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Abstract: The rising concerns about controversial food additives’ potential hazardous properties

require extensive yet animal-minimized testing strategies. Zebrafish embryos are the ideal in vivo

model representing both human and environmental health. In this study, we exposed zebrafish

embryos to eight controversial food additives. Our results indicate that Sodium Benzoate is a

Cat.3 aquatic toxicant, while Quinoline Yellow is a strong teratogen. At high concentrations, non-toxic

chemicals induced similar phenotypes, suggesting the impact of ionic strength and the applicability

of the darkened yolk phenotype as an indicator of nephrotoxicity. Three food additives showed

unpredicted bioactivities on the zebrafish embryos: Brilliant Blue could weaken the embryonic

yolk, Quinoline Yellow may interfere with nutrient metabolism, and Azorubine induced precocious

zebrafish hatching. In conclusion, the zebrafish embryo is ideal for high throughput chemical

safety and toxicity screening, allowing systematic detection of biological effects—especially those

unexpected by targeted in vitro and in silico models. Additionally, our data suggest the need to

reconsider the safety status of food additives Quinoline Yellow, Brilliant Blue, Sodium Benzoate, and

other controversial food additives in further studies, as well as pave the way to further applications

based on the newly found properties of Brilliant Blue and Azorubine.

Keywords: food additives; bioactivities; zebrafish; embryos; food safety; developmental toxicology

1. Introduction

Almost every human eats and drinks a considerable daily amount of food additives
(FAs), accumulating towards 3.6–4.5 kg/year [1]. These additives are used to improve
the foods’ taste, texture, aesthetic, and shelf life, representing a wide range of different
chemicals with various properties. While commonly consumed worldwide, these com-
pounds are increasingly attracting concerns about their potential impacts on human and
environmental health.

Scientific and public debates on FAs’ safety arose in the 1970s regarding the alleged
neurobehavioral effects of some food additives [2]. In the 2000s, the so-called “Southamp-
ton study” again stirred the argument with the demonstration that consumption of FA
mixtures may relate to hyperactivity in children [3], leading to long scrutiny of the infamous
“Southampton Six” (Tartrazine, Quinoline Yellow, Sunset Yellow, Azorubine, Ponceau 4R,
and Allura Red) by both scientists and legislators. Another research, the “Liverpool study”,
showed that FA mixes might synergistically affect the viability and differentiation of mice
NB2 neuroblastoma cells [4], adding three more FA suspects: Brilliant Blue, Monosodium
Glutamate, and Aspartame. Since then, there have been various studies on the potential
health effects of food additives, both individually and in mixtures [5–7].

The rise in safety and toxicity studies has provided legislators with vast shreds of
evidence to frequently and scientifically update their FA policies. However, there is a
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wide mismatch among policies worldwide on the safety level of each additive, largely
due to the different rates of scientific updates, as well as to the different viewpoints of
weighing evidence—for instance, the differences in “acceptable daily intakes” (ADIs) issued
by the two most notable regulators: the European Food Safety Authority (EFSA) and the
Joint FAO/WHO Expert Committee on Food Additives (JECFA) (Supplementary Table S1).
Nevertheless, there is always the need for more comprehensive and highly reliable research
into the different aspects of FA safety and potential toxicity, and any new piece of evidence
on this topic is valuable for policymakers to reevaluate the substances [8].

On the other hand, FAs are also listed among emerging water contaminants in all
aquatic systems, from sewage to the ocean [9–11]. While multiple efforts are put into remov-
ing the pollutants, research into these compounds’ potential impacts on aquatic organisms
is also required. Indeed, some of these compounds, such as Carmine and Sucralose, have
already been shown to be aquatoxic, threatening global water environments [12,13].

The need for more studies into FAs’ potential effects on both human and environmen-
tal health is in line with the One Health concept. It advocates the use of models that can
represent both aquatic ecosystems and humans. These models should ideally be in vivo
vertebrates, representing the complexity of an entire organism and maximizing the chance
to capture unexpected outcomes. However, the recent trend of applying the 3R principle
also requires minimizing the use of animals. Therefore, zebrafish embryos are a perfect
candidate for this task: Firstly, despite being a complete lifeform, the zebrafish embryos
up to the free feeding stage (120 h post-fertilization—hpf) are not legally recognized as
animals in the EU [14], thus totally complying with the 3R. Secondly, the zebrafish is an
aquatic vertebrate whose genome shares 70% orthologous genes with humans [15], hence
representing both environment and human health. Thirdly, the zebrafish’s rapid embryo-
genesis allows observation and recapitulation of multiple targets and processes occurring
during early development, which can be easily observed through the transparent chorion.
Additionally, the fish’s high fecundity and low maintenance cost offer the prospects for
developing high-throughput assays [16–18]. These advantages have made the zebrafish
embryotoxicity test (ZET) an increasingly recognized tool in chemical safety screening for
both environmental and biomedical applications [18–22].

