https://gitlab.onelab.info/gmsh/ddm.git
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plements a distributed-memory parallelization version of the DDM algorithm using the
Message Passing Interface (MPI) protocol. The parallel iterative solver relies on the
external solver PETSc [18].

The chapter will start in Section 2 by describing how the DDM version of the acous-
tic scattering problem presented in Chapter 5 is implemented using the GmshDDM
framework. We then present in Section 3 the implementation of the DDM algorithm
as introduce in Chapter 1, Section 6. As a parallel of Section 2, the DDM version of
the electromagnetic and elastodynamic examples of Chapter 5, Section 4 is presented
in Section 4.

2 Symbolic definition of the problem
To illustrate how a finite element domain decomposition problem is set up in
GmshDDM, let us consider the partitioned version into N subdomains of the acoustic
scattering problem (5.1). To keep things simple, a simple 0th-order transmission con-
dition is enforced on the interfaces betweeen sudomains such that (5.1) is expressed
as 8

><

>:

� un + k
2
un = 0 in ⌦n,

un = �uinc on �n,scat,

@nun � ◆ kun = gn,m on �n,ext,

(6.1)

where the domains and notations are defined in Chapter 1, Section 6 and uinc =
exp (◆k · x) as before. Furthermore, the interface fields are defined as

gm,n :=

(
0 on �n,ext \ @⌦tot

� gn,m � 2 ◆ kun on each ⌃n,m.
(6.2)

In a nutshell, the interface fields vanish on the subdomain boundaries that coincide
with the boundary of the global problem.

As in GmshFEM, the problem definition in GmshDDM is based on a variational for-
mulations of both (6.1) and (6.2). For each subdomain ⌦n, the variational formulation
of (6.1) reads: Find un 2 H

1(⌦n) such that
Z

⌦n

gradun · grad vn � k
2
unvn d⌦n �

Z

�n,ext

◆ kun vn +
X

m2Nn

gn,m vn d�n,ext = 0, (6.3)

holds for every test function v 2 H
1(⌦n). In addition, for each interface ⌃n,m, the

variational formulation of (6.2) reads: Find gm,n 2 H
1(⌃n,m) such that

Z

⌃n,m

gm,n hm,n + gn,m hm,n + 2 ◆ kun hm,n d⌃n,m = 0, (6.4)

holds for every test function hm,n 2 H
1(⌃n,m). We will detail in the following sub-

sections how the variational formulations (6.3) and (6.4) are transcription in the
GmshDDM library.

Following the namespace convention of GmshFEM, all classes and functions re-
lated to GmshDDM live in a gmshddm namespace. To avoid confusions, using-directives
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(a) The computational domain is partitioned

into ten subdomains.

(b) The interfaces created by the partitioner

of Gmsh. An interface (in orange) is created

between subdomains.

Figure 6.1: The partition of the Falcon plane returned by the mesh partitoner of Gmsh.

“using namespace gmshfem;” or “using namespace gmshddm;” are not used in what
follows so that functionalities of GmshFEM and GmshDDM can be clearly differenti-
ated.

In order to setup a distributed solver in GmshDDM, the mesh of Figure 5.1b has first
to be partitioned using Gmsh mesh partitioner. Figure 6.1 shows such a partitioning
in ten subdomains, obtained through Gmsh using the third-part library Metis [120]. It
is important to note that when partitioning the mesh, Gmsh rebuilds the full boundary
representation (B-Rep) of the partitioned geometry, so that each subdomain is defined
by a closed set of surfaces; each surface is defined by a closed set of curves; and each
curve is defined by defined by two points. All of these new (discrete) entities are
either a part of an existing geometrical entity such as the boundary of the plane (see
Figure 6.1a) or are an interface between two subdmains (see Figure 6.1b). An entity
that already exists before the mesh partition is called a parent entity as, after the
partition process, it is cut into child entities that inherit from the parent entity. For
instance, the physical entity associated with the plane’s boundary is transferred to the
child entities.

