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Abstract
This paper revisits the resonant behavior of a harmonically-forced Duffing oscillator with a specific attention
to phase resonance and to its relation with amplitude resonance. To this end, the different families of reso-
nances, namely primary (1:1), superharmonic (k:1) and subharmonic (1:ν) resonances are carefully studied
using first and higher-order averaging. When the phase lag is calculated between the k-th harmonic of the
displacement and the harmonic forcing, this study evidences that phase resonance occurs when the phase lag
is equal to either π/2 (phase quadrature) or 3π/4ν.

1 Introduction

The resonant behavior of linear systems can be characterized either with the concept of an amplitude res-
onance or a phase resonance. Amplitude resonance corresponds to a relative maximum in the frequency
response function whereas phase resonance is associated with quadrature between the displacement and the
external forcing. At phase resonance, the external forcing cancels exactly the damping force with the re-
sult that the resonance frequency coincides with the natural frequency of the linear system. The difference
between the two resonances remains small for weakly damped systems. Phase resonance-based testing [1]
which excites the individual modes of the system in turn was largely exploited during the early days of ex-
perimental modal analysis because it provides accurate estimation of the modal parameters. With the advent
of advanced system identification techniques such as the stochastic subspace identification method [2], phase
resonance testing has been less and less employed for linear modal analysis.

For nonlinear systems, the phase lag quadrature criterion was first extended to synchronous motions using
harmonic balance in [3] and then to arbitrary periodic motions using Melnikov analysis in [4]. These efforts
triggered the development of nonlinear phase resonance testing which targets the identification of the non-
linear normal modes (NNMs) defined as periodic solutions of the unforced, undamped system [5, 6]. Basic
[7, 8, 9] and more advanced (control-based) strategies [10, 11, 12, 13, 14, 15] were developed during the last
decade. In this context, phase-locked loops (PLLs) are particularly effective for tracking phase quadrature
for increasing forcing amplitudes, as first proposed in [11]. In addition, like control-based continuation [10],
phase control may also stabilize unstable periodic solutions.

Despite the great promise of PLLs for experimental modal analysis of nonlinear systems, two difficulties
remain for an accurate and thorough characterization of nonlinear resonant behaviors. First, according to [3],
the correspondence between the quadrature curves identified using PLLs and NNMs is only valid for multi-
harmonic forcing. In the presence of modal interactions, the discrepancy can be very important [16]. Second,
nonlinear systems can exhibit additional resonances including superharmonic and subharmonic resonances.
Even if recent theoretical [4] and numerical [17] studies investigated these secondary resonances under the
banner of nonlinear modes, it is not yet fully clear how they can be identified using phase resonance testing.

To provide a solid theoretical framework for the use of PLLs in nonlinear experimental modal analysis,
the present study revisits the resonant behavior of a harmonically-forced Duffing oscillator with a specific
attention to phase resonance and to its relation with amplitude resonance. To this end, the different families



of resonances including primary (1:1), superharmonic (k:1) and subharmonic (1:ν) resonances are carefully
studied using first and higher-order averaging.

The paper is organized as follows. Section 2 briefly recalls the principles behind averaging in nonlinear
dynamics. Section 3 focuses on the amplitude and phase resonances of both a linear and a Duffing oscillator
whereas Section 4 extends the investigations to different secondary resonances. In Section 5, the findings
obtained through the analytical derivations are verified using numerical simulations. The conclusions of the
present study are summarized in Section 6.

2 General approach

2.1 Resonances of a Duffing oscillator

The governing equation of motion of a mass-normalized and harmonically-forced Duffing oscillator is

ẍ(t) + 2ζ̄ ω0 ẋ(t) + ω2
0x(t) + αx3(t) = γ̄ sinωt (1)

where ζ̄ is the linear modal damping ratio, α is the nonlinear stiffness coefficient, γ̄ is the forcing amplitude
whereas ω is the excitation frequency of period T . The natural frequency of the undamped, linearized system
is ω0 [18]. The Duffing oscillator is said to be hardening when α > 0, and softening when α < 0. In the
present study, we set ζ̄ = 0.005, ω0 = 1 and α = 1. Thus, only the hardening case is studied here.

