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Faculté des Sciences Appliquées
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Introduction

Context and motivations

The interpretation of wave scattering data has led, and continues to lead, to a wide range of

scientific discoveries and practical engineering applications in domains as varied as materials

science, biomedical imaging, geophysics, atmospheric science, oceanography, plasma physics,

archaeology, astrophysics or quantum information. A special case is tomography: the pro-

cess of reconstructing the volume properties of a sample from scattered wave measurements

collected on its boundary. Under various assumptions linked to the physical nature of the

waves (acoustic, elastic, electromagnetic, etc.) and the properties of the sample, tomography

mathematically reduces to the solution of an inverse wave scattering problem. When the scat-

tering is weak and receivers can be placed around the sample, explicit analytical solutions can

be obtained using filtered back projection, a solution procedure based on the inverse Radon

transform [125]. If the scattering is stronger or if sources and receivers can only be placed on

a limited part of the boundary, iterative reconstruction must be used instead. Basically any

iterative reconstruction method consists in minimizing the mismatch between the measured

wave scattering data and some simulated data, obtained through a forward wave propagation

model of the scattering phenomenon [33, 29, 40, 141]. Full waveform inversion (also called

waveform tomography or wave field inversion) falls into this second category. The particular

propagation model used in that case is a full wave propagation model, e.g. the Helmholtz

equation for acoustics in the frequency domain, Maxwell’s equations for electromagnetics and

the Navier equation for elastodynamics, at the opposite for example of ray tomography which

are based on eikonal equations, i.e. on asymptotic approximations of the full model [10, 126,

206]. Considering a full model instead of a simplified one is computationally much more ex-

pensive but also promises a much higher resolution, as sub-wavelength accuracy is expected

[7, 39, 54, 198, 122]. Another specificity of full waveform inversion is its brute force approach

to the inverse problem: the mismatch is simply minimized w.r.t. the coefficients appearing in

the full model. While simple in principle, this optimization nevertheless remains challenging:

firstly because it is hard to design a meaningful mismatch functional for oscillatory signals

such as wave scattering data [19, 124, 166, 203]; secondly because observed data are con-

taminated by noise, a perfect match with the simulated data is therefore often impossible and
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does not mean that the true coefficients are recovered anyway; finally because the coefficients

are unknown at every location of the sample volume under investigation, hence large-scale op-

timization methods must be used. However, thanks to ever increasing available computational

power, full waveform inversion is now becoming feasible and is therefore being investigated

for a growing number of engineering applications. Three of them are described in Figure 1.

The
KR-ACE-N

(a) Marine seismic survey. These surveys aim to
image the structure and nature of the rock lay-
ers and the reservoirs beneath the seabed. Sound
waves are sent into the earth from an excitation
source (¨), which is pulled in the water behind
the survey vessel. Reflections from the different
structures beneath the crust are traveling back
to the surface and are recorded on a receiver
streamer (•) towed behind the excitation source.
Receivers can also be placed on the seafloor, us-
ing ocean-bottom cables or nodes.

(b) Ground-penetrating radar. This geophysical
method uses radar pulses to image the subsur-
face media (soil, ice, fresh water, etc.) and its
underground man-made utilities (concrete, pipes,
cables, etc.). Similarly to seismic surveys, elec-
tromagnetic waves are generated either on-land
by the cart transmitter (×), or inside a bore-hole
(¨) and the reflections from heterogeneities are
recorded either at a transmitter (×) or in another
parallel bore-hole (•). Air-launched antennas can
also be used instead of an on-ground cart, but the
signal strength is then weaker.

(c) Structural brain imaging. Neuro-imaging pri-
marily focuses on identifying brain structures (le-
sions, vascular diseases, tumors, etc.) and is par-
ticularly relevant for rapid diagnosis and treat-
ment of cerebrovascular accidents. The princi-
ple is again the same: a transmitter is used to
generate an incident wave whose reflections are
recorded at all the other transmitters (×). For
this medical application, both electromagnetic
and acoustic waves can be used.

Figure 1: Practical application examples for full waveform inversion.
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Full waveform inversion originates from seismic exploration and in particular from the oil and

gas industry for which the quantitative characterization of the subsurface geological layers

is pivotal. First full waveform inversion attempts were performed in the time domain [178]

and have been made possible thanks to the adaptation of adjoint state methods to geo-

physical problems [28]. Unfortunately when the starting model is not accurate enough, local

optimization procedures may be trapped into local minima. Frequency domain approaches

have then been developed, among others to tackle this issue [146, 148]. Frequency domain

approaches enable to mitigate the non-linearity of the mismatch functional by inverting fre-

quencies sequentially, from the lowest to the highest. Frequency domain methods can also

benefit from the illumination redundancy provided by the acquisition configuration and conse-

quently only consider a few frequencies, provided these frequencies are appropriately selected

[171]. These numerous contributions allowed full waveform inversion to be successful for

several real seismic applications [31, 132, 149, 157, 188]. The success of full waveform in-

version for seismic exploration has contributed to its development for other application fields

such as ground-penetrating radar or medical ultrasounds. Similarly to seismic exploration,

ground-penetrating radar is a geophysical method to image the subsurface, but which uses

electromagnetic excitation instead of acoustic excitation. Electrical properties (e.g. permittiv-

ity and conductivity) instead of mechanical properties (e.g. density and Lamé parameters) are

therefore imaged through a ground-penetrating radar survey. Consequently, it is particularly

efficient to detect soil water content or metallic inclusions at relatively shallow depth (typically

few meters), while seismic exploration is meant to determine geological layers at larger scales

(typically from tens to thousands of kilometers). In that context, full waveform inversion

has first been applied synthetically to crosshole ground-penetrating radar data that aimed at

locating water-filled tunnels [46]. A new bottleneck that appears when imaging electromag-

netic properties is the large sensitivity discrepancy between permittivity and conductivity. This

discrepancy forces the use of a differentiated treatment of the permittivity and the conduc-

tivity updates [46, 97, 112]. Nevertheless, full waveform inversion has also been successfully

applied to observed ground-penetrating radar data from real field sites [47, 89, 90, 120]. As

far as medical imaging is concerned, full waveform inversion has first been applied in two

dimensions for breast tumors detection through ultrasound imaging [147]. The methodology

was later expanded to three dimensions [108, 161] and to others medical applications such

as muscle, tendon, ligament or cartilage imaging [13, 197] or the rapid diagnosis of brain

stroke and head trauma [35, 68, 185]. A last application field which starts to investigate full

waveform inversion is non-destructive testing, in particular for the assesment of masonry and

concrete structures, with either acoustic or electromagnetic waves [6, 85, 92, 95, 139]. Over

the past years, full waveform inversion has proven to be a powerful imaging method despite its

huge computational cost. Nevertheless, many challenges remain, mostly to reduce this cost.

Nowadays, full waveform inversion is still a dynamic field of investigations.
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Mathematical problem statement

Full waveform inversion relies on a full wave propagation problem

F (m)u = f : (1)

This propagation problem is formulated through a partial differential operator F , whose ex-

pression depends on some model parameters m which are precisely the sample properties to

be determined. The excitation source f is here considered to be known, even though it might

not always be the case. The solution to this problem is called a wave field u. It is for example

a pressure field, an electric field or a displacement field. It must be a physically measurable

quantity because it is compared to the observed data d0. More specifically, the observed data

are compared to a restriction/projection of the simulated wave field, because this wave field

is only measured at a finite number of receivers in real acquisition setups. This restriction

operator is denoted by R while the corresponding simulated data are denoted by d , and the

exact model parameters m∗ should then verify

d(m∗) := Ru(m∗) = d0: (2)

There is however no guarantee that the above equation has a unique solution, i.e. there might

exist several distinct model parameters statisfying (2). Moreover in the presence of noise on

the observed data, it is also possible that there is not even one solution. Absence of any exact

solution can also be a consequence of wave propagation modeling assumptions. For these

reasons, the above equation can be classified as an ill-posed problem [82]. Full waveform

inversion therefore proposes instead to match the observed data d0 and the simulated data d

through the minimization of their distance

m∗ = arg min dist (d(m); d0) : (3)

Full waveform inversion can then be expressed exclusively from the point of view of optimiza-

tion as the minimization of a performance functional J (also called the misfit), defined as

J(m) := dist (d(m); d0) : (4)

In the aim of two or three dimensional imaging, the size of the model parameters space gener-

ally prevents the use of global optimization methods. Global optimization is only tractable in

specific cases where a lot of a priori information is available, enabling the model parameteriza-

tion to be very coarse [36, 37, 57, 160, 164]. In any other situation, large-scale optimization

methods must be used. The latter are based on a local expansion of the misfit J, around the
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current model estimate m, in some perturbed model direction ‹m

J(m + ‹m) ≈ J(m) + {DmJ}(‹m) +
1

2
{D2

mmJ}(‹m; ‹m): (5)

This expansion can be written, as above, in terms of the first and the second order directional

derivatives DmJ and D2
mmJ, but it can also be written in terms of the gradient j ′ and the

Hessian operator H once an inner product 〈·; ·〉M is chosen for the model space M [16, 76]

J(m + ‹m) ≈ J(m) + 〈j ′; ‹m〉M +
1

2
〈H‹m; ‹m〉M : (6)

The pure Newton direction pN is then defined as the minimizer of this local quadratic expansion

pN = arg min
p∈M

»
J(m) + 〈j ′; p〉M +

1

2
〈Hp; p〉M

–
(7)

which is also the solution of a linear system

HpN = −j ′: (8)

Local optimization techniques are iterative processes where the model parameters are updated

based on this direction, or its approximations [130].

A typical full waveform inversion iteration loop therefore consists in several steps, illustrated

in Figure 2. Starting with some initial guess for the model parameters m, the corresponding

wave field u is computed through the wave propagation problem (1). The simulated data

d are then mathematically extracted from that simulated wave field through the restriction

Model parameters m

Wave field u

Data sets d

F (m)u = f

d = RuJ = dist(d;d0)

∆m ≈ argminp∈M J(m+p)

Figure 2: Schematic illustration of a typical full waveform inversion iteration loop. The
derivatives of the misfit functional J are computed through the adjoint state method, hence
the gray arrows.
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operator R, mimicking a physical recording process. To compare them with the observed

data d0, a distance functional is then defined and the direction is computed as approximately

minimizing this distance; while what is specifically meant by approximately depends on the

chosen optimization method.

From this short introduction, it appears that three types of quantities are involved in a full

waveform inversion workflow: data sets, wave fields and model parameters. In order to build

an effective method, a particular attention must be given to each part. In a nutshell, data sets

need to be compared in a consistent way, but defining what is a close match for oscillatory

signals is not trivial; wave fields require the use of fast solvers, as their computation is the main

bottleneck of the loop; and model parameters should be updated appropriately, in particular

to reach the minimizer as soon as possible and to take into account any available a priori

knowledge or physical constraints. More details about these three parts are given in the

following paragraphs.

Data set space Wave scattering data are oscillatory by nature and consequently the misfit

quantifying the discrepancy features local minima [19, 124, 166, 203]. Classically, this misfit is

simply computed as the least squares norm of the residuals between measured and simulated

data. Unfortunately, this simple distance leads to poor results if the starting model parameters

are not accurate enough. Several distances or performance functionals have been tried in place

of this least squares distance [30, 32, 191, 115, 168, 98, 201]. For example, the use of optimal

transport yields significant progress, as it is a more suitable tool to compare oscillatory signals

[115, 201]. Alternatively, performance functional that are not based on a specific distance

in the data space have been proposed: for example using convolutional filters designed to

transform the simulated data into the observed data [191]. In that case, the quantity to be

minimized then reflects how far the matching filter is from the unit filter.

Wave field space During the local optimization process, full waveform inversion requires

a large number of direct solutions to the full wave propagation model. An efficient inversion

algorithm must therefore rely on an efficient forward solver. As far as wave scattering is

concerned, solutions can be computed either in the time domain or in the frequency domain.

Intuitive interpretation of the wave field is of course easier in the time domain. For example,

first or late arrivals can be picked and processed separately. Computationally speaking, explicit

time-stepping methods allow massive parallelism [64, 186, 202] but also require a lot of

memory as the wave fields must be memorized for all the time steps. At the opposite,

wave fields are lighter in the frequency domain because only a few frequencies are necessary.

Moreover, scale separation can be performed by inverting low frequencies first [18, 22]. There

is however also drawbacks to the frequency domain approach. Firstly, interpretation of the

frequency domain trace is hard and picking specific events is impossible. Secondly, forward
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solvers at high frequencies are challenging [48] and can not by easily parallelized [17, 81]. The

frequency domain approach, related to the Fourier transform, can be generalized by using

instead the Laplace transform. Through this substitution, the pulsation becomes complex-

valued and its imaginary part introduces a constant dissipation, which mutes late arrivals.

Laplace domain inversions are interesting because they allow to reconstruct time data traces

progressively, from early to late arrivals, by progressively decreasing the dissipation. Moreover,

for large dissipation, the forward modeling can be accurately calculated using a coarser grid

than that of the Fourier domain [165, 167].

Model parameters space At the heart of full waveform inversion lies a local optimization

algorithm. As mentioned previously, global optimization techniques should ideally be used

but the typically very high dimension of the search space prohibits their use and only local

optimization tools can practically be employed, with care. Local optimization methods for

full waveform inversion typically involve the Hessian operator or one of its approximations

because the inverse Hessian plays a crucial role in the reconstruction, in addition to offering

the possibility to account for coupling effects between parameter classes for multi-parameter

inversion [18, 133, 134, 148, 201]. State-of-the-art methods rely on the quasi-Newton l-BFGS

algorithm, which implicitly builds an approximation of the inverse Hessian operator from l pre-

viously saved gradients and model parameters [130]. However, it has been illustrated that

on some specific cases involving multiple reflections, such quasi-Newton methods fail to con-

verge where Newton methods do succeed [118]. Hence the full-Newton method is now getting

more and more attention. The building blocks of these local optimization techniques are the

gradient and the Hessian operator, which can be computed with a minimal computational

effort using the adjoint state method. A very common way to modify these two kernels is

to modify the performance functional, as discussed previously, towards a nearly convex misfit

without deep local minima. It is however not the only way: indeed both the gradient and the

Hessian operator are defined with respect to an inner product. Hence changing appropriately

this inner product will also modify advantageously the kernels [1, 2, 3, 210]. Another pivotal

issue that can be handled through model space techniques is the mitigation of noise on the

reconstruction image. Very frequently, prior information on the model parameters is avail-

able. This information can then for example be used to augment the misfit functional with a

penalization term in the spirit of Tikhonov regularization [181]. The role of this penalization

term is to promote model parameters that have some desired properties. To drive away from

this prior guess, the observed wave scattering data should really oppose the simulated data.

If the discrepancy is not strong enough, then the optimization algorithm will rather enforce

the prior properties.
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Dissertation goals

The global objective of this thesis is to contribute to the development of imaging methods

through full waveform inversion. More precisely, the thesis focuses on the model parame-

ter space aspect of the problematic. Interestingly, model space contributions are relevant

regardless of whether the wave fields are computed in the time or the frequency domain.

Model parameters however depend on the underlying physics: acoustics, elastodynamics or

electromagnetics. In this thesis, propagation problems are solved in the frequency domain,

using the most widely used propagation model for each physic, i.e. the Helmholtz equation,

the Navier equation and Maxwell’s equations respectively, and the associated usual medium

parameters. In order to demonstrate the efficiency of the proposed inversion strategies, three

guiding numerical case studies will be investigated in detail throughout this whole manuscript

and will thus provide a natural link between all the chapters. These three reference case

studies are introduced here below. All are two dimensional and synthetic, meaning that the

data is created by a numerical model rather than being acquired experimentally. In addition,

all inversion procedures are based on the simplest wave propagation model in the frequency

domain, namely the Helmholtz equation.

Case study 1: Marmousi model

The first case study is based on the Marmousi model [187]: a synthetic model, created by the

Institut du Prétrol Francais in 1988, which represents the velocity of acoustic waves inside the

geological layers composing the earth below the seafloor. It was designed to be geologically

plausible, and it is actually based on a profile through the north Quenguela trough in the

Cuanza basin in Angola. The Marmousi velocity distribution, shown in Figure 3, is complex:

it contains many reflectors, steep dips, faults and strong velocity gradients in both vertical and

lateral directions. Moreover, a water layer, which can reasonably be considered to be known,

is added above the seabed. Overall, the model is approximately 9 [km] wide and 3 [km] deep.

Reconstructing an accurate earth image therefore requires advanced processing techniques,

such as full waveform inversion. In particular, anticline areas and salt domes are of great

interest as they might hide hydrocarbon reservoirs underneath, because they are particularly

efficient traps. During a marine seismic survey, sound waves are generated inside the water

layer thanks to an excitation source, which is pulled behind the survey vessel. Reflections

from the seabed and the geological layers beneath are then recorded with a receiver streamer

towed behind the excitation source, or with ocean-bottom cables or nodes. With such an

acquisition, only surface data are obtained, which further complicates the inversion process,

because the illumination is incomplete, i.e. the earth layers to be imaged are viewed under a

limited number of angles. In addition, the low frequency response is often missing, because it

can not be measured in practice, due to the ghost reflection, i.e. the direct reflection of the
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excitation pulse on the water free surface [174]. Since its inception in 1988, the Marmousi

model has become an industry and academy standard for acoustic seismic imaging, which

makes it particularly relevant for a first case study.

1:5

5:5
[km

/
s]

0 1 2 3 4 5 6 7 8 9

0
−
1

−
2

Figure 3: The Marmousi velocity model. Two anticline areas are located around (x; z) =
(5:5;−2:0) [km] and (x; z) = (6:5;−2:5) [km], while two triangular salt structures lie on
both sides, below z = −2 [km]. In addition, the model also contains many reflectors, steep
dips and faults [110]. Distances are expressed in kilometers.

Case study 2: T-shaped reflectors

The second case study has been first introduced by [118]. It consists in a near-surface land

survey, whose goal is to image two T-shaped underground concrete structures, as shown in

Figure 4, in the spirit of non-destructive testing. The investigation depth is 3 [m] while

the width is 30 [m]: the aspect ratio and the imaged area are thus very different from the

Marmousi model. This second case study does not aim to be realistic though: it is rather used

firstly because the proximity of both reflectors generates lots of multiple reflections in between,

which are typically hard to interpret; and secondly because the high-velocity values of the two

concrete structures are difficult to reach due to their strong contrast with the background. For

this case study, the acquisition is three-sided: excitation sources and receivers are located on

the surface and inside two boreholes on both sides of the survey area. Moreover, a horizontal

layer reflector lies below the structures. This light reflector generates sound waves traveling

from the bottom back to the surface, hence illumination is nearly complete for this case study.

The only two remaining challenges are multiple reflections and strong velocity contrast: the

two specific motivations for the use of this test case.

4:

0:

[km
/s]

0 5 10 15 20 25 30

0
−
3

Figure 4: The T-shaped concrete reflectors velocity model. The two concrete structures
exhibit a strong contrast with the background. Their closeness also generates strong multiple
reflections in between [118]. Distances are expressed in meters.
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Case study 3: Dissipative crosses

The third case study is an academic example which is frequently used to compare different

multi-parameter inversion schemes, as a first step to use full waveform inversion for ground

penetrating radar applications [97, 111]. In that context, electromagnetic fields are generated

in the soil to image its structure through its electrical properties, typically the permittivity

and the electric conductivity. The permittivity is related to the electromagnetic wave ve-

locity, while the conductivity introduces energy dissipation. Soils and man-made structures

under investigations typically exhibit large dissipation at the operating frequencies of ground-

penetrating radar, such that neglecting the conductivity is not a successful strategy. Note

however that this is not systematically the case: for seismic inversion for example and thus

for the first two case studies, attenuation can be safely discarded as a first approximation.

Basically, the main difficultly of any multi-parameter inversion is cross-talk, in which one pa-

rameter is mistakenly updated to account for a discrepancy between observed and simulated

data caused by another parameter. Double-parameter full waveform inversion is the academy

standard for ground-penetrating radar, such that it makes sense to consider an example from

this community to illustrate the challenges related to multi-parameter inversions. The electri-

cal property distribution, given in Figure 5, is relatively simple: two crosses with permittivity

and conductivity anomalies, embedded in an homogeneous dissipative background. Strong

property contrasts are again enforced, for consistency with real electrical targets. Since the

purposes of this case study is multi-parameter inversion, any further complexity is discarded.

In particular, a perfect circular acquisition system is considered to provide a full illumination

of the scene and thus discard any shadowing issues.

(a) 9:

0:

›
r
[-
]

(b) 10:

0:

ff
[m

S
/m

]

Figure 5: The dissipative crosses electrical property distribution: relative permittivity (a)
and electric conductivity (b). Crosses exhibit strong electrical properties contrasts. Inversion
aims to reconstruct both parameter distributions. Outer circle (solid line) radius is 7 [m].
Acquisition circle (dotted line) radius is 5 [m]. Crosses equivalent radius is 1 [m].
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Dissertation outline

This dissertation is divided into three chapters, each of them mixing original contributions

and reminders of state-of-the-art techniques when it is necessary to preserve the continuity of

the presentation. Chapters are also organized such that the different concepts are ordered as

they appear in the full waveform inversion loop. Their content are summarized here below.

Chapter 1 is dedicated to the efficient computation of sensitivities, i.e. first and second order

derivatives and the corresponding gradient kernel and Hessian operator, thanks to a procedure

called the adjoint state method. It is derived, implemented and validated for different types

of model parameters and for multiple wave propagation models. The same formalism is used

for all wave physics such that the equivalence between them can easily be drawn. The effect

of inner product modifications on the derivatives is studied in this chapter as well.

Chapter 2 then naturally focuses on using these sensitivities to build local optimization al-

gorithms. More specifically, a line search and several trust-region variants of the steepest

descent, the limited memory BFGS algorithm and the inexact Newton method are presented

and compared in the context of the three reference case studies. A strong emphasis is given

to the inner product choice. For example, its link with preconditioning the update direction

and its implication in the trust-region constraint are highlighted.

Chapter 3 finally studies the influence of noisy data on the reconstruction. In particular,

the per se regularization properties of inner product preconditioned optimization methods

are investigated and compared to conventional regularization strategies. Moreover, a more

sophisticated adaptive inner product is introduced. It takes inspiration from the nonlinear

anisotropic diffusion filters developed in the field of image processing and acts as a structure-

preserving smoothing operator.

As key information on the performance of the proposed local optimization strategies, the ac-

curacy, the robustness to noise, and the convergence speed of each numerical implementation

is carefully analyzed throughout the work.

Original contributions

Hereafter is a list of contributions that are considered to be original:

• Chapter 1:

(a) The derivation of the adjoint state method for general boundary value problems

using a continuous formalism in order to highlight the role of the boundary terms.

(b) The systematic application of the adjoint state method to acoustic, electromag-

netic and elastodynamic wave scattering problems with impedance boundary con-

ditions, making use of the similarities between the three problems.
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• Chapter 2:

(a) The extensive comparison of line search and trust-region variants of the steepest

descent, the limited memory BFGS algorithm and the inexact Newton method in

the context of full waveform inversion.

(b) The application of inner product preconditioining to the limited memory BFGS

algorithm and the inexact Newton method.

(c) The use of inner product preconditioining to balance sensitivity disparities in multi-

parameter class inversions.

• Chapter 3:

(a) The study of regularization properties of inner product preconditioned optimization

methods.

(b) The introduction of a structure preserving smoothing inner product.

In addition, an open-source C++ code, called GmshFWI, has been developed to implement

all the described algorithms. Its structure is inherited from the mathematical statement of

the problem as it is divided into the same three parts: the model parameter space with its

inner product; the wave field space with its forward problem; the data space with its distance

functional. A particular emphasis was given to flexibility, through the definition of abstract

interfaces, to allow for a maximal number of investigations, for this thesis and beyond. This

code is also strongly based on GmshFEM: an efficient C++ finite element library [158] based on

the application programming interface of Gmsh [61]. Implementation details and full numerical

case studies ready for testing are available online (https://gitlab.onelab.info/gmsh/

fwi).

The main original contributions of this thesis have been presented in the following peer-

reviewed journals and conference proceedings:

• Journal papers:

– X. Adriaens, F. Henrotte, and C. Geuzaine. “Adjoint state method for time-

harmonic scattering problems with boundary perturbations”. In: J. Comput. Phys.

428 (Mar. 2021), p. 109981

– X. Adriaens, L. Métivier, and C. Geuzaine. “Inner product preconditioned trust-

region methods for frequency-domain full waveform inversion”. In: Review ()

https://gitlab.onelab.info/gmsh/fwi
https://gitlab.onelab.info/gmsh/fwi
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• Conference proceeding:

– X. Adriaens, L. Métivier, and C. Geuzaine. “A trust-region Newton method for

frequency-domain full-waveform inversion”. In: First Int. Meet. Appl. Geosci.

Energy Expand. Abstr. Vol. 2021-Septe. Society of Exploration Geophysicists,

Sept. 2021, pp. 757–761

• Conference presentations:

– X. Adriaens, L. Métivier and C. Geuzaine, C. 2021. ”A trust-region Newton method

for frequency-domain full waveform inversion”. At: 1st International Meeting for

Applied Geoscience and Energy (IMAGE). Denver, United States. (remote)

– X. Adriaens and C. Geuzaine. 2021. ”Simultaneous permittivity and conductivity

full waveform inversion in the frequency domain”. At: 16th international workshop

on Optimization and Inverse Problems in Electromagnetism (OIPE), Szczecin,

Poland. (remote)

– X. Adriaens and C. Geuzaine. 2021. ”Simultaneous permittivity and conductivity

full waveform inversion in the frequency domain”. At: 12th international sympo-

sium on Electric and Magnetic Fields (EMF), Aix-en-Provence, France. (remote)

– X. Adriaens, L. Métivier and C. Geuzaine. 2022. ”Inner product preconditioned

trust-region methods for frequency-domain full waveform inversion”. At: 8th

international conference on Advanced COmputational Methods in ENgineering

(ACOMEN)”. Liège, Belgium.
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Chapter 1

Adjoint state method

Knowing how the solution to time-harmonic wave scattering problems depends on medium

properties and boundary conditions is pivotal for full waveform inversion and more generally

for any wave-based inverse problem. This first chapter is devoted to the exposition of a

computationally efficient method, called the adjoint state method, that allows to quantify the

influence of media properties, directly and through boundary conditions, in the study of acous-

tic, electromagnetic and elastodynamic time-harmonic waves. More specifically, this method

is an efficient procedure to compute derivatives, gradients and Hessian operators. Firstly, the

adjoint state method is derived for general boundary value problems. A continuous (rather

than discrete) formalism is adopted in order to highlight the role of the boundary terms.

Then, the method is applied systematically to acoustic, electromagnetic and elastodynamic

scattering problems with impedance boundary conditions, making use of the similarities be-

tween the three problems. Finally, numerical examples solved using the finite element method

are presented to demonstrate the validity of the proposed method.

Highlights

• Definition of directional derivatives, gradient kernels and Hessian kernels

• Derivation of the adjoint state method with boundary perturbations

• Application to time-harmonic scattering of acoustic, electromagnetic and elastic waves

• Numerical validation through an illustrative example

1.1 Introduction

The analysis of the influence of medium properties on wave fields is useful in many physical

and engineering problems involving time-harmonic wave propagation. Among these problems

15
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lie of course full waveform inversion for geophysical or medical imaging by acoustic [119, 142],

electromagnetic [42, 145, 153] or elastodynamic [18, 148] waves but also invisibility cloaking

[23, 93, 104] or the optimal design of acoustic liners [150], optical devices [74, 80, 96, 129,

169], vibrating structures [71, 182, 184], antennas [60, 62] and electromagnetic cavities [5],

for example.

Most of these applications are naturally set in unbounded domains and involve complex geome-

tries and multiple and/or inhomogeneous materials. Specific boundary conditions can however

be used to reduce the computational complexity and make the numerical study tractable, by

substituting an equivalent impedance boundary condition to volume scatterers with complex

(or even unknown) properties [5, 23, 74, 93, 104, 119, 150, 169], or by truncating unbounded

domains with transparent absorbing boundary condition [109, 163, 170]. Boundary conditions

contain in this case information about all regions left outside the model, and their influence

is therefore crucial.

For optimization purposes, it is often asked to maximize/minimize some objective function of

measurable quantities like pressure, electromagnetic or displacement fields. In imaging appli-

cations, this objective is the distance between predicted and experimental field measurements,

whereas in design applications, the objective for example includes resonant frequencies and

eigenmodes of vibrating structures, antennas or cavities and in particular their discrepancy

w.r.t. to some ideal values. Now, field propagation over the system can only be controlled

through physical model parameters like the speed of waves or the geometrical shape of some

regions, and the expression of the relationship between these parameters and the measur-

able field requires solving partial differential equations, which is computationally expensive.

As mentioned in the general introduction, the very high dimension of the search space in

such problems prohibits using global optimization techniques, and makes gradient-based and

local optimization algorithms very attractive. Such algorithms require however to compute

sensitivities efficiently, with adjoint methods for instance.

There are two ways of introducing the adjoint state method for problems involving partial

differential equations. The first approach consists in discretizing the problem first, and to

compute sensitivities then using the tools of linear algebra. Advantages of this approach are the

simplicity of the formulation and an easy numerical validation (because of the finite dimension

of the problem). With this approach, often referred to as first discretize, then optimize [76], it

is however hard to track the individual influence of the different parameters, or to distinguish

the effect of bulk and boundary terms. The second approach consists in computing sensitivities

analytically at the continuous level before discretizing the problem. This formalism often

referred to as first optimize, then discretize [76], is better suited for an intuitive interpretation

of the equations and allows dealing with boundary and bulk contributions separately.

The algebraic adjoint state method (first discretize, then optimize) with boundary terms has

been used in several shape design applications [5, 60, 62, 96]. In this paper, however, the
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first optimize, then discretize approach has been preferred, and an application-independent

formalism well-suited for topological variation in time-harmonic wave scattering problems

has been developed. A similar application-independent framework with partial differential

equations constraints has been presented for optimization applications in [76], which did

not however pay any particular attention to the boundary aspects. Extensions to include

boundary variations have been proposed by [63, 74] and applied to shape sensitivities in

aerodynamics and optics, respectively. The formalism proposed in this chapter is based on

[63, 74], but it is applied to time-harmonic wave scattering problems in view of practical

engineering computations and in particular of full waveform inversion. In the context of such

time-harmonic scattering problems, sensitivities to bulk topological parameters have been

analyzed extensively in [18, 42, 54, 119, 145, 142, 148, 196, 210], but sensitivities to boundary

topological parameters have not been investigated yet to the best of my knowledge. Obtaining

gradients from sensitivities is straightforward with the algebraic adjoint state method, but

can be rather more intricate with the first optimize, then discretize approach, especially

when dealing with non-standard gradients like Sobolev gradients [127, 154] that appear when

considering non-standard inner product for the model parameter space. Such developments

have been reported in [42, 127, 154, 155, 210] for bulk sensitivities, and they are extended

in this chapter to include boundary sensitivities. The use of non-standard gradients in time-

harmonic scattering problems has proven efficient in recent publications [196, 210]. It is

applied in this framework to wave propagation problems from three distinct physics (acoustics,

electromagnetics and elastodynamics) in order to highlight the vast similarities between them.

This chapter focuses on topological model parameters rather than shape model parameters,

which have been studied in [77] from the perspective of differential forms.