Finally, contrary to GetDDM, GmshDDM is based on the assumption that the
meshes match at the interfaces (i.e. with the same entities, same elements, and same
nodes, with the same tags). In other words, at least the interface skeleton (i.e. the set
of all interfaces) must be meshed globally, but the interior of each subdomain can be
meshed independently.

2.1 Geometric objects
The geometric objects needed to describe Problem (6.1) can be sorted into two sub-
sets: domains related to individual subdomains and domains related to the interfaces
between subdomains. While the first ones are tagged by the subdomain index n, the
second ones are tagged by a pair of indices n and m corresponding to an interface.
This is why GmshDDM introduces two new classes: a Subdomain class to model the
first kind of geometric objects and Interface class to model the second kind.

The Subdomain class internally stores an array of GmshFEM Domain objects while
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the Interface class contains an array of sets of GmshFEM Domain objects. To ac-
cess these GmshFEM objects, the Subdomain class overrides the call operator with
one unsigned integer argument n and returns the Domain object associated to the n

th

subdomain. In a similar way, the Interface class overrides the call operator with two
unsigned integer arguments n and m and returns the Domain object associated to the
interface between the n

th and the m
th subdomain. Moreover, all operations available

on Domain objects are also available on Subdomain or Interface objects.
Listing 6.1 presents how Subdomain objects and Interface objects are instan-

tiated using the buildSubdomainOf() and the buildInterface() functions. The
buildSubdomainOf() simply takes a GmshFEM Domain object associated to the par-
ent entities and returns the corresponding Subdomain object. The buildInterface()
automatically returns the Interface object of the current model. It also returns
the topology as a vector of vectors, such as a subdomain n has all subdomains of
topology[n] as neighbors. Note that we define the domain �n,bnd = �n,ext \ @⌦tot as
the part of the boundary of ⌦n that belongs to the exterior boundary of the global
problem.

While this method is the easiest way to instantiate geometric objects, the topology
can also be specified manually. Both Subdomain and Interface objects can be instan-
tiated by taking as argument a number of subdomains. Then using the overridden call
operator, the domain of each subdomain or interface can be specified manually. For
instance let us assume that we have a mesh partitioned into N partitions such that a
physical entity named “omega_n” where n = 0, 1, · · · , N�1 is the tag of the subdomain,
then an subdomain object “omega” can manually created as Listing 6.2 shows.

gmshddm :: domain :: Subdomain omega =
gmshddm :: domain :: Subdomain :: buildSubdomainOf(

gmshfem :: domain :: Domain("omega"));
gmshddm :: domain :: Subdomain gammaScat =
gmshddm :: domain :: Subdomain :: buildSubdomainOf(

gmshfem :: domain :: Domain("gammaScat"));
gmshddm :: domain :: Subdomain gammaBnd =
gmshddm :: domain :: Subdomain :: buildSubdomainOf(

gmshfem :: domain :: Domain("gammaExt"));

std::vector < std::vector < unsigned int > > topology;
gmshddm :: domain :: Interface sigma =
gmshddm :: domain :: Interface :: buildInterface(topology );

Listing 6.1: Geometric objects needed to model the DDM version of the scattering
problem example.

gmshddm :: domain :: Subdomain omega (100);
for(int n = 0; n < 100; ++n) {

omega(n) = gmshfem :: domain :: Domain("omega_"+std:: to_string(n));
}

Listing 6.2: A subdomain object manually instantiated.
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2.2 Subdomain and interface field objects
In a similar fashion as geometric objects, field objects can be sorted in two subsets: the
SubdomainField<T_Scalar, T_Form> objects and the InterfaceField<T_Scalar,
T_Form> objects. They follow the same logic; while the subdomain fields are tagged
by only one index n and store a vector of GmshFEM fields of type Field<T_Scalar,
T_Form>, the interface fields are tagged by a pair of indices n and m and store a vector
of set of GmshFEM fields of type Field<T_Scalar, T_Form>. The internal Gmsh-
FEM fields can also be accessed using the call operator of the SubdomainField or
InterfaceField class.