Over the years, the zebrafish embryotoxicological toolbox has been supplemented
with various advanced techniques, such as transgenic reporter lines or automated pheno-
typing [23–25] to increase experimental throughput and simplify training, or-omics tools
such as RNA-Seq [22,26] that enable researchers to explore the mechanisms involved in a
chemical’s bioactivity. These methods, while screening for chemicals’ toxicity, often mainly
focus on preset endpoints, such as lethality, simple morphological defects, or expression
of a reporter gene. However, one big advantage of the embryonic zebrafish model is that
specific phenotypes induced by a chemical can give hints to the underlying biological
process, which is extremely important when it comes to the safety assessment of chemicals.
Following up on unexpected phenotypes observed in zebrafish embryos may serve as the
starting point for mechanistic studies on toxico-/pharmacology [22,26–28].

In this study, we employed the zebrafish embryos as the model system to investigate
the potential biological effects of controversial food additives, selected from the “Liver-
pool” and “Southampton” studies [3,4]. Thereby, we also demonstrate morphological
phenotyping as an effective tool in suggesting chemicals’ mode of action involved.

2. Materials and Methods

2.1. Materials

KCl and NaCl were obtained from Sigma Aldrich (Hoeilaart, Belgium), MgSO4 from
VWR (Leuven, Belgium), and the phosphate-buffered solution (PBS) was purchased from
Life Technologies (Gent, Belgium).

Eight FAs (analytical grade) were purchased either from Sigma Aldrich (Hoeilaart, Belgium)
or, for Aspartame, from Alfa Aesar (Lancashire, UK), as listed in Table 1. Stock solutions
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and serial dilutions for each chemical were appropriately prepared in E3 (5 mM NaCl,
0.17 mM KCl, 0.4 mM CaCl2, and 0.16 mM MgSO4) for all embryonic tests.

Table 1. List of tested food additives in this study.

FAs (Abbr.) Chemical Structure E Number Usage Supplier (Cat #)

Quinoline Yellow WS (QY)

 

(Chemical structures were taken from the suppliers’ respective 

–

E104 Coloring agent Sigma Aldrich (309052)

Sunset Yellow (SY)

 

(Chemical structures were taken from the suppliers’ respective 

–

E110 Coloring agent Sigma Aldrich (465224)

Azorubine (Azr)

 

(Chemical structures were taken from the suppliers’ respective 

–

E122 Coloring agent Sigma Aldrich (214515)

Allura Red AC (AR)

 

 

(Chemical structures were taken from the suppliers’ respective 

–

E129 Coloring agent Sigma Aldrich (458848)

Brilliant Blue (BB)

 

(Chemical structures were taken from the suppliers’ respective 

–

E133 Coloring agent Sigma Aldrich (861146)

Sodium Benzoate (SB)

 

(Chemical structures were taken from the suppliers’ respective 

–

E211 Preservative Sigma Aldrich (109169)

Monosodium Glutamate (MSG)
 

(Chemical structures were taken from the suppliers’ respective 

–

E621 Flavor enhancer Sigma Aldrich (49621)

Aspartame (Asp)

 

(Chemical structures were taken from the suppliers’ respective 

–

E951 Sweetener Alfa Aesar (J61523)

Chemical structures were taken from the suppliers’ respective website Sigmaaldrich.com; alfa.com; all accessed
on 15 December 2022.

2.2. Toxicological Testing Procedure

Zebrafish wildtype strain AB was maintained in a Techniplast rearing system under a
14:10-h light/dark photocycle within the Zebrafish Facility (GIGA-Research, University of
Liège). After breeding, eggs were collected into E3 medium. At 3–4 h post-fertilization (hpf),
fertilized and healthy embryos were selected and distributed into 6-well plates at 25 em-
bryos/well containing 5 mL of E3 medium supplemented with appropriate concentrations
of test compounds, then incubated at 28 ◦C.