The chapter is organized as follows. In Section 1.2, the mathematical framework is made

explicit and the quantities to compute are discussed. The direct method to compute these

quantities is given in Section 1.3, then the adjoint state method is derived for Gâteaux deriva-

tives without and with boundary contributions in Subsection 1.4.1 and 1.4.2 respectively, and

for gradient kernels and Hessian kernels in Subsection 1.4.3 and 1.4.4 respectively. Then in

Section 1.5, the results are applied to time-harmonic acoustic, electromagnetic and elasto-

dynamic wave propagation problems with impedance boundary conditions. A formal link is

established between the three problems and the choices required by the adjoint state method

are discussed simultaneously. In Section 1.6, the method is applied to a complete two dimen-

sional sensitivity problem, typical of full waveform inversion problems. The correspondence

between the adjoint state method and a naive approach, based on a brute force approxima-

tion of the derivatives by finite differences, is verified for volume and surface contributions and

the results are discussed. Finally, in Section 1.7, the three reference case studies are briefly

considered, in preparation for the following chapter.
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1.2 Problem statement

Consider a physical system for which a state space model is known, usually under the form of

a set of partial differential equations. The input m to this model is called model parameter

and is a vector belonging to the model space M. The output u of the model is called state

variable and belongs to a function space U(Ω) called the state space. The latter is assumed

to be a sufficiently regular subset of the space of square integrable function U2(Ω) defined on

an open bounded set Ω ⊂ Rn, because the derivatives of the state variable u will be needed.

In the sequel, all spaces of square integrable functions will be denoted with a subscript ‘2’.

The state base model 8<:F (u;m) = f ;

B(u;m) = g
(1.1)

is the physical link that implicitly defines the state u(m) as a function of the input m. This

system is assumed to be well-posed. The first equation involves a direct state operator

F : U(Ω)×M → U†2(Ω) whose co-domain is a function space of square integrable functions

U†2(Ω). This space U†(Ω) is the analog of U(Ω) for the adjoint state variable (to be defined

later), hence the notation. The second equation in (1.1) involves a direct state boundary

operator B : U(Ω) ×M → B2(@Ω) whose co-domain B2(@Ω) is again a function space of

square integrable functions, and where @Ω stands for the boundary of the domain Ω. Such an

operator involves some traces of the wave field, because it acts from a bulk function space to

a boundary function space. Hence, it will rather be called a boundary trace-based operator ;

in opposition to a purely boundary operator which acts from a boundary function space to

another boundary function space. For the sake of conciseness, the model dependency u(m)

will not always be indicated explicitly. A state noted u will thus always be assumed to be a

solution of the system (1.1).

Besides (1.1), the second element of the theoretical setting is a real-valued functional of the

state variable u(m)

J(m) := H(u(m)) +K(C(u(m); m)) (1.2)

called the performance functional. As for (1.1), the performance functional J is decomposed

into two terms: a bulk performance functional H : U2(Ω) → R depending on the value of

the state variable u(m) in the bulk of the domain Ω, and a boundary performance functional

K : C2(@Ω) → R depending on a specific boundary trace-based operator applied on u(m).

The boundary trace-based operator C : U(Ω)×M → C2(@Ω) is called performance boundary

trace-based operator and, similarly to B, its co-domain C2(@Ω) is a space of square integrable

functions. Because this performance trace-based operator might also involve spatial deriva-

tives, it is possible that the state and model spaces must be chosen to be more regular than

what is required by the state base model (1.1) alone.

Quantifying analytically and numerically the variation of the performance functional J under
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a perturbation of the model parameter m is the subject of this chapter. This variation can

be expressed by two different derivatives. Firstly, given a perturbation ‹m of the model

parameter, the directional derivative or Gâteaux derivative

{DmJ(m)} (‹m) := lim
›→0

J(m + › ‹m)− J(m)

›
(1.3)

gives the variation of the performance functional J for an arbitrarily small modification of

the model parameter m in the direction ‹m [76]. A partial directional/Gâteaux derivative is

defined similarly for functionals with more than one argument. For instance, the performance

functional (1.2) could also be regarded as a functional with two arguments J(u;m) and the par-

tial Gâteaux derivative with respect to the argument m is then denoted by {@mJ(u;m)} (‹m)

with the usual @ symbol.

Considering that the full-fledged notations for Gâteaux total and partial derivatives are rather

heavy, shorthands shall be used in the sequel wherever no confusion is possible. The total

derivative of J will be noted ‹J := {DmJ(m)} (‹m) with the symbol ‹ to recall that it

represents the Gâteaux derivative of J associated to the parameter perturbation ‹m. The

mute arguments of the partial Gâteaux derivatives, on the other hand, might be omitted after

their first introduction, e.g. , {@mJ} (‹m) := {@mJ(u;m)} (‹m).

Most of the time however, a privileged directions ‹m does not make sense for the definition of

sensitivity. In that case, the concept of gradient kernel must be preferred. A gradient kernel is

an element of the model space M of which each component quantifies the variation of J for

an arbitrarily small perturbation of m along that particular axis only. Mathematically, these

Fréchet-Wirtinger’s gradient kernels, or simply gradient kernels, are denoted by j ′ and defined

by [16, 76]

Re 〈j ′(m); ‹m〉M := {DmJ(m)} (‹m); ∀‹m ∈ M (1.4)

where 〈·; ·〉M is an inner product on M. The real part must be taken as the model parameter

m (and the inner product) might be complex-valued while the performance functional is real-

valued. For the sake of compactness, the symbol ‘Re’ is omitted in this thesis. By definition,

gradients kernels depend thus on the choice of a specific inner product in the function space

under consideration. Conceptually, the gradient kernel is a vector pointing in the direction

of steepest ascent, i.e. the direction that produces the largest increase of the performance

functional among all directions of fixed arbitrarily small lengths. This direction is particularly

relevant in optimization processes, and it can be interpreted as follows in the case of the inner

product of square integrable functions. Consider that the model parameter m is perturbed

at a single point y , i.e. ‹m = ‹(x − y) with ‹(x) denoting the Dirac delta function. The

derivative ‹J is then given by ‹J = j ′(y), which is indeed the evaluation at point y of the

gradient kernel j ′. This is why these kernels can be viewed as sensitivities.

When a more subtle description of the performance functional variation is required, second
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order derivatives are often computed. The second order directional derivative is defined as

the derivative of the first order directional derivative

n
D2
mmJ(m)

o
(‹m1; ‹m2) := {Dm {DmJ(m)} (‹m1)} (‹m2) (1.5)

while the Hessian operator, denoted by H(m), is defined by

Re 〈H(m; ‹m2); ‹m1〉M :=
n
D2
mmJ(m)

o
(‹m1; ‹m2); ∀‹m1; ‹m2 ∈ M: (1.6)

Interestingly, the Hessian operator can also be expressed as the derivative of the gradient

kernel. Indeed substituting (1.4) into (1.5) gives

n
D2
mmJ(m)

o
(‹m1; ‹m2) = {DmRe 〈j ′(m); ‹m1〉M} (‹m2) (1.7)

= Re 〈{Dm j ′(m)} (‹m2); ‹m1〉M (1.8)

:= Re 〈‹2j
′(m); ‹m1〉M : (1.9)

Then relating (1.6) and (1.9) gives

〈H(m; ‹m2); ‹m1〉M :=
n
D2
mmJ(m)

o
(‹m1; ‹m2) = 〈‹2j

′(m); ‹m1〉M ; ∀‹m1 ∈ M (1.10)

and consequently

H(m; ‹m2) = ‹2j
′(m): (1.11)

For complex-valued model parameters, the Hessian operator is composed of both a linear part

and an anti-linear part w.r.t. the model parameter perturbation ‹m2. Solving the Newton

system (8) with such a Hessian operator is impractical because linear system solvers are

typically used. The best option in that case is then to consider the real and imaginary

parts separately, or to neglect the anti-linear part of the Hessian [94, 121, 137]. For real-

valued model parameters however, the Hessian operator is linear w.r.t. the model parameter

perturbation ‹m2. It can then be written through a Hessian kernel h′ as H(m; ‹m2) :=

〈h′; ‹m2〉M . An interpretation of this Hessian kernel can then be drawn from the above

equation. Considering again a model parameter perturbation at a single point, i.e. ‹m2 =

‹(x − y 2), the variation ‹2j
′ of the sensitivity is given by ‹2j

′ = h′(·; y 2), which means that

h′(y1; y 2) is the variation of the sensitivity at point y 1 for a perturbation located at y 2.

The Hessian kernel is the sensitivity of the sensitivity and hence it is called a second order

sensitivity.
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1.3 Direct approach

The performance functional J(u(m)) depends on the model parameter m through the state u.

Consequently, to obtain the Gâteaux derivative ‹J in the direction ‹m, it is necessary to know

the state derivative ‹u in that direction. This quantity is implicitly defined by taking the total

derivative of (1.1) with respect to m. One has

8<: {DmF (u;m)} (‹m) = 0;

{DmB(u;m)} (‹m) = 0;
(1.12)

which writes, in terms of partial derivatives,

8<: {@uF (u;m)} (‹u) = −{@mF (u;m)} (‹m);

{@uB(u;m)} (‹u) = −{@mB(u;m)} (‹m):
(1.13)

This is a boundary value problem that can be solved for ‹u.

Using now (1.2), the total derivative ‹J of the performance functional reads

‹J : = {DmJ(m)} (‹m) (1.14)

= {DuH(u)} (‹u) + {DCK(C(u;m)} (‹C) (1.15)

and using the bulk and boundary performance gradient kernels h′(u) and k ′(C(u;m)), it can

be rewritten as

‹J = 〈h′; ‹u〉U2(Ω) + 〈k ′; ‹C〉C2(@Ω) : (1.16)

The second term can also be differentiated, so that the Gâteaux derivative ‹J is explicitly

expressed as a function of the parameter perturbation ‹m and the solution ‹u of the boundary

value problem (1.13)

‹J = 〈h′; ‹u〉U2(Ω) + 〈k ′; {@uC} (‹u)〉C2(@Ω) + 〈k ′; {@mC} (‹m)〉C2(@Ω) : (1.17)

This way of computing the Gâteaux derivative ‹J associated with the direction ‹m is called

the direct approach.

1.4 Adjoint approach

The direct approach introduced in the previous section is rather straightforward, but it can

reveal rather inefficient for some classes of problems, in which cases the adjoint approach is a

powerful alternative. This approach is first presented without boundary perturbation, in order
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to establish the fundamental concept of adjoint operators, and then generalized to problems

with boundary perturbation.

1.4.1 Without boundary perturbation

The adjoint method is based on the adjoint operator of @uF (u;m) in (1.13), which is defined

as the operator @†uF (u;m) fulfilling the integration by parts relationship

D
u†; {@uF (u;m)} (‹u)

E
U
†
2 (Ω)

=
Dn
@†uF (u;m)

o
(u†); ‹u

E
U2(Ω)

+
h
u†; ‹u

i
@uF

(1.18)

where u† is called the adjoint state variable, and where the boundary term
h
u†; ‹u

i
{@uF}

is a

differential expression involving ‹u and u†, integrated over the boundary @Ω and that depends

only on the operator @uF (u;m), here abbreviated @uF .

Disregarding boundary terms provisionally, the direct problem defined above reads

8<:{@uF (u;m)} (‹u) = −{@mF} (‹m);

‹J = 〈h′; ‹u〉U2(Ω)

(1.19)

and it is now shown that it admits an equivalent adjoint problem

8><>:
n
@†uF (u;m)

o
(u†) = h′;

‹J = −
D
u†; {@mF} (‹m)

E
U
†
2 (Ω)

:
(1.20)

The equivalence is obvious whenever the boundary term
h
u†; u

i
@uF

vanishes, as one has then,

using (1.18),

‹J = 〈h′; ‹u〉U2(Ω) =
Dn
@†uF

o
(u†); ‹u

E
U2(Ω)

=
D
u†; {@uF} (‹u)

E
U
†
2 (Ω)

= −
D
u†; {@mF} (‹m)

E
U
†
2 (Ω)

:
(1.21)

It is here worth noting that the right-hand side of the direct problem appears in the evaluation

of ‹J in the adjoint problem, whereas conversely the right-hand side of the adjoint problem

appears in the evaluation of ‹J in the direct problem.

Deciding between the direct or the adjoint approach depends now on the respective numbers

of performance functionals and model perturbations. In order to complete the evaluation

of ‹J, the direct problem (1.19) needs be solved once for each direction ‹m. The adjoint

problem (1.21), on the other hand, needs be solved once for each value of the gradient kernels

h′, i.e. once for each performance functional J. As the direct and the adjoint problems imply

solving linear systems of comparable size and complexity, the adjoint approach is preferred

whenever there are more search directions than performance functionals to evaluate, and the
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direct approach is preferred otherwise. In the context of full waveform inversion, the misfit

between simulated and measured data is the only performance functional to be minimized and

the adjoint method is thus systematically used.

1.4.2 With boundary perturbation

One now turns to the case of a problem with boundary perturbation. The vanishing of the

boundary term that was assumed in the previous section is in practice a too stringent condition.

A less restrictive and more general condition of existence for the adjoint problem consists in

assuming there exist two trace-based operators

n
@†uB(u;m)

o
(·) : U† → C2(@Ω) and

n
@†uC(u;m)

o
(·) : U† → B2(@Ω) (1.22)

such that the boundary term in (1.18) verifies the identity

h
u†; ‹u

i
@uF

=
Dn
@†uB(u;m)

o
(u†); {@uC(u;m)} (‹u)

E
C2(@Ω)

−
Dn
@†uC(u;m)

o
(u†); {@uB(u;m)} (‹u)

E
B2(@Ω)

: (1.23)

This is a fairly mild assumption of which the implied mathematical restrictions (i.e. the re-

strictions applying on the operators F , B and C) are discussed in detail in [63].

The adjoint state variable u† is now the solution of the adjoint problem with boundary per-

turbation 8><>:
n
@†uF (u;m)

o
(u†) = h′;n

@†uB(u;m)
o

(u†) = k ′
(1.24)

and the Gâteaux derivative of the performance functional (1.17) needs be reexpressed in terms

of the adjoint state variable u† and the adjoint operators as follows (1.22)

‹J = 〈h′; ‹u〉U2(Ω) + 〈k ′; {@uC} (‹u)〉C2(@Ω)

+ 〈k ′; {@mC} (‹m)〉C2(@Ω) (1.25)

=
Dn
@†uF

o
(u†); ‹u

E
U2(Ω)

+
Dn
@†uB

o
(u†); {@uC} (‹u)

E
C2(@Ω)

+
Dn
@†uB

o
(u†); {@mC} (‹m)

E
C2(@Ω)

(1.26)

=
D
u†; {@uF} (‹u)

E
U
†
2 (Ω)

+
Dn
@†uC

o
(u†); {@uB} (‹u)

E
B2(@Ω)

+
Dn
@†uB

o
(u†); {@mC} (‹m)

E
C2(@Ω)

(1.27)

= −
D
u†; {@mF} (‹m)

E
U
†
2 (Ω)
−
Dn
@†uC

o
(u†); {@mB} (‹m)

E
B2(@Ω)

+
Dn
@†uB

o
(u†); {@mC} (‹m)

E
C2(@Ω)

(1.28)
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using successively (1.24), (1.23) and (1.13). This way of computing the Gâteaux derivative

‹J associated with the direction ‹m is called the adjoint approach.

1.4.3 Gradient kernels

On basis of (1.28), one can show that the adjoint state u† and the adjoint trace-based

operators
n
@†uC

o
(u†) and

n
@†uB

o
(u†), that were introduced in (1.22) to make the ad-

joint approach possible, can be regarded as sensitivities to a model perturbation ‹m. In

case of model perturbations ‹m with a very local influence, i.e. {@mF} (‹m) = ‹(x − y),

{@mB} (‹m) = ‹(x − y) or {@mC} (‹m) = ‹(x − y), the Gâteaux derivative of J would

be ‹J = u†(y), ‹J = {{@uC} (u†)}(y) or ‹J = {{@uB} (u†)}(y), which could indeed be

interpreted as the value of sensitivities at the point of the localized perturbation. How-

ever, in contrast to h′ in (1.17), which represents a sensitivity to a state space perturbation

‹u expressed in the corresponding model space U2(Ω), the sensitivities u†,
n
@†uC

o
(u†) andn

@†uB
o

(u†) are not expressed in the space corresponding to the perturbation they represent,

i.e. they are not expressed in the model space M. This useful property can however be ob-

tained at the cost of a second dualization. One shall for this work with the adjoint operator

of @mF (u;m), which is defined by the identity

D
u†; {@mF} (‹m)

E
U
†
2 (Ω)

=
Dn
@†mF

o
(u†); ‹m

E
M2(Ω)

+
h
u†; ‹m

i
@mF

: (1.29)

Similar to (1.23), the boundary term
h
u†; ‹m

i
@mF

is eliminated by an appropriate definition

of adjoint trace-based operators

n
@mB̃(u;m)

o
(·) : M → C2(@Ω) and

n
@mC̃(u;m)

o
(·) : M → B2(@Ω) (1.30)

such that the boundary term verifies the identity

h
u†; ‹m

i
@mF

=
Dn
@†uB

o
(u†);

n
@mC̃

o
(‹m)− {@mC} (‹m)

E
C2(@Ω)

−
D
{@uC} (u†);

n
@mB̃

o
(‹m)− {@mB} (‹m)

E
B2(@Ω)

: (1.31)

It is interesting to rearrange the terms of the previous equation as follows

Dn
@†uC

o
(u†); {@mB} (‹m)

E
B2(@Ω)

−
Dn
@†uB

o
(u†); {@mC} (‹m)

E
C2(@Ω)

+
h
u†; ‹m

i
@mF

=
Dn
@†uC

o
(u†);

n
@mB̃

o
(‹m)

E
B2(@Ω)

−
Dn
@†uB

o
(u†);

n
@mC̃

o
(‹m)

E
C2(@Ω)

(1.32)

to highlight how the original trace-based operators @mB and @mC have been slightly modified

to assimilate the boundary term
h
u†; ‹m

i
@mF

introduced by the second dualization, after which
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the Gâteaux derivative of J reads

‹J = −
Dn
@†mF

o
(u†); ‹m

E
M2(Ω)

−
Dn
@†uC

o
(u†);

n
@mB̃

o
(‹m)

E
B2(@Ω)

−
Dn
@†uB

o
(u†);

n
@mC̃

o
(‹m)

E
C2(@Ω)

: (1.33)

A last step is needed to complete this adjoint theoretical framework with boundary pertur-

bations. The boundary operators @mB̃ and @mC̃ in (1.33) depend on u and are therefore

not suited for the definition of a sensitivity in the model space M. Again, it would be con-

venient to move the operators from the second to the first slot of the scalar products by

means of a further dualization in order to isolate ‹m in the second slot in both terms. As

these terms are surface terms defined on @Ω, the dualization is straightforward provided the

operators are true surface differential operators. Indeed, the definition of the adjoint operator

entails no boundary term in that case because, @Ω being a boundary, it has no boundary

itself, i.e. @@Ω = 0.

In many cases in practice, without loss of generality, the boundary trace-based operators @mB̃

and @mC̃ can be written as the composition of a trace P : M(Ω) → P2(@Ω) independent of

u and m, and purely boundary differential operators
n
@mB̃P (u;m)

o
(·) : P2(@Ω) → B2(@Ω)

and
n
@mC̃P (u;m)

o
(·) : P2(Ω)→ C2(@Ω) so that the last two term in (1.33) can be rewritten

Dn
@†uC

o
(u†);

n
@mB̃P

o
(P (‹m))

E
B2(@Ω)

−
Dn
@†uB

o
(u†);

n
@mC̃P

o
(P (‹m))

E
C2(@Ω)

(1.34)

and, equivalently, in terms of the corresponding adjoint operators,

Dn
@†mB̃P

o “n
@†uC

o
(u†)

”
; P (‹m)

E
P2(@Ω)

−
Dn
@†mC̃P

o “n
@†uB

o
(u†)

”
; P (‹m)

E
P2(@Ω)

: (1.35)

The Gâteaux derivative of J finally writes

‹J = −
Dn
@†mF

o
(u†); ‹m

E
M2(Ω)

−
Dn
@†mB̃P

o “n
@†uC

o
(u†)

”
−
n
@†mC̃P

o “n
@†uB

o
(u†)

”
; P (‹m)

E
P2(@Ω)

(1.36)

:= 〈j ′Ω; ‹m〉M2(Ω)

+ 〈j ′@Ω; P (‹m)〉P2(@Ω) ; (1.37)

with the bulk sensitivity to model perturbations

j ′Ω := −
n
@†mF

o
(u†); (1.38)



26 Chapter 1

and the boundary sensitivity to model trace perturbations

j ′@Ω :=
n
@†mB̃P

o “n
@†uC

o
(u†)

”
−
n
@†mC̃P

o “n
@†uB

o
(u†)

”
: (1.39)

These kernels gradients have the same interpretation than h′ and k ′ as sensitivities, but now

for model perturbations ‹m rather than state perturbations ‹u.

The classical result

{DmJ} (‹m) = 〈j ′Ω; ‹m〉M2(Ω) (1.40)

is obtained either when the trace P (‹m) vanishes, or when the boundary gradient j ′@Ω vanishes.

When the model parameter only lives on the boundary @Ω, it is reasonable to consider that the

direct operator F does not depend on m. Moreover the boundary operators @mB : M(@Ω)→
B2(@Ω) and @mC : M(@Ω) → C2(@Ω) are in this case purely boundary operators, as the

model parameter space is a boundary function space. In this particular case, the directional

derivative (1.28) can be expressed in the model space as

{DmJ} (‹m) = −
Dn
@†mB

o “n
@†uC

o
(u†)

”
−
n
@†mC

o “n
@†uB

o
(u†)

”
; ‹m

E
M2(@Ω)

(1.41)

:= 〈j ′@Ω; ‹m〉M2(@Ω) : (1.42)

1.4.4 Hessian kernels

The adjoint state method described here above does not enable the efficient computation of

the entire Hessian operator. Nevertheless, it enables to compute efficiently the application of

this Hessian operator in a specific direction ‹m. Indeed, the Hessian operator in the direction

‹m is defined as the directional derivative of the gradient, cf. (1.11). Because the gradient is

expressed in terms of the forward state u and the adjoint state u† through (1.38) and (1.39),

its directional derivative in a direction ‹m is expressed in terms of the perturbed forward state

‹u and the perturbed adjoint state ‹u†, which can be computed through the perturbed forward

system (1.13) and through the perturbed adjoint system, i.e. the total derivative w.r.t. m of

(1.24). Consequently, for each new direction in which the application of the Hessian operator

must be computed, two supplementary linear systems must be solved and for that specific

reason, the Hessian operator should be used sparingly.

1.5 Time-harmonic wave scattering problems

The theoretical concepts introduced so far have been kept general. A methodology to apply

them to specific boundary problems is now presented in this section. In order to cover a broad

spectrum of situations, scattering problems in three different physics are treated in detail.

This section is then followed by a numerical illustration in Section 1.6.
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Elastodynamic, electromagnetic and acoustic time-harmonic wave propagation problems obey

respectively Navier’s [18, 182], Maxwell’s [74, 96, 129, 5, 42, 145] or Helmholtz’s [148, 80,

153, 119, 93, 104, 23] equations. Whereas Navier’s equations are specific to elastodynamic

problems and Maxwell’s equations to electromagnetic problems, the Helmholtz equation (vari-

ant I) is more generic and could be used to cover problems in any of the three physics, under

some assumptions. Without simplifying assumptions, acoustic problems should be modeled

using a slight variant of the Helmholtz equations (variant II). In the time-harmonic regime

at pulsation ! (with convention +i!t), a wave propagation problem can be formalized as a

boundary value problem with a zeroth order space derivative term proportional to the square

of the pulsation, plus a second order space derivative term. State variables, model param-

eters and direct operators of the three problems are given in Table 1.1. For each problem,

multiple conventions are equivalent for the definition of the model parameters. In this thesis,

parametrizations for which the direct operator only involves bi-linear (model parameter-wave

field) terms, have systematically been chosen, as they appear as the most natural choice.

State variable u Model parameter m Direct operator F (u;m)

Helmholtz I wave field u slowness squared s2 div (grad (u)) + !2s2u

Helmholtz II pressure field p
specific volume

compressibility

�

K

div (� grad (p)) + !2Kp

Maxwell
electric field

magnetic field

e

h

permittivity

permeability

›

—

0BB@−i!› curl ()

curl () i!—

1CCA
0BB@e
h

1CCA

Navier displacement field u

1st Lamé parameter

2nd Lamé parameter

density

–

—



div (ff(u)) + !2u

with ff = –tr›I + 2—›

and › = 1
2 (grad (u)

+gradT (u)
”

Table 1.1: States variables, model parameters and direct state operators for Helmholtz’s,
Maxwell’s and Navier’s equations in the time-harmonic regime at pulsation ! (with conven-
tion +i!t).

The direct operators listed in Table 1.1 are all linear in u, i.e. {@uF (u;m)} (‹u) = F (‹u;m),

and hermitian in u, i.e. @†uF = @uF , where the upper bar denotes complex conjugation. The

adjoint operators @†uF , defined by (1.18), are obtained by making successively two integrations

by parts (cf. Appendix A.1). On the other hand, the direct operators in Table 1.1 are not

all linear in m, i.e. {@mF (u;m)} (‹m) 6= F (u; ‹m), and can also not be hermitian as their

co-domain is in general different from their domain. The m-adjoint operators @†mF are given in

Table 1.2. For Helmholtz’s and Maxwell’s case, they are obtained without integration by parts,
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as the direct operator has no spatial derivative of m. In Navier’s case, a single integration by

parts is sufficient, due to the first order spatial derivative of the Lamé parameters – and —

that appears in the operator (cf. Appendix A.2).

Model parameter m Adjoint operator
n
@†mF

o
(u†)

Helmholtz I slowness squared s2 !2 uu†

Helmholtz II
specific volume

compressibility

�

K

−grad (p) · grad
“
p†
”

!2 pp†

Maxwell
permittivity

permeability

›

—

i! e · e†

−i! h · h†

Navier

1st Lamé parameter

2nd Lamé parameter

density

–

—



− div (u) div
“
u†
”

−2 ›(u) : ›(u†)

!2 u · u†

Table 1.2: Adjoint w.r.t. the model parameter m of the operators given in Table 1.1.

It is interesting to note that the m-adjoint operators
n
@†mF

o
(u†) (and thus the bulk sen-

sitivities j ′Ω, as of (1.38)) are, up to a constant factor, always the product of the direct

and the adjoint fields. This observation also justifies the parametrization convention of this

thesis: any other choice would lengthen the expression of the bulk sensitivity, because of

the Jacobian coming from the change of variable. As mentioned earlier, the adjoint field

u†(y) carries information about the effect on J of a normalized local perturbation at y

(i.e. {@mF} (‹m) = ‹(x − y) implies ‹J = u†(y)), whereas the field u(y) is the actual mag-

nitude of the corresponding state perturbation. The functional J is therefore sensitive to a

model perturbation ‹m at x if both u(y) and u†(y) are sufficiently large. The fact that bulk

sensitivities are linear in u directly follows from the fact that F , and thus @mF , are linear in

u.

1.5.1 Direct and adjoint boundary conditions

The derivation of the adjoint operators @†uF (cf. Appendix A.1) show that the boundary termh
u†; ‹u

i
@uF

has the same structure for all three wave equations

h
u†; ‹u

i
@uF

=
Z
@Ω

“
T1(u†) T0(u†)

”0@0 −1

1 0

1A0@T1(‹u)

T0(‹u)

1A d@Ω

where the trace T1 involves a first order spatial derivatives, whereas the trace T0 does not.
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In Maxwell’s case, there exist two equivalent ways to express the boundary term, and hence

two definitions for the traces, according to whether h is regarded as a spatial derivative

of e (e-formulation) or the opposite (h-formulation). Navier’s equations yield two zeroth

order traces orthogonal to each other, so that the boundary term can be split into two

parts that can be studied separately. The analytic expressions of these traces are listed in

Table 1.3 in terms of the standard geometric boundary operators defined as follows: the

normal derivative @
@n

:= n̂ · grad (), the normal and tangential components, ‚n() := n̂ (n̂·)
and ‚T () := −n̂ × (n̂×), ‚n() + ‚T () = 1, and finally the orthogonal tangential component

‚t() := n̂×.

T1(u;m) T0(u)

Helmholtz I @u
@n

u

Helmholtz II � @p
@n

p

Maxwell(-e) ‚t(h) ‚T (e)

Maxwell(-h) ‚t(e) ‚T (h)

Navier ff(u) · n̂ ‚T (u) and ‚n(u)

Table 1.3: First order trace T1 and zeroth order trace T0 appearing in the boundary termh
u†; ‹u

i
@uF

for Helmholtz’s, Maxwell’s and Navier’s equations in time-harmonic regime.

The direct, adjoint, m-adjoint and boundary operators being now determined for the three

wave propagation problems at hand, one can proceed and establish the adjoint problem with

boundary perturbation (1.24). It is first noted that the boundary perturbations @uB and @uC

are dictated by the physics of the considered problem, and it is customary that they can be

expressed as a linear combination of boundary operators T0 and T1 obtained above. The first

step to establish (1.24) is to find a pair of adjoint boundary operators @†uB and @†uC that

satisfy (1.23). To that purpose, it is also natural to look for adjoint operators that are linear

combinations of T0 and T1 [63], so that one shall write altogether

@uB = b1 T1 + b0 T0 and @uB
† = b†1 T 1 + b†0 T 0; (1.43)

@uC = c1 T1 + c0 T0 and @uC
† = c†1 T 1 + c†0 T 0: (1.44)

These direct and adjoint boundary conditions thus depend on the model parameter m not

only through the b
(†)
k (m) and c

(†)
k (m) coefficients, but also through the first order trace T1

(cf. Table 1.3).

Using a matrix formalism

T (u) :=
“
T1(u) T0(u)

”T
; b(†) :=

“
b

(†)
1 b

(†)
0

”T
and c (†) :=

“
c

(†)
1 c

(†)
0

”T
; (1.45)
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they can be written compactly

{@uB} (‹u) = bTT (‹u) and
n
@†uB

o
(u†) = T T (u†)b

†
; (1.46)

{@uC} (‹u) = cTT (‹u) and
n
@†uC

o
(u†) = T T (u†)c† (1.47)

and the boundary term as

h
u†; ‹u

i
@uF

=
Z
@Ω
T T (u†)A T (‹u) d@Ω (1.48)

with

A =

0@0 −1

1 0

1A : (1.49)

Condition (1.23) now reads

h
u†; ‹u

i
@uF

=
Dn
@†uB

o
(u†); {@uC} (‹u)

E
C2(@Ω)

−
Dn
@†uC

o
(u†); {@uB} (‹u)

E
B2(@Ω)

(1.50)

⇔
Z
@Ω
T T (u†)A T (‹u) d@Ω

=
Z
@Ω

“
T T (u†)b

†” “
cTT (‹u)

”
−
“
T T (u†)c†

” “
bTT (‹u)

”
d@Ω (1.51)

=
Z
@Ω
T T (u†)

“
b
†
cT − c†bT

”
T (‹u) d@Ω (1.52)

which reduces to a simple matrix equation

A = b
†
cT − c†bT (1.53)

or explicitly 0@0 −1

1 0

1A =

0@b†1c1 − c†1b1 b
†
1c0 − c†1b0

b
†
0c1 − c†0b1 b

†
0c0 − c†0b0

1A : (1.54)

Specified boundary performance The operators @uB and @uC are in general known from

the problem statement. Equation (1.54) can then be solved to express the coefficients of the

adjoint operators in terms of the known coefficients of the direct operators [63]

0@c†1 c†0

b
†
1 b

†
0

1A =
1

b0c1 − b1c0

0@c1 c0

b1 b0

1A (1.55)

so that the adjoint operators are

@†uB =
1

b0c1 − b1c0

@uB and @†uC =
1

b0c1 − b1c0

@uC; (1.56)
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completing so the formulation of the adjoint problem with boundary perturbation (1.24) and

the formulation of the Gâteaux derivative of J (1.33).