If we consider the Fourier decomposition of the displacement

x(t) = A0 +

n∑
k=1

Ak sin (ωkt− ϕk) (2)

where ωk = kω
ν (with ν a positive integer), Ak and ϕk are the frequency, amplitude and phase lag of the

k-th harmonic of the displacement, respectively, then Equation (2) shows that each harmonic k may trigger a
resonance if ωk corresponds to the (amplitude-dependent) frequency of the primary resonance of the system.
These resonances can be divided into four categories, namely 1 : 1 primary resonance (k = ν = 1), k : 1
superharmonic resonances, 1 : ν subharmonic resonances and k : ν ultra-subharmonic resonances.

2.2 Averaging around the k : ν resonance

We consider a weakly nonlinear oscillator of the form:

ẍ(t) + ω2
0x(t) = εf(x(t), ẋ(t)) (3)

When ε = 0, the periodic solution of (3) is written as:

x(t) = u cosω0 t− v sinω0 t (4)

where u and v are constants. When ε ̸= 0, we seek a solution of frequency ωk such that ωk
2−ω0

2 = εΩ.
The solution is expressed as in Equation (4) but with time-dependent u and v:

x(t) = u(t) cosωk t− v(t) sinωk t (5)

We impose that the velocity should have the same form as in the case ε = 0, i.e.,

ẋ(t) = −u(t)ωk sinωk t− v(t)ωk cosωk t (6)

Equation (6) holds if:
u̇(t) cosωk t− v̇(t) sinωk t = 0 (7)



Differentiating Equation (6) and replacing ẍ(t) and x(t) in Equation (3) yields:

u̇(t)ωk sinωk t+ v̇(t)ωk cosωk t = −ε [f(x(t), ẋ(t)) + Ωx(t)] (8)

Finally, taking into account Equations (7) and (8) and solving for u̇ and v̇, a system of first-order equations
is obtained: {

u̇ = − ε
ωk

[f(x(t), ẋ(t)) + Ωx(t)] sinωk t

v̇ = − ε
ωk

[f(x(t), ẋ(t)) + Ωx(t)] cosωk t
(9)

This system has a suitable form to apply first- or higher-order averaging. First-order averaging is performed
herein using the Krylov-Bogolyubov technique [19, 20]. Higher-order averaging is based on the Lie trans-
form algorithm [20]; it was implemented by Yagasaki in the haverage.m Mathematica package [21].

x(t) is often represented using the polar coordinates r and ϕ such that x(t) = r(t) sin (ω t− ϕ(t)) with
r =

√
u2 + v2 and ϕ = atan2(−u,−v). For conciseness, the time dependence for u, v, r and ϕ is dropped

in the remainder of this article.

3 Primary resonance (k = ν = 1)

Considering Equation (1), we scale the system such that ζ̄ = εζ and γ̄ = ε3/2γ, with ζ, γ = O(1). If
x =

√
εy, we obtain:

ÿ(t) + 2εζ ω0 ẏ(t) + ω2
0y(t) + εαy3(t) = εγ sinωt (10)

The forcing frequency is in the vicinity of the natural frequency of the linear system, i.e., ω2−ω0
2 = εΩ.

The displacement is expressed as:

x(t) =
√
εr sin (ω t− ϕ) = A sin (ω t− ϕ) (11)

3.1 Linear system

Applying first-order averaging to the linear system (α = 0) yields:{
ṙ = − ε

ω (2ζ ω0 ω r − γ sinϕ)

ϕ̇ = ε
ω (Ω+γ cosϕ)

(12)

Assuming a steady-state response, i.e., ṙ = ϕ̇ = 0, the motion around resonance is governed by:{
2ζ ω0 ω r = γ sinϕ

−Ω r = γ cosϕ
(13)

The resonant behavior of a linear oscillator can be described in two different ways, i.e., either when the
amplitude of the frequency response undergoes a relative maximum (i.e., amplitude resonance denoted by a
subscript a herein) or when the displacement is in quadrature with the external forcing (i.e., phase resonance
denoted by a subscript p). Both cases are detailed in what follows.

