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Problem statement

Consider

I a model parameter m

I a wave propagation operator F

I a wavefield u

I a mesurement operator R

I a dataset d

Full wave inversion consists in finding m∗ such that

R(u) = d with F (u,m∗) = f

through the optimization problem

m∗ = arg minm J(m) , arg minm dist(R(u(m)), d)

2/18



Problem statement: model space

The distribution of the slowness squared is here chosen to be the unknown model, i.e.

m , s2(x) = 1/v2(x).

The Marmousi model1 is a typical example of distributions that are sought in the
context of geophysics.
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1Versteeg, “The Marmousi experience: Velocity model determination on a synthetic complex data set”.
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Problem statement: wavefield space

In acoustics, the wavefield is a pressure field, i.e.

u , p(x)

whose propagation can be modelled by the Helmholtz equation, i.e.

F (u,m) , ∆p+ ω2s2p
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Problem statement: data space I

Several (ner) emitters-receivers lie on the surface of the model. Each e-r is
successively excited (•) and the response (×) is recorded at all the other e-r, for
several frequencies (nω).
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Problem statement: data space II

A dataset d is thus a ns × nr × nω complex-valued matrix, i.e

d ∈ Cns×nr×nω

which can be obtained by point-wise measurements at the receivers, i.e.

[R(u)]s,r,ω ,
∫
ps,ω(x)δ(x− xr) dx = ps,ω(xr).
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Local optimization methods

Full waveform inversion relies on the solution of an optimization problem

m∗ = arg minm J(m)

Local optimization techniques are used because the search space is typically large

Local optimization techniques originate from a second order expansions of the misfit

J(m+ δm) ≈ J(m) + {DmJ}(δm) +
1

2
{D2

mmJ}(δm, δm)

≈ J(m) +
〈
j′, δm

〉
M

+
1

2
〈Hδm, δm〉M

provided some inner product 〈, 〉M is chosen for the model space
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Local optimization methods

Full waveform inversion relies on the solution of an optimization problem

m∗ = arg minm J(m)

Local optimization techniques are used because the search space is typically large

Based on this expansion, the descent direction p is then chosen as

pN = arg min J(m) + 〈j′, p〉M + 1
2

〈
H̃p, p

〉
M

or equivalently

H̃pN = −j′

for some approximate Hessian operator H̃.

I H̃ ≈ I (steepest descent)

I H̃ ≈ B (Broyden-Fletcher-Goldfarb-Shanno method)

I H̃ ≈ H(GN) ((Gauss-)Newton conjugate gradient method)
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Local optimization methods

Full waveform inversion relies on the solution of an optimization problem

m∗ = arg minm J(m)

Local optimization techniques are used because the search space is typically large

In addition, a strategy for scaling this descent direction must be chosen.
Such strategies ensure convergence towards the nearest local minimum.

I Line search: m = m+ γp

with p = −H̃−1j′ and γ ≈ arg min J(m+ γp)

I Trust region: m = m+ p

with p = arg minp J(m) + 〈j′, p〉M + 1
2

〈
H̃p, p

〉
M

and ‖p‖M ≤ ∆
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Local optimization methods

Full waveform inversion relies on the solution of an optimization problem

m∗ = arg minm J(m)

Local optimization techniques are used because the search space is typically large

In summary, a local optimization procedure requires three ingredients

1 A globalization strategy to control their lengths

2 A method to compute descent directions

3 An inner product for the model space
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Inner product: motivation

Local optimization techniques are based on a local misfit expansion

J(m+ δm) ≈ J(m) + {DmJ}(δm) +
1

2
{D2

mmJ}(δm, δm)

≈ J(m) +
〈
j′, δm

〉
M

+
1

2
〈Hδm, δm〉M

Equivalence between both expansions is granted by the gradient j′ and the Hessian
operator H defining property

〈j′, δm〉M , {DmJ} (δm), ∀δm
and

〈Hδm1, δm2〉M , {D2
mmJ}(δm1, δm2), ∀δm1 ∀δm2

that strongly depend on the chosen inner product 〈·, ·〉M . Changing the inner product
therefore modify both the gradient and the Hessian operator.
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Inner product: motivation