In the particular cases considered here, further simplifications can be done that follow from

the fact that the operators F and B are hermitian and linear in u. One has thus successively

h
′

=

@†uF (u;m)

ff
(u†) = {@uF (u;m)} (u†) = F (u†; m)

and similarly for B

k
′

=

@†uB(u;m)

ff
(u†) =

1

b0c1 − b1c0

{@uB(u;m)} (u†) =
1

b0c1 − b1c0

B(u†; m);

so that the adjoint problem (1.24) can remarkably be written in terms of the direct operators

8<:F (u†; m) = h
′
;

B(u†; m) = (b0c1 − b1c0)k
′
:

(1.57)

Whenever the boundary trace-based operators are proportional to each other, i.e. @uC ∝
@uB, one has b0c1 − b1c0 = 0 and the system (1.54) cannot be solved. The degeneracy

comes from the fact that the observed operator @uC is actually proportional to the imposed

condition @uB = −@mB (cf. (1.13)). The observed operator does therefore not depend on

the state perturbation ‹u, and the definition of an adjoint state on such regions is useless.

The degeneracy is resolved by substituting @uB = −@mB to @uC in (1.17), and then by

following the procedure as if there were no boundary performance functional @uC defined on

these regions (cf. paragraph below).

Unspecified boundary performance When the performance functional J has no bound-

ary term, the operator @uC is not defined. The system (1.54) is then under-determined and

a supplementary condition can be imposed arbitrarily. A convenient condition is

b0c1 − c0b1 = 1 (1.58)

since (1.54) then yields

@†uB = @uB and @†uC = @uC (1.59)

which also leads to an adjoint problem (1.24) written in terms of the direct operators.
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1.5.2 Boundary sensitivity to model parameters

The second step to establish (1.24) is the derivation of the operators @mB and @mC appearing

in the directional derivative (1.28). With the same matrix formalism as above, they read

{@mB} (‹m) = ‹bTT (u) + bT {@mT (u)} (‹m) (1.60)

and

{@mC} (‹m) = ‹cTT (u) + cT {@mT (u)} (‹m); (1.61)

and the two boundary terms of (1.28) can be successively modified as follows

Dn
@†uB

o
(u†); {@mC} (‹m)

E
C2(@Ω)

−
Dn
@†uC

o
(u†); {@mB} (‹m)

E
B2(@Ω)

(1.62)

=
Z
@Ω

“
T T (u†)b

†” “
‹cTT (u) + cT {@mT (u)} (‹m)

”
d@Ω

−
Z
@Ω

“
T T (u†)c†

” “
‹bTT (u) + bT {@mT (u)} (‹m)

”
d@Ω (1.63)

=
Z
@Ω
T T (u†)

“
b
†
‹cT − c†‹bT

”
T (u) d@Ω

+
Z
@Ω
T T (u†)

“
b
†
cT − c†bT

”
{@mT (u)} (‹m) d@Ω (1.64)

=
Z
@Ω
T T (u†)

“
b
†
‹cT − c†‹bT

”
T (u) d@Ω

+
Z
@Ω
T T (u†)A {@mT (u)} (‹m) d@Ω: (1.65)

The boundary term
h
u†; ‹m

i
@mF

in (1.29), on the other hand, vanishes in Maxwell’s and

Helmholtz I’s cases whereas in Navier’s and Helmholtz II’s cases, it can be written (cf. Ap-

pendix A.2) h
u†; ‹m

i
@mF

=
Z
@Ω
T T (u†)A {@mT (u)} (‹m) d@Ω:

Summing up all boundary terms of (1.28), which are also the left-hand side of (1.32), one

obtains

Dn
@†uB

o
(u†); {@mC} (‹m)

E
C2(@Ω)

−
Dn
@†uC

o
(u†); {@mB} (‹m)

E
B2(@Ω)

−
h
u†; ‹m

i
@mF

=
Z
@Ω
T T (u†)

“
b
†
‹cT − c†‹bT

”
T (u) d@Ω; (1.66)

where it is to note that the terms in ‹m have canceled out. The modified boundary operators

can thus be identified using (1.32), and they are simply given by

n
@mB̃

o
(‹m) = ‹bTT (u) and

n
@mC̃

o
(‹m) = ‹cTT (u): (1.67)
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The coefficients b0(m), c0(m) and b1(m), c1(m) are usually simple functions, i.e. they involve

no derivative on m. Their perturbation are then proportional to ‹m

‹b =
@b

@m
‹m and ‹c =

@c

@m
‹m (1.68)

and the boundary sensitivity to model perturbation (1.39) is obtained by factorization

j
′
@Ω = T T (u†)

 
b
†@cT

@m
− c†@b

T

@m

!
T (u) (1.69)

=
1

b0c1 − b1c0

T T (u†)

 
b
@cT

@m
− c @b

T

@m

!
T (u); (1.70)

or explicitly

j
′
@Ω =

1

b0c1 − b1c0

T T (u†)

0@b1
@c1

@m
− c1

@b1

@m
b1

@c0

@m
− c1

@b0

@m

b0
@c1

@m
− c0

@b1

@m
b0

@c0

@m
− c0

@b0

@m
:

1AT (u): (1.71)

Similar to the bulk sensitivity j
′
Ω (cf. Table 1.2), the boundary sensitivity j

′
@Ω is proportional to

the product of traces of the direct and the adjoint fields. Examples of boundary sensitivities

j ′@Ω corresponding to particular pairs of direct and performance boundary trace-based operators

B and C are listed in Table 1.4. The chosen examples correspond to specific physically or

mathematically grounded choices for the coefficients b1(m), b0(m), c1(m) and c0(m), which

cover a large range of the situations encountered in practical modeling problems.

Model parameter m b1 b0 c1 c0 j ′@Ω

Impedance z 1 z 0 −1 + T0(u)T0(u†)

Admittance y y 1 1 0 − T1(u)T1(u†)

Dirichlet z 0 z z−1 0 −z−1
h
T0(u)T1(u†) + T1(u)T0(u†)

i
Neumann y y 0 0 −y−1 y−1

h
T0(u)T1(u†) + T1(u)T0(u†)

i
Mixed ¸ ¸ ¸ (2¸)−1 −(2¸)−1 ¸−1

h
T0(u)T0(u†)− T1(u)T1(u†)

i
Table 1.4: Boundary sensitivities j ′@Ω for particular pairs of direct and performance boundary
trace-based operators B = b1T1 + b0T0 and C = c1T1 + c0T0, i.e. for given expressions of the
coefficients b1(m), b0(m), c1(m) and c0(m) as functions of m.

Unspecified boundary performance Whenever C is not defined, it can be freely chosen.

In the previous subsection, the additional condition b0c1−c0b1 = 1 was shown to be a natural

choice. Depending on the value of b0 and b1, the boundary sensitivity (1.71) can be given

a more or less compact form if the coefficients c0 and c1 are chosen appropriately on basis,
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e.g., of the examples listed in Table 1.4 for some frequent boundary conditions.

1.5.3 Sobolev gradient kernel for scalar model parameters

Bulk (cf. Table 1.1) and boundary (cf. Table 1.4) model parameters have been considered

in the last two sections. Both are scalar parameters and, in view of their physical meaning,

their distribution can be assumed to belong to L2(Ω) and L2(@Ω) spaces respectively, or to

more regular subspaces of them. This choice of an appropriate representation space for model

parameters is part of the modeling and three examples are discussed below.

1. If there is no reason for a bulk model parameter m to exhibit a smooth distribution,

one is led to choose M = M2(Ω) = L2(Ω). Model parameter traces can then not be

defined and the boundary sensitivity thus vanishes. The inner product in M is naturally

chosen to be the inner product in L2(Ω), so that one has by definition of the gradient

kernel

‹J = {DmJ} (‹m) = 〈j ′; ‹m〉L2(Ω) : (1.72)

Equation (1.37) then gives

‹J = 〈j ′Ω; ‹m〉M2(Ω) = 〈j ′Ω; ‹m〉L2(Ω) (1.73)

and hence, by identification,

j ′ = j ′Ω: (1.74)

2. Similarly, the distribution of a not particularly smooth boundary model parameter m will

be sought in M = M2(@Ω) = L2(@Ω). The inner product in M is then naturally chosen

as the inner product in L2(@Ω), so that one has by definition of the gradient kernel

‹J = {DmJ} (‹m) = 〈j ′; ‹m〉L2(@Ω) ; (1.75)

and (1.42) gives

‹J = 〈j ′@Ω; ‹m〉M2(@Ω) = 〈j ′@Ω; ‹m〉L2(@Ω) (1.76)

so that one ends up, by identification, with

j ′ = j ′@Ω: (1.77)

3. Now if the model parameter m is expected to have regularity, e.g. due to its physical

meaning, its distribution can be sought in the space M = H1(Ω). The inner product in
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M is then chosen as the natural inner product in H1(Ω), i.e.

〈m2; m1〉M := 〈m2; m1〉L2(Ω) + ¸1 〈grad (m2) ; grad (m1)〉L3
2(Ω) : (1.78)

with ¸1 a strictly positive parameter. From (1.37), one has

〈j ′; ‹m〉L2(Ω) + ¸1 〈grad (j ′) ; grad (‹m)〉L3
2(Ω) = 〈j ′Ω; ‹m〉L2(Ω) + 〈j ′@Ω; P (‹m)〉L2(@Ω) ;

(1.79)

which is the weak form of a boundary value problem that can be solved for the gradient

j ′. Considering that only the Dirichlet trace of ‹m is involved, i.e. P (‹m) = ‹m, the

Euler-Lagrange equations of this boundary value problem are8>><>>:
−¸1div (grad (j ′)) + j ′ = j ′Ω;

¸1
@j ′

@n
= j ′@Ω:

(1.80)

Solving (1.80) can be regarded as a smoothing, or more generally as a precondition-

ing, of the classical L2 gradients (1.74) and (1.77). The obtained solution is called a

Sobolev gradient kernel [42, 127, 154, 155, 210]. Depending on the constraints or the

prior information available for the model parameters, other inner products can be used

advantageously, as will be illustrated in the following chapters.

1.6 Numerical illustration

This section illustrates the theoretical results exposed above, in the case of the Helmholtz I

equation. Corresponding results for the three other equations are given in Appendix A. The

typical performance functional for full waveform inversion is the the least squares distance

between the predicted wave field u and the measurements d recorded at a set of points x r

H(u) =
1

2

X
r

|u(x r )− dr |2 : (1.81)

This performance functional does however not integrate enough information in practice, and

multiple emitters are often considered successively. The performance functional then becomes

J(m) =
1

2

X
e

X
r

|ue(x r )− de;r |2 (1.82)

where ue denotes the direct state field associated with the emitter e. Note that the subscript

’0’ for the measured data is omitted for this chapter, for the sake of compactness.

The geometrical setting of this application example consists of a cylinder-shaped inclusion Ωc

embedded in a square background medium Ω0 with emitter/receiver arrays disposed on both
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sides, as depicted in Figure 1.1. The bulk model property in this problem is the slowness

squared s2, which is by definition the squared inverse of the wave speed.

xr
xe

L

HHa

r

Figure 1.1: Geometrical setting of this application example: ne = 11, xe = 5, Ha = 15,
nr = 11, xr = 20, H = 25, L = 25, r = 2:5. The pulsation ! is set to 2ı, so that the
reference wavelength is –̃0 = 1=s̃0 = 1. The background and the cylinder domain overlap,
i.e. Ω0 ∩ Ωc = Ωc .

The direct wave field ue is caused by point source emitters located at xe ∈ Ω0, and is the

solution of the partial differential equation

div (grad (ue)) + !2s2ue = ‹(x − xe): (1.83)

The unbounded propagation domain is modeled by means of an absorbing boundary condition

@ue
@n

+ ˛0(s2)ue = 0 (1.84)

imposed on the boundary @Ω0 of the computational domain. For simplicity, a zeroth order

absorbing condition has been chosen, for which the relationship ˛0(s2) := i!
√
s2 holds. The

scattering cylinder can be modeled in two different ways. If the cylinder is made of a highly

penetrable material, the propagation equation is solved explicitly inside the cylinder, and the

computational domain is Ω = Ω0. If on the other hand the cylinder is made of a weakly

penetrable material, it is represented by means of an impedance boundary condition

@ue
@n

+ ˛cue = 0 (1.85)

imposed on the boundary @Ωc of the cylinder, and the computational domain is then Ω =

Ω0 \ Ωc .

The distribution of bulk model parameters s2
c in the cylinder and/or of s2

0 in the background

medium are unknown, as well as the distribution of the boundary material parameters ˛c
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and ˛0. The minimization of the performance functional aims at determining the model

parameter distribution, both in the bulk and on the boundaries, that yields the best match of

the simulated wave fields with measurements. Different modeling configurations have been

considered to highlight the specific role of the bulk and the boundary terms in the evaluation of

the directional derivatives and of the gradient kernels. The unknown model property is either

the homogeneous squared slowness s2
c of the cylinder assumed penetrable in Subsection 1.6.1,

the homogeneous equivalent boundary impedance ˛c of the cylinder assumed impenetrable in

Subsection 1.6.2, the homogeneous squared slowness s2
0 of the background medium knowing

all cylinder properties in Subsection 1.6.3, or finally, the squared slowness distribution s2
0 (x) of

the background space with no a priori knowledge of the geometry of the scattering inclusion

in Subsection 1.6.4.

In this academic illustration of the theory, real measurement data is not available. The

measurement values used in the performance functional J are obtained from the simulation

of a reference problem, with specific values of the material parameters, called ground-truth

values and denoted with a tilde symbol. In all considered examples, the systematic steps of

the adjoint state method are as follows, in terms of a computational domain Ω, a bulk model

parameter s2 and a boundary model parameter ˛ that are defined case by case:

1. Find the direct states ue obeying the direct problem8>><>>:
div (grad (ue)) + !2s2ue = ‹(x − xe) in Ω

@ue
@n

+ ˛ue = 0 on @Ω:
(1.86)

2. Find the adjoint states u†e obeying the adjoint problem (1.24)

8>>><>>>:
div

“
grad

“
u†e
””

+ !2s2u†e =
X
r

(ue(x r )− d e;r)‹(x − x r ) in Ω

@u†e
@n

+ ˛u†e = 0 on @Ω:

(1.87)

The source term in the adjoint problem is the gradient kernel of the bulk performance

functional (h′), whose computation is done explicitly in Appendix A.3.1.

3. Once the direct and adjoint states are known, the directional derivatives with respect

to the different model parameters can be evaluated, as well as the associated gradient

kernels :

• directional derivative w.r.t. ˛, and associated gradient kernel by identification

‹J = {D˛J(˛)} (‹˛) =
X
e

D
u†e ; ‹˛ ue

E
L2(@Ω)

(1.88)
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hence

j
′

=
X
e

ueu
†
e (1.89)

• directional derivative w.r.t. s2 and associate gradient kernel by identification

‹J =
n
Ds2J(s2)

o
(‹s2) = −

X
e

D
u†e ; !

2 ‹s2 ue
E
L2(Ω)

(1.90)

hence

j
′

= −!2
X
e

ueu
†
e (1.91)

• directional derivative w.r.t. s2, with ˛ a function of s2

‹J =
n
Ds2J(s2)

o
(‹s2) =

−
X
e

D
u†e ; !

2 ‹s2 ue
E
L2(Ω)

+
X
e

*
u†e ;

@˛

@s2
‹s2 ue

+
L2(@Ω)

(1.92)

and the H1-Sobolev gradient j ′ as the solution of the boundary value problem8>>>><>>>>:
−¸1div

“
grad

“
j
′””

+ j
′

= −!2
X
e

ueu
†
e in Ω;

¸1
@j
′

@n
=
@˛

@s2

X
e

ueu
†
e in @Ω:

(1.93)

4. Find the perturbed direct states ‹ue obeying the perturbed direct problem (1.13)

8>><>>:
div (grad (‹ue)) + !2s2‹ue = −!2‹s2ue in Ω

@‹ue
@n

+ ˛‹ue = −‹˛ue on @Ω:
(1.94)

5. Find the perturbed adjoint states ‹u†e obeying the perturbed adjoint problem

8>>><>>>:
div

“
grad

“
‹u†e

””
+ !2s2‹u†e =

X
r

‹ue(x r )‹(x − x r )− !2‹s2u†e in Ω

@‹u†e
@n

+ ˛‹u†e = −‹˛u†e on @Ω:

(1.95)

6. Once the perturbed direct and adjoint states are known, the second order directional

derivatives with respect to the different model parameters can be evaluated, as well as

the application of the Hessian operator in a particular direction:

• second order directional derivative w.r.t. ˛, and associated application of the Hes-

sian operator in the direction ‹˛ by identification
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‹2J =
n
D2
˛˛J(˛)

o
(‹˛1; ‹˛) =X

e

D
‹u†e ; ‹˛1 ue

E
L2(@Ω)

+
D
u†e ; ‹˛1 ‹ue

E
L2(@Ω)

(1.96)

hence

‹j ′ =
X
e

‹2ueu
†
e + ue‹2u

†
e : (1.97)

• second order directional derivative w.r.t. s2 and associated application of the Hes-

sian operator in the direction ‹s2 by identification

‹2J =
n
D2
s2s2J(s2)

o
(‹s2

1 ; ‹s
2) =

−
X
e

D
‹u†e ; !

2 ‹s2 ue
E
L2(Ω)

+
D
u†e ; !

2 ‹s2 ‹ue
E
L2(Ω)

(1.98)

hence

‹j ′ = −!2
X
e

‹ueu
†
e + ue‹u

†
e (1.99)

• second order directional derivative w.r.t. s2, with ˛ a function of s2

‹2J =
n
D2
s2s2J(s2)

o
(‹s2

1 ; ‹s
2) =

−
X
e

D
‹u†e ; !

2 ‹s2 ue
E
L2(Ω)

+
D
u†e ; !

2 ‹s2 ‹ue
E
L2(Ω)

+
X
e

*
‹u†e ;

@˛

@s2
‹s2 ue

+
L2(@Ω)

+

*
u†e ;

@˛

@s2
‹s2 ‹ue

+
L2(@Ω)

(1.100)

and the H1-Sobolev Hessian operator in the direction ‹s2 as the solution of the

boundary value problem8>>>><>>>>:
−¸1div

“
grad

“
‹j
′””

+ ‹j
′

= −!2
X
e

‹ueu
†
e + ue‹u

†
e in Ω;

¸1
@‹j
′

@n
=
@2˛

@2s2

X
e

ueu
†
e +

@˛

@s2

X
e

‹ueu
†
e + ue‹u

†
e in @Ω:

(1.101)

For the sake of simplicity, the pulsation ! has been set to 2ı, so that the wavelength is

– = 1=s. All partial differential equations are solved using the finite element method with 5th

order hierarchical elements, and a characteristic mesh size of h = 1=4. The measurements d

are obtained with the same model, with the ground-truth values of the model parameters and

a refined mesh of characteristic size h = 1=5.
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1.6.1 Highly penetrable cylinder in a known background

The ground-truth solution of this reference problem is depicted in Figure 1.2 for a particular

source, with s̃2
c = 1:2 and s̃2

0 = 1 the ground-truth value of the slowness squared in the

cylinder and the background medium, respectively.

max

0:0

-max

(a) Re (u)

max

0:0

-max

(b) Im (u)

Figure 1.2: Ground-truth direct field u for a highly penetrable cylinder and for a single source.
The background and cylinder slowness squared are respectively s̃2

c = 1:2 and s̃2
0 = 1.

In this first example, it is assumed that geometry and background medium are known, so that

only the slowness squared of the cylinder is left unknown. Assuming it spatially uniform, one

has s2
c ∈ R+ and

m(x) := s2(x) =

8<:s̃
2
0 for x ∈ Ω0;

s2
c for x ∈ Ωc ;

(1.102)

and thus

‹m(x) := ‹s(x) =

8<:0 for x ∈ Ω0;

‹s2
c for x ∈ Ωc ;

(1.103)

where Ω0 denotes the closure of Ω0, i.e. Ω0 := Ω0 ∪ @Ω0. It emphasizes the fact that

both the bulk equation in Ω0 and the transparent boundary condition on @Ω0 are depend-

ing on the model parameter s2
0 . In this first example however, the perturbation ‹s2(x)

vanishes on the boundary @Ω0, and all boundary terms in (1.28) vanish, leaving only the

bulk term. The performance functional and its Gâteaux derivatives reduce in this case

to the real-valued functions J(m(x)) = J(s2
c ), {DmJ(m(x))} (‹m(x)) = Ds2

c
J(s2

c )‹s2
c and

{D2
mmJ(m(x))} (‹m1(x); ‹m2(x)) = D2

s2
c ;s

2
c
J(s2

c )‹s2
c ‹s

2
c , which are plotted in Figure 1.3 for a

range of values of s2
c around the ground-truth value s̃2

c = 1:2. For validation purposes, both

derivatives are computed not only by the adjoint state method, but also by the finite difference

approximation (1.3) with › = 10−5. The two evaluations give results close to each other. The

convergence of the finite difference approximation is further analyzed in Section 1.6.3.
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Figure 1.3: Performance functional (•) and its derivatives for a highly penetrable cylinder
whose slowness squared s2

c varies around the ground-truth value s̃2
c = 1:2. The derivatives are

computed by the adjoint state method (•) and by an approximation of the definition (1.3)
(with › = 10−5) (×).
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1.6.2 Weakly penetrable cylinder in a known background

In this second example, the cylinder is considered weakly penetrable, and modeled by means of

an equivalent impedance ˛c := i!
q
s̃2
c − i¸c where ¸c ∈ R+ is a radially constant boundary

parameter that dictates the penetrability of the cylinder. The model parameter writes

m(x) := ¸c(x) = ¸c for x ∈ @Ωc (1.104)

and thus

‹m(x) := ‹¸c(x) = ‹¸c for x ∈ @Ωc : (1.105)

In contrast with the previous case, there is here no bulk contribution in (1.28), because

¸c is a boundary parameter. The ground-truth direct field, computed with a ground-truth

penetrability ˜̧c = 100, is depicted in Figure 1.4 for a particular source. The receiver array

and the emitter array are placed on the same side of the cylinder in this case because, by

an effect of shadowing, there is very little signal on the opposite side of the emitters. The

performance functional and its Gâteaux derivative are plotted in Figure 1.5 for a range of

values of ¸c around the ground-truth value ˜̧c = 100.

max

0:0

-max

(a) Re (u)

max

0:0

-max

(b) Im (u)

Figure 1.4: Ground-truth direct field u for a weakly penetrable cylinder and for a single source.
The background and cylinder slowness squared are respectively s̃2

c = 1:2 and s̃2
0 = 1 while the

penetrability is ˜̧c = 100.
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Figure 1.5: Performance functional (•) and its derivatives for a weakly penetrable cylinder
whose penetrability ¸c varies around the ground-truth value ˜̧c = 100. The derivatives are
computed by the adjoint state method (◦) and by an approximation of the definition (1.3)(with
› = 10−5) (×).
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1.6.3 Background medium around a known highly penetrable cylin-

der

The case where the background slowness squared s2
0 is unknown, whereas all properties of the

cylinder are known, is now considered. One has

m(x) := s2(x) = s2
0 for x ∈ Ω0 \ Ωc (1.106)

and thus

‹m(x) := ‹s2(x) = ‹s2
0 for x ∈ Ω0 \ Ωc : (1.107)

As the absorbing boundary condition ˛0 = i!
q
s2

0 on the outer boundary @Ω0 also depends

on the slowness squared s2
0 of the background domain, both the bulk and the boundary terms

of the directional derivative (1.28) are present in this case. The performance functional and

its Gâteaux derivatives are plotted in Figure 1.6 for a range of values of s2
0 around the ground-

truth value s̃2
0 = 1:0, in the case of a highly (s̃2

c = 1:2, left row) and a weakly ( ˜̧2
c = 100,

right row) penetrable cylinder.

Figure 1.6 shows that the boundary contribution is, for this example, much smaller than

the bulk contribution. Neglecting it would however introduce a non-negligible error in the

analytic evaluation of the derivative by means of the adjoint state method. To show this, the

difference between the analytic and the finite difference evaluations is plotted in Figure 1.7

for decreasing values of ›, with and without the boundary contribution. This is done for a

highly penetrable cylinder (s̃2
c = 1:2), and for a weakly penetrable cylinder ( ˜̧c = 100) with a

background slowness squared s2
0 = 0:93, whereas the ground-truth value is s̃2

0 = 1:0. As the

finite difference converges towards the exact value of the derivative, up to numerical errors,

as › tends towards zero, it is indeed observed that the difference with analytic derivative

decreases down to zero only when the boundary term is duly taken into account. For very

small values of ›, the finite difference (1.3) becomes however sensitive to round-off errors,

which explains the increasing tail in Figure 1.7.
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Figure 1.6: Performance functional (•) and its derivatives for a highly penetrable cylinder
(s̃2
c = 1:2)(left column) or a weakly penetrable cylinder ( ˜̧c = 100)(right column) embedded in

a background medium whose slowness squared s2
0 varies around the ground-truth value s̃2

0 = 1:0.
The derivatives are computed by the adjoint state method (•, ◦) and by an approximation of the
definition (1.3) (with › = 10−5) (×). The bulk (•) and boundary (◦) contributions of the adjoint
state method are plotted separately.
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Figure 1.7: Difference between the approximation of (1.3) and the adjoint state method with
(middle and bottom row) and without (top row) the boundary contribution for a highly penetrable
cylinder (s̃2

c = 1:2)(left column) and for a weakly penetrable cylinder ( ˜̧c = 100)(right column) when
the unknown background slowness squared is s2

0 = 0:93 while the ground-truth value is s̃2
0 = 1:0.

Bottom row is related to second order derivatives, middle and top row to first order derivatives. The
dashed blue line (−−) is the amplitude of the boundary contribution in the adjoint state method.
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1.6.4 Unknown geometry

The case is now considered where nothing is a priori known about the inclusion, not even

its cylindrical shape. The measurement data are again obtained from the computation of

a ground-truth problem with a highly penetrable cylinder (s̃2
0 = 1:0 and s̃2

c = 1:2). The

unknown squared slowness is, in this case, a distribution over Ω0, and one is led by physical

considerations to consider that this distribution is to be sought in a space of relatively smooth

function, for instance s2 ∈ H1(Ω). Choosing then the natural inner product of H1(Ω), the

gradient j ′ is obtained as the solution of the boundary problem (cf. Subsection 1.5.3)

8>><>>:
−¸1div (grad (j ′)) + j ′ = j ′Ω in Ω0;

¸1
@j ′

@n
= j ′@Ω

@˛0

@s2
in @Ω0:

(1.108)

The bulk and the boundary contributions to the gradient j ′ can be evaluated independently

by setting successively to zero the boundary sensitivity j ′@Ω and the bulk sensitivity j ′Ω. Both

contributions are depicted in Figure 1.8 for different values of the new parameter ¸1, which

defines the relative weight of the zeroth and the first order terms in the definition of the norm

of H1(Ω). The distinctive properties of the Sobolev gradient kernel j ′ are here illustrated

by computing it at an initial guess, which is here naturally chosen as a homogeneous empty

(i.e. without any inclusion) background, i.e.

m(x) := s2(x) = s̃2
0 ; for x ∈ Ω0: (1.109)

As in the previous example, the boundary contribution is much smaller than the bulk contri-

bution. It is also more or less localized near the boundary @Ω0, depending on the value of ¸1.

The parameter ¸1 thus controls how strongly the sensitivities j ′Ω and j ′@Ω are smoothed, as can

be seen in Figure 1.8. This effect emphasizes the importance and the practical meaning of

the choice of an appropriate inner product. An appropriate choice of the inner product is piv-

otal, as it may contribute to select gradients with interesting properties. In medium imaging

in the time-harmonic regime, it is well-known that gradients are resolved at the wavelength

scale. Consequently, the smoothing effect is apparent when the smoothing length defined as

lc := 2ı
√
¸1 is close to the wavelength –0 = 1. On the other hand, the gradient tends to

become spatially uniform when the smoothing length is comparable to the size of the domain.
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Figure 1.8: Bulk (left column) and boundary (right column) parts of the H1-Sobolev gradient for
several values of the smoothing length lc := 2ı

√
¸1; lc = 1 (top row), lc = 10 (middle row),

lc = 100 (bottom row). The measured data used for this gradient are obtained synthetically with a
highly penetrable cylinder (s̃2

0 = 1:0 and s̃2
c = 1:2). From top to bottom, the maximal value for the

bulk are boundary contribution are respectively 15×10−3, 6×10−3, 16×10−5 (bulk) and 3×10−3,
2× 10−4, 7× 10−6 (boundary).
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1.7 Reference case studies

Since derivatives have been validated on a testing problem, the first step for the three reference

case studies can now be carried out with confidence. This first step is the computation of

the gradient direction, which is at the root of many local optimization algorithms. The

wave propagation physics involved in these three reference imaging problems can also be

modeled by the Helmholtz equation, complemented by Sommerfeld boundary conditions [163].

The first two case studies are related to subsurface acoustic imaging in the constant-density

approximation, where the only model parameter to reconstruct is the pressure wave velocity v .

In the context of the Helmholtz equation (1.83), the slowness squared, also called the sloth,

is rather used as the model parameter. This sloth is simply the inverse of the squared velocity

s2 := 1=v 2: (1.110)

The entire derivation of previous section therefore remains valid: only the generic wave field

u must be substituted by the pressure field p. The third numerical case study is related to

electromagnetic imaging. When the electric field excitation is perpendicular to the direction

of propagation, the electric field is also obtained by solving the Helmholtz equation. The

generic wave field u must now be substituted by the transverse component e of the electric

field and the wavenumber k ([1/m]) must be used in place of the pulsation ! ([rad/s]).

Pulsation and wavenumber are related by the speed of light in vacuum, i.e. k = !
√
›0—0 with

›0 the vacuum permittivity and —0 the vacuum permeability. The model parameter s2 now

denotes a dimensionless slowness squared, which is related to the conductivity and the relative

permittivity through

s2 := ›r − i”0ff=k (1.111)

where ”0 :=
q
—0=›0 = 377 [Ω] is the impedance of free space [97]. Sensitivities w.r.t. to

the conductivity and the relative permittivity are then simply obtained from the sensitivities

w.r.t. the dimensionless slowness squared using the chain rule.

Actually, only the performance functional is slightly modified w.r.t. the previous section. The

conventional least squares distance is still chosen, but there is now also a summation on

frequencies, in addition to the summation on emitters and receivers. Considering multiple fre-

quencies introduces more information in the gradient and consequently, more constraints and

resolution for the image to be reconstructed. For this chapter and the following one, recorded

data sets are generated synthetically using the same hierarchical finite element settings than

for the simulated data sets, in order to cancel the effect of numerical errors. This inverse

crime approach will be dropped in Chapter 3.
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1.7.1 Case study 1: Marmousi model

This first case study focuses on the Marmousi model, whose velocity distribution was given

in the introduction (cf. Figure 3) and which is now plotted in terms of the slowness squared

in Figure 1.9a.
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Figure 1.9: The Marmousi slowness squared model (a) and the chosen initial guess (b).

