Inner product preconditioned optimization methods for full waveform inversion

<u>X</u>. Adriaens¹, L. Métivier² and C. Geuzaine¹

¹Université de Liège ²Université Grenoble Alpes

March 2022

Problem statement

Consider

- \blacktriangleright a model parameter m
- \blacktriangleright a wave propagation operator F
- \blacktriangleright a wavefield u
- \blacktriangleright a mesurement operator R
- \blacktriangleright a dataset d

Full wave inversion consists in finding m^* such that

R(u) = d with $F(u, m^*) = f$

through the $\ensuremath{\textit{optimization problem}}$

$$m^* = \arg\min_m J(m) \triangleq \arg\min_m \mathsf{dist}(R(u(m)), d)$$

The distribution of the slowness squared is here chosen to be the unknown model, *i.e.*

$$m \triangleq s^2(\boldsymbol{x}) = 1/v^2(\boldsymbol{x}).$$

The **Marmousi model**¹ is a typical example of distributions that are sought in the context of geophysics.

 $^{^{1}}$ Versteeg, "The Marmousi experience: Velocity model determination on a synthetic complex data set".

In acoustics, the wavefield is a pressure field, i.e.

 $u \triangleq p(\boldsymbol{x})$

whose propagation can be modelled by the Helmholtz equation, i.e.

 $F(u,m) \triangleq \Delta p + \omega^2 s^2 p$

In acoustics, the wavefield is a pressure field, i.e.

 $u \triangleq p(\boldsymbol{x})$

whose propagation can be modelled by the Helmholtz equation, i.e.

 $F(u,m) \triangleq \Delta p + \omega^2 s^2 p$

In acoustics, the wavefield is a pressure field, i.e.

 $u \triangleq p(\boldsymbol{x})$

whose propagation can be modelled by the Helmholtz equation, i.e.

 $F(u,m) \triangleq \Delta p + \omega^2 s^2 p$

A dataset d is thus a $n_s \times n_r \times n_\omega$ complex-valued matrix, *i.e*

 $d \in \mathbb{C}^{n_s \times n_r \times n_\omega}$

which can be obtained by point-wise measurements at the receivers, *i.e.*

A dataset d is thus a $n_s \times n_r \times n_\omega$ complex-valued matrix, *i.e*

 $d \in \mathbb{C}^{n_s \times n_r \times n_\omega}$

which can be obtained by point-wise measurements at the receivers, *i.e.*

A dataset d is thus a $n_s \times n_r \times n_\omega$ complex-valued matrix, *i.e*

 $d \in \mathbb{C}^{n_s \times n_r \times n_\omega}$

which can be obtained by point-wise measurements at the receivers, *i.e.*

Local optimization methods

Full waveform inversion relies on the solution of an optimization problem

```
m^* = \arg\min_m J(m)
```

Local optimization techniques are used because the search space is typically large

Local optimization techniques originate from a second order expansions of the misfit

$$\begin{split} J(m+\delta m) &\approx J(m) + \{D_m J\}(\delta m) + \frac{1}{2} \{D_{mm}^2 J\}(\delta m, \delta m) \\ &\approx J(m) + \left\langle j', \delta m \right\rangle_M + \frac{1}{2} \left\langle H \delta m, \delta m \right\rangle_M \end{split}$$

provided some inner product \langle, \rangle_M is chosen for the model space

Local optimization methods

Full waveform inversion relies on the solution of an optimization problem

 $m^* = \arg \min_m J(m)$

Local optimization techniques are used because the search space is typically large

Based on this expansion, the descent direction p is then chosen as

$$p_{N} = \arg\min J(m) + \langle j', p \rangle_{M} + \frac{1}{2} \left\langle \tilde{H}p, p \right\rangle_{M}$$

or equivalently

$$\tilde{H}p_N = -j'$$

for some approximate Hessian operator \tilde{H} .

 $\blacktriangleright \tilde{H} \approx I$ (steepest descent) $\blacktriangleright \tilde{H} \approx B$ (Broyden-Fletcher-Goldfarb-Shanno method) $\blacktriangleright \tilde{H} \approx H_{(GN)}$

((Gauss-)Newton conjugate gradient method)

Full waveform inversion relies on the solution of an optimization problem

 $m^* = \arg\min_m J(m)$

Local optimization techniques are used because the search space is typically large

In addition, a strategy for scaling this descent direction must be chosen. Such strategies ensure convergence towards the nearest local minimum.

Line search:
$$m = m + \gamma p$$

with $p = -\tilde{H}^{-1}j'$ and $\gamma \approx \arg\min J(m + \gamma p)$

Trust region:
$$m = m + p$$

with $p = \arg \min_p J(m) + \langle j', p \rangle_M + \frac{1}{2} \left\langle \tilde{H}p, p \right\rangle_M$ and $\|p\|_M \le \Delta$

Full waveform inversion relies on the solution of an optimization problem

 $m^* = \arg\min_m J(m)$

Local optimization techniques are used because the search space is typically large

In summary, a local optimization procedure requires three ingredients

- 1 A globalization strategy to control their lengths
- 2 A method to compute descent directions
- 3 An inner product for the model space