Local optimization techniques are based on a local misfit expansion

J(m+ δm) ≈ J(m) + {DmJ}(δm) +
1

2
{D2

mmJ}(δm, δm)

≈ J(m) +
〈
j′, δm

〉
M

+
1

2
〈Hδm, δm〉M

By transitivity, the link with the conventional (L2) inner product (〈·, ·〉) is straightforward

〈j′, δm〉M =
〈
j′L2

, δm
〉
, ∀δm

and

〈Hδm1, δm2〉M = 〈HL2δm1, δm2〉 ∀δm1δm2
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Inner product: example I: conventional

The conventional choice is a least squares inner product.

〈m2,m1〉M = 〈m2,m1〉 :=

∫
Ω

m1(x)m2(x) dΩ ⇒ j′ = j′L2
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Balance between shallow and deep contributions is broken.
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Inner product: example II: spatially scaled

An appropriate spatial weight w(x) is often applied, e.g. the diagonal of the Gauss-
Newton Hessian2.

〈m1,m2〉M = 〈
√
wm1,

√
wm2〉 ⇒ j′ = w−1j′L2
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This inner product choice restores balance between gradient contributions everywhere.

2Pan, Innanen, and Liao, “Accelerating Hessian-free Gauss-Newton full-waveform inversion via l-BFGS
preconditioned conjugate-gradient algorithm”.
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Inner product: example III: scaled and thresholded

The diagonal of the Gauss-Newton Hessian can be close to zero.
Therefore a threshold ε is added to prevent instabilities.

〈m1,m2〉M = 〈
√
wm1,

√
wm2〉+ ε 〈m1,m2〉 ⇒ j′ = (w + ε)−1j′L2
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Boundary and corner contributions are silenced.
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Inner product: example IV: scaled and smoothed

A stabilization term penalizing rough models can also be added

〈m1,m2〉M = 〈
√
wm1,

√
wm2〉+ εl2c 〈∇m1,∇m2〉 ⇒ j′ = (w − εl2c∆)−1j′L2
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Gradient w.r.t this inner product are therefore smoother.
Encouraging smooth updates early in the inversion process is a strategy to avoid local
minima trapping3.

3Zuberi and Pratt, “Mitigating nonlinearity in full waveform inversion using scaled-Sobolev
pre-conditioning”.
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Inner product: generalization

In general, any inner product that can be expressed through some preconditioner P

〈m1,m2〉M = 〈P m1,m2〉

yields a preconditioned gradient and a preconditioned Hessian operator

j′ = P−1j′L2

and
H = P−1HL2

Changing the inner product

I is formally equivalent to preconditioning

I modifies lengths in the model space

I is mathematically rigorous (and elegant (?))

I makes preconditioning nearly invisible inside the optimization algorithms
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Case study 1: inversion result
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Case study 1: inner product

Wave sol. (tot) Error rms ([s2/km2])
Conventional 78 0.0174
Weighted only 61 0.0202

and thresholded 57 0.0174
and smoothed 68 0.0173
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Case study 2: model parameter

Model is composed of two close T-shaped structures and a bottom reflector.
Non negligible multiple scattering between them.
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Case study 2: inner product

4.

0.

[km
/s]

0 5 10 15 20 25 30
0

−
3

unscaled

4.

0.

[km
/s]

0 5 10 15 20 25 30

0
−

3

scaled

4.

0.

[km
/s]

0 5 10 15 20 25 30

0
−

3

scaled &
smoothed

4.

0.

[km
/s]

0 5 10 15 20 25 30

0
−

3

Scaled and smoothed inner product only reaches a minimizer close to the true model.
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Summary

Conclusions

I Selecting the inner product appropriately accelerates the convergence.

I More robust inversion path are obtain with preconditioning.

Perspectives

I Inner product preconditioning is an efficient strategy to reduce the influence of
noise in the data.

I More sophisticated inner product (e.g. edge preserving adaptive smoothing) yield
even better reconstructions.

Thank you for your attention
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