Three frequencies (4, 6 and 8 [Hz]) are included in the definition of the misfit. Frequencies

lower than 4 [Hz] are not considered because they are typically not available in practice. The

acquisition system is placed at the top surface of the model. It is composed of 122 equally

spaced (72 [m]) excitation sources and 243 equally spaced (36 [m]) receivers. Slowness

squared fields and pressure fields at the three frequencies are discretized on a square grid (36

[m]) by hierarchical finite elements, respectively of order 1 and of order 2, 3 and 4.

For the computation of any derivative, an initial guess is required for the model parame-

ters. In this case study, a smoothed version of the exact Marmousi model is used as an

initial guess (Figure 1.9b). This initial model is computed with a Laplacian filter s2
init =

(1 − (lc=2ı)2div (grad ()))−1s2
exact with lc = 2 [km]. In practice, such an initial guess could

be obtained either thanks to travel-time tomography [206], through hierachical frequency-

damping inversion strategies [22, 167], or with a data misfit functional which features less

local minima [191, 115], for example. The H1-Sobolev gradient, obtained with the smoothing

inner product (1.79), is given in Figure 1.10 for a characteristic length lc = 2ı
√
¸ = 0:25

[km]. Similarly to the cylinder testing problem, the boundary contribution has a much smaller

contribution than the volume contribution, such that the former can be safely neglected for

the sequel of this case study. This volume contribution however exhibits a striking weakness:

it vanishes everywhere but at the top surface, where emitters and receivers are located. This
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Figure 1.10: Bulk (a) and boundary (b) parts of the H1-Sobolev gradient for a smoothing
length lc = 2ı

√
¸1 = 0:25 [km]. The underlying slowness squared distribution is the initial

guess given in Figure 1.9b. The maximal value for the bulk are boundary contribution are
respectively 1020 and 22.

observation is the main motivation for the investigation of other inner products, which will

specifically be studied and introduced in the next chapter.

1.7.2 Case study 2: T-shaped reflectors

The aim of this second case study is to image two T-shaped concrete structures (vc = 4

[km/s]) embedded in a homogeneous background (vb = 0:3 [km/s]) with a horizontal layer

reflector in the bottom (vr = 0:5 [km/s]). These two concrete foundations, buried at few

meters deep, generate high-amplitude reflections because of the very high velocity contrast

with the background. Moreover, important multiple scattering appears between the two

structures, as they are relatively close to each other. The acquisition system is divided into

three segments: one on the surface and the two others inside boreholes on both lateral sides.

Sources and receivers are equally spaced (15 [cm]) along these three segments. Note that

the surface sources and receivers that would lie inside the two concrete structures are not

considered in the modeling, leading to an actual number of sources and receivers totaling

227. Nine frequencies (100, 125, 150, 175, 200, 225, 250, 275, and 300 [Hz]) are considered.

Slowness squared fields and pressure fields at the nine frequencies are discretized on a square

grid (15 [cm]) by hierarchical finite elements, respectively of order 1 and of order 2, 3 and 4.

For the gradient evaluation, the initial model guess is simply the exact distribution without

the two concrete structures, i.e. a homogeneous background with a bottom reflector. The

H1-Sobolev gradient is given in Figure 1.11 for two different characteristic lengths: lc = 0:5
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[m] and lc = 5 [m]. Interestingly, the gradient, which is the foundation of the model update

direction, exhibits ripples at the location of the two concrete structures when the smallest

scale is used. These ripples are undesirable, as the velocity is constant inside the structures.

They appear because a thin rippled interface and a piece-wise jump are hardly discernible

at the considered frequencies. At the opposite, when the gradient is smoothed with more

strength, ripples disappear and only the averaged contribution is conserved such that the

gradient around the concrete structures is then in the right direction. Without this strong

smoothing, the successive model updates might rush into a thin and oscillating direction and

in the end, yield an inaccurate reconstruction which does not fit the a priori knowledge about

the structures. This phenomenon will be studied in the next chapter.
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Figure 1.11: Bulk (a,c) and boundary (b,d) parts of the H1-Sobolev gradient for two values
of the smoothing length lc := 2ı

√
¸1; lc = 0:5 [m] (a,b), lc = 5 [m](c,d). The underlying

slowness squared distribution is a homogeneous background with a bottom reflector. From
top to bottom, the maximal value for the bulk are boundary contribution are respectively
9× 106, 3:2× 106 (bulk) and 1:96× 106, 1:7× 105(boundary). Boundary contributions are
again negligible.

1.7.3 Case study 3: Dissipative crosses

The third case study consists in two cross-shaped structures embedded in a homogeneous

background (cf. Figure 5). The contrast between the background and the anomalies as well

as the contrast between both anomalies is high (›r;0 = 4:, ›r;1 = 1:, ›r;2 = 8: [-] and

ff0 = 3:, ff1 = 0:1, ff2 = 10: [mS/m]) such that the two structures generate high-amplitude

reflections. The acquisition system is composed of 120 equally spaced receivers placed on a

circle (r = 5 [m]). Excitation sources are co-located with one of three receivers. There are

thus only 40 excitation sources. Seven frequencies (50, 60, 70, 80, 100, 150, 200 [MHz])
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are considered. Relative permittivity fields, conductivity fields and transverse electric fields

at the seven frequencies are discretized on a triangular mesh (10 [cm]) by hierarchical finite

elements, respectively of order 1 and of order 1, 2, 3 or 4. Similarly to the second case study,

a homogeneous background is used as the initial guess. The conductivity and the relative

permittivity gradients are given in Figure 1.11 for a characteristic length lc = 0:75 [m]. With

such an initial guess, the permittivity update, which is related to the displayed gradient, is

going into the right direction: the value at the bottom cross will decrease while the value at the

upper cross will increase. Unfortunately, the same can not be observed for the conductivity, as

its value at the bottom cross will increase. Because the permittivity and thus the kinematics

are not yet accurate, the conductivity is trying to take into account for effects caused by the

permittivity and hence wrongly updates the conductivity. A strategy to mitigate this effect,

which actually simply favors permittivty updates, will be proposed in the following chapter.
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Figure 1.12: Bulk (a,b) and boundary (c,d) parts of the H1-Sobolev gradient for the conduc-
tivity (b,d) or the relative permittivity (a,c) and for a smoothing length lc := 2ı

√
¸1 = 0:75

[m]. The underlying model parameters distribution is a homogeneous background. The max-
imal value for the bulk are boundary contribution are respectively 7:5 × 10−3, 2:5 × 10−4

(relative permittivity) and 4:2× 10−1, 1:4× 10−2 (conductivity). Boundary contributions are
again negligible.
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1.8 Conclusion

The adjoint state method is an elegant tool to compute derivatives efficiently when the

performance functional depends on the model parameters through a state variable, being

itself the solution of a partial differential problem. It is thus the first essential tool for full

waveform inversion. First order derivatives can indeed be evaluated in that case independently

of any model perturbations at the cost of solving one single extra linear system, while second

order derivatives require solving only two more linear systems. In this chapter, the adjoint

state method was extended to the problems where the model parameters modify not only the

bulk properties of the computational domain but also the boundary conditions or boundary

terms in the model. The procedure to evaluate gradient and Hessian kernels in the presence

of boundary perturbations and using inner product preconditioning was also demonstrated.

Three generic time-harmonic wave scattering problems (acoustic, electromagnetic and elas-

todynamic waves) with model dependent boundary conditions have been treated in detail as

application examples for the developed theory. Thanks to appropriate definitions, the ad-

joint state method was formulated in a unified way for the three problems, and for a large

family of usual boundary conditions. Finally, the whole approach has been illustrated with

a numerical testing problem, with boundary and bulk perturbations acting either indepen-

dently or simultaneously. In particular, the computed derivatives were shown to be inexact

when the boundary contribution is neglected and the strong influence of the inner product

choice was highlighted. Finally, reference cases studies were investigated. Specifically, the

first step towards the construction of an inversion procedure, i.e. the gradient computation,

was performed and the need for preconditioning, for example through metric modifications,

was highlighted. Now that the adjoint procedure to compute gradient and Hessian is set up,

the next natural step is to combine these kernels to build optimization algorithms. This is

the subject of the next chapter, whose goal is to use gradients, Hessian operators and inner

product preconditioning in the more appropriate combinations to obtain the best inversion

schemes in terms of convergence speed.
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Local optimization algorithms

Full waveform inversion is an imaging method which requires solving a large-scale minimization

problem, typically through local optimization techniques. Most local optimization methods

can basically be built up from two choices: the update direction and the strategy to control its

length. In the context of full waveform inversion, this strategy is very often a line search and

more rarely a trust-region method. Both are investigated in this chapter, in combination with

non-standard inner products which act as preconditioners. More specifically, a line search and

several trust-region variants of the steepest descent, the limited memory BFGS algorithm and

the inexact Newton method are presented and compared. A strong emphasis is given to the

inner product choice. For example, its link with preconditioning the update direction and its

implication in the trust-region constraint are highlighted. Based on the three reference case

studies, the importance of an appropriate inner product choice is highlighted and the best

combination of methods is selected. In particular, it is illustrated that using an appropriate

inner product greatly improves the convergence of all the presented methods and that inexact

Newton methods should be combined with trust-region methods to increase their convergence

speed.

Highlights

• Presentation and comparison of line search and trust-region globalization methods

• Illustration of the preconditioning properties of the inner product

• Comparison of the steepest, the l-BFGS and the Newton descent directions

• Assessment of their combinations based on the three reference case studies

55
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2.1 Introduction

Full waveform inversion is formulated as a data fitting problem, whose aim is to recover some

model parameters by minimizing the discrepancy between recorded data and data simulated by

solving wave propagation problems [148, 189, 192]. By nature these data are oscillatory and

consequently the misfit quantifying the discrepancy features local minima [19, 124]. Global

optimization techniques should ideally be used but the typically very high dimensions of the

search space prohibits their use and only local optimization tools can practically be employed,

with care [36]. A straightforward direction to iteratively update the model properties is

of course the gradient, i.e. the direction of steepest decrease. However, it is well-known

that the inverse Hessian plays a crucial role in the reconstruction, in addition to offering

the possibility to account for coupling effects between parameter classes for multi-parameter

inversion [18, 116, 133, 134, 148, 201]. A theoretically simple way to incorporate these

second-order derivatives is to minimize the misfit using Newton methods [2, 9, 18, 45, 113,

116, 134, 136, 135, 201]. In practice however, the pure Newton method is too computationally

expensive to implement, because it requires inverting the Hessian operator. In addition,

the misfit is not necessarily quadratic, thus the exact Newton direction is not necessarily

appropriate. Consequently, it is natural to turn to inexact Newton methods, where the search

direction is constructed iteratively to approximate the pure Newton direction, or to quasi-

Newton methods. State-of-the-art methods rely on the quasi-Newton l-BFGS algorithm,

which implicitly builds an approximation of the inverse Hessian operator from l previously

saved gradients and model parameters [130]. However, it has been illustrated that on some

specific cases involving multiple reflections, such quasi-Newton methods fail to converge where

inexact Newton methods do succeed [118]. The latter compute the descent direction through

a few iterations of a linear system involving the Hessian operator (the Newton system). One

advantage over l-BFGS is the locality of the quadratic approximation: such methods do not

rely on the convergence history of the algorithm, which might yield inaccurate inverse Hessian

approximation for non quadratic misfit functions. The bottleneck of these methods lies in

the compromise to find between a direction built in few iterations, but which hardly takes

the Hessian into account and a nearly exact direction which is very expensive to compute. A

complementary strategy to reduce this number of inner iteration is to apply a preconditioner

to both sides of the Newton system [78, 26, 135, 196].

To implement any of the three above mentioned schemes, one can rely either on line search

algorithms, or on trust-region methods. In the former case, once a direction is chosen, the

outer iteration is completed by finding the optimal length of the step that should be performed

along that direction. In the non linear optimization community, it is sometimes argued however

that line search is not well suited with Newton directions, especially when the Hessian is nearly

singular. Indeed when the Hessian is nearly singular, the Newton direction becomes excessively
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long such that the local quadratic approximation implicitly made when computing it ceases to

hold. Much computational effort must then be made by the line search procedure to reduce

the step size [130]. Stopping the iterative solution of the Newton system earlier appears as

a solution to this problem. For example, its convergence requirements could be relaxed such

that they reflect the accuracy of the local quadratic approximation [43, 118]. Alternatively, a

trust-region method could be used instead [102, 200, 205, 207]. The latter limits the length

of the update direction depending on the accuracy of the local quadratic approximation. The

length of a direction is given by its norm, itself induced by the inner product chosen for the

model parameters space. The choice of this inner product is thus pivotal in the implementation

of a trust-region method. Moreover changing the inner product modifies both the gradient

and the Hessian and is equivalent to applying a preconditionner, as it was shown in Chapter 1.

Consequently, it also has a major impact on line search based local optimization methods [34,

52, 127, 88, 210].

In this chapter, the three following important questions are tackled:

• Which descent direction to compute: the gradient, the l-BFGS direction or an inexact

Newton direction?

• Which globalization method to select: a line search method or a trust-region method?

• Which preconditioning strategy to apply? How to enforce it?

Answering these three questions and determining the good combinations (good practices)

between them is crucial for effective full waveform inversion. From this study, it appears that

preconditioning is essential and that enforcing preconditioning through the inner product is

elegant and, more interestingly, implies no modification to the practical implementation of

the optimization algorithms. The l-BFGS method is found to be the most efficient method,

in particular for both the single-parameter inversions. It is also found to be insensitive to

the globalization choice. Inexact Newton methods should not be discarded though, as they

perform nearly equally well for the double-parameter case study and more generally because

considering the exact Hessian might lead to better model parameter decoupling in the case

multi-parameter inversions. When using inexact Newton methods, the three reference case

studies show that using a trust-region globalization consistently improves convergence.

The chapter is organized in two parts as follows. In the first part (Section 2.2), full waveform

inversion is stated as a very general optimization problem. Its solution procedures using either

a line search or a trust-region are introduced. The Newton system, which is pivotal in local

minimization theory, is also re-derived. A particular emphasis is given to the inner product

choice. More specifically, its link with preconditioning the Newton system is established. Lo-

cal minimization methods commonly used in the context of full waveform inversion are then

recalled. In the second part (Section 2.3), the application to imaging based on the Helmholtz
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(I) equation is detailed. The computational cost of the adjoint procedure to compute gradi-

ents and Hessian vector products is also explained. The overall computational cost of each

optimization method is then deduced. Finally, convergence results on the first case study,

i.e. the Marmousi case study, are analyzed to determine the best parameters for a trust-region

method. This best candidate is then compared to line search methods for the three reference

case studies. The selection of the best inner product is also conducted, for each case study

independently.

2.2 Local optimization methods

Full wave inversion is an imaging method based on the minimization of a misfit functional J,

which exclusively depends on some model parameters m. The recovered model parameters

m∗ are defined as the minimizer of this misfit, i.e. m∗ = arg min J(m). Local optimization

techniques are based on a local quadratic expansion of the misfit J around the current model

estimate

J(m + ‹m) ≈ J(m) + {DmJ}(‹m) +
1

2
{D2

mmJ}(‹m; ‹m): (2.1)

This expansion can also be written in terms of the gradient j ′ and the Hessian operator H

once an inner product 〈·; ·〉M is chosen for the model space M

J(m + ‹m) ≈ J(m) + 〈j ′; ‹m〉M +
1

2
〈H‹m; ‹m〉M : (2.2)

The pure Newton direction pN is then defined as the minimizer of this local quadratic expan-

sion, which is also the solution of a linear system

pN = arg min
p∈M

J(m) + 〈j ′; p〉M +
1

2
〈Hp; p〉M or HpN = −j ′: (2.3)

The large-scale nature of this linear system requires either the use of approximate Hessian op-

erators that are straightforward to invert, or the use of Hessian-free iterative methods. These

approaches are usually referred to as quasi-Newton methods and inexact Newton methods,

respectively. In the latter case, the conjugate gradient method is the ideal candidate for the

iterative solver because the Hessian operator is symmetric. The conjugate gradient method

is however designed for positive definite operators while the full Hessian can be indefinite,

especially far from the global minimum [118, 148]. As a consequence, either an additional

safeguard is added to exit prematurely when directions of negative curvature are encoun-

tered or the exact Hessian is modified such that it becomes positive definite, e.g. using the

Gauss-Newton approximation [135].
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2.2.1 Globalization methods

As mentioned in the introduction, the misfit is not quadratic and thus the pure Newton

direction or its approximations are not always the best directions. For that reason the length

of the search direction is often tweaked using a line search or a trust-region method, which

ensures convergence towards the nearest local minimum [43, 50, 51, 130].

Line search

When using a line search procedure, a direction p must first be identified. An appropriate

length ‚ is then given to this direction p, ideally the global minimum along the line m + ‚p.

In practice however, less stringent satisfactory conditions are used instead to spare expensive

wave problem resolutions. The most widely used example are strong Wolfe conditions

J(m + ‚p) ≤ J(m) + c1‚{DmJ(m)}(p) (2.4)

|{DmJ(m + ‚p)}(p)| ≤ c2 |{DmJ(m)}(p)| (2.5)

for some constant c1 and c2 such that 0 < c1 < c2 < 1. The first condition is called the

sufficient decrease condition. It ensures that updating the model in the direction ‚p produces

a decrease smaller than a fraction c1 of what is expected from a local linear approximation

of the misfit. The second condition, called the curvature condition, ensures that the updated

model m + ‚p is sufficiently close to a local minimum along the line, where the directional

derivative {DmJ(m + ‚p)}(p) would be zero. When this derivative is very smaller (resp.

larger) than zero, then a larger (resp. smaller) step could produce a significantly bigger

decrease. In this thesis, the chosen line search algorithm satisfies strong Wolfe conditions and

accepts steps easily (Algorithm 3.2 from [130] with c1 = 10−4 and c2 = 0:9). The outer loop

is finally obtained by repeating these two steps iteratively until convergence.

Algorithm 1 Conventional line search algorithm
Require: m0

loop

pn =

8>><>>:
− j ′n (steepest descent direction)

Algorithm 3 (l-BFGS direction)

Algorithm 5 with ” = ”n (inexact Newton direction)

‚n ≈ arg min
‚>0

J(mn + ‚pn)

mn+1 = mn + ‚npn
end loop
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Trust region

At the opposite when using a trust-region method, first a maximum length ∆ is chosen. Then

the best approximate solution, meaning the direction that minimizes a local prediction of the

misfit but smaller than this length, is used

p = arg min
p∈M;‖p‖M≤∆

h
Jpred(m; p) := J(m) + 〈j ′(m); p〉M + 0:5

D
H̃(m)p; p

E
M

i
: (2.6)

This local misfit prediction Jpred is typically constructed based on the local quadratic approxi-

mation (2.2) through a particular choice of some approximate Hessian operator H̃. Of course

the approximate Newton direction H̃p = −j ′ is the solution of this problem if it lies inside the

trust region. There are several possibilities to choose this length ∆ and a particular choice is

detailed later. More importantly, as pointed out in the introduction, the length constraint is

formulated in terms of the norm induced by the inner product

‖p‖2
M = 〈p; p〉M ≤ ∆2: (2.7)

Modifying this inner product therefore changes the shape of the trust region and it is then

desirable to choose it carefully. The size of the trust region is actually controlled by the outer

iterations. The decision of modifying the trust region is based on the accuracy of the local

prediction of the misfit. When the prediction is accurate but the updates are limited by the

length constraint, then the trust region radius is increased. Inversely, when the updates are

out of the range of validity of the prediction, then the trust region radius is decreased. The

decrease (resp. increase) rate of the radius is controlled by some parameter c0 < 1 (resp.

c1 > 1). The quality of the prediction is quantified by the ratio between the actual decrease

‹Ja := J(mn)− J(mn+1) and the decrease predicted by the local prediction of the misfit.

mn
mn+1

J
pred
n+1

Jpred
n

J

‹Jp,r
‹Jp,p

‹Ja

Figure 2.1: Illustration of the actual, prospective and retrospective predicted decreases for
a mono-dimensional example where the predicted misfit is the exact second order expansion
(Newton method).

There are two ways to compute this predicted decrease [51] (cf. Figure 2.1). On the one

hand the expansion can be written in terms of the gradient and the Hessian operator at the
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previous model estimate

J(mn+1) = J(mn + pn) (2.8)

≈ J(mn) + 〈j ′(mn); pn〉M + 0:5
D
H̃(mn)pn; pn

E
M

= Jpred(mn; pn) (2.9)

which defines the prospective predicted decrease

‹Jp,p := J(mn)− Jpred(mn; pn) (2.10)

= −〈j ′(mn); pn〉M − 0:5
D
H̃(mn)pn; pn

E
M
: (2.11)

On the other hand, it can also be written in terms of the gradient and the Hessian operator

at the next model estimate

J(mn) = J(mn+1 − pn) (2.12)

≈ J(mn+1)− 〈j ′(mn+1); pn〉M + 0:5
D
H̃(mn+1)pn; pn

E
M

= Jpred(mn+1;−pn) (2.13)

which defines the retrospective predicted decrease

‹Jp,r := Jpred(mn+1;−pn)− J(mn+1) (2.14)

= −〈j ′(mn+1); pn〉M + 0:5
D
H̃(mn+1)pn; pn

E
M
: (2.15)

These ratios between the actual decrease and one of both the predicted decreases

p :=
‹Ja

‹Jp,p

and r :=
‹Ja

‹Jp,r

(2.16)

are actually both equal to one when the approximate Hessian in the update direction and

the second order expansion (2.2) are exact. When the misfit is not quadratic or the Hessian

approximation is not accurate, then these ratios can go away from one. Using anything else

than the full Newton method can degrade these ratios, even if the misfit is quadratic. In

particular for a pure quadratic misfit, neglecting the negative definite part of the Hessian

makes the prospective ratio bigger than one (‹Jp,p is underestimated) and the retrospective

ratio smaller than one (‹Jp,r is overestimated).

Standard trust-region methods directly control the radius ∆. However it is an absolute quan-

tity, in the sense that it is compared to ‖p‖M , which depends on the inner product. Thus, it

seems more natural to control this radius relatively to the gradient norm, i.e. ∆ = — ‖j ′‖M ,

which provides a length reference for the (approximate) Newton system. In this way, even

when the (approximate) Newton system changes scale from one iteration to another, the trust

region remains relevant. This particular variant has been first introduced in [50] (cf. Algo-

rithm 2).
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Algorithm 2 Fan trust-region algorithm
Require: retrospective or prospective, 0 ≤ 0 < 1 < 1 and 0 < c0 < 1 < c1

—0 = 1
loop

∆n = —n ‖j ′(mn)‖M

pn =

8>><>>:
− —nj ′n (steepest descent direction)

(2.35) with ∆ = ∆n (l-BFGS direction)

Algorithm 6 with ∆ = ∆n (inexact Newton direction)

‹Ja = J(mn)− J(mn + pn) and ‹Jp,p = J(mn)− Jpred(mn; pn)
p = ‹Ja=‹Jp,p

if p ≥ 0 then mn+1 = mn + pn else mn+1 = mn

if prospective or p < 0 then
 = p

else if retrospective then
‹Jp,r = Jpred(mn+1;−pn)− J(mn+1)
 = r = ‹Ja=‹Jp,r

end if

if  < 1 then —n+1 = c0—n
else if  ≥ 1 and ‖pn‖M > 0:5∆n then —n+1 = c1—n
else then —n+1 = —n

end loop

According to this algorithm, a direction pn is rejected when the prospective misfit prediction

Jpred
n used to compute it is not accurate, in the sense that the prospective ratio is smaller

than some threshold 0. If not rejected, then the trust region size is updated according

to either the prospective or the retrospective ratio, based on a comparison with a second

threshold 1. Because the updated radius ∆n+1 constrains the direction search around the

next model estimate mn+1, it makes sense to use the retrospective ratio which also involves

the next model estimate mn+1 and not the prospective ratio which involves the current model

estimate mn. Using the retrospective ratio is however slightly more expensive because the

next (approximate) Hessian operator in the current direction must be computed in addition.

Moreover, the accuracy of the retrospective prediction might be good in the direction −pn
while still being bad in the direction pn+1 and inversely. There are also no safeguards for

large values of the ratios, which means that when the model is not accurate but the predicted

decrease underestimates the true decrease, the radius can still be increased.

Three sets of values for the threshold 1 and the rates c0/c1 have been tested (cf. Table 2.1).

The acceptance threshold 0 is always tiny such that steps are often accepted, similarly to

the line search algorithm. The first one (A) is very similar to what was originally proposed in

[51]. The other two (B,C) are more cautious because they modify the radius more rarely and

when they do, it increases by a smaller factor. Note that the second one (B) is also close to

what is proposed in [130].
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0 1 c0 c1

A 10−4 0:25 0:20 5:

B 10−4 0:75 0:25 2:

C 10−4 0:90 0:50 2:

Table 2.1: Sets of values for the trust-region algorithm (Algorithm 2).

2.2.2 Inner product

The choice of the inner product plays a central role in the inversion because it defines, through

the norm, how directions length are measured but also because it defines both gradients and

Hessian operators. Indeed, it is interesting to remember that the equivalence between both

expansions (2.1) and (2.2) is granted by the defining property of the gradient and the Hessian

operator in terms of directional derivatives

〈j ′; ‹m1〉M := {DmJ} (‹m1) ∀‹m1; (2.17)

〈H‹m2; ‹m1〉M :=
n
D2
mmJ

o
(‹m1; ‹m2) ∀‹m1; ‹m2: (2.18)

The model parameter space is a function space defined on some region Ω and conventionally,

the inner product is chosen as the L2(Ω) inner product

〈m2; m1〉M = 〈m2; m1〉 :=
Z

Ω
m1(x) ·m2(x) dΩ: (2.19)

This straightforward choice leads to the conventional gradient j ′L2
and the conventional Hessian

operator HL2 , that can both be computed efficiently using the adjoint state method from

Chapter 1. As an illustration, a conventional gradient is represented in Figure 2.2b. It is the

first gradient computed during the acoustic imaging of the Marmousi model: nearly the same

than in Chapter 2.2b actually. As can again be seen, shallow contributions have much greater

amplitudes than deeper parts. This reflects the bad scaling properties of this inner product

and motivates the use of a spatially weighted inner product

〈m2; m1〉M :=
D
m2

√
w;
√
w m1

E
; (2.20)

with an appropriate spatially dependant weight w(x). Insights on how to design w can be

gained by relating the conventional and the weighted gradients. Indeed, both are defined by

(2.17) then by transitivity of the equality

D
j ′L2
; ‹m1

E
=
D
j ′
√
w;
√
w ‹m1

E
∀‹m1 such that j ′ = w−1j ′L2

: (2.21)
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Figure 2.2: Diagonal part of the Gauss-Newton Hessian (a). Conventional gradient (b).
Weighted gradient (c). Weighted and thresholded gradient (d). Weighted and smoothed
gradient (e). The stabilization parameter › is given graphically in (b). A smoothing length
lc = 0:250 [km]) is used for (e).
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The same reasoning can be applied to both Hessian operator, i.e. H = w−1HL2 . Choosing

this weight close to the Hessian operator then makes the gradient closer to the pure Newton

direction and the Hessian operator closer to the identity. In other words, the Newton system

(2.3) is better conditioned and iterative solvers are therefore expected to converge faster. This

weight is here chosen as the diagonal part of the Gauss-Newton Hessian, i.e. w = diag (HGN),

because it can be computed semi-analytically for a given model at no extra computational cost

under certain circumstances (cf. Appendix C) [135]. A weight that has the same units than

the Hessian also has the advantage that the corresponding weighted gradient has the same

units than the model parameters. Model parameters, weighted gradients and weighted Hessian

vector products therefore all have the units of model parameters and the coefficients between

them, for example the length ‚ and — involved respectively in line search and trust-region

techniques, are then always dimensionless and thus easier to interpret. The weights and the

corresponding weighted gradient are given in Figure 2.2a and 2.2c respectively. As expected,

the weighted inner product compensates for the geometrical spreading and restores balance

between shallow and deep contributions. It is however dangerous to use this weight alone

because it can be very close to zero in poorly illuminated zones as for example in the corners

of the model. In these regions, the weighted inner product is insensitive and consequently the

preconditioner is unstable. The simplest stabilization strategy consists in the introduction of

a threshold › in the weights

〈m2; m1〉M :=
D
m2

√
w;
√
w m1

E
+ › 〈m2; m1〉 : (2.22)

The corresponding preconditioning effect is to keep silent some regions, where the weight

is much smaller than the threshold. Another strategy is to use an inner product with the

following stabilization term

〈m2; m1〉M :=
D
m2

√
w;
√
w m1

E
+ › ¸ 〈grad (m2) ; grad (m1)〉 (2.23)

where ¸ := (lc=2ı)2 and lc is characteristic length. This second term, related to spatial

derivation, increases the norm of directions that are rapidly varying and also prevents the

inner product from being insensitive in regions where the diagonal Hessian is close to zero. In

regions where the diagonal Hessian is close to the threshold, then directions with details smaller

than the characteristic length lc are penalized with respect to smoother directions. This inner

product is actually very similar to the one introduced in [210], except that the Gauss-Newton

diagonal Hessian weight is used in addition. As far as preconditioning is concerned, this inner

product can be reformulated through an integration by parts as

〈m2; m1〉M := 〈w m2; m1〉 − › ¸ 〈div (grad (m2)) ; m1〉 : (2.24)
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Then as in Chapter 1, conventional and preconditioned gradients are linked

〈j ′; ‹m1〉M =
D
j ′L2
; ‹m1

E
∀‹m1 (2.25)

〈(w − › ¸div (grad ())) j ′; ‹m1〉 =
D
j ′L2
; ‹m1

E
∀‹m1 (2.26)

⇔ j ′ = (w − › ¸div (grad ()))−1 j ′L2
: (2.27)

From the point of view of preconditioning, this inner product generates a rescaling thanks to

the Gauss-Newton diagonal Hessian weight and a Laplacian filtering, whose smoothing length

equals lc in regions where the diagonal Hessian equals the threshold, i.e. where w(x) ≈ ›. In

regions where this weight is smaller (resp. larger) than the threshold then the smoothing is

stronger (resp. weaker). The effect of these inner products is illustrated in Figure 2.2d and

2.2e. In addition to stabilizing the weights, filtering inner products have been shown to help

the convergence of full waveform inversion by mitigating its non linearity[210].

In general, any inner product that can be related to the conventional inner product (2.19)

through some preconditioner P , yields a preconditioned gradient and a preconditioned Hessian

operator

〈m2; m1〉M = 〈Pm2; m1〉 ⇒ j ′ = P−1j ′L2
and H = P−1HL2: (2.28)

Changing the inner product is formally equivalent to preconditioning both the gradient and the

Hessian operator. It is here chosen to introduce preconditioning through a change in the inner

product rather than through the application of an operator because it appears more elegant and

rigorous. Moreover, this approach has the pedagogical advantage to include preconditioning

inside the inner product choice and thus it does not need to appear explicitly in the description

of the optimization algorithms. In terms of practical implementation, it implies that the

optimization routines need not be rewritten, only the subroutine which computes the inner

product has to be modified, hence providing a lot of flexibility. Basically, a different choice for

the inner product does not modify the pure Newton direction because the same preconditioner

is applied to both sides of the Newton system (2.3), but does modify the subspace constructed

by the conjugate gradient method and does modify norms which are involved in any stopping

criterion. A good choice can thus lead to better approximate directions and better truncation

rules.