A SubdomainField or an InterfaceField object is instantiated using a name, a
Subdomain or an Interface object, respectively, and a basis function definition as
presented in Section 2.3.

To model our acoustic scattering example, two fields have to be defined in List-
ing 6.3: the subdomain field u of (6.3) and the interface field g of (6.4).
gmshddm ::field:: SubdomainField <Scalar , gmshfem ::form::Form0 >

u("u", omega , gmshfem :: functionSpaceH1 :: HierarchicalH1 , 3);
gmshddm ::field:: InterfaceField <Scalar , gmshfem ::form::Form0 >

g("g", sigma , gmshfem :: functionSpaceH1 :: HierarchicalH1 , 3);

Listing 6.3: The subdomain field and the interface field needed to model our acoustic
scattering problem in GmshDDM.

2.3 Formulation objects
GmshDDM has its own Formulation<T_Scalar> class. Once again, a Formulation is
built around a vector of GmshFEM Formulation objects to store the subdomain for-
mulations, and a vector of set of GmshFEM Formulation objects to store the interface
formulations. They are both accessible with the appropriate call operators.

Listing 6.4 shows how our acoustic scattering problem can be solved using
GmshDDM. Once the GmshDDM formulation is instantiated with a name and the
topology vector, a call to the member function addInterfaceField() is used to spec-
ify which interface field must be considered as an unknown of the interface problem
(1.68) defined in Chapter 1. Then, the formulation of the DDM problems can be written
by considering a loop over the number of subdomains and a loop over the interfaces of
each subdomain. Inside these loops, the subdomain and interface formulations expres-
sions are defined using the tools presented in Chapter 5. At this level, physical sources
and artificial sources that may appear in the variational formulation must be tagged
with the member function physicalSource() and artificialSource(). For compu-
tational costly functions, physicalSourceTerm() and artificialSourceTerm() can
be alternatively used to tag an integral() term as physical source or artificial source.
They both take in argument the unique tag returned by each integral() member
function. Inside the loop over the subdomains, Dirichlet conditions are enforced on
every subdomain field using the addConstraint() member function introduced in Sec-
tion 2.3.
using gmshfem :: equation ::dof;
using gmshfem :: equation ::tf;
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using gmshfem :: equation ::grad;
using namespace gmshfem :: function;

gmshddm :: problem :: Formulation <Scalar >
formulation("helmholtzDDM", topology );

formulation.addInterfaceField(g);

for(unsigned int n = 0; n < 10; ++n) {
u(n). addConstraint(gammaScat(n), -uInc);

formulation(n). integral(grad(dof(u(n))), grad(tf(u(n))),
omega(n), "Gauss8");

formulation(n). integral(- k*k * dof(u(n)), tf(u(n)),
omega(n), "Gauss8");

formulation(n). integral(- im*k * dof(u(n)), tf(u(n)),
gammaBnd(n), "Gauss8");

for(unsigned int m : topology[n]) {
formulation(n). integral(- im*k * dof(u(n)), tf(u(n)),

sigma(n,m), "Gauss8");
formulation(n). integral(-formulation.artificialSource(g(n,m)),

tf(u(n)), sigma(n,m), "Gauss8");

formulation(n,m). integral(dof(g(m,n)), tf(g(m,n)),
sigma(n,m), "Gauss8");

formulation(n,m). integral(formulation.artificialSource(g(n,m)),
tf(g(m,n)), sigma(n,m), "Gauss8");

formulation(n,m). integral (2.*im*k * u(n), tf(g(m,n)),
sigma(n,m), "Gauss8");

}
}

formulation.pre ();
formulation.solve("gmres");

Listing 6.4: The formulation of our acoustic scattering problem in GmshDDM.

Finally, the DDM formulation is pre-processed using the member function pre().
The pre-processing initializes the interface problem (i.e. Equation (1.68) of Chapter 1)
by computing the right-hand side. In a distributed-memory run, the pre-processing
also initializes the MPI communication and the distribution of unknowns between
processes. The solving step is called with the member function solve(), that takes an
iterative solver name as argument. In addition, optional arguments corresponding to
the relative tolerance (default value set to 10�6), the maximum number of iterations
(default value set to 1000) can be passed to the solve() member function, and a flag,
initially deactivated, that indicates if the subdomain matrices have the same pattern,
regardless of whether physical sources and artificial sources are activated or not.