Embryonic mortality and morphology rates were monitored, dead embryos were
removed, and solutions were renewed daily until four days post-fertilization (4 dpf).
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The staging was based on Kimmel et al. [29], and the lethality endpoints were from the
OECD’s Fish Embryo Toxicity (FET) test [19]. Photos were taken using an M165 FC
stereomicroscope (Leica).

The experiments tested six to nine concentrations chosen following a range-finding test.
All experiments were carried out at least in duplicate on n = 50 embryos per test/condition,
including control.

2.3. Statistical Analysis

The numbers of dead and malformed embryos were subjected to mixed effects logistic
regression to take experimental batch effects into account. Estimated mortality and malfor-
mation rates at each chemical concentration, together with their 95% prediction intervals,
were obtained using the R packages “lme4” [30] and “merTools” [31]. No observed adverse
effect concentrations (NOAECs) were also determined from the tested concentrations using
“lme4”. While there is a growing call to replace the NOAEC with the NEC (no-effect
concentration, obtained by fitting statistical models) [32], we chose the NOAEC in order to
compare our results with FAs’ safety legislation, which is still primarily based on the no
observed adverse effect level (NOAEL) from animal studies [33–45].

Other toxicological indices, including median lethal concentrations (LC50), median
effective concentrations (EC50), and the “teratogenic indices” (TI, defined as the ratio
between LC50 and EC50), were obtained by fitting two-parameter log-logistic function with
the R package “drc” [46]. Statistical results were then plotted using GraphPad Prism v9
for Windows.

2.4. Target and Functional Prediction

For the additives that induced distinct phenotypes in zebrafish embryos, in silico
analysis using online tools was performed to obtain a first hint concerning possible
biological processes (BP) involved. Two predictive platforms were employed to pre-
dict potential protein targets of each FA: the Target Net (http://targetnet.scbdd.com/
calcnet/index/) (accessed on 15 December 2022) [47] and the Swiss Target Prediction
(http://www.swisstargetprediction.ch) (accessed on 15 December 2022) [48], using the
respective websites’ default settings. Due to the differences in algorithms and display of
potential protein targets of the two platforms, we defined a potential target hit as having a
probability score >0 in any platform.

The protein hits were then subjected to the DAVID database (https://david.ncifcrf.gov)
(accessed on 15 December 2022) for the gene ontology (GO) analysis with the EASE score
set to 1. All web-based analyses were performed on 26 November 2022.

3. Results and Discussion

3.1. General Toxicological Results

After four days of semi-static (daily medium renewal) exposure, the effects of each
substance on zebrafish embryonic morphology and lethality were determined, as well
as the corresponding concentration–response relationship. Apart from Aspartame (Asp,
E951), which induced no observable effect at all tested concentrations (from 50 mg/L to
its saturation at 10 g/L), all other compounds affected zebrafish embryonic development
in dose-dependent manners, causing malformations eventually followed by death. The
most common defects were pericardial edema, darkened yolk sac, body curvature, and
retardation (Figure 1). Among these morphological defects, edema, curvature, and retarda-
tion phenotypes are commonly observed in toxicological studies and have been previously
linked each to several biological modes of action [28,49]; therefore, they will not be further
discussed in this study. On the other hand, an additional defect scarcely mentioned in
the literature was the darkened yolk observed for all the compounds except Aspartame,
which will be further investigated in the next Section 3.2. Furthermore, three compounds
caused small eye (microphthalmia), while two FAs induced substance-specific phenotypes:
Quinoline Yellow (QY, E104) caused swollen yolk, and Brilliant Blue (BB, E133) induced

http://targetnet.scbdd.com/calcnet/index/
http://targetnet.scbdd.com/calcnet/index/
http://www.swisstargetprediction.ch
https://david.ncifcrf.gov
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yolk rupture (Figure 1D,E) in 20% or more of surviving larvae. These two phenomena will
also be followed-up in Sections 3.3 and 3.4.

 
Figure 1. Typical defects following treatment with the test food additives. (A) Control;

(B) Monosodium glutamate; (C) Sodium Benzoate; (D) Quinoline Yellow; (E) Brilliant Blue. Images

were taken at 3 dpf. bc: body curvature; dy: darkened yolk; mio: microphthalmia; pe: pericardial

edema; sy: swollen yolk; ry: ruptured yolk.