3.1.1 Phase lag at amplitude resonance

Amplitude resonance occurs when both ∂r
∂ ω and ∂r

∂ϕ are equal to 0. From Equation (13), we obtain:
∂r
∂ϕ = γ

2ζ ω0 ω

(
cosϕ− sinϕ

ω
∂ ω
∂ϕ

)
= 0

∂r
∂ ω = γ

2ζ ω0 ω

(
cosϕ ∂ϕ

∂ ω − sinϕ
ω

)
= 0

(14)



Both relations are equivalent. The second relation of Equations (13) provides an expression for ω:

ω =

√
ω0

2−εγ

r
cosϕ (15)

∂ ω
∂ϕ is obtained by isolating Ω in the second equation of (13) and making use of the chain rule ∂ ω

∂ϕ = ∂ ω
∂ Ω

∂ Ω
∂ϕ

such that
∂ ω

∂ϕ
=

ε

2ω

(
γ

r
sinϕ+

γ

r2
cosϕ

∂r

∂ϕ

)
(16)

which can be inserted in the first relation of (14):

∂r

∂ϕ
=

γ sinϕ

2ζ ω0 ω

(ω−εζ ω0 tanϕ)

(ω tanϕ+ εζ ω0)
= 0 (17)

This relationship is satisfied when the phase lag takes the form:

tanϕa =
ωa

εζ ω0
=

√
1− 2ζ̄2

ζ̄
(18)

The corresponding frequency and amplitude are

ωa = ω0

√
1− 2ζ̄2, Aa =

γ̄

2ζ̄ ω0
2
√

1− ζ̄2
(19)

It should be noted that ϕ = 0 or ϕ = π also verify Equation (17) and correspond to the purely static and
inertial responses, respectively.

3.1.2 Phase lag at phase resonance

Phase quadrature ϕp = π
2 occurs when the excitation frequency corresponds to the natural frequency of the

undamped system, i.e., when ω = ωp = ω0. The amplitude at phase resonance is Ap =
γ̄

2ζ̄ ω0
2 .

3.2 Nonlinear system

First-order averaging applied to the nonlinear system (α ̸= 0) gives:{
ṙ = − ε

ω

(
ζ ω0 ω r − γ

2 sinϕ
)

ϕ̇ = − ε
ω

(
α
8

(
3r2 − 4Ω

α

)
− γ

2 cosϕ
) (20)

The steady-state solutions around the primary resonance are governed by:{
ζ ω0 ω r = γ

2 sinϕ
α
8

(
3r2 − 4Ω

α

)
r = γ

2 cosϕ
(21)

3.2.1 Phase lag at amplitude resonance

Following the same procedure as for the linear system, we obtain:
∂r
∂ϕ = γ

2ζ ω0 ω

(
cosϕ− sinϕ

ω
∂ ω
∂ϕ

)
= 0

∂r
∂ ω = γ

2ζ ω0 ω

(
cosϕ ∂ϕ

∂ ω − sinϕ
ω

)
= 0

(22)



and
∂ ω

∂ϕ
=

ε

2ω

([
6αr

4
+

γ

r2
cosϕ

]
∂r

∂ϕ
+

γ

r
sinϕ

)
(23)

Eventually,
∂r

∂ϕ
=

8ζ ω0 ω
2 γ sinϕ(ω−εζ ω0 tanϕ)

16ζ2 ω0
2 ω4 tanϕ+ ε(3αγ2 sinϕ2 tanϕ+ 16ζ3 ω0

3 ω3)
(24)

This relation is verified when:
tanϕa =

ωa

εζ ω0
(25)

and, from (21) and (25), it is possible to derive Aa, ωa and ϕa as a function of the forcing and the system
parameters: 

Aa =

√
2ω0

2

3α

(
(ζ̄2 − 1) +

√
(1− ζ̄2)2 + 3αγ̄2

4ζ̄2 ω0
6

)
ωa = ω0√

2

√
1− 3ζ̄2 +

√(
1− ζ̄2

)2
+ 3αγ̄2

4ζ̄2 ω0
6

tanϕa =

√
1−3ζ̄2+

√
(1−ζ̄2)

2
+ 3αγ̄2

4ζ̄2 ω0
6

√
2ζ̄

.

(26)

3.2.2 Phase lag at phase resonance

Imposing ϕp = π/2 in Equations (21) yields:Ap =
γ̄

2ζ̄ ω0 ωp

ωp = ω0

√
1 + 3α

4ω0
2A2

p

(27)

from which the expressions of the amplitude and frequency at phase resonance can be deduced:

Ap =

√√√√2ω0
2

3α

(√
1 +

3αγ̄2

4ζ̄2 ω0
6
− 1

)
(28)

and

ωp =
ω0√
2

√√√√1 +

√
1 +

3αγ̄2

4ζ̄2 ω0
6

(29)

We note that Equations (27) correspond to those that would be obtained by applying the energy balance
principle [22, 23] to the NNMs of the undamped, unforced system and neglecting higher-order harmonics.
Under this latter assumption, this means that phase resonance testing amounts to exciting the underlying
NNMs.