Once the iterative solver has converged, all post-processing functionalities presented
in Section 2.5 of Chapter 5 can be applied to any GmshFEM field returned by the
appropriated call operator on both SubdomainField or InterfaceField objects.
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3 The C++ implementation

The C++ implementation of the DDM algorithm presented in Section 6 follows the
pseudo-code of Figure 1.3. It is organized in two phases: the pre-processing and the
solving phases. The pre-processing phase, corresponding to the first step of the pseudo-
code of Figure 1.3, initializes the right-hand side of the interface problem, b. When MPI
is used, the pre-processing also initializes the data structure needed to communicate
interface field DoFs between the processes. The solving phase, corresponding to the
second and third steps of the pseudo-code of Figure 1.3, finally computes the solution
of the interface problem (1.68) using an iterative solver such as a GMRES [169], and
once converged, evaluates the final solution.

In each of the previous steps, the physical and artificial sources must be activated or
deactivated depending on the algorithm step. From step one to step three of Figure 1.3,
the physical sources must be successively turned on, then turned off, and finally turned
on again, while the artificial sources must be switched off on step one, then switched
on for the last two steps. This is why it is essential to tag both physical and artificial
sources in the GmshDDM formulation.

The following subsections detail these two phases when subdomains are spread over
different processes. We focus on the work done by only one process, and we denote data
assigned to this process as local data (e.g. local fields, local subdomain formulations,
...).

3.1 The pre-processing phase

First of all, the pre-processing function activates the physical sources and deactivates
the artificial sources before calling the GmshFEM pre() function of each local subdo-
main formulation and each local interface formulation to build the dictionary of DoFs
and the pattern of the finite element matrix. Let us suppose that subdomain n is
assigned to our process: then the pre-processing of all interface fields gn,m for all m in
Nn is carried out at this stage. At the same time, each local associated interface field
gm,n is instantiated but not pre-processed.

These associated interface fields are then filled in by the DoF dictionary generated
by the other processes. Therefore our process has to communicate DoF dictionaries
of its local interface fields and receive DoF dictionaries from other processes to assign
them to its local associated interface fields. These communications exchange, through
MPI, vectors of elements of type GmshFEM::RawDofKey is a light structure representing
the internal GmshFEM::Dof class. Exchanging these vectors is enough if the mesh on
the interface is identical on both subdomains and if, for DoFs associated with entities
other than nodes (i.e. edges and faces), the edge- and face tags correspond on both
subdomains. Since generating the edge- and face tags beforehand can be cumbersome,
they are also exchanged automatically to build an interface mapping structure.

Once every local field is pre-processed, local subdomain- and interface formulations
are assembled and solved, possibly taking advantage of the multi-threading function-
alities of GmshFEM.
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3.2 The solving phase
The solving phase starts by switching on the artificial sources and turning off the phys-
ical sources. Then, depending on the last optional argument of the solve() member
function that indicates if the subdomain matrices have the same pattern as explained
before, each local subdomain system is regenerated and factorized, or only the right-
hand side is regenerated such that the factorization computed in the pre-processing
phase is reused.

The iterative solving step is carried on by either PETSc [18] iterative solvers such
as GMRES [169] or BiCGSTAB [187], or a built-in Jacobi solver using the PETSc
vector and matrix objects, depending on the solver selected by the first parameter of
solve(). These iterative methods are matrix-free, in the sense that they only need to
be able to compute the application of the matrix on a vector. The shell matrix feature
of PETSc is used to instantiate a matrix-free object where a built-in function detailed
hereafter implements the matrix-vector product.