Using survival and morphological (including non-hatching) data at 4 dpf, concentration–
response curves were generated for the seven FAs that affected zebrafish embryonic devel-
opment. As shown in Figure 2, all dose–response curves followed the typical sigmoidal
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pattern except those of BB (hence no LC50, EC50, or TI could be calculated). The multiphasic
toxicological behavior of this colorant will be further discussed in Section 3.3.

–
–

–Figure 2. Dose–response curves showing embryonic survival (blue) and any malformation (red) upon

4-day treatment with different food additives. (A) Quinoline Yellow; (B) Sunset Yellow; (C) Azorubine;

(D) Allura Red AC; (E) Brilliant Blue; (F) Sodium Benzoate; (G) Monosodium glutamate. Error bars

showing 95% prediction intervals. Aspartame was excluded for not showing any observable effect.

The calculated toxicological indices at 4 dpf are listed in Table 2 (a short version of Sup-
plementary Table S1). The table, as well as Figure 2, clearly show that the tested FAs have their
toxicological indices differ by orders of magnitudes. According to our results, the preservative
Sodium Benzoate (SB, E211) belongs to Cat.3 aquatic toxicity class (LC50~10–100 mg/L [50]),
while all other compounds are non-aquatoxic with LC50 > 100 mg/L at 96 hpf. Although we
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could not determine LC50 values for BB and Asp, they induced no embryonic mortality at
the 100 mg/L threshold, thus clearly classified as non-aquatoxic. However, all six FAs with
computable LC50 and EC50 (i.e., inducing typical lethal and malformation dose–response curves)
are potential teratogens with a “Teratogenic Index” (LC50/EC50) TI >1. Remarkably, the coloring
agent Quinoline Yellow (QY, E104) turned out as extremely teratogenic with TI~79. It should be
noted that, except for SB and teratogenicity of QY and AR, all LC50 and EC50 values are above
1000 mg/L. The NOAEC values were at 100 mg/L or lower, except for MSG and Asp (Table 2).

Table 2. Toxicological indices of the tested food additives.

FA
NOAEC
(mg/L)

LC50 Estimate
(mg/L)

LC50 95% CI
(mg/L)

EC50 Estimate
(mg/L)

EC50 95% CI
(mg/L)

TI TI Range

QY 5 6.89 × 103 5.39–8.38 × 103 87.7 73.1–102 78.6 52.7–115

SY 100 5.27 × 103 4.06–6.50 × 103 1.20 × 103 1.01–1.38 × 103 4.41 2.93–6.44

Azr 100 3.97 × 103 3.02–4.91 × 103 2.73 × 103 1.79–3.67 × 103 1.45 0.82–2.74

AR 50 1.84 × 103 1.57–2.11 × 103 253 206–301 7.26 5.21–10.3
BB 100 N/A N/A N/A N/A N/A N/A
SB 2 26.9 23.8–30.0 6.63 6.21–7.06 4.05 3.37–4.83

MSG 4500 20.1 × 103 19.2–21.1 × 103 10.9 × 103 10.4–11.5 × 103 1.85 1.68–2.03
Asp 10,000 N/A N/A N/A N/A N/A N/A

CI: Confidence interval; N/A: Not applicable.

We then compared the observed NOAEC concentrations to the “Acceptable Daily
Intake” (ADI, Supplementary Table S1) values to assess their putative impact on human
health. European ADI values were selected as the WHO/FAO counterpart sets no limit for
Monosodium Glutamate (MSG, E621) consumption [33]. Figure 3 reveals a good correlation
(Pearson’s r~0.98, p~0.00004) between legislative ADIs, which were determined mainly
based on NOEAL on animal (mostly rodent) studies, and the NOAEC determined here on
zebrafish embryos. One notable exception is SB, which has a much higher ADI relative to
its zebrafish toxicity (see also below Section 3.4).
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Figure 3. Toxicological indices of the tested FAs. NOAECs are plotted against their European

ADIs [34–37,39–42]. Food additives abbreviations as listed in Table 1; red color indicates aquatoxic,

grey non-aquatoxic compounds. The bubble sizes represent the teratogenic index (TI); Substances

without computable LC50 and EC50 (thus no TI) are displayed as small, borderless dots.
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3.2. Effect of Non-Toxic Salts at High Concentration