3.2.3 Discussion

This section has derived analytical expressions of the amplitude, frequency and phase of a Duffing oscillator
at amplitude and phase resonances. Of specific interest is the difference in frequency between amplitude and
phase resonances, ∆ω = ωp−ωa:

∆ω =
ω0√
2


√√√√1 +

√
1 +

3αγ̄2

4ζ̄2 ω0
6
−

√√√√1− 3ζ̄2 +

√(
1− ζ̄2

)2
+

3αγ̄2

4ζ̄2 ω0
6

 (30)



We note that the phase resonance of a harmonically-forced Duffing oscillator is rarely discussed in the tech-
nical literature. The reason might come from the fact that perturbation techniques do not always make a
distinction between amplitude and phase resonances. For example, the method of multiple scales [24] yields
around the primary resonance: {

ζ ω0
2 r = γ

2 sinϕ
α
8

(
3r2 − 8ω0(ω−ω0)

εα

)
r = γ

2 cosϕ
(31)

Since the amplitude r is maximum when ϕ = π/2, amplitude and phase resonances are predicted to occur
simultaneously with: {

A = γ̄
2ζ̄ ω0

2

ω = ω0+
3αγ̄2

32ζ̄2 ω0
5

(32)

Interestingly, the multiple scales method predicts that the amplitude at resonance of the Duffing oscillator is
identical to that of the phase resonance of the underlying linear system.

Getting back to Equation (30) and performing a Taylor series expansion indicates that the frequency differ-
ence is of the order of O

(
ζ̄2
)
, as in the linear case. For weak to moderate damping (i.e., not beyond a few

percent, which is usually the case for mechanical structures), it thus follows that phase resonance lies in the
immediate neighborhood of amplitude resonance. This is illustrated in Figures 1a and 1b, where the phase
resonance curve constructed thanks to Equations (28) and (29) is superposed to the nonlinear frequency re-
sponses calculated from Equations (21) for different forcing amplitudes. Expression (30) also evidences that
a hardening nonlinearity (α>0) brings amplitude and phase resonances closer to each other, and conversely
for a softening nonlinearity.

(a) (b)

Figure 1: Nonlinear frequency responses (black) around the primary resonance of the Duffing oscillator for
forcing amplitudes of 0.001N, 0.005N and 0.01N and the phase resonance curve (orange): (a) amplitude and
(b) phase lag.

4 Secondary resonances

Considering the mass-normalized equation of the Duffing oscillator (1), we scale the system such that ζ̄ =
εdζ and γ̄ =

√
εγ, with µ, γ = O(1), and d is a positive integer. If we let x =

√
εy, we obtain

ÿ(t) + 2εdζ ω0 ẏ(t) + ω2
0y(t) + εαy3(t) = γ sinωt (33)



If ε = 0, then Equation (33) has a periodic solution y(t) = Γ sinωt with Γ = γ/(ω2
0 − ω2). Introducing

z(t) = y(t)− Γ sinωt in Equation (33) yields a weakly nonlinear oscillator with a form suitable for first- or
higher-order averaging:

z̈(t) + ω2
0z(t) = εf(z(t), ż(t), ωt, ε) (34)

where
f(z(t), ż(t), ωt, ε) = −α(z(t) + Γ sinωt)3 − 2εd−1ζ ω0(ż(t) + ωΓ cosωt) (35)

where the forcing frequency is close to a fraction of the natural frequency of the linear system, i.e., ωk
2−ω0

2 =
εΩ. The solution around the k : ν resonance can therefore be expressed as:

x(t) =
√
ε (r sin (ωk t− ϕ) + Γ sinω t) = Ak sin (ωk t− ϕ) + Γ̄ sinω t (36)

where Ak =
√
εr and Γ̄ = γ̄/(ω2

0 − ω2).