The matrix-vector product function applies the solving steps presented in Figure 1.3.
The function takes as argument a PETSc vector X and returns another PETSc vector
Y corresponding to the product of the iteration matrix A with X. In our application,
the input vector X corresponds to the artificial source vector g at the current iterative
step of the solver, and we thus chose to ignore the input vector and work directly with
the interface fields that contain precisely the same information. For each call to the
matrix-vector product function, DoF values of local interface fields are exchanged to the
neighbor processes, and local associated interface fields are filled in by the DoF values
received. Then for each local subdomain formulation and local interface formulation,
local right-hand sides are assembled, and local systems are solved by reusing matrix
factorizations already computed in the previous step. Finally, a local artificial source
vector gn is built, collecting all DoF values of local interface fields and passed to PETSc
that assembles the output vector Y according to its own parallelization strategy.

Once the solver has converged, both physical- and artificial sources are activated
to compute the final solution.

4 Extension to other wave problems
To make a parallel with the elastodynamic and electromagnetic wave problems pre-
sented in Section 4 of Chapter 5, let us briefly introduce their DDM version in this
section.

4.1 Elastodynamic waves
Let us consider the elastodynamic problem (5.9) posed on the same partitioned domain
with a 0th order transmission conditions enforced on the interfaces:
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>>>>:
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(6.5)
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where �t is the trace operator (5.10). Furthermore, the interface fields are now defined
as

gm,n :=

8
<

:

0 on �n,ext \ @⌦tot

� gn,m �
◆

kP
Inun �

◆

kS
I⌧un on each ⌃n,m.

(6.6)

The domain definition of Listing 6.1 and the function definition of Listing 5.7 are
used without modification. The subdomain and interface fields become respectively a
SubdomainCompoundField and a InterfaceCompoundField object, following the idea
of Section 4.1 of Chapter 5. Finally in Listing 6.5 the formulation is adapted according
to the Navier problem (6.5) and its interface problem (6.6).

gmshddm ::field:: SubdomainCompoundField
<Scalar , gmshfem ::form::Form0 , 3>

u("u", omega , gmshfem :: functionSpaceH1 :: HierarchicalH1 , 3);
gmshddm ::field:: InterfaceCompoundField

<Scalar , gmshfem ::form::Form0 , 3>
g("g", sigma , gmshfem :: functionSpaceH1 :: HierarchicalH1 , 3);

gmshddm :: problem :: Formulation <Scalar >
formulation("navierDDM", topology );

formulation.addInterfaceField(g);

for(unsigned int n = 0; n < 10; ++n) {
u(n). addConstraint(gammaScat(n), -uIncVec );

formulation(n). integral(C * grad(dof(u(n))), grad(tf(u(n))),
omega(n), "Gauss8");

formulation(n). integral(- dof(u(n)), tf(u(n)),
omega(n), "Gauss8");

formulation(n). integral(- im/kP * In * dof(u(n)),
tf(u(n)), gammaBnd(n), "Gauss8");

formulation(n). integral(- im/kS * It * dof(u(n)), tf(u(n)),
gammaBnd(n), "Gauss8");

for(unsigned int m : topology[n]) {
formulation(n). integral(- im/kP * In * dof(u(n)),

tf(u(n)), sigma(n,m), "Gauss8");
formulation(n). integral(- im/kS * It * dof(u(n)), tf(u(n)),

sigma(n,m), "Gauss8");
formulation(n). integral(- formulation.artificialSource(g(n,m)),

tf(u(n)), sigma(n,m), "Gauss8");

formulation(n,m). integral(dof(g(m,n)), tf(g(m,n)),
sigma(n,m), "Gauss8");

formulation(n,m). integral(formulation.artificialSource(g(n,m)),
tf(g(m,n)), sigma(n,m), "Gauss8");

formulation(n,m). integral (2.*im*( lambda +2.*mu)*kP*In * u(n),
tf(g(m,n)), sigma(n,m), "Gauss8");

formulation(n,m). integral (2.*im*mu*kS*It * u(n), tf(g(m,n)),
sigma(n,m), "Gauss8");

}
}

formulation.pre (); formulation.solve("gmres");
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Listing 6.5: The field definition and the formulation of our elastodynamic scattering
problem in GmshDDM.