In our study, all seven ionic FAs (QY, SY, Azr, AR, BB, SB, MSG) induced the darkened
yolk phenotypes. Except for SB, the other six appeared to be non-aquatoxic (LC50 > 100 mg/L).
Strikingly, for the six non-toxic compounds, dark yolk only became a common phenotype
at the highest concentrations (500 mg/L and higher). This led us to suspect the role of ionic
strength in this phenomenon. In zebrafish embryos, ionic regulation is carried out by the
pronephros and the ionocytes on the skin (particularly surrounding the yolk sac)—both are
formed around 2–3 dpf during the time window when hatching occurs [51,52]—i.e., when
direct embryonic exposure to environmental water starts. Rider et al. [53] showed that
treatment with the nephrotoxin gentamicin led to disarrayed yolk globules and darkened
yolks in zebrafish embryos. A similar effect was observed upon NaCl overload (as low as
1 g/L or ~17 mM). Images of zebrafish embryos with darkened yolk could be observed in
many nephrotoxicity studies, albeit rarely described or mentioned [54–57].

To investigate whether the darkened yolk phenotype was specific to the tested food
additives, we performed further tests on some generally non-toxic salts such as KCl,
NaCl, MgSO4, and PBS. Starting at 3 dpf and becoming more evident at 4 dpf, embryos
treated with all these salts displayed the distinctly darkened yolk phenotype (Figure 4) at
concentrations above 50 mM.

 

− −

Figure 4. The 4 dpf embryos exposed showing different levels of darkened yolk (red arrow) in high

salt solutions. (A) Control; (B) PBS 0.5X; (C) KCl 60 mM; (D) NaCl 85 mM; (E) MgSO4 125 mM.
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It should be noted that K+, Na+, Mg2+, Cl−, and SO4
2− are all components of the

E3 medium used to raise embryos. Therefore, the most plausible explanation is that
this darkened yolk is induced by the ionic strength of the solution. Interestingly, the
osmolarity level that induced darkened yolk was not necessarily hypertonic to the embryos
(e.g., 0.5 × PBS = 80 mM). In addition to dark yolk, Figure 4 also displays some other more
general defects, such as heart edema and non-hatching.

Thus, it appears that the darkened yolk results from renal malfunction, either through
high ionic strength in the medium or through nephrotoxic treatment. However, dark
yolk was previously described in early zebrafish larvae as an indication for dysregulated
lipid metabolism [58,59], which we cannot at present completely rule out, especially for
MSG that is causing diabetes after several weeks of treatment in mice [60]. These two
mechanisms may be somehow linked, the exact mechanism will require more investigations,
one plausible explanation could be that failure in homeostatic regulation may lead to
impaired lipoprotein biogenesis, thus causing the darkened yolk [59]. Either way, the
dark yolk phenotype, while often overlooked, could serve as an indicator of possible
nephrotoxicity/renal damage in other studies.

3.3. Brilliant Blue (E133) Can Weaken the Zebrafish Larval Yolk Sac

As shown in Figure 2E, the coloring agent BB affected zebrafish embryos in an un-
usual dose-dependent manner, with the 4-day embryonic survival rate dropping between
1–5 g/L then temporarily rising again. It also caused a “ruptured” yolk sac phenotype
(Figures 1E and 5A,B), but that only occurred in hatched embryos which eventually died
at day 4. In contrast, unhatched embryos were visually unscathed inside the chorion up
to 20 g/L of BB, apparently due to a chorionic protecting effect (it should be noted that
4 dpf non-hatching was considered a defect). However, closer monitoring of the hatching
process of 2–3 dpf treated larvae revealed that the chorion did not play a protective role;
rather it appeared that the chorion itself was breaking and squeezing the larval yolk sac
during hatching, indicating a severely softened yolk and/or weakened enveloping layer
(Figure 5C,D).

–5 g/L then temporarily rising again. It also caused a “ruptured” yolk sac phenotype 

–

 

–

Therefore, the scenario causing BB’s unusual dose–

on BB’s bioactivities 

Figure 5. Brilliant Blue treatment weakened the zebrafish embryonic yolk sac. Hatched embryos

((A–C) red arrow) had their yolk sac ruptured, while unhatched embryos remained intact ((C) black

arrow). During hatching (D), the chorion injured the softened yolk, causing its rupture and finally

killing the larva. Images were taken at 2-dpf and 5 g/L BB.