2.2.3 Steepest descent

The steepest descent is actually the simplest local gradient-based optimization algorithm. It

consists in taking the search direction as the opposite gradient. This is the best direction at

first order (H̃ = 0) but it can also be seen as a quasi-Newton step where the approximate Hes-

sian operator is the identity operator (H̃ = I). In practice however, this approximation is very

crude because the Hessian operator is far from the identity operator, even after precondition-



Local optimization algorithms 67

ing. The downside of this simple method is its linear convergence rate. This slow convergence

speed is one of the main motivation for the investigation of higher order algorithms.

Line search globalization

No length information can be captured from the approximate Hessian operator in this case, be-

cause it is simply the identity operator (H̃ = I). The first trial step length is then chosen based

on the history of the outer iterations to save as many step length trials as possible [130], e.g.

‚ = 2(J(mn)− J(mn−1))={DmJ}(−j ′): (2.29)

Trust region globalization

Trust-region methods are barely used with steepest descent. Mostly because the linear misfit

prediction

Jpred(m; p) := J(m) + 〈j ′(m); p〉M (2.30)

is not accurate enough. Moreover the solution to the trust-region sub-problem (2.6) is trivially

p = −—j ′ and is always on the boundary, because of the absence of a second order term. An

upper bound on the relative size of the trust region — is then added to compensate the fact

that the trust-region algorithm will never keep it constant. This bound is set to —max = 4, 4,

5 for parameter sets A, B, C respectively.

2.2.4 Limited memory BFGS method

Quasi-Newton methods are expected to provide a huge improvement over the steepest descent

and an attractive alternative to Newton methods because they do not involve any expensive

Hessian vector product. In place of the exact Hessian, an approximation H̃ = B is used in-

stead. This approximation is built only with the successive gradients and model parameters of

each iteration. Moreover, since expensive Hessian vector product are avoided, quasi-Newton

methods are sometimes more efficient than Newton methods. The Broyden-Fletcher-Goldfarb-

Shanno algorithm, abbreviated BFGS, is maybe the most widely used quasi-Newton method.

This method constructs a symmetric and positive definite approximation of the Hessian op-

erator based on all the previous gradients and model parameters. This approximation Bn+1 is

chosen such that it verifies the secant equation

Bn+1∆mn = ∆j ′n with ∆mn = mn+1 −mn and ∆j ′n = j ′n+1 − j ′n (2.31)

while being close to the previous approximation Bn and positive definite. Note that imposing

the positive definiteness of this approximation also imposes that the update direction must

satisfy the (BFGS) curvature condition 〈∆mn;∆j
′
n〉M > 0. One of the biggest advantage of
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the BFGS algorithm is that it is possible to directly build the approximate inverse Hessian op-

erator B−1
n from the memorized gradients and model parameters. However, building explicitly

this inverse operator in the context of large-scale optimization is still prohibitively expensive,

as well as storing in memory all the previous gradients and model parameters. For these

reasons, a limited memory version of the algorithm has been derived. Instead of memorizing

all the previous iterates, it only requires the l last iterates and above all, it comes with a

two-loop recursive procedure to compute the application of the inverse operator on any di-

rection. The approximate Newton direction associated with the l-BFGS operator is therefore

straightforward to compute. This two-loop recursive l-BFGS algorithm is given in Algorithm

3. A constant initial Hessian approximation, i.e. B0
n =

D
∆mn−1;∆j

′
n−1

E
M
=
D

∆j ′n−1;∆j
′
n−1

E
M

,

is here chosen [130].

Algorithm 3 Inverse l-BFGS operator application

Require: q, ∆mk , ∆j ′k , ∀k ∈ [n − l ; n − 1]

for k = n − 1 down to k = n − l do
¸k = 〈∆mk ; q〉M = 〈∆j ′k ;∆mk〉M
q = q − ¸k∆j ′k

end for

r = B0
n q

for k = n − l up to k = n − 1 do
˛k = 〈∆j ′k ; r〉M = 〈∆j ′k ;∆mk〉M
r = r + (¸k − ˛k)∆mk

end for

return r (= B−1
n q)

It is important to highlight here that this method also benefits from the modification of

the inner product. Indeed, the building blocks of this approximate Hessian operator are

the successive gradients, which are preconditioned through the inner product. By measuring

gradient variations, this method constructs a representation of the misfit which is good enough

to produce super-linear convergence, a great improvement over the steepest descent, at no

extra cost. This approximation is however positive definite while the exact Hessian might be

indefinite, especially during the early iterations of the inversion. In such cases, this quasi-

Newton method may fail to converge while Newton methods may not [118].

Line search globalization

The unit step length ‚ = 1 is always tried first because the length information should be

captured by the inverse approximate Hessian. Importantly, it can be shown that the (BFGS)

curvature condition is always satisfied if the strong Wolfe conditions (2.4) and (2.5) are
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enforced [130]. Therefore the l-BFGS algorithm combined with a line search will always

construct a positive definite approximate Hessian operator B.

Trust region globalization

Finding the exact solution to the trust-region sub-problem (2.6) with the l-BFGS predicted

misfit

Jpred(m; p) := J(m) + 〈j ′(m); p〉M + 0:5 〈Bp; p〉M (2.32)

is difficult for a general trust region radius. However when this radius is large enough, in

particular larger than the unconstrained solution pu := −B−1j ′, then it is actually also the

exact constrained solution. On the other hand, when the radius is small enough, the quadratic

term in the misfit prediction is negligible and the sub-problem is equivalent to the steepest

descent, which indicates following the gradient up to the boundary. Based on these solutions

for the extreme value of the radius, the exact solution to the sub-problem (2.6) might be

substituted by an interpolation between these two solutions.

0
∆a

∆b

p(∆a) p(∆b) p(∆c)

∆c

(a) (b) (c)

p
c

p
u

Figure 2.3: Illustration of the dogleg method (dogleg ( ), exact ( )).

Namely, the gradient is followed each time the minimum of the misfit prediction along the

gradient, i.e. the Cauchy point pc = −¸j ′ (with ¸ = 〈j ′; j ′〉M = 〈Bj ′; j ′〉M), is outside the

radius

p(∆) = − ∆

‖j ′‖M
j ′ = −—j ′ when — ≤ ¸: (2.33)

Then for intermediate radii, which contains this Cauchy point but not the unconstrained

solution, an interpolation between both is done

p(∆) = pc + fi∗ (pu − pc) with 0 < fi∗ < 1 such that ‖p‖M = ∆: (2.34)

Finally for large radii, the unconstrained solution is accepted. In summary

p(∆) =

8>>>><>>>>:
pu when ‖pu‖M ≤ ∆ (c);

− —j ′ when ‖pc‖M ≥ ∆ (a);

pc + fi∗(pu − pc) when ‖pc‖M ≤ ∆ ≤ ‖pu‖M (b):

(2.35)
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The approximate solution (2.35) to the trust-region sub-problem (2.6) is called the dogleg

method [130]. It is illustrated schematically in Figure 2.3.

A huge difference with the line search implementation of the l-BFGS algorithm is that now

the direct application of the approximate Hessian operator B on some directions must be

computed. Unfortunately there is no equivalent to Algorithm 3 for the direct l-BFGS operator

and its application must then be computed from its recursive definition at iteration n, i.e.

Biq = B0
nq +

i−1X
k=n−l

bk 〈bk ; q〉M − ak 〈ak ; q〉M

with ak =
Bk∆mkq

〈Bk∆mk ;∆mk〉M
and bk =

∆j ′kq
〈∆j ′k ;∆sk〉M

: (2.36)

It is important to highlight that the sequence of directions ak could not be memorized because

at each iteration the oldest information is discarded, which modifies the whole ak sequence.

A complete procedure to compute the application of the direct l-BFGS operator is given in

Algorithm 4. Faster but more sophisticated procedures do exist [130]. However, manipulations

in the model parameter space are computationally negligible with respect to wave propagation

problems, hence the speedup would also be negligible. Thanks to this procedure the prospec-

tive and retrospective predicted decrease (2.11) and (2.15) can be evaluated. Interestingly,

the prospective decrease is evaluated with the current Hessian approximation Bn while the ret-

rospective decrease is evaluated with the next Hessian approximation Bn+1. The retrospective

ratio is therefore expected to be more often close to one because this next Hessian approxi-

mation Bn+1 is specifically constructed from the update direction pn = ∆mn = mn+1 −mn.

Algorithm 4 Direct l-BFGS operator application

Require: q, ∆mk , ∆j ′k , ∀k ∈ [n − l ; n − 1]

for k = n − l up to k = n − 1 do

bk = ∆j ′k=
q
〈∆j ′k ;∆mk〉M

ak = B0
n∆mk

for i = n − l up to i = k − 1 do
ak = ak + 〈bi ;∆mk〉 bi − 〈ai ;∆mk〉 ai

end for
ak = ak=

q
〈∆mk ; ak〉M

end for

r = B0
n q

for k = n − l up to k = n − 1 do
r = r + bk 〈bk ; q〉M − ak 〈ak ; q〉M

end for

return r (= Bn q)
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2.2.5 Newton methods

In contrast to quasi-Newton methods, Newton methods use the Hessian operator explicitly,

as they try to solve the Newton system (2.3). The interest of these methods lies in their

independence on the convergence history and in their quadratic convergence rate in the vicinity

of the minimum. Far from this minimum, the Hessian operator might however be indefinite,

which complicates the solution procedure for the Newton system. For that reason, it is

frequent to make the Gauss-Newton approximation (H̃ = HGN), which consists in keeping

only the positive definite part of the Hessian operator (cf. Appendix C). The downside of this

approximation is then that the second order representation (2.2) of the misfit is less accurate,

especially if the negative definite part of the Hessian is not negligible, which might prevent

the method from converging. In this section, inexact Newton methods based on a line search

procedure or a trust-region method are introduced. Both are valid for the full Hessian and for

its Gauss-Newton approximation.

Line search globalization

Newton methods can be combined with a line search procedure. In this case a direction p

is first found by solving the Newton system approximately with the conventional conjugate

gradient method (cf. Algorithm 5) [130]. This algorithm constructs iteratively the solution

of a linear system without requiring the explicit expression of the Hessian matrix but only its

action in particular directions. The iterative procedure is stopped when the residuals have

decreased more than some threshold, called the forcing sequence ”, which is typically close

to zero, i.e.

(‖rk‖M :=) ‖Hpk + j ′‖M < ” ‖j ′‖M (= ” ‖r0‖M) : (2.37)

Over-solving is here avoided through this forcing term ”, which is not systematically close

to zero but which is instead chosen to reflect the accuracy of the second-order expansion.

Algorithm 5 Conventional conjugate gradient algorithm
Require: 0 < ” ≤ 1

if 〈Hj ′; j ′〉M ≤ 0 then return −j ′

p0 = 0, r0 = j ′, q0 = −j ′
loop

if 〈Hqk ; qk〉M ≤ 0 then return pk

¸k = 〈rk ; rk〉M = 〈Hqk ; qk〉M , pk+1 = pk + ¸kqk and rk+1 = rk + ¸kHqk

if ‖rk+1‖M<” ‖j ′‖M then return pk+1

˛k+1 = ‖rk+1‖2
M = ‖rk‖2

M and qk+1 = −rk+1 + ˛k+1qk
end loop
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Three possible choices for this sequence have been described and studied by [43]. These three

choices were then compared in the context of full waveform inversion in [118], who advise to

use the forcing sequence

”n =
‖j ′(mn)− j ′(mn−1)− ‚n−1H(mn−1)pn−1‖M

‖j ′(mn−1)‖M
: (2.38)

If the accuracy of the local quadratic approximation is good then this forcing term is close to

zero and the Newton system is solved accurately. If not, then iterations are truncated sooner.

This forcing sequence plays a similar role than the prospective ratio for trust-region methods.

It is however based on a (prospective) expansion of the gradient while the prospective ratio

is based on an expansion of the misfit. Additional safeguards are also added to prevent this

forcing term to decrease too fast or to increase above ”0 = 0:9. Interestingly, directions

of negative curvatures are never investigated, except if it is the gradient. As previously an

appropriate length ‚ is then given to this direction p through a line search. The unit step

length ‚ = 1 is again tried first because it would be the best choice if the misfit were quadratic.

Trust region globalization

When the Newton method is associated with a trust-region technique, the direction is found

by minimizing the local quadratic expansion of the misfit

Jpred(p) := J(m) + 〈j ′; p〉M + 0:5 〈Hp; p〉M (2.39)

inside a sphere of radius ∆. The constraint ‖p‖M ≤ ∆ limits the size of the direction and

aims at preventing over-solving. This trust-region sub-problem can be solved approximately

with the Steihaug conjugate gradient method (cf. Algorithm 6) [173]. This method actually

exploits two properties of the conjugate gradient algorithm: successive approximate solutions

always grow in norm while the misfit prediction always decreases

‖pk‖M < ‖pk+1‖M and Jpred(pk) > Jpred(pk+1): (2.40)

The underlying idea of the method is then to minimize the second order expansion of the

misfit iteratively using the conventional conjugate gradient algorithm until either convergence

is achieved, or the boundary is reached. Basically, there are only two modifications compared

to Algorithm 5. Firstly, the inner iterations are cropped to the trust region radius ∆ when the

unconstrained solution increases beyond it. Secondly, when a direction of negative curvature

is encountered, it is followed up to the boundary of the trust region and the algorithm is

stopped. Interestingly these directions are never investigated in the conventional version. The

convergence criterion is unchanged but here the forcing term is kept constant (” = 0:5).
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Algorithm 6 Steihaug conjugate gradient algorithm
Require: ∆ > 0 and 0 < ” ≤ 1

p0 = 0, r0 = j ′, q0 = −j ′
loop

if 〈Hqk ; qk〉M ≤ 0 then
fi∗ = fi > 0 such that ‖pk + fiqk‖M = ∆
return pk + fi∗qk

end if

¸k = 〈rk ; rk〉M = 〈Hqk ; qk〉M
if ‖pk + ¸kqk‖M ≥ ∆ then
fi∗ = fi > 0 such that ‖pk + fiqk‖M = ∆
return pk + fi∗qk

end if
pk+1 = pk + ¸kqk and rk+1 = rk + ¸kHqk

if ‖rk+1‖M<” ‖j ′‖M then return pk+1

˛k+1 = ‖rk+1‖2
M = ‖rk‖2

M and qk+1 = −rk+1 + ˛k+1qk
end loop

2.3 Reference case studies

Numerical case studies are performed using the least squares distance between the measured

and simulated data as a misfit and with the Helmholtz operator as the wave propagation

model

F!(s2) := div (grad ()) + !2s2: (2.41)

For the first two case studies, related to acoustics, the slowness squared distribution s2

[s2/km2], which is the squared inverse of the velocity, is chosen as the subsurface model

parameter. Several other parametrizations are also possible but it has been shown that the

slowness squared can yield a fast convergence and accurate results [9, 25, 70, 138]. For the

third case study, related to electromagnetics, the dimensionless slowness squared s2 is only

an intermediate variable, as the ultimate model parameters are the relative permittivity and

the relative conductivity. While relative permittivity is a widely-used concept, that of relative

conductivity is less common and it is thus introduced in the subsection related to this third

case study.

Implementation of any of the above described local optimization algorithms requires the ad-

joint state method, developed in Chapter 1, to compute derivatives efficiently. It is sum-

marized here below in terms of a wave field u!e , a linear forward operator F!(m) and a

(perturbed)(adjoint) excitation source (‹)f (†)
e , that can all be identified based on Chapter 1

for the Helmholtz (I) equation and based on Appendix A for the other three wave propagation

models.
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1. Find the forward fields u!e such that

F!(m)u!e = fe : (2.42)

2. Find the adjoint fields u†!e such that

F!(m)u†!e = f †e : (2.43)

3. Find the preconditioned gradient j ′ such that

P j ′ = j ′L2
: (2.44)

4. Find the perturbed forward fields ‹u!e such that

F!(m)‹u!e = ‹fe : (2.45)

5. Find the perturbed adjoint fields ‹u†!e such that

F!;e(m)‹u†!e = ‹f †e : (2.46)

6. Find the preconditioned Hessian operator H‹m in the direction ‹m such that

PH‹m = ‹j ′L2
: (2.47)

Independently of any practical solver for these wave propagation problems, a misfit evaluation

only requires performing step 1 and thus only requires solving a single wave propagation

problem. A gradient evaluation requires steps 1 to 3, thus a single supplementary wave

propagation problem must be solved if the misfit has already been computed. Similarly, steps

1 to 6 are necessary for the application of the (Gauss-)Newton Hessian operator in a particular

direction, thus again two supplementary wave propagation problems if the gradient has already

been computed for the same model parameters.

Consequently the steepest descent and the l-BFGS directions require solving two wave prop-

agation problems while any Newton-based direction has an initial cost of four wave problems

and each supplementary conjugate gradient iteration requires two more wave problems. To

the price of the directions must be added the cost of the line search or the trust-region meth-

ods. Line search typically accepts a step length if it verifies sufficient conditions (2.4) and

(2.5), which involves the misfit and its gradient. Thus it requires one or two additional wave

problems each time a trial step length is rejected. Prospective trust-region has no additional

cost because the evaluation of the trust region only depends on quantities already computed.
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Base CG LS TR

SD 2 - 2NLS 0

l-BFGS 2 - 2NLS 0

LS-NCG 2 2NCG 2NLS -

TR-NCG (P) 2 2NCG - 0

TR-NCG (R) 2 2NCG - 2

Table 2.2: Wave propagation problem solutions count for a single outer iteration of each
local optimization algorithm. NCG is the number of inner iteration of the conjugte gradient
algorithm. NLS is the number of rejected values of ‚ during the line search.

At the opposite, retrospective (Gauss-)Newton trust-region requires the application of the

Hessian operator on the preceding direction and thus needs to solve two additional wave prop-

agation problems. Table 2.2 summarizes this accounting. It is interesting to highlight here

that the first inner iteration of any conjugate gradient Newton method is simply the steepest

descent but it is twice more expensive because the curvature is computed. Subsequent inner

iterations must therefore provide large decrease of the misfit to compensate this high entry

cost. This phenomenon is even worse with the retrospective trust-region algorithm because

there is a systematical additional cost to update the trust region radius.

Solutions to partial differential equations (2.42) to (2.47) are obtained numerically with the

finite element method. In what follows, the exact numerical procedure is specified in that

context. Note however that the analysis would nearly be identical with finite differences.

Finite element discretization assembles operators into matrices and source terms into vectors.

Wave propagation problems (2.42), (2.43), (2.45) and (2.46) therefore transform into a linear

system whose left-hand-side matrix F is always the same for a given frequency while the right-

hand-side source f is different for any field type, frequency and excitation index. The solution

of this system is obtained by first computing its lower-upper factorization then by performing

an upward-backward substitution for each right-hand-side source

Fu = f ⇔ F = LU; Lv = f and Uu = v: (2.48)

Huge computational reduction is therefore obtained because only one matrix per frequency

is assembled and factorized. The computation of any wave field then requires the assembly

and the upward-backward substitution of a vector per excitation source, but no more matrix

factorization. The numerical equivalence of the preceding six steps procedure is given here

below.

1. • Factorize wave propagation operators (n!)
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• Substitute forward sources (n! × ne)

2. • Substitute adjoint sources (n! × ne)

3. • Factorize the preconditioner (1)

• Substitute the conventional gradient (1)

4. • Substitute perturbed forward sources (n! × ne)

5. • Substitute perturbed adjoint sources (n! × ne)

6. • Substitute the conventional Hessian (1)

It is interesting to highlight that model problems (steps 3 and 6) are negligible with respect to

wave problems. Indeed while wave problems involve a matrix per frequency and a vector per

excitation source, model problems only involve a single matrix (the preconditioner) and a single

source vector (the conventional gradient or Hessian). Moreover, the model discretization is

usually coarser than the wave field discretization. Consequently, not considering these model

problems when quantifying the computational complexity is not dramatic. It should however be

highlighted that forward problems are more expensive than the corresponding adjoint problem,

because the matrix factorization is reused. Moreover, the perturbed forward and the perturbed

adjoint problems are also slightly more expensive than the adjoint problem, because both their

sources ‹fe and ‹f †e are dense, meaning that both are non-vanishing everywhere in the domain

Ω. Consequently, each entry of the corresponding discrete source vector must be computed.

At the opposite, the forward and adjoint sources are sparse, as both are only defined on

emitters and receivers respectively, and only a small number of entries then needs to be

computed. Nevertheless, all of these four problems are weighted equally when quantifying the

computational complexity.

In the next three sections, the three reference case studies are investigated. As a reminder,

the first one is based on the widely used Marmousi benchmark [187] while the second one,

replicated from [118], is inspired from a near-surface imaging of close concrete structures and

features important multiple scattering. Multiple scattering is responsible for the indefiniteness

of the Hessian operator, which, as mentioned in Section 2.2, is challenging for optimization

algorithms. This second example is thus chosen to emphasize which optimization methods are

able to overcome such difficulties. Finally, the third test case, replicated from [97, 111], is con-

sidered. The particularity of this last case study is to feature two parameters. Multi-parameter

inversions are known to be challenging because of the trade-offs between parameters, that

can typically be captured with the Hessian operator.

For all these case studies, the influence of the inner product choice on the convergence

speed and the quality of the inverted model is studied first. Once the inner product is chosen,

prospective and retrospective trust-region methods with different parameter sets are compared
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and the best option is selected. Advantages and drawbacks of trust-region methods in the

context of full waveform inversion are then finally discussed based on a comparison with the

corresponding line search methods. In the remainder of this chapter, data misfit are normalized

such that the misfit corresponding to the initial model is one and computational complexity

is measured in numbers of forward problems solved, as explained above.

2.3.1 Case study 1: Marmousi model

Numerical inversions are performed on the 2D Marmousi model (cf. Figure 2.4a) with three

frequencies (4, 6 and 8 [Hz]) simultaneously, starting from a smoothed version of the exact

Marmousi model (cf. Figure 2.4b). Outer iterations are stopped when satisfying the conver-

gence criterion J(s2)=J(s2
init) < 10−3. An inversion result, i.e. an estimated squared slowness,

is shown in Figure 2.4c. From a relatively low resolution initial guess, full waveform inversion

indeed provides a high-resolution estimation of the exact model. Images obtained with the

other methods do not differ significantly.

Inner product

As explained earlier, the inner product has an influence on both the gradient and the Hessian.

Its choice is therefore expected to influence the convergence speed but also the particular

minimizer that is reached. To illustrate both these effects, the line search l-BFGS algorithm

has been applied with the four different inner products introduced in this chapter, i.e. the

conventional inner product (2.19), the weighted inner product (2.20) and its regularized vari-

ants (2.22) or (2.23). Corresponding convergence curves and error maps are given in Figure

2.5 and 2.6 respectively. Both these figures are also summarized in Table 2.3. As can be seen

from these figures, all weighted inner product increase the convergence speed with respect to

the conventional, i.e. unweighted, one. However, the minimizer obtained with the weighted

inner product alone is further away from the exact solution, in particular in the right corner of

the model. Avoiding such artifacts is precisely one of the reasons for the introduction of reg-

ularized inner products, as they dampen the contributions in these poorly illuminated regions.

Both the thresholding and the smoothing strategy perform similarly in reducing the error back

to the same level than the unweighted solution but the thresholding strategy converges faster.

It is thus kept for the sequel of this case study. The advantages of the smoothing inner

product will be highlighted during the second case study.

In the next three subsections, the behaviour of the steepest descent method, the l-BFGS

method, the full Newton and the Gauss-Newton methods is analysed. Convergence curves and

interesting statistics for all these methods are given in Figure 2.7 and Table 2.4 respectively.
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Figure 2.4: Marmousi slowness squared model (a), initial guess (b) and inversion results using
a line search l-BFGS algorithm with a weighted and thresholded inner product (c).
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Figure 2.5: Data misfit as a function of the computational complexity for the line search l-
BFGS algorithm with a conventional (• •), only weighted (- •), weighted and thresholded (- -)
or weighted and smoothed (–) inner product.
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Wave sol. (tot) Error rms ([s2/km2])

Conventional 78 0.0174

Weighted only 61 0.0202

and thresholded 57 0.0174

and smoothed 68 0.0173

Table 2.3: Computational complexity and root-mean squared error for the line search l-BFGS
algorithm with different inner products.
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Figure 2.6: Final inversion error for the line search l-BFGS algorithm with a conventional (a)
or a weighted (b) inner product. Inversion errors for both regularized inner products are not
shown because these are very similar to those obtained with the conventional inner product.
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W
ave

sol.
(tot)

O
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it.
(tot)

Inner
it.

(avg)

R
ejected

(%
)

C
onstrained

(%
)

N
egative

curv.
(%

)

SD

LS 244 111 10 - - -

TR-P (A) 396 198 - 40 100 -

TR-P (B) 280 140 - 6 100 -

TR-P (C) 264 132 - 5 100 -

TR-R (A) 328 164 - 20 100 -

TR-R (B) 354 177 - 20 100 -

TR-R (C) 330 165 - 25 100 -

LB

LS 57 27 - 7 - -

TR-P (A) 58 29 - 3 10 -

TR-P (B) 58 29 - 3 34 -

TR-P (C) 64 32 - 13 50 -

TR-R (A) 58 29 - 3 10 -

TR-R (B) 56 28 - 0 11 -

TR-R (C) 56 28 - 0 11 -

FN

LS 139 17 2.9 12 - 29

TR-P (A) 178 22 3.0 32 77 0

TR-P (B) 106 13 3.1 0 69 0

TR-P (C) 106 16 2.3 0 75 0

TR-R (A) 144 14 3.1 14 64 0

TR-R (B) 128 14 2.6 0 79 0

TR-R (C) 142 17 2.2 0 82 0

GN

LS 124 15 3.13 0 - -

TR-P (A) 130 11 4.9 0 10 -

TR-P (B) 98 10 3.9 0 30 -

TR-P (C) 98 10 3.9 0 30 -

TR-R (A) 152 11 4.9 0 10 -

TR-R (B) 132 14 2.7 0 79 -

TR-R (C) 184 24 1.8 0 83 -

Table 2.4: Statistics related to the implementation of the steepest descent (SD), the l-BFGS
(LB), the full Newton (FN) method and the Gauss-Newton (GN) methods combined with
a line search (LS) or a trust region (TR) with a prospective (P) or retrospective (R) radius
update with different parameter sets (A,B,C).
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Figure 2.7: Data misfit as a function of the computational complexity for the steepest descent
(a), the l-BFGS (b), the full Newton (c) and the Gauss-Newton (d) methods combined with
either a line search ( ) or a prospective trust region (A ( ), B ( ), C ( )) or a retrospective
trust region (A ( ), B ( ), C ( )).
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Steepest descent

There is no dramatic improvement when using one or another direction scaling method,

because actually the direction itself is bad. Nevertheless, it appears that methods which re-

ject less frequently the proposed update direction are faster, i.e. the prospective trust-region

method with the more cautious parameters sets (B and C) and the line search method. Ret-

rospective radius update does not speed up convergence. Actually the retrospective predicted

decrease (2.15) sometimes largely underestimates the actual decrease, illustrating that the

retrospective misfit prediction is very not accurate, but still producing an increase of the trust

region radius. Finally, among the three best methods, the slope is slightly steeper for the two

trust-region methods, probably because they systematically try to increase the length given

to the gradient direction.

Limited memory BFGS method

There is hardly any difference between all the methods combined with the l-BFGS algorithm.

The line search method only rejects the unit step length ‚ = 1 for the first two iterations.

Similarly, the retrospective ratio is always very close to one, such that the trust region radius

for retrospective methods quickly becomes large and thus the pure (unconstrained) l-BFGS

direction is always accepted after the first few iterations.

An algorithm that unconditionally follows the pure l-BFGS direction would therefore already be

very good and neither a line search nor a trust-region method can actually drastically improve

it, as far as convergence speed is concerned. Nevertheless, the more cautious prospective

trust-region methods (B and C) also converge fast, which shows that, on the other hand,

constraining the size of the update directions does not slow down the inversion.

Newton methods

As far as trust-region methods are concerned, it first clearly appears that the retrospective

radius update is not worth its computational cost. Indeed, it does not require less wave

solutions than the best prospective ones, even if the computation cost of the retrospective

predicted decrease is withdrawn (two wave solutions per outer iteration). Retrospective radius

update has been introduced to anticipate and prevent failures. However, the prospective

Newton method combined with the more cautious parameters sets (B and C) does already

not reject any direction and there is then no interest in computing the retrospective ratio.

Among the prospective methods, it appears that the two more cautious (B and C) yield

the fastest convergence. Convergence speed decreases when using parameter set A with

both the full Newton method and the Gauss-Newton method but for two different reasons.

With parameter set A, the trust region radius grows quickly and the full Newton method

is thus allowed to explore large directions, beyond the validity of the exact second order
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expansion (2.2). Such directions produce a high rejection rate (32%) and thus a waste of

computational effort. At the opposite, the Gauss-Newton method never rejects a direction and

the explanation for its slower convergence can therefore not be the same. During the earliest

iterations, far from the global minimum, the Gauss-Newton approximation is not valid (because

data residuals are not small yet) and thus the Gauss-Newton Hessian is quiet different from the

full Hessian. The misfit prediction under the Gauss-Newton approximation is thus cruder than

the exact second order expansion (2.2) and the ratio p is even more likely to be away from one.

This ratio p is given in Figure 2.8c. As can be seen, during the first few iterations, this ratio is

actually very larger than one, which indicates that the misfit prediction is indeed not accurate.

Nevertheless, the trust region radius is still increased and the system is solved accurately while

the Hessian and the misfit are not approximated accurately. This effect generates over-solving

the system at the earliest iteration and slows down the Gauss-Newton method, as can be seen

by comparing the initial slopes between variant A and B/C in Figure 2.7d. This effect would

be even more dominant if the convergence requirements, i.e. the forcing sequence ”, were

smaller. With the large value ” = 0:5 chosen here, convergence of the conjugate gradient

algorithm is attained relatively fast. Actually variant B and C perform better than variant

A only because it takes more iterations for the trust region constraint to become inactive.

Starting with a larger initial radius would result in the same convergence speed than variant

A. Also, it is interesting to highlight that when using the retrospective radius update with

the Gauss-Newton approximation, the situation is reversed because the retrospective ratio is

then smaller than one. Instead of over-solving, under-solving then appears. It is therefore

better to use trust-region methods with the full Newton Hessian, because it constructs the

best possible misfit prediction while it does not introduce supplementary difficulties.

The full Newton method and the Gauss-Newton method are slightly slower when combined

with a line search method. As far as the full Newton method is concerned, directions of

very small curvature can produce large update directions, far beyond the validity of the ex-

pansion (2.2). In such cases, the initial length ‚ = 1 is rejected and some computational

cost must be involved to reduce it to satisfy Wolfe conditions. This effect has actually been

observed twice using the full Newton method. Moreover during the first fifth outer iterations,

the full Newton method using the line search globalization stops because a direction of nega-

tive curvature is encountered. At the opposite of its trust-region counterpart, the line search

variant of the conjugate gradient algorithm discard any direction of negative curvature, thus

wasting the associated computational cost. Of course within the Gauss-Newton approxima-

tion this second effect can not appear (and the first one was actually not observed). The

line search globalization therefore seems more suited with the Gauss-Newton approximation.

