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Problem statement fan

Consider
a model parameter m
a wave propagation operator F’
a wavefield u
a mesurement operator R

a dataset d

Full wave inversion consists in finding m™ such that

R(u) = d with F(u,m*) = f

through the optimization problem

m* = argmin,, J(m) £ argmin,, dist(R(u(m)), d)
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Problem statement: model space fan v HES.E

FREEDOM TO RESEARCH

The distribution of the slowness squared is here chosen to be the unknown model, i.e.

m 2 s%(x) = 1/v?(x).

The Marmousi model® is a typical example of distributions that are sought in the
context of geophysics.

1Versteeg, “The Marmousi experience: Velocity model determination on a synthetic complex data set”.
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In acoustics, the wavefield is a pressure field, i.e.
A
u = p(x)

whose propagation can be modelled by the Helmholtz equation, i.e.

F(u,m) & Ap + w?s%p
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Problem statement: data space |

Several (ne,) emitters-receivers lie on the surface of the model. Each e-ris
successively excited (e) and the response (x) is recorded at all the other e-r, for

several frequencies (n.).
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Several (ne,) emitters-receivers lie on the surface of the model. Each e-ris
successively excited (e) and the response (x) is recorded at all the other e-r, for
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A dataset d is thus a ns X n, X n, complex-valued matrix, i.e

d e Cnsxn,«xnw

which can be obtained by point-wise measurements at the receivers, i.e.

(R, 10 = [ Psw(@)0(2 — 20) die = ps oo ().
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Full waveform inversion relies on the solution of an optimization problem
m* = argmin,, J(m)
Local optimization techniques are used because the search space is typically large
Local optimization techniques originate from a second order expansions of the misfit
T(m +6m) ~ J(m) + { D }(6m) + %{Dfnmj}(dm, 5m)
~ J(m)+ <j',5m>M + % (Hdm, om),,

provided some inner product (,),, is chosen for the model space
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Full waveform inversion relies on the solution of an optimization problem
m* = argmin,, J(m)

Local optimization techniques are used because the search space is typically large

Based on this expansion, the descent direction p is then chosen as

pn =argmin J(m) + (7', p),; + 3 <}~Ip,p>M
or equivalently
Hpy = —j'

for some approximate Hessian operator H.

H=~1 (steepest descent)
H=~B (Broyden-Fletcher-Goldfarb-Shanno method)
H~ Heny ((Gauss-)Newton conjugate gradient method)
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Full waveform inversion relies on the solution of an optimization problem
m* = argmin,, J(m)

Local optimization techniques are used because the search space is typically large

In addition, a strategy for scaling this descent direction must be chosen.
Such strategies ensure convergence towards the nearest local minimum.

Line search: m=m+p

with p=—H"'5 and ~ = argminJ(m + ~p)

Trust region: m=m+p

with  p = argmin, J(m) + (', 1)y + % <ﬁ1p,p>M and  |lpll,, <A
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Full waveform inversion relies on the solution of an optimization problem

m* = argmin,, J(m)

Local optimization techniques are used because the search space is typically large

In summary, a local optimization procedure requires three ingredients

1 A globalization strategy to control their lengths
2 A method to compute descent directions

3 An inner product for the model space
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Local optimization techniques are based on a local misfit expansion
T(m + 6m) ~ J(m) + { D }(6m) + %{DfnmJ}(dm, 5m)

. 1
~ J(m)+ (j,om),, + 3 (Hom, dm) ,,

Equivalence between both expansions is granted by the gradient j' and the Hessian
operator H defining property

<.7l75m>M é {DmJ} (5m)7 V5m
and

(H5m1, §m2)M é {D?nmJ}(éml, 5m2), Véml V(sz

that strongly depend on the chosen inner product (-, ), ,. Changing the inner product
therefore modify both the gradient and the Hessian operator.
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Local optimization techniques are based on a local misfit expansion
J(m+om) = J(m) + {DmnJ}(dm) + %{DfnmJ}(ém, om)

. 1
~ J(m)+ (j,om),, + 3 (Hom, dm) ,,

By transitivity, the link with the conventional (L2) inner product ({, -)) is straightforward

(4’ 0m),, = (jr,,0m), Vom
and

(H(Sml, 6m2)M = (HL25m1, (S”ﬂlz) V5m15m2
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Inner product: example |: conventional

The conventional choice is a least squares inner product.

= §' = i,

/Q ma(@)ma(e) dO

v = (ma,ma) =

(ma2,m1)

Balance between shallow and deep contributions is broken.
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An appropriate spatial weight w(x) is often applied, e.g. the diagonal of the Gauss-
Newton Hessian®.

(m1,m2),, = (Vwmi, Jwms) =i =w L,
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This inner product choice restores balance between gradient contributions everywhere.

2Pan, Innanen, and Liao, “Accelerating Hessian-free Gauss-Newton full-waveform inversion via I-BFGS
preconditioned conjugate-gradient algorithm™.
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The diagonal of the Gauss-Newton Hessian can be close to zero.
Therefore a threshold € is added to prevent instabilities.

(m1,ma) ), = (Vwmai, Vwma) + € (mi, ma) = =(w+e 1,
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Boundary and corner contributions are silenced.
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A stabilization term penalizing rough models can also be added

(m1,ma),, = (Vwma, Jwms) + €l2 (V ma, Vms) =j = (w—eiA)Yj1,
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Gradient w.r.t this inner product are therefore smoother.
Encouraging smooth updates early in the inversion process is a strategy to avoid local
minima trapping”.

3Zuberi and Pratt, “Mitigating nonlinearity in full waveform inversion using scaled-Sobolev
pre-conditioning” .
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In general, any inner product that can be expressed through some preconditioner P

(m1,m2),, = (Pmi,ms)
yields a preconditioned gradient and a preconditioned Hessian operator

and

i'=P L, H=P'Hp,

Changing the inner product
is formally equivalent to preconditioning
modifies lengths in the model space
is mathematically rigorous (and elegant (7))

makes preconditioning nearly invisible inside the optimization algorithms
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Wave sol. (tot) | Error rms ([s?/km?])

Conventional 78 0.0174
Weighted only 61 0.0202
and thresholded 57 0.0174

and smoothed 68 0.0173
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Case study 2: model parameter

Model is composed of two close T-shaped structures and a bottom reflector

Non negligible multiple scattering between them.
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Scaled and smoothed inner product only reaches a minimizer close to the true model.
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Conclusions

Selecting the inner product appropriately accelerates the convergence.

More robust inversion path are obtain with preconditioning.

Perspectives

Inner product preconditioning is an efficient strategy to reduce the influence of
noise in the data.

More sophisticated inner product (e.g. edge preserving adaptive smoothing) yield
even better reconstructions.
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