4.2 Electromagnetic waves
The electromagnetic problem (5.14) posed on a partitioned domain made of N subdo-
mains with a 0th-order transmission condition enforced on the interfaces is expressed
as 8

><

>:

curl curl en � k
2
en = 0 in ⌦n,

�
T (en) = ��

T (einc) on �n,scat,

�
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(6.7)

where �t and �
T are the trace operators (5.15) and g is now a vector interface field.

Furthermore, the interface fields are defined as

gm,n :=

(
0 on �n,ext \ @⌦tot

� gn,m + 2 ◆ k�T (en) on each ⌃n,m.
(6.8)

Again, the domain definitions of Listing 6.1 and the function definitions of List-
ing 5.11 can be kept as is. The subdomain and interface fields must be adapted in a
similar way as done in Listing 5.12. The subdomain field u becomes a 1-form subdomain
field e, and the same modification is applied to the interface field g. The formulation
is then adapted (see Listing 6.6) to correspond to the Maxwell problem (6.7) with its
interface problem (6.8).
gmshddm ::field:: SubdomainField <Scalar , gmshfem ::form::Form1 > e("e",

omega , gmshfem :: functionSpaceHCurl :: HierarchicalHCurl , 1);
gmshddm ::field:: InterfaceField <Scalar , gmshfem ::form::Form1 > g("g",

sigma , gmshfem :: functionSpaceHCurl :: HierarchicalHCurl , 1);

gmshddm :: problem :: Formulation <Scalar >
formulation("maxwellDDM", topology );

formulation.addInterfaceField(g);

for(unsigned int n = 0; n < 10; ++n) {
e(n). addConstraint(gammaScat(n), -eInc);

formulation(n). integral(curl(dof(e(n))), curl(tf(e(n))),
omega(n), "Gauss8");

formulation(n). integral(- k*k * dof(e(n)), tf(e(n)),
omega(n), "Gauss8");

// n_ is the normal (to avoid conflict with the integer n)
formulation(n). integral(- im*k * n_ % (dof(e(n)) % n_), tf(e(n)),

gammaBnd(n), "Gauss8");

for(unsigned int m : topology[n]) {
formulation(n). integral(- im*k * n_ % (dof(e(n))%n_), tf(e(n)),

sigma(n,m), "Gauss8");
formulation(n). integral(- formulation.artificialSource(g(n,m)),

tf(e(n)), sigma(n,m), "Gauss8");

Part II. Computational tools – Chapter 6. GmshDDM, the domain decomposition library 150



Conclusion and perspectives

formulation(n,m). integral(dof(g(m,n)), tf(g(m,n)),
sigma(n,m), "Gauss8");

formulation(n,m). integral(formulation.artificialSource(g(n,m)),
tf(g(m,n)), sigma(n,m), "Gauss8");

formulation(n,m). integral (-2.*im*k * n_ % (e(n) % n_),
tf(g(m,n)), sigma(n,m), "Gauss8");

}
}

formulation.pre (); formulation.solve("gmres");

Listing 6.6: The field definition and the formulation of our eletromagnetic scattering
problem in GmshDDM.

5 Conclusion and perspectives
In this chapter we briefly overviewed GmshDDM, an open-source C++ domain decom-
position library based on GmshFEM. After an introduction to the basic philosophy
of the library with an acoustic example, its application to electromagnetic and elasto-
dynamic wave problems was presented. Two perspectives are closely related to those
of GmshFEM: the development of a multi-language API and the offloading on GPUs.
The second, in particular, is technically and mathematically challenging, as GPUs will
entail using a much larger number of smaller subdomains, where dense algebra could
be used. Going to the limit of one element per subdomain leads to a method that
is formally close to modern hybridized version of the Discontinuous Galerkin methods
(DG) where fluxes, i.e. the continuity conditions between elements, plays the same
role as the transmission conditions [69]. Another perspective is to include automatic
support for overlapping DDMs, by extending the Gmsh partitioning interface. Finally,
GmshDDM itself could be extended beyond one-level optimized Schwarz methods by
including classical two- or multi-level DDMs for elliptic or parabolic problems, e.g. by
interfacing the HPDDM framework [117, 118].
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This thesis focused on the efficient numerical solution of frequency-domain wave prop-
agation problems using finite element methods.