Nevertheless it is not much faster. In the context of line search globalization, the accuracy

of the second order local expansion is expressed through the forcing sequence ”, which is,

as can be seen in Figure 2.10, away from zero during the first few iterations. Consequently,
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the convergence of the conjugate gradient algorithm is quickly reached and only a few inner

iterations are performed per outer iteration, as can be seen from Figure 2.9c. Figure 2.9c

actually show how hard it is to stop the Gauss-Newton inner iterations at the right time: the

fastest method is the prospective trust region B or C and it performs less inner iterations then

the variant A but more than the line search method. The difficulty to pick up an appropriate

stopping criterion for the Gauss-Newton method is another motivation to use the full Newton

method instead. Using the full Newton method, the line search variant actually suffers from

directions of small or negative curvature while trust-region methods do not. Based on this

first case study, the recommendation is therefore to use the full Newton method combined

with a trust-region method and a prospective radius update.

(a)

2 4 6 8 10 12 14 16 18 20 22
0:0

0:5

1:0

1:5

(b)

2 4 6 8 10 12 14 16 18 20 22
0:0

0:5

1:0

1:5

(c)

2 4 6 8 10 12 14 16 18 20 22
0:0

0:5

1:0

1:5

(d)

2 4 6 8 10 12 14 16 18 20 22
0:0

0:5

1:0

1:5

Figure 2.8: Prospective ratio p (a,c) or retrospective ratio r (b,d) during the outer iterations
of the full Newton method (a,b) and the Gauss-Newton method (c,d) with different parameter
sets using a prospective radius update (a,c) (A ( ), B ( ), C ( )) or a retrospective radius
update (b,d) (A ( ), B ( ), C ( )).
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Figure 2.9: Inner iterations per outer iteration for the full Newton method (a,b) and the
Gauss-Newton method (c,d) with different parameter sets using a prospective radius update
(a,c) (A ( ), B ( ), C ( )) or a retrospective radius update (b,d) (A ( ), B ( ), C ( )).
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Figure 2.10: Forcing sequence ” for the full Newton (a) and the Gauss-Newton (b) methods
combined with a line search method ( ). The forcing sequence for methods combined with
a trust-region is constant (” = 0:5).



86 Chapter 2

2.3.2 Case study 2: T-shaped reflectors

The true velocity distribution of this second case study is given in Figure 2.11a. As a reminder,

two highly-contrasted T-shaped concrete structures (vc = 4 [km/s]) are embedded in a

homogeneous background (vb = 0:3 [km/s]) with a bottom reflector (vr = 0:5 [km/s]). These

two concrete foundations generate high-amplitude reflections and in particular, important

multiple scattering between the two structures. The acquisition system is divided into three

segments and nine frequencies (100, 125, 150, 175, 200, 225, 250, 275, and 300 [Hz]) are

inverted simultaneously from an empty initial model (Figure 2.11b). For this second case study,

a logarithmic slowness squared parametrization is used m := ln s2. This parametrization has

the advantage to be unable to produce negative values of the slowness squared. Inverting

the slowness squared actually drives it into negative values, because of the two concrete

structures whose slowness squared is really close to zero. This logarithmic slowness squared

field is discretized by hierarchical finite elements of order 1. Outer iterations are stopped when

satisfying the convergence criterion J(ln s2)=J(ln s2
init) < 10−2. At the light of the first case

study, trust-region methods with parameter sets A and C will no longer be considered, as both

were systematically outperformed by parameter set B.

Inner product

Illumination of the medium is nearly perfect and consequently, the diagonal part of the Gauss-

Newton Hessian that has previously been used as a weight can reasonably be approximated

by a constant hGN. However, the part related to the change of variable is varying spatially

‹s2 =
ds2

d ln s2
‹ ln s2 = s2 ‹ ln s2: (2.49)

Hence the weight for the inner product is chosen as

w = hGN s
4: (2.50)

As previously, the line search l-BFGS algorithm has been applied with the four different inner

products introduced in this work. Inversion velocity results are given in Figure 2.11 while

convergence curves are given in Figure 2.12. For the weighted and smoothed variant, the

threshold is set to › = hGN s
4
b while the characteristic length for the smoothing inner product

is set to lc = 3 [m]. It is important to highlight that this length is greater than the smallest

wavelength in the background medium (1 [m]) while for the first case study, this length was

actually close to the smallest wavelength. The weighted and thresholded variant has been

tested for several values of the threshold, from › = hGN s
4
c to › = hGN s

4
b but none of them

provided inversion results significantly different from the conventional or the weighted-only

inner products. Only the smoothing inner product is able to reconstruct the model parameter
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accurately. This smoothing inner product actually mitigates the non-linearity of the misfit,

because spatial roughness is incorporated progressively in the model parameter [210]. During

the inversion, the model parameter never explores extremely high velocity values, at the

opposite of the other variants. It is thus able to converge to an accurate solution while more

straightforward optimization is not. Consequently, this inner product is used for the remainder

of this study.

The performance of the three optimization methods is described in the next three subsections.

Inversion velocity results, convergence curves and statistics are given in Figure 2.13 and 2.14

and in Table 2.5 respectively.

(a)

4:

0:

[km
/s]

0 5 10 15 20 25 30

0
−
3

(b)

4:

0:

[km
/s]

0 5 10 15 20 25 30

0
−
3

(c)

4:

0:

[km
/s]

0 5 10 15 20 25 30

0
−
3

(d)

4:

0:

[km
/s]

0 5 10 15 20 25 30

0
−
3

(e)

4:

0:

[km
/s]

0 5 10 15 20 25 30

0
−
3

Figure 2.11: Near-surface concrete structures velocity model (a), initial guess (b) and inversion
results using a line search l-BFGS algorithm with a conventional (c), a weighted-only (d) or
a weighted and smoothed (e) inner product.
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Figure 2.12: Data misfit as a function of the computational complexity for the line search
l-BFGS algorithm with a conventional (• •), weighted-only (- •) or weighted and smoothed (–)
inner product.
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Figure 2.13: Inversion velocity results for the steepest descent (a), the l-BFGS (b), the full
Newton (c) and the Gauss-Newton (d) methods combined with trust-region method using a
prospective radius update (B). Note that the upper color scale limit is only 2 [km/s].
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Figure 2.14: Data misfit as a function of the computational complexity for the steepest descent
(a), the l-BFGS (b), the full Newton (c) and the Gauss-Newton (d) methods combined with
either a line search ( ) or a trust-region with a prospective (B ( )) or a retrospective (B
( )) radius update. Dots on (Gauss)-Newton curves indicate outer iterations.
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SD

LS∗ 803 400 - 1 - -

TR-P (B)∗ 800 400 - 9 100 -

TR-R (B)∗ 800 400 - 18 100 -

LB

LS 186 88 - 8 - -

TR-P (B) 174 87 - 1 23 -

TR-R (B) 174 87 - 2 6 -

FN

LS 468 35 5.3 23 - 17

TR-P (B) 352 34 4.2 0 56 0

TR-R (B) 424 31 4.8 3 68 0

GN

LS∗ 923 60 6.6 8 - -

TR-P (B) 680 38 7.9 0 42 -

TR-R (B) 672 39 6.6 0 41 -

Table 2.5: Statistics related to the implementation of the steepest descent (SD), the l-
BFGS (LB), the full Newton (FN) and the Gauss-newton (GN) methods combined with a
line search (LS) or a trust-region (TR) with a prospective (P) or retrospective (R) radius
update with parameter set B. Star marker (∗) indicates methods that have been stopped
before convergence.

Steepest descent

The steepest descent method is not able to reach convergence in a reasonable amount of

computations. Progressively decreasing the smoothing length lc during the inversion would

accelerate the convergence [210], but it is not needed for more sophisticated methods and

thus it is not done here neither. As for the first test case, the slope of trust-region methods is

slightly steeper than the line search method. The prospective radius update rejects less often

directions and hence converges faster than the retrospective radius update.

Limited memory BFGS method

Similarly to the first test case, the influence of the globalization method on the convergence

speed is small. Trust-region methods actually spare a part of the line search cost, but it already

represents only a tiny fraction (20 wave solutions) of the overall computational cost (186

wave solutions). Retrospective ratio is again always very close to one and the only difference
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between retrospective and prospective radius update is the frequency the size constraint is

active, although it does not influence the convergence speed.

Newton methods

For this case study, the full Newton method clearly outperforms the Gauss-Newton method,

independently of the globalization method used. On the one hand, the convergence speed

is much higher and on the other hand the accuracy of the inversion results is superior. As

demonstrated in [118], the missing negative definite part of the Hessian can prevent the

Gauss-Newton method from reaching convergence. Here, thanks to the inner product precon-

ditioning, every method is able to find the minimum but the invalidity of the Gauss-Newton

approximation impacts the convergence speed and the inversion results. This is particularly

true for the line search method, which has a very slow convergence. Its forcing sequence

actually remains close to one even at the end of the inversion (cf. Figure 2.17b), because the

Gauss-Newton Hessian is not accurate. Hence the system is never solved accurately. Interest-

ingly, for the Gauss-Newton method, the retrospective radius update succeeds to compensate

its cost (2 wave solutions per outer iteration). Indeed, during the earliest outer iterations,

when the Gauss-Newton and the full Hessian are different, the retrospective ratio is smaller

than one while the prospective ratio is bigger than one (cf. Figure 2.15b). Consequently, the

retrospective method performs less inner iterations per outer iterations than the prospective

method (cf. Figure 2.16b), and thus avoids early over-solving. In the end, both methods

still converge at the same speed, but the retrospective method has spent less time in the

computation of linear system solutions (680 versus 672 − 2 × 39 = 594 wave solutions). At

the opposite, for the full Newton method, the retrospective method spent even more time

in the computation of linear system solutions than the prospective method. The prospective

method is actually already efficient because the prospective misfit prediction is accurate. The

line search globalization also provides fast convergence in this case, despite the fact that

directions of negative curvature are often encountered (12 wasted wave solutions) and that

the unit step length is often rejected. However, the flow of the method is very different from

trust-region methods. Indeed, line search methods have a tendency to compute a single very

accurate system solution, followed by several very inaccurate system solutions as can be seen

from Figure 2.16a and from the dots spacing in Figure 2.14c, while trust-region methods

perform a nearly steadily increasing number of inner iterations per outer iteration. Whether

a flow is better than the other has not been emphasized by this case study.
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Figure 2.15: Prospective ratio p using a prospective radius update (B ( )) or retrospective
ratio r using a retrospective radius update (B ( )) during the outer iterations of the full
Newton method (a) and the Gauss-Newton method (b).
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Figure 2.16: Inner iterations per outer iteration for the full Newton method (a) and the
Gauss-Newton method (b) combined with either a line search ( ) or a trust-region with a
prospective (B ( )) or a retrospective (B ( )) radius update.
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Figure 2.17: Forcing sequence ” for the full Newton (a) and the Gauss-Newton (b) methods
combined with a line search method ( ). The forcing sequence for methods combined with
a trust-region is constant (” = 0:5).
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2.3.3 Case study 3: Dissipative crosses

The ground-truth relative permittivity and conductivity distributions for this third case study

are given in Figure 2.19a and 2.19b respectively. As a reminder, they consist in two highly

contrasted cross-shaped structures embedded in a homogeneous dissipative background (›r;0 =

4:, ›r;1 = 1:, ›r;2 = 8: [-] and ff0 = 3:, ff1 = 0:1, ff2 = 10: [mS/m]). Seven frequencies (50, 60,

70, 80, 100, 150, 200 [MHz]) are inverted simultaneously from an homogeneous background.

Similarly to [97], the relative conductivity ffr is defined such that the imaginary part of the

dimensionless slowness squared at the reference wavenumber k0 equals one when the relative

conductivity also equals one, i.e. ffref := k0=”0 and ff = ffrffref. Therefore, the dimensionless

slowness squared can finally be written in terms of the relative permittivity ›r and the relative

conductivity ffr as

s2 := ›r − i
ffr
k=k0

: (2.51)

These relative parameters are nearly chosen for the model parameters: a logarithmic parametriza-

tion is simply used in addition, i.e. m := (ln ›r ; lnffr ), again to avoid negative values of both

parameters, but particularly of the conductivity which features values very close to zero. Log-

arithmic conductivity parametrization also has the advantage to be independent from the

arbitrary reference conductivity ffref. The center frequency fc = 100 [MHz] is used as refer-

ence and consequently this reference conductivity is ffref ≈ 5:6 [mS/m]. Outer iterations are

stopped when satisfying the convergence criterion J(ln ›r ; lnffr )=J(ln ›r;init; lnffr;init) < 10−3.

Logarithmic model fields are discretized by hierarchical finite elements of order 1. For this

test case, the steepest descent method is no longer considered because it was very slow for

the two previous ones and the cross-talk between both parameters is expected to worsen this

convergence issue.

Inner product

A cornerstone of the simultaneous reconstruction of both permittivity and conductivity is to

favor the update of permittivity during the inversion. Intrinsic sensitivities to both parameters

are different and conductivity updates dominate when no appropriate strategy is adopted.

In such a situation, conductivity reconstruction features artifacts because it is very sensitive

to kinematics, i.e. to the permittivity reconstruction. At the opposite, favoring too strongly

permittivity reconstruction is also not helpful because high conductivity contrasts are expected

to have an important effect on the data [87, 97]. To reach an equilibrium between both

updates, several strategies have been proposed. For example, a first idea is to perform two

independent line searches in the gradient direction: one for the conductivity part and the

other for the permittivity part [112]. The bottleneck of this strategy is that it ignores the

possible trade-off between both parameters. Another possibility is then to apply a change of

variable on the conductivity, i.e. ff′r = ˛ffr . This change of variable simply rescales the relative
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conductivity such that there is an imbalance in magnitude between the updates of relative

permittivity and conductivity. The gradients w.r.t. to the permittivity j ′›r and the rescaled

conductivity j ′ff′r are actually related to the complex-valued slowness squared gradient j ′s2 by

the chain rule

{Ds2J} (‹s2) = Re
D
j ′s2; ‹s2

E
(2.52)

= Re

*
j ′s2;

@s2

@›r
‹›r +

@s2

@ff′r
‹ff′r

+
(2.53)

= Re

*
j ′s2; ‹›r − i

k0

k

1

˛
‹ff′r

+
(2.54)

= 〈Re (j ′s2) ; ‹›r〉+

*
−k0

k

1

˛
Im (j ′s2) ; ‹ff′r

+
(2.55)

:=
D
j ′›r ; ‹›r

E
+
D
j ′ff′r ; ‹ff

′
r

E
= {D›r ;ffrJ} (‹›r ; ‹ff

′
r ): (2.56)

Assuming that the real and imaginary parts of the slowness squared gradient have similar

amplitudes, the magnitude ratio between the updates of permittivity and unscaled conductivity

is then ˛̨̨
j ′›r

˛̨̨
˛̨̨
j ′ff′r

˛̨̨
=˛
≈ ˛2 k

k0

: (2.57)

For wavenumbers around the reference k0 and without rescaling (˛ = 1), this ratio is close

to one. This is no coincidence: the reference conductivity ffref is defined to obtain this result.

However for values of ˛ bigger than unity, the updates of conductivity are mitigated. This

strategy is independent of the optimization algorithm and has thus been used in combination

with the l-BFGS algorithm, which can advantageously take into account model parameter

trade-offs [97]. Here the idea is to introduce this imbalance through a change in the inner

product

〈ma; mb〉M := 〈›r;a; ›r;b〉+ 〈˛ffr;a; ˛ffr;b〉 : (2.58)

When ˛ is greater than unity, distances along the conductivity axis are longer than distances

along the permittivity axis as

‖∆›r‖ = 1 and ‖∆ffr‖ = 0 yield ‖∆m‖M = 1; (2.59)

while

‖∆›r‖ = 0 and ‖∆ffr‖ = 1 yield ‖∆m‖M = ˛: (2.60)

Large conductivity updates are therefore further away and are reached later in the inversion

process because local optimization methods update their model estimate by local, i.e. small,

steps. As previously mentioned, changing the inner product is equivalent to preconditioning

both the gradient and the Hessian. The approach is thus equivalent to existing strategies
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based on preconditioners [87]. The focus of this test case is rather to illustrate how simple

inner product preconditioning can handle this balance issue.

Similarly to the previous case studies, the diagonal part of the Gauss-Newton Hessian is used

as a weight. Due to the perfect illumination, this first part of this weight can again be

approximated by a constant hGN and only the parts related to the logarithmic parametrization

are varying spatially

‹s2 =
@s2

@ ln ›r
‹ ln ›r +

@s2

@ lnffr
‹ lnffr ; (2.61)

hence

w› = hGN

˛̨̨̨
˛ @s2

@ ln ›r

˛̨̨̨
˛
2

and wff = hGN

˛̨̨̨
˛ @s2

@ lnffr

˛̨̨̨
˛
2

(2.62)

and the inner product product is then chosen as

〈m2; m1〉M = 〈√w›r ln ›r;2;
√
w›r ln ›r;1〉+ ˛2 〈√wffr lnffr;2;

√
wffr lnffr;1〉 : (2.63)

According to this choice, the conductivity and permittivity parts of the gradient are given by

j ′˛;ln ›r = w−1
›r j
′
ln ›r = w−1

›r

@›r
@ ln ›r

j ′›r (2.64)

and

j ′˛;lnffr = ˛−2w−1
ffr j
′
lnffr = ˛−2w−1

ffr

@ffr
@ lnffr

j ′ffr : (2.65)

The magnitude ratio between the updates of permittivity and conductivity is then˛̨̨
›r
“

exp j ′˛;ln ›r − 1
”˛̨̨

˛̨̨
ffr
“

exp j ′˛;lnffr − 1
”˛̨̨ ≈ ›r

˛̨̨
j ′˛;ln ›r

˛̨̨
ffr
˛̨̨
j ′˛;lnffr

˛̨̨ =
›r
˛̨̨
w−1
›r

@›r
@ ln ›r

j ′›r

˛̨̨
ffr
˛̨̨
˛−2w−1

ffr
@ffr
@ lnffr

j ′ffr

˛̨̨
=

˛̨̨
@s2

@ ln ›r

˛̨̨−2 ˛̨̨
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˛̨̨2
˛̨̨
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˛̨̨−2 ˛̨̨
@ffr
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˛̨̨2˛2

˛̨̨
j ′›r

˛̨̨
˛̨̨
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=

˛̨̨
@s2

@›r

˛̨̨−2

˛̨̨
@s2

@ffr

˛̨̨−2˛
2

˛̨̨
j ′›r

˛̨̨
˛̨̨
j ′ffr

˛̨̨
=
k2

0

k2
˛2 k

k0

= ˛2k0

k
:

Again, for wavenumbers around the reference k0, this ratio is close to ˛2. However, the

behaviour around the reference is reversed: higher wavenumbers give more weight to the

conductivity part. It is interesting to highlight that this comes from the diagonal Hessian

approximation and not from logarithmic parametrization.

The line search l-BFGS algorithm has been applied for three values of the scaling coefficient ˛.
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Convergence curves are given in Figure 2.18 while inversion results are given in Figure 2.19.

As far as the permittivity is concerned, all values of the scaling parameter give similar recon-

structions. Conductivity reconstructions are however more sensitive to the scaling parameter

and artifacts appears when the scaling parameters is too low, e.g. when ˛ = 2. For smaller

values, the algorithm can even fail to converge. An analysis of the evolution of the reconstruc-

tion over the iterations actually shows (as expected) that high scaling parameters ˛ delays

conductivity updates, hence preventing harmful artifacts from appearing (cf. Appendix D).

When convergence can be reached, the bigger ˛ is, the (slightly) smoother the conductivity

reconstruction is. Unfortunately, the convergence also slows down when the scaling parameter

increases. Consequently for the sequel of this case study, the smallest scaling parameter that

gives an acceptable conductivity reconstruction is chosen, i.e. ˛ = 3. The performance of

the l-BFGS and the Newton optimization methods is described in the next two subsections.

Convergence curves, inversion results and statistics are given in Figure 2.20 and 2.21 and in

Table 2.6 respectively.
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Figure 2.18: Data misfit as a function of the computational complexity for the line search
l-BFGS algorithm with different scaling for the inner product inner product. ˛ = 2 ( ), ˛ = 3
( ), ˛ = 4 ( ), ˛ = 5 ( ).
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Figure 2.19: Final inversion results for the line search l-BFGS algorithm with different scaling
for the inner product. ˛ = 2 (c,d), ˛ = 3 (e,f), ˛ = 5 (g,h). The first row (a,b) is the true
model. Left and right columns are respectively permittivity and conductivity reconstructions.
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Figure 2.20: Data misfit as a function of the computational complexity for the l-BFGS (a),
the full Newton (b) and the Gauss-Newton (c) methods combined with either a line search
( ) or a prospective trust region (B ( )) or a retrospective trust region (B ( )). Dots on
(Gauss)-Newton curves indicate outer iterations.
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Figure 2.21: Inversion results for the l-BFGS (a,b), the full Newton (c,d) and the Gauss-
Newton (e,f) methods combined with trust-region method using a retrospective radius update
(B) and for the full Newton method combined with a line search (g,h).
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LB

LS 554 272 - 4 - -

TR-P (B) 578 289 - 6 28 -

TR-R (B) 566 283 - 4 5 -

FN

LS 792 20 18.45 15 - 10

TR-P (B) 758 22 16.2 5 55 0

TR-R (B) 752 23 14.3 4 57 0

GN

LS 882 15 28.3 7 - -

TR-P (B) 632 18 16.6 0 44 -

TR-R (B) 668 18 16.6 0 44 -

Table 2.6: Statistics related to the implementation of the l-BFGS (LB), the full Newton (FN)
and the Gauss-newton (GN) methods combined with a line search (LS) or a trust-region (TR)
with a prospective (P) or retrospective (R) radius update with parameter set B.

Limited memory BFGS method

The influence of the globalization method on the convergence speed is again small, particularly

for the retrospective trust-region method and the line search method which barely accept the

pure l-BFGS direction at each iteration. Now the only difference with the prospective trust-

region method is that the constraint is active more often, although it does not slows down

the convergence dramatically.

Newton methods

Inversion results for all the methods are similar, except for the Newton method combined with

a line search (cf. Figure 2.21g and 2.21h) whose conductivity reconstruction of the lower cross

is less accurate. Again, the full Newton and the Gauss-Newton methods combined with a line

search struggle to end the iterative solver at the right time. Indeed, the full Newton method

is stopped twice because of negative curvature while the Gauss-newton method is stopped

twice before convergence but after 100 iterations. From the history of inner iterations per

outer iterations (cf. Figure 2.22) and the history of forcing sequence (cf. Figure 2.23), it can

be seen that rebounds in the forcing sequence occur at the same time than inner iteration

peaks. Again, it means that a lot of computational effort, i.e. a lot of inner iterations, is

incurred for a system which is seen a posteriori to be inaccurate, as shown by the rebounds in
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the forcing sequence. This over-solving decreases the convergence speed. For this case study,

the burst flow of line search methods, i.e. an accurate system resolution followed several

inaccurate resolution, seems to be less appropriate than a more steady system resolution

strategy, as provided by trust-region methods. As far as trust-regions are concerned, the best

combination in this case is the Gauss-Newton method with a prospective radius update (B).

The corresponding retrospective method give the exact same solution because the conclusions

from both the prospective and retrospective ratios are always the same. The latter only takes

two supplementary wave solutions per outer iteration for the computations of the retrospective

ratio, i.e. 36 more waves solutions. Similarly to the first test case, the prospective ratio is

larger than unity for the first few outer iterations while the retrospective ratio is smaller than

unity (cf. Figure 2.24). However, the discrepancy away from unity is smaller than for the

first two test cases, probably because multiple scattering is weaker. There is thus no early

over-solving that could be corrected by the retrospective radius update, or by the full Newton

Hessian. For that reason and because it rejects one long iteration, the Newton method is not

faster in this case. Retrospective and prospective radius update converge at the same speed,

because the conclusions at a single late iteration differ (at the 18th iteration, p = 0:78 while

r = 0:69). Retrospective radius update can quickly compensate its cost of two additional

wave solutions when the number of inner iterations per outer iteration is high and hence it

might become competitive.

Interestingly, for the first two case studies the l-BFGS method clearly outperforms any Newton

method: it is nearly twice faster. For this third test case, convergence speed are comparable,

even if the l-BFGS method is still slightly faster. This observation confirms that Newton

methods might be interesting for multi-parameter inversions [117].
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Figure 2.22: Inner iterations per outer iteration for the full Newton method (a) and the
Gauss-Newton method (b) combined with either a line search ( ) or a trust-region with a
prospective (B ( )) or a retrospective (B ( )) radius update.
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Figure 2.23: Forcing sequence ” for the full Newton (a) and the Gauss-Newton (b) methods
combined with a line search method ( ). The forcing sequence for methods combined with
a trust-region is constant (” = 0:5).
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Figure 2.24: Prospective ratio p using a prospective radius update (B ( )) or retrospective
ratio r using a retrospective radius update (B ( )) during the outer iterations of the full
Newton method (a) and the Gauss-Newton method (b).
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2.4 Conclusion

In this chapter, several local optimization algorithms, based on combinations of descent di-

rections, globalization strategies and inner product modifications, have been investigated in

the context full waveform inversion. The three most widely used descent directions have been

considered, in combination with scaling, weighting and/or smoothing inner products and with

line search or trust-region globalization strategies. At the heart of any trust-region method

is the trust-region constraint, which is expressed in terms of the inner product chosen for

the model parameter space. Consequently, the analysis began by investigating different inner

product choices that could be implemented. It was shown that changing the inner product

does not only modify how lengths are measured but also acts as a preconditioner on both the

gradient and the Hessian operator. Based on the three reference numerical case studies, it was

shown that moving from the conventional inner product to a smoothed and/or weighted inner

product can accelerate the convergence and mitigate the non-linearity of the misfit, for any

optimization method independently of the globalization method (line search or trust-region).

In parallel with this inner product choice, line search and trust-region variants of the steepest

descent, the l-BFGS and the (Gauss-)Newton methods, were introduced. The number of

wave propagation problems to be solved for each method was derived in order to compare

them fairly. For each optimization method, the line search and the trust-region globalizations

were then compared based on the different case studies. Thanks to the inner product pre-

conditioning, every combination actually already yielded very satisfying results. Nevertheless,

trust-region methods outperform line search methods in numerous situations. In particular,

the steepest descent converges slightly faster, because the trust-region methods always tried

to increase the step length. As far as the l-BFGS method is concerned, very few differences

were noted, but interestingly, constraining the size of the update direction did not decrease

the convergence speed. The more dramatic differences appeared when using Newton meth-

ods. Trust-region methods actually overcome the difficulties, related to the small or negative

eigenvalues of the (Gauss-)Newton Hessian operator, that appeared when using a line search

method. The optimization flow related to both globalizations method was also very differ-

ent: line search methods alternated very few and many inner iterations per outer iterations

while trust region methods were more steady. This latter strategy has shown to be more

efficient, both in terms of convergence speed and in terms of reconstruction accuracy. When

multiple scattering is strong, the Gauss-Newton approximation becomes less accurate, and

consequently the associated misfit predictions, involved in trust-region methods, are also less

accurate. Typically, the prospective ratio was bigger than one while the retrospective ratio

was smaller than one and it was then interesting to use the latter to avoid over-solving, even

if its computational cost is high. Actually a better solution was to use the full Newton Hes-

sian, and to get rid of the approximation. The full Newton method keeps an accurate misfit
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representation, even when multiple scattering is strong and hence converge faster. Moreover,

when multiple scattering was weak, the converge speed of the full Newton method was still

comparable to the Gauss-newton method. Because of its good performance independently of

the configuration, the full Newton method combine with a trust-region globalization method

is really good choice, as the l-BFGS method.

More sophisticated optimization methods, for example combining l-BFGS and Newton meth-

ods or trust-region and line search methods, could increase even more the convergence speed.

Based on this chapter and its potential extensions, trust-region methods and inner product

preconditioning seem to be two very useful tools for full waveform inversion.

In this chapter, all the numerical case studies were noiseless. Noiseless inversion is an inter-

esting first step because it is simpler but still allow to highlight some issues related to full

waveform inversion. The next step towards real inversions is to use more realistic data, typi-

cally contaminated by noise. This is the focus of the following chapter, in which the behavior

of inner product preconditioned methods in the presence of noise is investigated. In particular,

the per se regularization effect of the inner product, due to its preconditioning properties, is

investigated. A more sophisticated inner product that involves prior information on the model

parameter space is also introduced to illustrate further the possibilities given by inner product

modifications.
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Regularization strategies

Full waveform inversion is an imaging method that aims to minimize the discrepancy between

some measured data and their numerically simulated counterpart. When these measured data

are noisy, the smallest discrepancy does not necessarily coincide with the best solution, because

a perfect match actually means that the simulated data partially matches noise. In order to

avoid such over-fitting, multiple strategies exist. The most widely used technique consists in

adding a penalization term to the data misfit to be minimized, while the simplest strategy

consists in stopping the iterative minimization algorithm before it reaches the actual minimum.

This latter option is however not very efficient unless it is combined with preconditioning,

for example through inner product modifications, because preconditioning allows to delay

the appearance of noise artifacts. This second strategy is the focus of this chapter. In

particular, two inner product preconditioning strategies are considered. Both are based on

Laplace filtering: the first one being isotropic and the second one anisotropic. The second

inner product is slightly more elaborate and is strongly inspired by the so-called edge-enhancing

operator from the image diffusion filtering community. This operator is adaptive as it evolves

during the inversion process to stop smoothing across sharp interfaces, at the opposite of

the stationary isotropic variant. Sharp interfaces are therefore expected to be reconstructed

faster and more accurately. Based on the three reference numerical case studies, this novel

regularization strategy is compared to more conventional additive penalization strategy. In

particular, it is shown that the early stopping method with preconditioning yields a higher

reconstruction quality than the penalization method in numerous situations, while featuring

desirable advantages: firstly it is more flexible because the inner product can be modified at

any outer iteration; then it is more robust because the regularization is active from the very

beginning of the inversion thanks to preconditioning; and finally it is easier to choose the

regularization hyper-parameters because they can be interpreted as smoothing lengths.

105
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Highlights

• Comparative review of regularization methods: inner product preconditioning versus

additive misfit penalization

• Introduction of the edge-enhancing inner product

• Illustration on the three reference numerical case studies

3.1 Introduction

Full waveform inversion is a data-fitting procedure used to reconstruct some high-resolution

quantitative model parameters m by minimizing the distance between some observed data d0

and the corresponding simulated data d(m), obtained though a forward model F (m) and a

measurement operator R

m∗ = arg min Jd(m) with

Jd(m) := dist (d(m); d0) ; d = R(u) and F (m)u = f : (3.1)

The information extracted from the wave field u is however very limited, as R is typically a

projection operator on a small number of punctual receivers at a few frequencies. Hence there

might exist multiple equivalent minimizer m∗. Moreover, in a realistic setting, multiple error

sources exist in the workflow. For example, the direct model F (m) is never exact, which implies

that the ground-truth model parameters m̃ does not yield a perfect match, i.e. d(m̃) 6= d0,

and real measured data are always contaminated by noise. For both these reasons, the

realistic input of an inverse problem is a noisy dataset d0;n, rather than the perfect data set

d0. This noisy data set encapsulates both direct operator errors and noise. A straightforward

minimization as stated by (3.1) drives the model parameters towards a minimizer such that

d(m)→ d0;n while of course the real target is a minimizer such that d(m)→ d0.