Local optimization techniques are based on a local misfit expansion

$$\begin{split} J(m+\delta m) &\approx J(m) + \{D_m J\}(\delta m) + \frac{1}{2} \{D_{mm}^2 J\}(\delta m, \delta m) \\ &\approx J(m) + \left\langle j', \delta m \right\rangle_M + \frac{1}{2} \left\langle H \delta m, \delta m \right\rangle_M \end{split}$$

Equivalence between both expansions is granted by the gradient j^\prime and the Hessian operator H defining property

 $\langle j', \delta m \rangle_M \triangleq \{D_m J\} (\delta m), \forall \delta m$

and

$$\langle H\delta m_1, \delta m_2 \rangle_M \triangleq \{D_{mm}^2 J\}(\delta m_1, \delta m_2), \, \forall \delta m_1 \, \forall \delta m_2$$

that strongly depend on the chosen inner product $\langle \cdot, \cdot \rangle_M$. Changing the inner product therefore modify both the gradient and the Hessian operator.

Local optimization techniques are based on a local misfit expansion

$$\begin{split} J(m+\delta m) &\approx J(m) + \{D_m J\}(\delta m) + \frac{1}{2} \{D_{mm}^2 J\}(\delta m, \delta m) \\ &\approx J(m) + \left\langle j', \delta m \right\rangle_M + \frac{1}{2} \left\langle H \delta m, \delta m \right\rangle_M \end{split}$$

By transitivity, the link with the conventional (L_2) inner product $(\langle \cdot, \cdot \rangle)$ is straightforward

$$\left\langle j^{\prime},\delta m\right\rangle _{M}=\left\langle j_{L_{2}}^{\prime},\delta m\right\rangle ,\,\forall\delta m$$

and

 $\langle H\delta m_1, \delta m_2 \rangle_M = \langle H_{L_2}\delta m_1, \delta m_2 \rangle \ \forall \delta m_1 \delta m_2$

Inner product: example I: conventional

The conventional choice is a least squares inner product.

Balance between shallow and deep contributions is broken.

Inner product: example II: spatially scaled

An appropriate **spatial weight** w(x) is often applied, *e.g.* the diagonal of the Gauss-Newton Hessian².

This inner product choice restores balance between gradient contributions everywhere.

²Pan, Innanen, and Liao, "Accelerating Hessian-free Gauss-Newton full-waveform inversion via I-BFGS preconditioned conjugate-gradient algorithm".

Inner product: example III: scaled and thresholded

The diagonal of the Gauss-Newton Hessian can be close to zero. Therefore a threshold ϵ is added to prevent instabilities.

$$\langle m_1, m_2 \rangle_M = \langle \sqrt{w} \, m_1, \sqrt{w} \, m_2 \rangle + \epsilon \, \langle m_1, m_2 \rangle \qquad \Rightarrow j' = (w + \epsilon)^{-1} j'_{L_2}$$

Boundary and corner contributions are silenced.

A stabilization term penalizing rough models can also be added

$$\langle m_1, m_2 \rangle_M = \langle \sqrt{w} \, m_1, \sqrt{w} \, m_2 \rangle + \epsilon l_c^2 \, \langle \boldsymbol{\nabla} \, m_1, \boldsymbol{\nabla} \, m_2 \rangle \qquad \Rightarrow j' = (w - \epsilon l_c^2 \Delta)^{-1} j'_{L_2}$$

Gradient w.r.t this inner product are therefore smoother.

Encouraging smooth updates early in the inversion process is a strategy to avoid local minima trapping³.

 $^{^3{\}rm Zuberi}$ and Pratt, "Mitigating nonlinearity in full waveform inversion using scaled-Sobolev pre-conditioning".

Inner product: generalization

In general, any inner product that can be expressed through some preconditioner ${\cal P}$

 $\langle m_1, m_2 \rangle_M = \langle P m_1, m_2 \rangle$

yields a preconditioned gradient and a preconditioned Hessian operator

$$j' = P^{-1}j'_{L_2}$$
 and $H = P^{-1}H_{L_2}$

Changing the inner product

- is formally equivalent to preconditioning
- modifies lengths in the model space
- is mathematically rigorous (and elegant (?))
- makes preconditioning nearly invisible inside the optimization algorithms

Case study 1: inversion result

		Wave sol. (tot)	Error rms ([s ² /km ²])
Conventional		78	0.0174
Weighted	only	61	0.0202
	and thresholded	57	0.0174
	and smoothed	68	0.0173

Model is composed of two close T-shaped structures and a bottom reflector. Non negligible multiple scattering between them.

Initial model is an empty background.

Scaled and smoothed inner product only reaches a minimizer close to the true model.

Summary

Conclusions

- Selecting the inner product appropriately accelerates the convergence.
- More robust inversion path are obtain with preconditioning.

Perspectives

- Inner product preconditioning is an efficient strategy to reduce the influence of noise in the data.
- More sophisticated inner product (e.g. edge preserving adaptive smoothing) yield even better reconstructions.

Summary

Conclusions

- Selecting the inner product appropriately accelerates the convergence.
- More robust inversion path are obtain with preconditioning.

Perspectives

- Inner product preconditioning is an efficient strategy to reduce the influence of noise in the data.
- More sophisticated inner product (e.g. edge preserving adaptive smoothing) yield even better reconstructions.

Thank you for your attention