Therefore, the scenario causing BB’s unusual dose–response curves is explained as
follows: With increasing BB concentration up until 5 g/L, the embryonic yolk sac was
weakened, but many embryos were still able to hatch, severely injuring themselves during
the process leading to later death. At higher concentrations of 10 and 20 g/L, the treated
embryos became unable to hatch (thus avoiding the hatching injury) while their morphol-
ogy was apparently less altered. Finally, the highest BB concentrations of 30 and 50 g/L
induced mortality in all unhatched embryos (Figure 2E).



Toxics 2023, 11, 8 10 of 16

While our search for yolk sac rupture during hatching in zebrafish yielded no re-
sult, there were several reports of similar phenomena in other fish species exposed to oil
derivatives [61], tetrachlorodibenzo-p-dioxin (TCDD) [62,63], and silver nanoparticles [64].
However, no study suggested a mechanism of yolk sac weakening. Possible target pre-
diction analysis revealed 36 potential protein targets (Supplementary Table S2), involving
various biological processes and diseases. Experimental evidence on BB’s bioactivities also
hints at several possibilities. The dye was shown to inhibit mouse oocyte pannexin 1 [65],
modulating purinergic signaling and the oxidative state in skeletal muscles [66]. BB could
also modulate the activity of tyrosine phosphatases (e.g., PTP1B and YPTP1) [67] and in-
hibit mitochondrial respiration [68]. Notably, the compound can directly penetrate animal
epithelium [69] and the zebrafish chorion (Figures 1E and 5C,D); hence it could possibly
get inside the yolk sac and its protective walls at early periods. Taken together, these
observations raise serious concern about the risk posed by BB consumption, especially
during pregnancy.

3.4. Quinoline Yellow (E104): A Possible Metabolic Interferer

Despite being non-aquatoxic with an LC50 of 6.89 g/L, the coloring agent QY was
the most teratogenic food additive with an extremely high TI (~80) and lowest observed
adverse effect concentration of 20 mg/L (Figure 2A). Indeed, QY is the only additive other
than SB causing malformed embryos at below 100 mg/L. In addition to more general
(e.g., pericardial edema) and ionic strength-induced (darkened yolk) phenotypes, QY also
caused two other substance-specific deformities: microphthalmia (small eyes) and swollen
yolk (Figures 1D and 6).

 

transcriptomic effect of a QY’s unsulfonated form (Quinoline Yellow SS, Solvent Yellow 

Figure 6. Prominent defects after four days of QY treatment to zebrafish embryos. Error bars showing

95% prediction interval.

The yolk sac, consisting of a lipid- and protein-rich core and a peripheral yolk syncytial
layer (YSL), is the sole nutritive supply of the developing zebrafish embryos. The swollen
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yolk is likely related to the malabsorption of yolk nutrients [28,70]. Interestingly, yolk
malabsorption has also been listed as a factor associated with microphthalmia [70], among
other factors such as developmental delay or corneal and retinal defects [71,72]. Target
prediction analysis further strengthens the hypothesis of QY impairing yolk metabolism, as
33/54 of QY hits are involved in lipid and protein metabolisms (Supplementary Table S3).
It should be noted that while QY may interfere with yolk metabolism, the darkened yolk
phenotype mostly occurred at very high concentration, thus more likely to be related to
the ionic effect rather than a consequence of disrupted lipoprotein biogenesis as shown in
other studies [58,59]. Regarding the ophthalmic effect, a recent study on the transcriptomic
effect of a QY’s unsulfonated form (Quinoline Yellow SS, Solvent Yellow 33) also reported
the downregulation of metabolic genes in zebrafish embryos- especially the disruption of
the retinoic acid signaling pathway, which may impair eye development [22].

The implication that a common food additive may interfere with nutrient metabolisms,
even at a relatively low dose, should raise a concern about its safety status at current ADIs
(0.5 and 3 mg/kg bw, respectively set by EFSA and JECFA) [36,43].