4.1 3 : 1 resonance

The first secondary resonance studied is the 3 : 1 superharmonic resonance, i.e., k = 3 and ν = 1. Using
Equation (33) with d = 1, first-order averaging provides:ṙ = −ε

(
ζ ω0 r − αΓ3

24ω sinϕ
)

ϕ̇ = −ε
(

α
24ω

(
3r2 + 6Γ2 − 4Ω

α

)
− αΓ3

24ω r cosϕ
) (37)

Assuming a steady-state solution, ṙ = ϕ̇ = 0, we have:{
24ζ ω0 ω

α r = Γ3 sinϕ(
3r2 + 6Γ2 − 4Ω

α

)
r = Γ3 cosϕ

(38)

4.1.1 Phase lag at amplitude resonance

As for the primary resonance, amplitude resonance for the 3 : 1 resonance occurs when ∂r
∂ ω = ∂r

∂ϕ = 0:
∂r
∂ϕ = αΓ3

24ζ ω0 ω

([
7ω2 −ω0

2

ω(ω0
2 −ω2)

]
sinϕ∂ ω

∂ϕ + cosϕ
)
= 0

∂r
∂ ω = αΓ3

24ζ ω0 ω

([
7ω2 −ω0

2

ω(ω0
2 −ω2)

]
sinϕ+ cosϕ ∂ϕ

∂ ω

)
= 0

(39)

Isolating Ω from (38), using the chain rule ∂ ω
∂ϕ = ∂ ω

∂ Ω
∂ Ω
∂ϕ and inserting it in ∂r

∂ϕ gives:

∂r

∂ϕ
=

αΓ3
(
(7ω2 −ω0

2)
ω(ω0

2 −ω2)
εζ ω0

3 sinϕ+
(
1− ε αΓ2

3(ω0
2 −ω2)

+ ε 2ζ ω0 ω
ω0

2 −ω2
1

tanϕ

)
cosϕ

)
24ζ ω0 ω

(
1− ε

(
αΓ2

3(ω0
2 −ω2)

+ 2ζ ω0 ω
ω0

2 −ω2
1

tanϕ − α3Γ3 sinϕ2

6912ζ2 ω0
2 ω3 − ζ ω0

3 sinϕ tanϕ

)) (40)

The numerator is 0 when:

tan2 ϕ− 3ω(ω0
2−ω2)

εζ ω0(ω0
2−7ω2)

(
1− εαΓ2

3(ω0
2−ω2)

)
tanϕ− 6ω2

(ω0
2−7ω2)

= 0 (41)

Solving this equation for tanϕ and keeping only the leading term, the phase lag at amplitude resonance
writes

tanϕa =
3ωa(ω0

2−ω2
a)

ζ̄ ω0(ω0
2−7ω2

a)
(42)



Assuming further that, since we suppose that ω is close to ω0
3 , the ratio

ω0
2−ω2

a

ω0
2−7ω2

a

≃ 4 (43)

yields:

tanϕa =
12ωa

ζ̄ ω0
(44)

Inserting this relation in Equations (38) and assuming that the static response is constant, i.e., Γ ≃ Γ∗ =
9γ
8ω0

,
provides an expression of the amplitude of the third harmonic and of the frequency at amplitude resonance:

A3,a = αΓ̄3
∗

2ζ̄ ω0
2
√

ζ̄2 ω0
2 +144ω2

a

ωa =

√
−c2+

√
c22−4c1c3
2c1

(45)

where 
c1 =

1728
α

c2 = −144
(
2Γ̄2

∗ +
4ω0

2

3α − 3ζ̄2

4α

)
c3 =

(
2ζ̄2 ω0

2

3α − 2Γ̄2
∗ − 4ω0

2

3α

)
ζ̄2 ω0

2− α2Γ̄6
∗

4ζ̄2 ω0
2

(46)

4.1.2 Phase lag at phase resonance

For weak to moderate damping, Equation (44) shows that amplitude resonance occurs near phase quadrature
between the third harmonic of the displacement and the forcing. The phase resonance for the 3:1 superhar-
monic resonance can thus be associated with a phase lag of π/2. The averaged equations of motion (38)
become: rp =

αΓ3

24ζ ω0 ωp

rp =
√

4Ω
3α − 2Γ2

(47)

If we assume again that Γ ≃ Γ∗, it is possible to derive a closed-form expression for A3,p and ωp:
A3,p =

αΓ̄3
∗

24ζ̄ ω0
2 ω2

p

ωp =

√
−c2+

√
c22−4c1c3
2c1

(48)

where 
c1 =

1728
α

c2 = −144
(
2Γ̄2

∗ +
4ω0

2

3α

)
c3 = − α2Γ̄6

∗
4ζ̄2 ω0

2

(49)

Figures 2a and 2b compare the nonlinear frequency responses calculated from Equations (38) and the phase
resonance curves constructed thanks to Equations (48) and (49). Clearly, the newly-defined concept of a
phase resonance for the 3:1 superharmonic resonance is in excellent agreement with the maxima of the third
harmonic of the response, at least for the amount of damping considered herein, i.e., 0.5%. Assuming small
ζ̄, this observation is also confirmed analytically by the direct comparison between Equations (45)-(46) and
(48)-(49).