Solution procedures based on (3.1) potentially have multiple solutions and these solutions

strongly depend on the noise in the data. Hence solving the inverse problem through (3.1) is

not appropriate in the presence of noise and the procedure should be modified to tackle these

difficulties, that are due to the inherently ill-posedness of the inverse problem. Such strategies

are often called regularization method [44, 86]. Basically, these regularization techniques aim

to furnish prior information about model parameters to the inversion, in order to discriminate

between multiple possible solutions, but also to prevent the simulated data from over-fitting

the noise in the measured data. The choice among different regularization techniques thus

depends on the specific problem, and it can be governed by the need to preserve or emphasize

particular features of the model parameters, e.g. piece-wise smooth distributions as far as
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natural media are concerned.

There are several ways to incorporate this prior information into the optimization problem,

that can be sorted in two categories: explicit regularization, where the model parameters are

expanded in an appropriate basis that contains only the desirable features [66, 67, 83] and

implicit regularization, where undesirable features are penalized but can still appear if they

explain the data very well. The most common implicit regularization method is probably to

add a penalization term to the data misfit [11]

J(m) = Jd(m) + –Jm(m): (3.2)

Ideally, this additive penalization term should favor the most likely model parameter distri-

butions, i.e. it should be small for piece-wise smooth distributions. Tikhonov penalization of

the model parameter gradient is particularly well suited for retriving smooth model parame-

ters [181]

Jm(m) := ‖grad (m)‖2
L2

=
Z

Ω
|grad (m)|2 dΩ: (3.3)

However for models with sharp edges, total variation penalization is more appropriate [159]

Jm(m) := ‖grad (m)‖L1
=
Z

Ω
|grad (m)| dΩ: (3.4)

Several recent regularization methods are based on variants of the total variation penaliza-

tion [8]. For example, a blocky penalization term can be used instead [69]. This term identifies

discontinuities in the model parameters and penalizes derivatives along these discontinuities,

which facilitates the automatic delineation of high-contrast model parameters. Similarly, the

total variation functional can be modified to feature a vertically asymmetric part that only

penalizes the depth-deacreasing model discontinuities, which also helps the apparition of large

and deep highly-contrasted strucutres [49, 84]. The penalization (3.3) can also be modified

to be anisotropic thanks to some tensor D, which is typically adaptative, in the sense that it

follows the structures of the current model parameters [14, 65]

Jm(m) :=
Z

Ω
|D · grad (m)|2 dΩ: (3.5)

Interestingly, any such model functional can also be used as a strong bound constraint for

the minization problem, rather than a weak misfit penalization [49, 140]. More sophisticated

constrained optimization algorithm must however be used in that case. Both Tihkonov and

total variation penalization terms are respectively defined as the (squared) L2 norm and the

L1 norm of the model spatial derivatives, as the Lp norm is defined as

‖grad (m)‖Lp =
„Z

Ω
|grad (m)|p dΩ

«1=p

: (3.6)
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One reason for the success of regularization strategies based on total variation is the increased

sparsity of model spatial derivatives, obtained thanks to the decrease from p = 2 to p = 1.

To increase this sparsity even further, non-convex penalization terms, based on the Lp norm

with 0 < p < 1, can be used [59]. Unfortunately, non-convexity, which is at the root of these

methods, also complicates the optimization procedure. Instead of building new functionals,

another approach consists in interlacing the Tikhonov regularization term with an image

denoising problem. This image denoising problem is based on a first or second order total

variation problem. Combining both functionals allows to reconstruct both sharp interfaces

and smooth variations at the expense of solving two coupled optimization problems, while

high-order derivatives are rather used to avoid the typical staircase effect from the first-order

total variation [41, 59, 103]. Data misfit minimization can also be interlaced with a denoising

problem through proximal Newton methods, which generalize the traditional Newton step

to involve the sub-gradients of a possibly non-differentiable regularization function through

operator splitting and proximal mappings [4].

All the above mentioned regularization techniques are based on model spatial derivatives and

can thus be seen as low-pass filters from the Fourier domain perspective. Denoting the spatial

frequency by k and the spatial Fourier transform of the model parameters by m̂, the simplest

example is the Tikhonov penalization

‖grad (m)‖2
L2

=
Z
R2
k2 |m̂(k)|2 dk : (3.7)

It immediately appears that it is equivalent to penalize the high-frequency spatial oscillation

during the reconstruction. However, model parameters are not necessarily sparse in the Fourier

domain, meaning that the ground-truth model parameters have a lot of non-vanishing high-

frequency Fourier components. Following this observation, it seems natural to penalize the

coefficients of an appropriate transform, specifically one in which the ground-truth model

parameters are expected to be sparse. Decomposition on a wavelet [107] or a seislet [199]

basis have proven to be particularly successful. An adaptive transform, whose dictionary is

learned from the descent directions of previous iterations has also been proposed recently

[209]. The sparsity in the transform domain is again imposed using a L1 or L0 penalization

or constraint and can lead to some modifications of the optimization algorithm.

A major drawback of additive penalization comes from the compromise between the data

and the model term. Indeed, the data term Jd tends to add details in the image while the

regularization term tends to smooth them out. The balance between these two objective

is set through the regularization parameter –. A large part of the data must be explained

by the model parameters and consequently the regularization parameter is chosen relatively

small. If not, then the model parameters are mainly driven by prior information. In the former

case, the influence of the regularization term only becomes visible at the end of the inversion

process such that during the earliest iterations, noise can freely deteriorate the reconstruction.
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In order to avoid noise artifacts from the beginning of the inversion but also to get rid of

the regularization parameter – (which can be hard and expensive to select), multiplicative

regularization has been introduced [12]. Multiplicative regularization proposes to multiply,

instead of adding, the data misfit and the regularization term, i.e.

J(m) = Jd(m)× Jm(m): (3.8)

There is thus no regularization parameter and the influence of the regularization term is present

from the beginning to the end of the inversion. In addition to removing noise artifacts, early

regularization could also increase the robustness in terms of starting models [79, 152]. The

flip side of the performance functional (3.8) is a possible increase of the non-linearity of the

inversion problem.

All the methods briefly described here above provide very successful results. However, they

often require more advanced local optimization methods, because of either a strong bound

constraint [49, 107, 209], a non-convex Lp norm term [59], two interlaced optimization prob-

lems [59, 103] or a slightly more non-linear performance functional [12, 79, 152]. In addition,

any regularization strategy based on an additive misfit penalization fails to constrain the model

reconstruction from the beginning of the inversion and is basically based on a compromise.

Regularization through preconditioning has been introduced for these specific two reasons.

The root of this last family of methods is to apply a preconditioner to the descent direction at

each outer iteration. Hence it can be combined with any existing local optimization algorithm

without modifications and its effect appears during the whole inversion. The most straight-

forward preconditioning approach is to smooth the descent direction with the same strength

in all directions, e.g. with an isotropic Laplcian filter. However, it is much more interesting

to include prior knowledge in this preconditioner, for example to prevent smoothing to occur

along directions that feature sharp interfaces. Such a smoothing can easily be done through

directional filters and anisotropic Laplacian operators [58, 70, 73, 99, 196, 201, 210]. More

recently, a diffusion filtering operator, i.e. a non-linear operator, has also been applied suc-

cessfully to the descent direction [114, 204]. When using preconditioning as a regularization

strategy, the misfit is composed exclusively of the data part: there is no compromise in the

misfit. The iterative minimization process should however be stopped on time, before noise

inevitably introduces artifacts in the reconstruction. Regularization techniques developed in

this chapter fall in this last category; their particularity being that preconditioning is here

brought through inner product modifications, which define the associated preconditioner.

This chapter is organized in two parts as follows. In Section 3.2, two widely used additive

misfit regularization strategies are quickly reviewed. Specifically, Tikhonov and total varia-

tion penalization terms are considered. Regularization through inner product modifications is

then introduced. The two proposed inner products are derived starting from the two above-

mentioned penalization terms, in order to highlight the connections between both approaches.
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In particular, the link between a misfit penalty and an inner product penalty is established.

In Section 3.3, both family of methods are applied to the three reference numerical case

studies. Each of them highlights some advantages of regularization through preconditioning.

The first case study aims to reconstruct the Marmousi model, which features numerous linear

structures. Hence the edge-enhancing inner product yields faster convergence and more accu-

rate reconstruction than the isotropic variant. For the second case study, both conventional

additive misfit penalization fail to reconstruct accurate models, because regularization is not

enforced from the beginning of the inversion, while preconditioned based method do succeed.

Finally, the third case study shows a glimpse of the new possibilities and the flexibility offered

by inner product preconditioning. Specifically, it is here used to introduce a soft coupling

between the two parameter classes, because conductivity and permittivity anomalies are typ-

ically correlated but the conductivity is often less constrained by the data. Throughout all

the case studies, the ease to select the inner product hyper-parameters is also emphasized,

in particular in comparison with the selection of the regularization parameter –, which can

be hard and expensive to compute. Moreover, inner product preconditioning is also shown

to be appropriate for inversion with limited computational resources, where the optimization

must be stopped before the optimal point, again because the regularization acts on the whole

optimization path.

3.2 Regularization strategies

3.2.1 Additive penalization

As mentioned in the introduction, in additive penalization methods, the misfit is augmented

with a penalization term Jm(m). This penalization term also adds a contribution to the

first and second order directional derivatives, hence also to the gradient and to the Hessian

operator. The particular expression of course depends on the particular regularization that

is considered. Analyzing these contributions can help understand why Tikhonov and total

variation regularizations (3.3)-(3.4) are dramatically different while both are base on a Lp

norm.

Tikhonov penalization The first and second order directional derivatives of the Tikhonov

penalization (3.3) are straightforward to compute

{DmJm(m)} (‹m) =
Z

Ω
grad (m) · grad (‹m) dΩ (3.9)

and n
D2
mmJm(m)

o
(‹m1; ‹m2) =

Z
Ω

grad (‹m2) · grad (‹m1) dΩ: (3.10)
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Neglecting the boundary term, the conventional gradient is then simply

j ′m = −div (grad (m)) : (3.11)

To understand the meaning of this gradient, considering an hypothetical line search steepest

descent algorithm is helpful. In such a setting, the evolution of the model parameters is

∆m = −‚ (j ′m + j ′d); (3.12)

where j ′d is the gradient related to the data misfit Jd . If infinitesimal steps are taken, i.e. ‚ :=

∆fi → 0, this evolution can be written as a diffusion process

@m

@fi
= −(j ′m + j ′d): (3.13)

Dropping the data term, the model parameter evolution is therefore a simple isotropic dif-

fusion, i.e. @m
@fi

= −div (grad (m)), whose steady state solution is a constant. As mentioned

previously, the Tikhonov penalization therefore drives to smooth any spatial variation of the

model parameters. This smoothing effect is illustrated schematically in Figure 3.1 for one di-

mensional edges and peaks. Intuition about the evolution of both structures is easily obtained

when looking at the sign of derivatives.

Total variation penalization Computing the derivatives of the total variation penalization

is less straightforward (cf. Appendix E). After some manipulations, the first order derivative

can be written

{DmJm(m)} (‹m) =
Z

Ω

grad (m)

|grad (m)| · grad (‹m) dΩ: (3.14)

The second order derivative can be expressed compactly in terms of the diffusion amplitude

g⊥ and the perpendicular and parallel structure tensors D⊥ and D‖

n
D2
mmJm(m)

o
(‹m1; ‹m2) =

Z
Ω
g⊥(|grad (m)|2) grad (‹m2) ·D⊥ · grad (‹m1) dΩ (3.15)

with

g⊥(r 2) =
1

r
; D⊥ = I −D‖ and D‖ :=

grad (m)⊗ grad (m)

|grad (m)|2
: (3.16)

These notations will be particularly useful when building the edge-enhancing inner product

in the next subsection. Note that at the origin, when |grad (m)| = 0, the total variation

penalization is not differentiable and a small threshold ˛ must be added to prevent numerical

instabilities, i.e. |grad (m)| →
q
|grad (m)|2 + ˛2. The first directional derivative is very

different from the previous case. Consequently, the conventional gradient is also very different
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Figure 3.1: Schematic illustration of the evolution of edges (a,b) and peaks (c,d) under
Tikhonov (a,c) and total variation (b,d) regularization strategies. The initial model parameters
is the error function for edges, i.e. m0(x) = erf(x), and the Gaussian function for peaks,
i.e. m0(x) = exp(−x2). Model parameters are shown at different pseudo-time fi0 ( ), fi1 ( ),
fi2 ( ), fi3 ( ) (0 = fi0 < fi1 < fi2 < fi3).

and the associated diffusion (3.13) does not evolve in the same direction

j ′m = −div

 
grad (m)

|grad (m)|

!
: (3.17)

Indeed, this gradient cancels everywhere except when it switches sign, i.e. on peaks: maximum

or minimum. At the opposite of the Tikhonov regularization, edges are thus preserved, because

the spatial derivatives is either always positive or always negative and peaks tend to turn into

plateaus. This evolution is again illustrated in Figure 3.1, from a sign analysis of the gradient.

Details on Tikhonov and total variation regularization and in particular their link with diffusion

filtering can be found in [162].
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3.2.2 Inner product preconditioning

The first effect of changing the inner product is to modify both the gradient and the Hessian

operator

〈m2; m1〉M = 〈Pm2; m1〉 ⇒ j ′d;M = P−1j ′d and Hd;M = P−1Hd : (3.18)

The model parameter evolution can again be written as a diffusion process, which now depends

on the preconditioner P
@m

@fi
= −P−1j ′d : (3.19)

Interestingly, when the data misfit gradient vanishes, i.e. j ′d = 0, the process stops. Stated

otherwise, if the initial model m0 is a local minima of the data misfit, i.e. j ′d(m0) = 0,

then the model parameters will not be updated. This behavior is actually very different from

additive penalization, which seeks a compromise between the data misfit and the penalization.

Preconditioning exclusively acts on the optimization path to the minimizer, but not on the

minimizer itself. Nevertheless, in the case the data misfit features multiple local minima,

changing the path can change the particular minimizer that is reached and in the case the

data misfit features a wide global minimum plateau, it can then modify the approximate

minimizer that can be reached at a limited computational cost. The inner product should

then be designed such that the application of the associated preconditioner favors desirable

features. For the remainder of this section, the subscript ’d ’ is omitted for compactness, as

there is no other misfit anymore.

Preconditioning is here introduced through the inner product, meaning that the operator P

is a consequence of the inner product choice 〈·; ·〉M . Instead of penalizing the misfit, the idea

is to penalize the inner product

〈‹m2; ‹m1〉M =
Z

Ω
‹m2 ‹m1 dΩ +

Z
Ω
h(‹m2; ‹m1) dΩ such that ‖‹m‖M ≥ ‖‹m‖L2

:

(3.20)

A semi-positive definite bi-linear approximation of some additive misfit penalization is typically

used as a starting point for this inner product penalty

Z
Ω
h(‹m2; ‹m1) dΩ =

n
D2
mmJm(m)

o
(‹m1; ‹m2): (3.21)

Whatever the inner product choice is, the decrease in the conventional gradient direction

remains the same, i.e. {DmJd(m)} (j ′L2
) =

‚‚‚j ′L2

‚‚‚2

L2

, and it is always larger than the decrease

in the preconditioned gradient direction, i.e. {DmJd(m)} (j ′M) = ‖j ′M‖2
M :

{DmJd(m)}
 

j ′M
‖j ′M‖M

!
= ‖j ′M‖M (3.22)
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=

D
j ′L2
; j ′M

E
L2

‖j ′M‖M
(3.23)

≤

‚‚‚j ′L2

‚‚‚
L2

‖j ′M‖L2

‖j ′M‖M
≤
‚‚‚j ′L2

‚‚‚
L2

= {DmJd(m)}
0B@ j ′L2‚‚‚j ′L2

‚‚‚
L2

1CA : (3.24)

However, lengths are increased when penalizing the inner product, i.e.
‚‚‚j ′L2

‚‚‚2

L2

≤
‚‚‚j ′L2

‚‚‚2

M
, such

that slope in the conventional gradient direction decreases and it is therefore not the steepest

direction anymore:

{DmJd(m)}
0@ j ′L2‚‚‚j ′L2

‚‚‚
M

1A =

D
j ′L2
; j ′L2

E
L2‚‚‚j ′L2

‚‚‚
M

(3.25)

=

D
j ′M ; j

′
L2

E
M‚‚‚j ′L2

‚‚‚
M

(3.26)

≤
‖j ′M‖M

‚‚‚j ′L2

‚‚‚
M‚‚‚j ′L2

‚‚‚
M

= ‖j ′M‖M = {DmJd(m)}
 

j ′M
‖j ′M‖M

!
: (3.27)

Basically, the idea is to lengthen directions with undesirable features such that the slope

in these directions decreases and the optimization prefers not to explore such directions.

Importantly, all the model parameters are still reachable: none of them are forbidden but

some are placed a priori further away. Increasing the strength of the penalty term reduces

the misfit decrease in the preconditioned gradient direction, because the ratio ‖j ′M‖L2
= ‖j ′M‖M

appearing in (3.24) approaches zero, and it is therefore expected to slow down the convergence.

A schematic illustration of an inner product modification for a two dimensional model space

is given in Figure 3.2. This example illustrates two concepts: how changing the inner product

modifies the descent direction and why it is useful to design the inner product based on the

Hessian operator. Another schematic example is then given in Figure 3.3 to illustrate how

preconditioning can modify the minima that is reached by a local optimization algorithm.

During an inversion process, the inner product is mostly used to measure model parameters

update such as the gradient for example. Because of geometric spreading, shadowing or

attenuation, the data gradient in full waveform inversion has a tendency to exhibit a spatial

imbalance. The information to restore the balance is contained in the Hessian operator and

it is therefore helpful to include this information through a spatial weight w(x) in the inner

product, taken as some approximation of the Hessian operator, typically the diagonal of the

Gauss-Newton operator hd;GN(x) (cf. Appendix C), i.e.

〈‹m2; ‹m1〉M =
Z

Ω
w ‹m2 ‹m1 dΩ + ›

Z
Ω
h(‹m2; ‹m1) dΩ: (3.28)

This spatial weight is small in poorly illuminated regions: large updates in these regions are
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Figure 3.2: Illustration of an inner product modification for a two dimensional model space
m := (x; y). The performance functional is chosen as J(x; y) = x2 + 4y 2 ( , isolines).
Two inner products are compared: the Euclidean norm 〈ma; mb〉 := xaxb + yayb ( ) and a
weighted variant 〈ma; mb〉M := xaxb + ˛2yayb ( ). Both steepest descent directions ( I)
and unit circles ( ) are also depicted for some initial guess m0 = (x0; y0) = (2:; 1:). The
gradient in both metrics can be computed analytically from (3.18) as j ′(m0) = (2x0; 8y0) and
j ′M(m0) = (2x0; 8y0=˛

2). Graphically, the steepest direction is obtained from the intersection
of the unit circle with the isoline of smallest value. The second inner product penalizes updates
in the y direction, because ‖m‖2

M = ‖m‖2 + (˛2 − 1)y 2 with ˛ > 1. Hence the unit circle
is flattened in the y direction and updates along the x axis are favored. Moreover, when the
metric is chosen to match the Hessian, i.e. ˛ = 2 ⇔ P = H, then the update direction is
ideal because it points towards the minimum. Graphically, matching the metric to the Hessian
means that the unit circle has the same aspect ratio than the contour isolines.

thus closer, because they have a smaller norm. The weight is however not applied on the

penalization term and the smoothing term thus has a stronger influence in poorly illuminated

zones, where the weight is smaller than some constant threshold ›.

Isotropic smoothing inner product

A first natural choice for the inner product is to take its penalization from the second order

derivative of the Tikhonov additive penalization (3.3)

〈‹m2; ‹m1〉M =
Z

Ω
w ‹m2‹m1 dΩ + ¸

Z
Ω

grad (‹m2) · grad (‹m1) dΩ; (3.29)

which leads to the preconditioner

P = w + ¸ div (grad ()) : (3.30)
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Figure 3.3: Illustration of an inner product modification for a two dimensional model space
m := (x; y). The performance functional is chosen as J(x; y) = sin 2ıx sin 2ıy ( , pos-
itive isolines)( , negative isolines). Two inner products are compared: the Euclidean norm
〈ma; mb〉 := xaxb + yayb ( ) and a weighted variant 〈ma; mb〉M := xaxb + ˛2yayb with
˛ = 3 ( ). The line search steepest descent paths from some initial guess m0 = (x0; y0) =
(11=16; 10=16) are depicted ( ,•). For the first three iterations, unit circles in both met-
rics are also depicted ( ). The weighted inner product favors updates along the x-axis and
hence another minima is reached. Around this minima, the metric and the Hessian strongly
mismatch and the convergence is thus slow, because the descent directions are alternating.

The effect of this preconditioner is thus to smooth the model update with the same strength in

every direction. Here, the smoothing strength is controlled by the regularization parameter ¸,

which is the equivalent of the regularization parameter – for additive penalization methods.

The new regularization parameter can however be linked easily to a smoothing length lc

through ¸ = › (lc=2ı)2, because it is the characteristic length of the Laplacian preconditioner
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when the weight is around the threshold value w ≈ ›. Note that the threshold › is now

included in the definition of ¸: this is a slight change w.r.t. Chapter 1 and 2. Having such a

physical and intuitive interpretation for this parameter is of great help in practice, because it

is then possible to set reasonable bounds for its value. The lower bound is in the order of the

smallest propagated wavelength while the upper bound is around the size of the imaged region.

Whatever the smoothing length is, this Laplacian operator is however always isotropic. When

the model parameters exhibit sharp edges, updates are still smoothed across that interface.

This effect is undesirable and motivates the introduction of an adaptative and anisotropic

inner product that aligns the smoothing direction along the edges. Such an inner product is

introduced below.

Edge-enhancing inner product

The edge-enancing inner product is based on the edge-enhancing operator, a particular case

of a structure preserving operator. These latter operators are often based on the structure

tensor [99, 114, 193, 194, 201], which is defined as the outer product of the model spatial

gradient with itself, i.e.

S0 := grad (m)⊗ grad (m) : (3.31)

Its normalized version is called the parallel diffusion tensor D‖ because it actually projects any

direction onto the local gradient direction, hence its name and notation

D‖ :=
grad (m)⊗ grad (m)

|grad (m)|2
: (3.32)

Using this tensor, it is easy to defined an inner product with a total diffusion tensor D

composed of two smoothing terms: one parallel to the gradient and one perpendicular

〈‹m2; ‹m1〉M =
Z

Ω
w ‹m2‹m1 dΩ + ¸

Z
Ω

grad (‹m2) ·D · grad (‹m1) dΩ; (3.33)

with

D = g‖(|grad (m)|2) D‖ + g⊥(|grad (m)|2) D⊥ (3.34)

where D⊥ and D‖ are again the perpendicular and parallel structure tensors while g⊥ and

g‖ are the perpendicular and parallel diffusion amplitudes, that still needs to be chosen. The

associated preconditionner is again a Laplacian operator but it is now spatially inhomogenous,

model parameter dependent and anisotropic, i.e.

P = w + ¸ div (D(grad (m)) · grad ()) : (3.35)

The anisotropy comes from the difference between the perpendicular diffusion amplitude g⊥

and the parallel diffusion amplitude g‖ while the adaptativity is obtained because both the
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diffusion amplitudes and both the diffusion tensors depend the current model parameter gradi-

ent. Taking both diffusion amplitudes to be equal, i.e. g‖ = g⊥, gives an adaptative isotropic

smoothing because D‖ + D⊥ = I and it reduces to the constant isotropic inner product

(3.29) when both diffusion amplitudes are set to one. The diffusion term of this general inner

product actually encapsulates the second order derivative of the total variation misfit func-

tional (3.15). It suffices to take g⊥(r 2) = 1=r and g‖(r
2) = 0, but this is not the best option.

Firstly, the related smoothing is never isotropic, even in very flat regions of the model param-

eter. In addition, in these flat regions, the smoothing length tends to infinity. Secondly, the

penalization term totally disappears on edges, where the gradient is large. A more satisfying

option [193, 194] is to choose the diffusion amplitudes to satisfy the two asymptotic behaviors

g‖(r
2 � ˛2) = 1 and g‖(r

2 � ˛2) = 0; the transition between both regimes being set by

the edge threshold parameter ˛. With such a choice, the smoothing is parallel to any sharp

interface (|grad (m)| � ˛) and isotropic in flat regions (|grad (m)| � ˛). In this chapter, a

very simple choice is selected

g⊥(r 2) = 1 and g‖(r
2) =

1

1 + r 2=˛2
(3.36)

such that the total diffusion tensor reduces to

D = g‖(|grad (m)|2) D‖ +D⊥ (3.37)

= I − (1− g‖(|grad (m)|2)) D‖ (3.38)

= I − grad (m)⊗ grad (m)

|grad (m)|2 + ˛2
: (3.39)

Again, it is straightforward to see from this reduced expression that the total diffusion tensor is

perpendicular to the gradient when it is large and isotropic when it is small. It is interesting to

mention that the ˛ parameter involved in the derivatives of the total variation penalization and

the edge threshold parameter ˛ introduced here above both appear mathematically at the same

place, i.e. both are added to the model gradient, hence the shared symbol ˛. Nevertheless,

their values are chosen to satisfy very different purposes: the former is very close to zero and

aims to prevent numerical instabilities while the latter is larger and is used to discriminate

edges from slowly varying regions. The last step of this structure preserving inner product

is to use a smoothed structure tensor S instead of the regular structure tensor S0. This

smoothing, at the structure scale , makes the structure tensor robust against reconstruction

artifacts, and therefore allows a more reliable estimation of orientations. Moreover, it spreads

the orientation information into the regions between edges and thus it allows to estimate the

dominant orientation also at those points in the reconstruction where the gradient is close

to zero [20]. At this point, one can wonder why the whole approach is based on quadratic

gradient forms rather than the gradient itself. It is actually because smoothing the gradients
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can lead to cancellation effects. Indeed, consider for example a thin line-like structure: on

one side of the peak the gradient is positive, while on the other side the gradient is negative

(cf. Figure 3.1c).

In summary, this structure preserving inner product depends on two a priori parameters: the

edge threshold ˛ and the structure scale . Their values of course depend on the nature of the

model parameters to be inverted and making a choice is a way to introduce prior information

in the inversion. When prior information about the size of the anomalies to be imaged is

not available, the structure scale can be set to approximately half the smallest wavelength,

because no smaller structures are expected to be imaged, even without noise [171]. Similarly,

when prior information about model parameter jumps is missing, the interface threshold ˛

can be selected such that the identified edges in the initial distribution are slightly above

the threshold. The amplitude of the gradient and the threshold are shown graphically in

Figure 3.4.
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Figure 3.4: Norm of the slowness squared gradient |grad (s2)|, filtered at the structure scale
 = 0:125 [km], for the ground-truth distribution (a) and for the initial distribution (b). The
chosen edge threshold parameter ˛ is given graphically. Color scale is logarithmic.

The regularization parameter ¸ is sightly different: it governs the strength of the penalization

but not the penalization itself. It is the equivalent of the regularization parameter – for

additive penalization methods.

In the case of multi-parameter inversion, the approach can be generalized trivially by computing

one diffusion tensor per parameter class. However, in many natural environments, the structure

of the different model parameters is shared, as jumps in model parameters coincide with

jumps of the underlying medium type. The situation is the same than stating that the jumps

in the RGB channels of a colour image are correlated because there is a single underlying
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object [195]. When it can be considered that there is a single coherent structure for all the

parameter classes, then a single structure tensor must be used. Sharing the structure tensor

allows to inject information form one parameter class to another, hence it brings an additional

soft constraint. To build this structure tensor, the idea is then to perform a weighted mean

between the individual structure tensors

S =
X
i

qiS(mi) with
X
i

qi = 1: (3.40)

The weight qi given to each tensor should then reflect the relative confidence given to the

individual parameter reconstruction. For example, if some parameter is poorly constrained

by the data, then it should have a small impact on the structure tensor [195]. Interestingly,

this approach introduces a coupling between parameter classes but the preconditioner can

still be applied to each parameter class independently at each inner iteration, because the

coupling appears at the outer iteration level. This is one of the main difference with recent

applications of diffusion filtering for full waveform inversion [114, 204], where the non-linear

diffusion process is applied to the gradients, at the inner iterations level. Here, the somehow

equivalent diffusion process (3.19) rather appears at the outer iteration level, which allows

the diffusion tensor to be constructed from the current model parameters class-wise, rather

than from the class-by-class gradients.

3.2.3 Link between both approaches

Similarities between both approaches have been hinted during their introduction: they are

made explicit in this subsection. The link between both regularization strategies comes from

the similarity, by construction, of the Hessian operator from the additive penalization method

and the preconditioner from the inner product method

H = Hd + –div (D · grad ()) and P = hd;GN + ¸ div (D · grad ()) : (3.41)

Obviously, the preconditioner operator is an approximation of the Hessian operator. The

reason for that is simple: thanks to this choice, the preconditioned gradient is getting closer

to the penalized misfit Newton direction, i.e.

j ′M = P−1j ′d;L2
∼ p = H−1(j ′d;L2

+ –j ′m); (3.42)

while breaking free from some of its drawbacks. Indeed, the regularization part of the Hessian

H is dictated by the misfit penalization Jm through its second order derivative D2
mmJm, with

no degree of freedom. It is therefore impossible to decouple the preconditioning effect that

appears in the Hessian H from the penalization effect that appears in the misfit. At the

opposite, inner product modification does not involve any other misfit than the data misfit
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and hence the regularization parameter ¸ can be chosen freely. For example, to produce a

strong smoothing, the regularization parameter – must be large but then the data part of the

gradient becomes negligible. Inner product modification acts exclusively as a preconditioner

on the update directions, without changing the misfit. Preconditioning can then be adapted

freely to produce the best update direction, without misfit related constraints. In particular,

it can have a strong preconditioning effect while still being driven only by the data misfit.

3.3 Reference case studies

For the numerical case studies, the same general setting as in Chapter 1 and 2 is considered.

The only difference lies in the synthetic data generation. In this chapter, measured data are

generated in the time domain, using a Newmark time stepping scheme (‚ = 0:5, ˛ = 0:25)

[128] and a Ricker excitation of center frequency fc

f (t) = (1− 2fi2) exp(−fi2) with fi = ıfct: (3.43)

Then a band limited Gaussian noise n(t) is added to these data before the extraction of the

frequency component to be inverted; hence avoiding any inverse crime. Noise levels will be

specified in terms signal-to-noise ratio

SNR :=

Z ∞
0
|u(t)|2 dtZ ∞

0
|n(t)|2 dt

: (3.44)

In this synthetic setting, several criterion can be used to select the best regularization pa-

rameters or the best stopping iteration. The ideal criterion should be based on some error

w.r.t. the ground-truth m̃, e.g. the mean relative error

1

AΩ

Z
Ω

|m − m̃|
|m̃| dΩ; (3.45)

with m = s2 or m = (›r ; ffr ) depending on the case study. Of course, outside any synthetic

setting, this error can not be computed as the ground-truth is unknown. A more realistic

approach is to use the so-called discrepancy principle [180], which can be used when an esti-

mation of the noise level is available. This simple criterion proposes to select the regularization

parameter – or the stopping iteration N such that the data misfit drops to the noise level

Jd(m) =
1

2
‖d(m)− d0;n‖2 ≈ 1

2
‖d0 − d0;n‖2 = Jd(m̃): (3.46)

The motivation behind this criterion is straightforward: a smaller misfit would necessarily

mean that the data are fitting some part of the noise. For real applications however, the noise
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level is unfortunately not available and other techniques should be used instead. The most

widely used is probably the L-curve method [75], but in the context of full waveform inversion,

pragmatic rules are also often used. The simplest strategy is to limit the computational cost

of the method, typically by stopping the inversion algorithm after a fixed number of iterations.