In the first part of the manuscript, the development of efficient domain decomposi-
tion methods was addressed, with the aim of overcoming the limitations of state-of-the
art direct and iterative solvers. To this end, in Chapter 2, a non-overlapping sub-
structured domain decomposition method with high-order absorbing conditions used
as transmission conditions (HABC DDM) has first been extended to deal with cross-
points, where more than two subdomains meet. The handling of cross-points is a
well-known issue for non-overlapping HABC DDMs. Our methodology proposes an
efficient solution for lattice-type domain partitions, where the domains meet at right
angles. The method is based on the introduction of suitable relations and additional
transmission variables at the cross-points, and its effectiveness was demonstrated on
several test cases. In Chapter 3, a similar non-overlapping substructured DDM was
then proposed, but with Perfectly Matched Layers (PMLs) instead of HABCs used as
transmission conditions. The proposed approach naturally considers cross-points for
two-dimensional checkerboard domain partitions through Lagrange multipliers used
for the weak coupling between subproblems defined on rectangular subdomains and
the surrounding PMLs. Two discretizations for the Lagrange multipliers and several
stabilization strategies have been proposed and compared. The best two converging
approaches are continuous discretization with an additional corner equation and dis-
continuous discretization with a higher polynomial degree and penalty. In Chapter 4,
the performance of the methods proposed in the first two chapters is compared on test
cases of increasing complexity, from two-dimensional wave scattering in homogeneous
media to three-dimensional wave propagation in highly heterogeneous media. While
the theoretical developments were carried out for the scalar Helmholtz equation for
acoustic wave propagation, Chapter 4 also presents results obtained on the extension
of the method to elastic wave problems, highlighting the potential for further general-
izations to other physical contexts.



The second part of the manuscript was devoted to the presentation of the com-
putational tools developed during the thesis and which were used to produce all the
numerical results presented in Part I. Chapter 5 introduces GmshFEM, a new C++
finite element library based on the application programming interface (API) of the
open-source finite element mesh generator, pre-, and post-processor Gmsh [93], while
Chapter 6 presents the domain decomposition library GmshDDM, based on Gmsh-
FEM. Both GmshFEM and GmshDDM are designed to be fast, light, and user-friendly.
Strongly inspired by the design of the finite element code GetDP [92, 70] and domain
decomposition code GetDDM [182], developed in the ACE laboratory, GmshFEM and
GmshDDM can be seen as their modern upgrades that have allowed to efficiently run
the high-frequency simulations presented in the first part of the manuscript.

The thesis opens up many avenues for further research.
In the context of DDMs for time-harmonic wave problems, a first perspective is to

consider an alternative approach without Lagrange multipliers, where the continuity of
the Dirichlet traces between the subdomain and the edge PMLs and between the edge
and corner PMLs is imposed strongly through the definition of appropriate function
spaces at the discrete level. This idea is being currently investigated. Another promis-
ing avenue to deal with cross-points is making use of the multi-trace formalism as
proposed in [55]. Currently the resulting transmission conditions are however nonlocal
and their effectiveness for high-frequency problems needs to be assessed. To bypass the
cross-point issue, but at the cost of a higher number of unknowns in each subdomain,
one could also investigate overlapping DDMs. In their non-substructured form [38]
their numerical implementation is easy, but the increase in local factorization cost is
substantial and the number of unknowns for the iterative solver is huge, which can be-
come an issue for Krylov subspace techniques with long recurrences such as GMRES.
Investigating short recurrence solvers such as TFQMR [170] or substructured versions
of overlapping DDMs would thus be of great interest. Another strategy altogether is to
investigate first order formulations, which bypass the cross point issue when discretized
with mixed finite elements. The issue of the increased number of unknowns could be
mitigated through the use of modern hybridization techniques such as Hybridized Dis-
continuous Galerkin (HDG) [97, 41, 5] or Hybrid High Order (HHO) [162, 52] methods.
Finally, while for the applications treated in this thesis a regular decomposition of the
computational domain was appropriate, the development of high-order DDMs that al-
low to efficiently deal with the “jagged” interfaces resulting from the automatic mesh
partitioning of unstructured grids should be investigated. One strategy could take
inspiration from [67], which is designed for low-order conditions. Another possibility
would be to investigate the development of immersed transmission conditions [144].