In the case of a softening Duffing oscillator (α < 0), the phase lag ϕp should be adjusted to 3π
2 in order to

have a positive amplitude A3,p. This phase lag is still consistent with Equation (44).



(a) (b)

Figure 2: Nonlinear frequency responses (black) and phase resonance/quadrature curves (orange) around the
3 : 1 resonance of the Duffing oscillator for forcing amplitudes of 0.1N, 0.15N and 0.2N: (a) amplitude and
(b) phase lag.

4.2 1 : 3 resonance

For the 1 : 3 subharmonic resonance, i.e., k = 1 and ν = 3, and d = 1, first-order averaging gives:{
ṙ = −ε

(
ζ ω0 r − 9αΓ

8ω r2 sin 3ϕ
)

ϕ̇ = −ε
(
3α
8ω

(
3r2 + 6Γ2 − 4Ω

α

)
− 9αΓ

8ω r cos 3ϕ
) (50)

For steady-state solutions, {
ζ ω0 =

9αΓ
8ω r sin 3ϕ

3α
8ω

(
3r2 + 6Γ2 − 4Ω

α

)
= 9αΓ

8ω r cos 3ϕ
(51)

4.2.1 Phase lag at amplitude resonance

Amplitude resonance occurs when ∂r
∂ ω = ∂r

∂ϕ = 0:
∂r
∂ϕ = 8ζ ω0

9αΓ sin 3ϕ

((
1− 2ω2

ω0
2 −ω2

)
∂ ω
∂ϕ − 3ω

tan 3ϕ

)
= 0

∂r
∂ ω = 8ζ ω0

9αΓ sin 3ϕ

((
1− 2ω2

ω0
2 −ω2

)
− 3ω

tan 3ϕ
∂ϕ
∂ ω

)
= 0

(52)

We must have sin 3ϕ ̸= 0, i.e., ϕ ̸= iπ
3 , where i is an integer. Following the same procedure as for the

previous resonances gives:

∂r

∂ϕ
=

8ζ ω0

9αΓ sin 3ϕ

(
1− 2ω2

ω0
2 −ω2

)
ε9ζ ω0− 3ω

tan 3ϕ

(
1− ε 27αΓ2

ω0
2 −ω2 + ε 6ζ ω0

ω0
2 −ω2

1
tan 3ϕ

)
1− ε 27αΓ2

ω0
2 −ω2 + ε 6ζ ω0

ω0
2 −ω2

1
tan 3ϕ −

(
1− 2ω2

ω0
2 −ω2

)(
ε 16ζ2 ω0

2

3αΓ2 sin2 3ϕ
+ ε 3ζ ω0

ω tan 3ϕ

) (53)

The numerator is equal to 0 when:

9εζ ω0

(
1− 2ω2

ω0
2−ω2

)
tan2 3ϕ− 3ω

(
1− ε

27αΓ2

ω0
2−ω2

)
tanϕ− ε

18ζ ω0 ω
2

ω0
2−ω2

= 0 (54)



Solving this equation for tan 3ϕ and keeping only the leading term, the phase lag at amplitude resonance can
be approximated with

tan 3ϕa =
ωa

3ζ ω0

(
1 + 2ω2

a
ω2
a −ω0

2

) (55)

Assuming further that, since we suppose that ω is close to 3ω0, the ratio

2ω2
a

ω2
a−ω0

2
≃ 9

4
(56)

yields:

tan 3ϕa =
4ωa

39ζ̄ ω0
(57)

Inserting this relation in Equations (51) gives:A1,a = 2ζ̄ ω0

9αΓ̄

√
1521ζ̄2 ω0

2+16ω2
a

γ̄ = ∥ω0
2 −ω2

a ∥√
6α

√
(2Ω̄ + 13ζ̄2 ω0

2)2 ±
√

(2Ω̄ + 13ζ̄2 ω0
2)2 − 8

9 ζ̄
2 ω0

2(1521ζ̄2 ω0
2+16ω2

a)
(58)

where Ω̄ = ω2
k −ω0

2. Unlike the 3 : 1 superharmonic resonance, the static response cannot be assumed to
be constant because the frequency varies much faster for the 1:3 subharmonic resonance (see Figure 3a). An
explicit expression for the resonance frequency ωa as a function of the forcing γ̄ can thus not be derived. We
also note that, due to the ± sign, there exist two frequencies satisfying (58), the greatest (lowest) frequency
corresponding to the maximum (minimum) response on the isolated branch. It is thus the greatest frequency
which is in relation with the resonance frequency ωa.