3.5. Sodium Benzoate (E211): Safety Concern

Our results revealed SB as the most aquatoxic FA with a LC50 of 26.9 mg/L. Interest-
ingly, SB also induced the darkened yolk phenotype at concentration as low as 5 mg/L
(Figure 7)—much lower compared to the other FAs, thus the role of ionic strength could
be eliminated. Instead, this phenomenon hinted at a specific nephrotoxic activity for SB.
Indeed its consumption at 100~500 mg/kg bw/day has recently been shown to induce
kidney damage in Wistar rats [73] and mice [74]. Additionally, 57/249 of SB’s potential
protein targets were involved in human renal disease (Supplementary Table S4). How-
ever, although no direct link was found in the literature, 31/249 hits were related to lipid
metabolism, thus we cannot rule out the lipoprotein mechanism of yolk darkening in
SB-treated zebrafish embryos.

—
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As a preservative, SB is extensively used in various food and cosmetic products. The
current European ADI for SB is 5 mg/kg bw, higher than those applied for QY, SY, and Azr
(Figure 3 and Supplementary Table S1). On the other hand, the JECFA (Joint FAO/WHO
Expert Committee on Food Additives) has increased the ADI of benzoic acid and its salts
from 5 mg/kg bw to 20 mg/kg bw in 2021 [45]—citing a NOAEL value of 1000 mg/kg
bw/day obtained during an extended one-generation reproductive toxicity (EOGRT) study
on Sprague-Dawley rats [75]. The evidence on SB’s status as putative nephrotoxicant,
aquatoxicant, or lipoprotein disruptor emphasizes the need to reconsider its safety levels
(as well as other benzoate compounds’) in food and cosmetic products, especially for those
used during pregnancy and childhood.

3.6. Azorubine (E122) Induces Precocious Zebrafish Hatching

Another remarkable observation was that Azr could act as a powerful hatching stim-
ulant. As illustrated in Figure 8, Azr exposure dose-dependently stimulated embryonic
hatching. Notably, at 10 g/L, the compound could induce some hatching at 1 dpf.
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Figure 8. Azorubine stimulates embryo hatching even on day 1. Error bars showing 95% predic-

tion interval.

Among the tested FAs, Azr has low toxicity with a NOAEC of 100 mg/L and TI of
1.45; thus, our study does not really challenge its safety status. Nevertheless, the hatching
induction feature indicates a certain biological effect of the compound. Zebrafish can hatch
thanks to the combined effect of choriolytic hatching enzymes (generally belonging to
the metalloprotease family) [76] and embryonic movements. Early hatching could be an
adaptive response to environmental cues such as ionic stress [77] and hypoxia [78], or a
consequence of chemical exposure such as tributyltin [79] and TiO2 [80]. While hatching
stimulation could sometimes be attributed to the embryonic hyperactivity induced by
chemicals, e.g., in the case of PFOS [81,82], there are compounds that induced premature
hatching and reduced larval locomotion, such as tributyltin [79].

Reverse docking revealed 118 potential targets of Azr, six of which are matrix metallo-
proteases (MMPs 1, 2, 3, 8, 9, and 14) and ten other proteases (Supplementary Table S5). In
our experiments, Azr-treated embryos did not exhibit significant hyperactivity compared to
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the controls. This and the fact that some embryos hatched since day 1 strongly suggest that
Azr may have induced precocious hatching in zebrafish by interacting with the hatching
enzymes. On the other hand, if proven, the interaction between Azr and MMPs may have
practical implications in biomedicine.

4. Conclusions

Our results confirm the zebrafish embryo as a cost-effective model for high throughput
chemical safety and toxicity screening, although specific results may need to be confirmed
in more costly and more time-consuming mammalian systems. In addition, starting
with routine toxicological testing using the zebrafish embryos, the careful observation of
unexpected effects beyond the standard list of endpoints [19] has allowed us to uncover
novel biological properties of several commonly used food additives. On the one hand,
this emphasizes the advantage of whole organism in vivo models in allowing systematic
detection of biological effects, especially those largely unforeseen by targeted in vitro and in
silico techniques. Our deliberate effort to reach lethality for all tested compounds revealed
that lethal or teratogenic doses are generally high compared to what would be reached in
food or the environment. On the other hand, our results also suggest the need to reconsider
the safety of QY, BB, SB, and other controversial food additives in further studies, as well as
pave the way to further applications based on the newly found properties of Azr and BB.
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