Next, the extension to other physical contexts should be further investigated. While
the extension to isotropic elastodynamics was briefly presented in Chapter 4, handling
anisotropic cases will be challenging. Recent advances in HABCs [141, 142] and in half-
space matching methods [42] for elasticity could serve as a starting point for HABC
DDMs, as designing stable PMLs for the anisotropic case have proved elusive. The
extension to electromagnetics and flow acoustics on the other hand should be more
straightforward, since stable PML formulations already exist for these problems.

More fundamentally, even if the DDM significantly gains in efficiency thanks to
the cross-point treatment, as a one-level method its strong scalability is still intrin-
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sically dependent on the number of subdomains. The design of multi-level DDMs is
an open problem for high-frequency wave propagation, however. Indeed, designing
a “coarse grid” (the second level in a two-level DDM) is notoriously challenging, as
coarse spaces cannot really be “coarse” in the high-frequency regime since they need
to capture the highly oscillatory nature of the solution [61, 14, 44]. While sweeping
preconditioners [188, 189, 180] provide an interesting alternative, with some potential
for parallelism [63], their overall parallel scalability is also limited. Improvements in the
scalability of the DDM are crucial in view of its use in inverse problem optimization
loops, e.g. for underground characterization. A promising idea are then multi-step
one-shot methods, which iterate on the forward problem solution and on the inverse
problem for model parameters in the same loop [40].

Many perspectives also exist with respect to further development of the computa-
tional tools presented in the second part of the manuscript. With the growth in popu-
larity of accelerators, in particular graphical processing units (GPUs), the offloading of
some computations in both GmshFEM and GmshDDM should be investigated. First,
developing a GPU-friendly version of the DDM algorithm could be exciting from a com-
putation method point of view. One idea would be to consider tiny subdomains of only
a few high-order elements, where the resulting finite element dense subdomain matrix
could be inverted on the GPUs. Combined with a short-recurrence Krylov solver such
as TFQMR, all the iterative solution could thus take place on GPU. In this approach,
the DDM becomes similar to a HDG method where fluxes, i.e. the continuity condi-
tions between elements, plays the same role as the transmission conditions. Second,
one should investigate the offloading on GPU of the dense linear algebra calculations
in GmshFEM, currently handled by Eigen. For sufficiently high order interpolations
the benefit could be substantial in particular on modern unified memory architectures,
where the bottleneck of moving data from CPU to GPU memory and back, vanishes
[90]. Finally, one could also imagine porting the tree-based function evaluator to GPU
by adding support for GPU kernel nodes. This offloading of function evaluations on
GPUs could be very interesting for problems that require many finite element matrix
assemblies, such as nonlinear and/or time-domain simulations.

Beside these purely computational improvements, several developments are still
necessary to bring GmshFEM closer in terms of feature parity with GetDP. In par-
ticular, one can mention the handling of function spaces involving several different
types of basis functions (as required for example for the strong coupling of fields and
potentials [91]), the coupling with circuit equations [73] and the handling of moving
meshes [71].

Finally, developing a unified Python and Julia API for GmshFEM and GmshDDM,
similar to the API of Gmsh, would be extremely useful. It would allow to write and
run all the formulations that can already be handled by the codes without requiring
familiarity with C++, but still with an equivalent syntax such that the mathematics
behind the formulations can be easily understood. More importantly, developing an
API for interpreted languages such as Python and Julia offers the possibility to use
GmshFEM and GmshDDM without recompilation, which opens exciting opportunities
for users not familiar with code development.
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