4.2.2 Phase lag at phase resonance

For weak to moderate damping, Equation (57) shows that amplitude resonance occurs near phase lags equal
to π

6 + iπ
3 where i is an integer. For odd (even) values of i, r takes positive (negative) values. Considering

positive amplitudes, the phase resonance for the 1:3 subharmonic resonance can be associated with phase
lags equal to π

2 ,
7π
6 and 11π

6 . For π
2 , the averaged equations of motion (38) can be transformed into:A1,p =

8ζ̄ ω0 ωp

9αΓ̄

γ̄ =
∥ω0

2 −ω2
p ∥√

3α

√
Ω̄±

√
Ω̄
2 − 32

9 ζ̄
2 ω0

2 ω2
p

(59)

The same expressions can be obtained if the two other phase lags are considered instead.

Figures 3a and 3b compare the nonlinear frequency responses calculated from Equations (51) and the phase
resonance curve constructed numerically thanks to Equations (59). The phase quadrature curve is found to
trace out the locus of the maxima of the different isolated responses.

For a softening Duffing oscillator, amplitude resonance still occurs for phase lags ϕp near π
6 +

iπ
3 except that

positive amplitudes occur now when i is odd. Thus, the resonant phase lags are π
6 ,

5π
6 and 3π

2 .

4.3 1 : 2 resonance

Using Equation (33) with d = 2, second-order averaging yields:ṙ = − ε2

2

(
2ζ ω0 r +

33α2Γ2

4ω3 r3 sin 4ϕ
)

ϕ̇ = − εα
4ω

(
3r2 + 6Γ2 − 4Ω

α

)
+ ε2

2

(
R1:2(r

2)− 33α2Γ2

4ω3 r2 cos 4ϕ
) (60)



(a) (b)

Figure 3: Nonlinear frequency responses (black) and phase resonance/quadrature curves (orange) around the
1 : 3 resonance of the Duffing oscillator for forcing amplitudes of 0.3N, 0.6N and 1N: (a) amplitude and (b)
phase lag.

where

R1:2(r
2) =

(
2Ω2

ω3
− 6αΓ2Ω

ω3
− 51α2Γ2

10ω3

)
r2 −

(
6αΩ

ω3
+

33α2Γ2

4ω3

)
r4 +

51α2

16ω3
r6 (61)

Steady-state solutions obey:{
2ζ ω0 = −33α2Γ2

4ω3 r2 sin 4ϕ
α
2ω

(
3r2 + 6Γ2 − 4Ω

α

)
= ε

(
R1:2(r

2)− 33α2Γ2

4ω3 r2 cos 4ϕ
) (62)

4.3.1 Phase lag at amplitude resonance

Neglecting the O(ε) term in the second Equation of (62) gives an approximation r0 of the amplitude r:

r0 =

√
4Ω

3α
− 2Γ2 (63)

Its derivative is:
∂r0
∂ ω

=
4

r0

(
1

12εα
− γ2

(ω0
2−ω2)3

)
ω (64)

Considering that the sinus function in the first equation of (62) is bounded by −1 and 1, an existence condition
for r is derived:

−1 ≤ − 8ζ ω0 ω
3

33α2Γ2r2
≤ 1 (65)

The second inequality is always true. r0 is thus injected in the first inequality:

4Ω

3α
≥ 2Γ2 +

8ζ ω0 ω
3

33α2Γ2
(66)

The numerical resolution in Figure 4 indicates that, if the forcing exceeds a certain threshold, there exist
two frequencies, ωinf and ωsup, which define the domain of existence of the 1:2 subharmonic resonance.
Conversely, if the forcing is too low, the inequality is not satisfied, and the 1:2 subharmonic resonance does
not exist. Because Equation (64) shows that r0 is increasing monotonically with respect to frequency since
α > 0, r0 is thus maximum (minimum) when ω is equal to ωsup (ωinf ), and amplitude resonance occurs



when ω = ωsup.

Figure 4: Numerical verification of the inequality (66) for a forcing of 0.8N (blue), 1N and 3N (black).

4.3.2 Phase lag at phase resonance

For this specific resonance, because the O(ε) term was neglected in Equations (62), phase resonance cor-
responds to amplitude resonance and takes place when ω = ωsup or, equivalently, sin 4ϕa = −1. Phase
resonance is thus defined for a phase lag ϕa = 3π

8 + iπ
2 , where i = 0, 1, 2, 3, which transforms (62) into:rp =

√
8ζ ω0 ω3

33α2Γ2

rp =
√

4Ω
3α − 2Γ2

(67)

from which the forcing γ can be computed as a function of the resonant frequency ωp:
Ap =

√
8ζ̄ ω0 ω3

p

33α2Γ̄2

γ̄ =
∥ω0

2 −ω2
p ∥√

3α

√
Ω̄±

√
Ω̄
2 − 12

11 ζ̄ ω0 ω3
p

(68)

The ± sign indicates that, for a fixed forcing, there exist two possible frequencies corresponding to the
minimum and maximum values of Ap.

Figures 5a and 5b compare the nonlinear frequency responses calculated from Equations (62) and the phase
resonance curve constructed numerically thanks to Equations (68). The phase resonance curve is found to
trace out the locus of the maxima and minima of the different isolated branches.

5 Numerical validation

The analytical results in the previous sections, as well as those found in [25] for higher-order k : ν reso-
nances, considered the amplitude and phase lag of the harmonic k, i.e., the harmonic triggering the k : ν
resonance. We observed that amplitude resonance was occurring near a well-defined phase lag, allowing us
to extend the concept of a phase resonance to secondary resonances. The phase resonances of the Duffing
oscillator can be classified into two families depending on the value ϕk:

• ϕk = π
2 (phase quadrature) when k and ν are odd;

• ϕk = 3π
4ν when either k or ν is even.



(a) (b)

Figure 5: Nonlinear frequency responses (black) and phase resonance curves (orange) around the 1 : 2
resonance of the Duffing oscillator for forcing amplitudes of 1N, 2N and 3N: (a) amplitude and (b) phase
lag.

(a)

3:1

5:1

7:1

0.8

(b)

(c) (d)

Figure 6: NFRCs (black) and the corresponding phase resonance points (red) of the (a) 1 : 1, (b) k : 1, (c)
1 : 3 and (d) 1 : 2 resonances.



Though the averaging technique does not give satisfying results for the even superharmonic resonances, their
resonant phase lag follows the above rule, i.e., they take the value 3π

4 , as evidenced numerically in [17].

To further validate the relevance of our developments, Figure 6 represents the nonlinear frequency responses
of the Duffing oscillator calculated numerically using the harmonic balance method [26] for the 1 : 1, 3 : 1,
5 : 1, 7 : 1, 1 : 2 and 1 : 3 resonances. Unlike the previous figures, Figure 6 depicts the multi-harmonic
response of the Duffing oscillator. The red dots are located where phase resonance of the k-th harmonic
occurs, i.e., ϕk = π

2 for the 1 : 1, k : 1 and 1 : 3 resonances and 3π
8 for the 1 : 2 resonance. We can clearly

see that the so-defined phase resonance points can also accurately capture the amplitude resonance of the
multi-harmonic response, and not only of the k-th harmonic.

6 Conclusion

The key contribution of this paper is the analytical characterization of the resonant phase lags of a hardening
Duffing oscillator. For the k : ν resonance, the phase lag is computed between the k-th harmonic of the dis-
placement and the harmonic forcing. When k and ν are odd, phase resonance occurs when phase quadrature
is achieved. When either k or ν is even, phase resonance takes place for a phase lag equal to 3π/4ν. In
almost all cases considered, phase resonance appears in the immediate vicinity of the amplitude resonance
of the kth harmonic, at least for the amount of damping considered in this study.

These analytical results are in complete agreement with the numerical observations made in [17]. They thus
confirm the relevance of the concept of a phase resonance nonlinear mode (PRNM) which was defined as
the point on the nonlinear frequency response which fulfills the phase resonance conditions. Eventually,
the two papers lay down the foundations for rigorous phase resonance testing of nonlinear systems using
phase-locked loops [11] and the subsequent correlation between numerical and experimental analyses.

Future work should generalize these results to other types on nonlinearities, including softening nonlineari-
ties, and to higher-dimensional systems.
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