Such a practical strategy can easily be implemented with a preconditioning strategy, but it is

harder to implement with an additive misfit strategy, because one value of the regularization

parameter – requires a complete, fully converged, inversion.

For the remainder of this chapter, the l-BFGS algorithm combined with a line search procedure

is used for the minimization. The same weighted and thresholded inner product is used for

both regularization strategies, but of course a second term is added for the inner product

preconditioning method.
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Figure 3.5: Time domain data for a single source, computed using a Newmark time-stepping
scheme (‚ = 0:5, ˛ = 0:25, ∆t = 4 [ms], T = 8 [s]) for different slowness squared
distributions. Ground-truth (a). Ground-truth with band limited Gaussian noise (SNR = 4:
[-]) (b). Initial distribution (cf. Figure 2.4b) (c). Final distribution (cf. Figure 3.6c) (d).
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3.3.1 Case study 1: Marmousi model

As previously mentioned, data are now generated in the time domain, with a Ricker excitation

(fc = 6 [Hz]). A long time window (T = 8 [s]) is simulated with a small time steps (∆t = 4

[ms]). Hierarchical finite elements of order 2 are used for the spatial discretization of the

pressure fields. A band limited (B = 15 [Hz]) Gaussian noise (SNR = 4 [-]) is then added to

these perfect data before computing their Fourier transform at the three frequencies used for

the inversion (f = 4, 6, 8 [Hz]). The ground-truth data and the noisy data in the time domain

for a single shot are given in Figure 3.5a and 3.5b. In addition, time data corresponding to

the initial and a typical final model parameter are also given in 3.5c and 3.5d.

Additive penalization Inversion results have been computed for both the Tikhonov pe-

nalization and the total variation penalization, and for several values of the regularization

parameter –. In these cases, the iterative process is stopped after a maximum number of 60

iterations, or as soon as the misfit does not decrease significantly anymore. Final inversion

results for the best values of the regularization parameter – are given in Figure 3.6. The

final relative data misfit, i.e. the final data misfit divided by the data misfit associated to the

ground-truth model, i.e. J(s2)=J(s̃2), is given in Figure 3.7a for several values of the regular-

ization parameter. The relative misfit is used instead of the absolute misfit because it is easier

to interpret. In the sense of the discrepancy principle, the reconstruction under-fits (resp.

over-fits) the data when this relative misfit is greater (resp. smaller) than one. The mean

relative slowness squared error w.r.t. the ground-truth is given Figure 3.7b, also for several

values of the regularization parameter. As can be seen from Figure 3.7b, selecting the reg-

ularization parameter according to the discrepancy principle is not optimal. The discrepancy

principle actually over-smooths the inversion results as it stops too early. Fitting more noise

but also more data actually gives better reconstruction [75]. Both penalization strategies give

smaller errors than the unpenalized methods (cf. Table 3.1) even though the total variation

penalization is slightly more efficient. Both actually succeed to suppress some of the noise

artifacts. The Tikhonov penalization yields a smoother image while the total variation penal-

ization gives a more staircase like reconstruction [27]. Both regularized inversions still feature

some artifacts, even if they are smaller than for the unregularized inversion. The optimal value

for the regularization parameter is actually very small and the penalization term is inactive

during the first few iterations of the optimization algorithm. Comparing the early reconstruc-

tions of all three algorithms actually shows that all are very similar (cf. Figure 3.8), because

differences only appear in the end, when the additive penalization becomes active. Such a

behavior can be problematic if the iterative algorithm is stopped before convergence, because

the removal of noise artifacts only appears in the end, when reaching a balance between the

data misfit term and the penalization term. For example, the constant velocity structure at

(x; y) = (7;−2) [km] features oscillations during early iterations (Figure 3.8b) but is homo-
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Figure 3.6: Final inversion results using additive penalization regularization. No penalization
(a). Tikhonov penalization (b). Total variation penalization (c). Regularization parameters
– are chosen as the best in the sense of the slowness squared error.

geneous in the final model (Figure 3.6c). Interestingly, for the Tikhonov penalisation, there is

a formal equivalence between the regularization parameter – and the regularization parameter

¸ from the isotropic inner product. Then because ¸ is linked to a characteristic length, it is

possible to relate – to a characteristic length

–↔ ¸ = ›(lc=2ı)2 ⇒ lc = 2ı
q
–=›: (3.47)

Using the best value of the regularization parameter –, this length can be computed as lc ≈ 30

[m], which is much smaller than what is typically used for the preconditioners, as is showed

in the following section.

Inner product preconditioning Using preconditioning as the only regularization strategy,

the iteration number becomes the formal regularization parameter [86]. All the other inner

product parameters should therefore be set a priori. The relative importance of the smooth-

ing inner product term is set through the regularization parameter ¸, which is linked to a
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Figure 3.7: Final relative data misfit (a) and mean relative error w.r.t. the ground-truth (b)
for several values of the regularization parameter – and for both Tikhonov penalization ( )
or total variation penalization ( ). Markers indicate the best regularization parameters in the
sense of the discrepancy principle (ˇ) and in the sense of the minimal error (•).

- TIK TV ISO-IP ANISO-IP

Minimal error 0.148 0.129 0.116 0.14 0.126

Discrepancy 0.155 0.133 0.136 0.148 0.134

Table 3.1: Mean relative error at the best iteration and/or for the best regularization parame-
ters in the sense of the discrepancy principle and in the sense of the minimal error for different
regularization strategies: Tikhonov (TIK) and total variation (TV) additive penalizations;
isotropic (ISO-IP) and anisotropic (ANISO-IP) inner product preconditioning.

characteristic smoothing length lc . Here lc = 0:5 [km] and lc = 2 [km] are chosen for the

isotropic and anisotropic case respectively. This smoothing length can be taken bigger for the

adaptative variant because it is able to tilt the smoothing direction and hence sharp features

are still reachable reasonably fast, even with such a large smoothing length. These two choices

are reasonable as far as the scales involved in the Marmousi case study are concerned: the

minimum propagated wavelength is around 0:250 [km] while the acquisition size is around 9

[km]. For now, both these lengths are fixed but their influence is studied later. As far as the

edge-enhancing inner product is concerned, the structure scale is set to  = 0:125 [km], which
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Figure 3.8: Early inversion results (7th iteration). No regularization (a). Total variation
additive penalization (b). Edge-enhancing inner product preconditioning (c). Regularization
parameters – and ¸ are chosen as the best in the sense of the relative error.

is approximately half the smallest wavelength, while the interface threshold ˛ is shown graph-

ically in Figure 3.4. It is taken such that the initial distribution has very few identified edges,

i.e. g‖(s
2
init) ≈ 1, but such that all the edges of the ground-truth distribution are detected,

i.e. g‖(s̃
2) ≈ 0. Reconstructions at the optimal iteration in the sense of the mean relative

error are given in Figure 3.9, while the relative misfit and this error are given in Figure 3.10a

and 3.10b for all the successive iterations. As expected, the edge-enhancing inner product

yields particularly accurate inversion results, as can be seen from Figure 3.9 and from the

corresponding relative error (cf. Table 3.1). In particular, nearly no noise artifacts are present

in the image. The linear structures in the upper left corner are much better reconstructed

with the anisotropic inner product. Its convergence speed in the data space is slightly slower,

because the penalization is stronger. In the model space however, the error convergence is

faster from the 15th iteration and this is actually what really matters. With a hypotheti-

cal perfect preconditioner, the model error should be zero when the discrepancy principle is

satisfied. Starting from the standard inner product, the isotropic inner product is one step

towards that perspective and the anisotropic variant is one step further, even though it is still
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Figure 3.9: Final inversion results using inner product preconditioning regularization. No
smoothing term (a). Isotropic smoothing term (b). Anisotropic smoothing term (c). Stopping
iterations are chosen as the best in the sense of the mean relative error.

far from being the perfect choice. Preconditioning has an influence from the beginning of the

optimization algorithm, as can be seen from the early slowness square reconstruction, which is

actually much smoother than its additive penalization counterpart (cf. Figure 3.8). However,

preconditioning fails to prevent the apparition of noise artifacts at the end of the optimization,

as witnessed by the increasing error tail in Figure 3.10b and it is therefore critical to stop the

iterative process soon enough. Unfortunately, identifying this stopping point is not easy: the

discrepancy criterion is again not close from the optimal iteration and even if it were, the noise

level is still unknown in most applications. The bottleneck with preconditioning techniques is

to find this optimal stopping iteration. After that point, the error starts to increase because

of inevitable noise fitting. In a context where the computational cost is limited, the stopping

iteration is however often chosen much smaller than the optimal iteration, hence the interest

for the method.

The only left question to tackle is now how to choose the regularization parameter ¸ or

equivalently the smoothing lc . To understand the influence of this parameter, the inversion

algorithms have been launched for several characteristic length lc . The corresponding error
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Figure 3.10: Relative data misfit (a) and mean relative error (b) for all the successive iterations,
for an isotropic ( ), an anisotropic ( ) and a weighted only ( ) inner product. Markers
indicate the best iterations in the sense of the discrepancy principle (ˇ) and in the sense of
the minimal error (•).

histories are given in Figure 3.11a-3.12a while the relative misfit histories are given in Figure

3.11b-3.12b. Both figures summarized in Table 3.2-3.3. The relative misfit decrease is also

plotted in Figure 3.11c-3.12c against the (dimensionless) inner product penalty

1

AΩ ˛2

‖m‖2
M − ‖m‖2

L2

¸
=

1

AΩ ˛2

Z
Ω

grad (m) ·D · grad (m) dΩ: (3.48)

Such a plot of the data misfit versus a model-based penalty is often called a L-curve, because

of its shape [75].

The first observation is that the inversion results actually depend on this regularization pa-

rameter ¸. However, taking the smoothing length between lc = 1 [km] and lc = 8 [km] gives

reasonable inversion accuracy for the edge-enhancing inner product, similar than the penal-

ization counterpart. The isotropic inner product seems to be more sensitive to the choice of

the smoothing length. It fails to converge in the model space when it is too large. This is

because the smoothing direction does not change, hence the inversion troubles to reconstruct

the sharp variation in depth. Whatever the regularization length, the anisotropic variant

converges faster in the model space than the isotropic variant, as the discrepancy limit is

systematically reached in less iterations and gives a lower error. When two smoothing lengths
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give the same reconstruction quality, it is always better to choose the smallest, because a

larger smoothing length always implies a slower convergence in the data space and at some

point (for lc > 2 [km]), also a slower convergence in the model space. Practically, the regu-

larization parameter ¸ is hard to set a priori, but the fact that it is related to a smoothing

length restricts the interval of interesting values to explore. When it is too small, typically

the order of the wavelength then the smoothing has nearly no effect and when it is too large,

typically bigger than the size of the domain then the smoothing is too strong, because any

direction is nearly transformed into a constant distribution. An efficient qualitative strategy

to choose this parameter is the L-curve (cf. Figure 3.12c-3.12c). Starting from the largest

characteristic length lc and going to the smallest, the L-curves are moving to the left, which

means that the same data misfit can be obtained for a smaller model penalization. For a

given data misfit level, e.g. the discrepancy limit, it is thus easy to choose between two reg-

ularization parameters: the regularization parameter which gives the smoother model, in the

sense of the penalization (3.48), should be chosen. Nevertheless, it should be kept in mind

that increasing the strength of the inner product penalty decreases the convergence speed.

Hence the smoothing length should not be increased anymore as soon as the L-curve start

superposing. This L-curve shifting effect is particularly visible for the anisotropic penalisation,

because the penalization is more suited to the Marmousi model structure. Using the argument

developed here above, the smoothing lc = 1: [km] and lc = 2: [km] would have been selected.

In summary, misfit penalization methods and preconditioned methods have the same recon-

struction potential as far as this first case study is concerned. The strategy for noise removal

is however very different. Preconditioning methods remove the noise at the beginning of the

inversion while misfit penalization methods suppress the noise in the end of the inversion. It

could therefore be tempting to combine both methods, but it would be useless in this case: if

the algorithm is stopped before convergence than the misfit penalization is inactive and if the

algorithm is carried to full convergence than there is no influence of the preconditioned path,

provided the same minimum is reached. This latter condition is however not always fulfilled,

as is shown in the next case study.
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Figure 3.11: Mean relative error against the iteration number (a). Relative misfit against
the iteration number (a) and against the inner product penalty (c). The anisotropic inner
product is used. Markers indicate the best iterations in the sense of the discrepancy principle
(ˇ) and in the sense of the minimal error (•). lc = 0:25( ), 0:5( ), 1( ), 2( ), 4( ), 8( ),
16( )[km].

lc 0:25 0:5 1: 2: 4: 8: 16:
Minimal error 0.143 0.140 0.141 0.148 0.159 0.217 0.229

iteration # 21 26 36 59 48 82 0
Discrepancy 0.150 0.148 0.146 0.151 0.163 - -

iteration # 12 14 20 33 57 - -

Table 3.2: Mean relative error at the best iterations in the sense of the discrepancy principle
and in the sense of the minimal error for inversions with a isotropic inner product with different
smoothing lengths.
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Figure 3.12: Mean relative error against the iteration number (a). Relative misfit against
the iteration number (a) and against the inner product penalty (c). The anisotropic inner
product is used. Markers indicate the best iterations in the sense of the discrepancy principle
(ˇ) and in the sense of the minimal error (•). lc = 0:25( ), 0:5( ), 1( ), 2( ), 4( ), 8( ),
16( )[km].

lc 0:25 0:5 1: 2: 4: 8: 16:
Minimal error 0.143 0.137 0.129 0.126 0.129 0.134 0.182

iteration # 22 21 30 43 61 119 69
Discrepancy 0.15 0.148 0.14 0.134 0.137 0.145 0.192

iteration # 12 12 15 22 34 62 110

Table 3.3: Mean relative error at the best iterations in the sense of the discrepancy principle
and in the sense of the minimal error for inversions with an anisotropic inner product with
different smoothing lengths.
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Figure 3.13: Time domain data for a single source, computed using a Newmark time-stepping
scheme (‚ = 0:5, ˛ = 0:25, ∆t = 0:1 [ms], T = 0:2 [s]) for different slowness squared
distributions. Ground-truth (a). Ground-truth with band limited Gaussian noise (SNR = 0:125
[-]) (b). Initial distribution (cf. Figure 2.11a) (c). Final distribution (cf. Figure 3.15d) (d).
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3.3.2 Case study 2: T-shaped reflectors

Similarly to the first case study, data are again generated in the time domain (fc = 150 [Hz],

T = 0:2 [s], ∆t = 0:1 [ms]) with hierarchical finite element of the order 2 for the spatial

discretization. A band limited (B = 375 [Hz]) Gaussian noise (SNR = 0:125 [-]) is then

added to these perfect data before computing their Fourier transform at the nine frequencies

used for the inversion (from f = 100 [Hz] to f = 300 [Hz] with 25 [Hz] increment). The

ground-truth data and the noisy data in the time domain for a single shot are given in Figure

3.13a and 3.13b. In addition, time data corresponding to the initial and a typical final model

parameter are also given in 3.13c and 3.13d. For this case study, the weight is chosen to be

constant, even the part related to the algorithmic change of variable: this is a slight change

w.r.t. Chapter 2. This constant is set in the same order of magnitude than the diagonal of the

Gauss-Newton hessian corresponding to the initial model. Note that throughout all this case

study, error are always compute on the slowness squared s2, even though the minimization

problem uses a logarithmic parametrization.

Additive penalization Inversion results have again been computed for both the Tikhonov

penalization and the total variation penalization, and for several values of the regularization

parameter –. The iterative process is stopped after a maximum number of 250 iterations,

or as soon as the misfit does not decrease significantly anymore. The inversion results for

the best regularimzation parametre – are given in Figure 3.15a-3.15a while the model error

and the data misfit are given as solid lines in Figure 3.14a and 3.14b. As the regulariza-

tion parameter – decreases, the data misfit also initially decreases but for small values, it

reaches a plateau or slightly increases and the model error explodes. For these small values,

the penalization is not constraining the model parameter strongly enough and reconstructions

are then similar to the unregularized reconstruction from Chapter 2, e.g. Figure 2.11c). For

larger values, the amplitude of the velocity anomaly are strongly under-estimated (cf. Figure

3.15a-3.15a). To better understand what is happening, it is interesting to use preconditioning

to solve the same optimization problems. The Tikhonov penalized misfit is combined with the

isotropic inner product with lc = 5 [m] while the total variation penalized misfit is combined

with the anisotropic inner product with lc = 9 [m]. The optimization path is thus different,

but the global minimum remains the same because the performance functional is unchanged.

The model error and the data misfit for the preconditioned inversions are given as dashed

lines in Figure 3.14a and 3.14b. The behavior is now very different. In particular, the error

curve is now much lower for small regularization parameters. This shows that the minimizer

found by the preconditioned method is different: for the same performance functional, the

minimum that is reached is different. Another way to see this is to look at the (relative)

total performance functional, i.e. (Jd(m) + Jm(m)) =Jd(m̃), which is given in Figure 3.14c for

both preconditioned and un-preconditioned inversions. If the same minimizer were reached,
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Figure 3.14: Mean relative error (a), relative data misfit (b) and relative total misfit (c) for
several values of the regularization parameter – and for both Tikhonov penalization ( ) or
total variation penalization ( ), with ( ) or without ( ) preconditioning. The Tikhonov
penalized misfit is combined with the isotropic inner product with lc = 5 [m] while the total
variation penalized misfit is combined with the anisotropic inner product with lc = 9 [m].

both curves would be superimposed and similarly for two different models from the same flat

minimum. This is not the case here: the preconditioned inversions yield a smaller total misfit,

which shows that different minima are reached. The goal of the misfit penalization is to

reduce the number of solutions: without penalization, several model parameters yield a small

data misfit and there are multiple solutions. To discrimination between those solutions, a data

misfit penalization is added and its strentgh should be increased such that only one solution

emerges. In such a case, all the method converges to the same solution, whatever the pre-

conditioner. This effect can be observed for the Tikhononv regularization with – > 0:1: both
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the preconditioned and un-preconditioned curves overlap. Preconditioning allows to diminish

this minimal strength of the misfit penalization and allows to obtain a better reconstruction,

as can be seen in Figure 3.15c or 3.15d. In Figure 3.14a, for the preconditioned methods,

the error reaches a plateau for very small values of the regularization parameter –, while it

is expected to increase. This is because the inversion algorithm is hitting the 250 iteration

limit. The data penalization misfit term is then inactive and the only regularization effect

is early stopping with inner product preconditioning. Consequently, in the next paragraph,

preconditioning alone is studied, because a data misfit penalization is not needed.
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Figure 3.15: Near-surface concrete structures velocity inversion results using either a data
misfit penalization regularization: Tikhonov (a), total variation (b) or inner product precon-
ditioning regularization: isotropic (c), anisotropic (d). Stopping iterations and regularization
parameters are chosen as the best in the sense of the mean relative error. Note that the upper
color scale limit is only 3 [km/s].

TIK TV ISO-IP ANISO-IP

Minimal error 1.7 3.4 0.91 0.86

Table 3.4: Best mean relative error for different regularization strategies. Tikhonov (TIK)
and total variation (TV) additive penalization. Isotropic (ISO-IP) and anisotropic (ANISO-
IP) inner product preconditioning.

Inner product preconditioning In this case study, addiditive data misfit penalization

methods need preconditioning to converge to a physically meaningful model. The opposite is

not true however, as inner product preconditioned methods reach accurate reconstructions,

even without misfit penalization. In the previous paragraph, the regularization parameter ¸
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was fixed. In this paragraph, the influence of this choice is again discussed. Both precondi-

tioned inversions are performed for different characteristic length, from lc = 1 [m] which is the

smallest propagated wavelength in the background to lc = 11 [m]. For the edge-enhancing

inner product, the scale structure  is chosen as half the wavelength while the edge thresh-

old ˛ is chosen such that the weak bottom reflector in the initial model is identified as an

edge. The data and model convergence curves are given in Figure 3.17a-3.18a and Figure

3.17b-3.18b, while the L-curves, i.e. the data misfit plotted against the inner product penalty

(3.48), are given in Figure 3.17c-3.18c. The error at the discrepancy limit and at the best

iteration are summarized in Table 3.5-3.6. A comparison of the data and model convergence

curves for the best smoothing length for each inner product is also given in Figure 3.16a and

Figure 3.16b.
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Figure 3.16: Relative data misfit (a) and mean relative error (b) for all the successive iterations,
for an isotropic (lc = 5 [m])( ) or an anisotropic (lc = 9 [m])( ) inner product. Markers
indicate the best iterations in the sense of the discrepancy principle (ˇ) and in the sense of
the minimal error (•).

Similarly to the first case study, the convergence speed in the data space decreases when

increasing the strength ¸ of the inner product penalty, as expected. However, the model

space convergence does not follow the same trend. For low characteristic lengths around the

smallest propagated wavelength, the inverted model parameters demonstrate a large error,

and the reconstructions are actually again close to the un-regularized inversions from Chapter

2 (e.g. Figure 2.11c). Increasing slightly the smoothing lengths to lc = 3 [m] and above,
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nevertheless gives very satisfactory results. The best result is again obtained with the edge-

enhancing inner product with lc = 9 [km] (cf. Figure 3.15d). The reconstruction for the

isotropic inner product with lc = 5 [m] is also very good, but the amplitude of the velocity

anomalies are lower and further away from the ground-truth value. By tilting its smoothing

direction, edge-enhancing preconditioning allows to better reconstruct sharp features. At

a given smoothing length, its convergence speed in the data space is also slightly higher,

because the discrepancy limit is reached faster, but the corresponding error is also larger than

the isotropic inner product. The advantage of the edge-enhancing inner product really appears

in the end of the inversion, as can be seen in Figue 3.16b. By design, the edge-enhancing inner

product is built to image linear sharp structures. It is not well suited for corners, with two

strong principal directions of variations instead of one. The diffusion tensor could however be

adapted to accurately represent corners [114, 195]. Selecting the regularization parameter ¸ is

easier in this case, because the reconstructions with a too low smoothing lengths, e.g. Figure

2.11c from Chapter 2, are meaningless. The L-curves, which are given in Figure 3.17c-3.18c

can help make this choice more formally. For a given level of data misfit, the smoothing

length lc = 1 and 3 [m] give a higher model penalty, which mean they should be discarded

for a higher value.
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Figure 3.17: Mean relative error against the iteration number (a). Relative misfit against the
iteration number (a) and against the inner product penalty (c). The isotropic inner product
is used. Markers indicate the best iterations in the sense of the discrepancy principle (ˇ) and
in the sense of the minimal error (•). lc = 1:( ), 3:( ), 5:( ), 7:( ), 9:( ), 11:( ) [m].

lc 1:0 3: 5: 7: 9: 11:
Minimal error 3.45 0.99 0.91 0.93 0.97 1.04

iteration # 150 193 226 250 250 250
Discrepancy 4.98 2.40 1.88 1.84 1.8 1.8

iteration # 28 33 40 50 59 70

Table 3.5: Mean relative error at the best iterations in the sense of the discrepancy principle
and in the sense of the minimal error for inversions with a isotropic inner product with different
smoothing lengths.
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Figure 3.18: Mean relative error against the iteration number (a). Relative misfit against the
iteration number (a) and against the inner product penalty (c). The anisotropic inner product
is used. Markers indicate the best iterations in the sense of the discrepancy principle (ˇ) and
in the sense of the minimal error (•). lc = 1:( ), 3:( ), 5:( ), 7:( ), 9:( ), 11:( ) [m].

lc 1:0 3:0 5:0 7:0 9:0 11:0
Minimal error 3.81 1.12 0.98 0.94 0.86 0.87

iteration # 200 141 193 234 247 250
Discrepancy 5.48 2.67 2.29 2.19 1.91 2.0

iteration # 25 26 34 42 51 56

Table 3.6: Mean relative error at the best iterations in the sense of the discrepancy principle
and in the sense of the minimal error for inversions with an anisotropic inner product with
different smoothing lengths.
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Figure 3.19: Time domain data for a single source, computed using a Newmark time-stepping
scheme (‚ = 0:5, ˛ = 0:25, c0∆t = 10 [mm], c0T = 100 [m]) for different conductivity and
permittivity distributions. Ground-truth (a). Ground-truth distribution with additive Gaussian
noise (SNR = 64 [-]) (b). Initial distribution (empty background) (c). Final distribution
(cf. Figure 3.22g-3.22h) (d).
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3.3.3 Case study 3: Dissipative crosses

Time domain data are given in Figure 3.19a. For this third case study, times are measured

in meters, with the speed of light c0 as the conversion factor, in the same way the pulsation

! was substituted by the wavenumber k in Chapter 2. These data, generated with a Ricker

excitation (fc = 100 [MHz]), are computed over a long time window (c0T = 100 [m]) with

small time steps (c0∆t = 10 [mm]) and with finite elements of order 2. Noisy data are given

in Figure 3.19b, a band limited Gaussian noise is used (B = 250 [MHz], SNR = 64 [-]). Time

data corresponding to the initial and a typical final model parameter are also given in 3.19c

and 3.19d. For all the inversion, the inner product is chosen such that permittivity updates are

favored over to conductivity updates, i.e. ˛ = 3, conforming with the guidelines from Chapter

3. The weight w(x) is here chosen to be a constant inspired from the magnitude of the

diagonal of the initial Gauss-Newton hessian. Again, the spatially varying part coming from

the logarithmic change of variable is discarded, at the opposite of Chapter 2. The iterative

procedure is stopped after a maximum of 200 iterations. Errors that are displayed in this case

study are integrated over a reduced area that contains both crosses, i.e. a circle of radius r = 3

[m] centered at the origin. The mean relative error is computed for both relative permittivity

and conductivity reconstructions and the mean of these two values is used as a figure of merit

for the multi-parameter inversion.

Additive penalization In the context of a double-parameter inversion, there is no longer

a single regularization parameter, but two: –› and –ff. The hyper-parameter selection is

therefore cumbersome: here, a grid of 7× 7 inversions is computed for both Tikhonov and total

variation penalties. The mean error for this grid is given in Figure 3.20 and the best couples of

regularization parameters are deduced from that plot. The associated reconstructions are given

in Figure 3.22e-3.22f and Figure 3.22g-3.22h while the corresponding mean relative errors are

summarized in Table 3.7. Similarly to the noise-free case, the reconstruction of permittivities

is more reliable than that of conductivities: cross shapes are better retrieved and the mean

relative error is much smaller on the permittivity part. Also, the error is focused at the bottom

cross, for which the values of both parameters are lower (›r = 1 [-], ff = 0:1 [mS/m]), as

can be seen from the error densities depicted in Figure 3.23a-3.23b and Figure 3.23c-3.23d.

In particular, the conductivity of this bottom cross is very small and the data are thus not

very sensitive to its value, hence the large error. Comparing both penalization methods, it

appears that the total variation penalty term yields higher noise artifacts, particularly in the

conductivity image. One explanation for this is the poor stability of the derivative in constant

regions, where |grad (m)| ≈ 0, because the threshold that is used to prevent division by zero

is only slightly above zero and it is not related to any model parameter jump. A possible

solution is thus to introduce a physical edge threshold parameter in the definition of the total

variation penalization, in the same spirit as the edge-enhancing inner product. Finally, the
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Figure 3.20: Mean relative error for several values of the regularization parameters –› and –ff,
for both Tikhonov penalization (a) or total variation penalization (b).

TIK TV ISO-IP ANISO-IP

Permittivity error 0.19 0.19 0.18 0.18

Conductivity error 0.96 1.01 1.0 0.9

Mean error 0.57 0.6 0.59 0.54

Table 3.7: Mean relative error for different regularization strategies. Tikhonov (TIK) and
total variation (TV) additive penalization. Isotropic (ISO-IP) and anisotropic (ANISO-IP)
inner product preconditioning. Regularization parameters for the penalization methods are
chosen as the best in the sense of this error. Characteristic lengths for the isotropic and
anisotropic inner products are chosen a priori (lc = 2:25 [m] and lc = 3:75 [m] respectively)
and the iterative process is stopped after 100 iterations.

error history, i.e. the convergence in the model space, is given in Figure 3.21 as dashed lines

for these two couples of best regularization parameters. The error increases for the first few

iterations, because the model parameters are not constrained. It then starts to decrease after

around 30 iterations but only drops below the initial error level after around 60 iterations. The

situation is however better with inner preconditioned methods, as is explained in the following

paragraph.

Inner product preconditioning To highlight the ease to select the regularization hyper-

parameter ¸ for the inner product preconditioned methods, only two characteristic lengths

have been tried: lc = 2:25 [m] and lc = 3:75 [m]. The first one is of the order of the cross

size and the second is slightly bigger. Moreover, the same smoothing strength is applied to

both parameters, i.e. there is a single ¸. For the isotropic inner product, the best lengths is

found to be lc = 2:25 [m] while for the anisotropic and adaptative inner product, the best

one is the largest ,i.e. lc = 3:75 [m], in accordance with the conclusions of the first two
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Figure 3.21: Mean relative error against the iteration number for different regularization
strategies. Tikhonov ( ) and total variation ( ) additive penalization. Isotropic ( ) and
anisotropic ( ) inner product preconditioning. Regularization parameters for the penalization
methods are chosen as the best in the sense of this error. Characteristic lengths for the
isotropic and anisotropic inner products are chosen a priori (lc = 2:25 [m] and lc = 3:75 [m]
respectively)

case studies: the isotropic inner product is better with smaller smoothing lengths because

it is not allowed to tilt its smoothing direction. In the context of this double parameter

inversion, there are additional hyper-parameters to settle for the construction of the diffusion

tensors. In particular, it is here chosen to use a shared structure tensor, as explained in the

introduction, because the structure of the permittivity and the conductivity distribution is

the same. In Chapter 2, it was shown that conductivity is less constrained by the data and

that delaying the conductivity updates is beneficial for the inversion. This is also why the

scaling factor between the two parameter classes is chosen bigger than one for this case study,

i.e. ˛ = 3. Following these observations, it is therefore chosen here to take the diffusion

tensors to be based solely on the current permittivity reconstruction, i.e. q› = 1 and qff = 0:

firstly because during the iterative process, permittivity is reconstructed before conductivity

and secondly because permittivity reconstruction is more reliable. Consequently, the structure

is withdrew from the permittivity image and injected into the conductivity image through the

diffusion tensor D. The error history for both methods is given in Figure 3.21. As expected,

the inversion method combined with the egde-enhancing inner product provides better results:

the minimal error is smaller and actually, the error is smaller at any iteration. The improvement

mainly appears for the conductivity reconstruction, as can be seen from Table 3.7, which gives

the error separated for both the permittivity and conductivity parts, at the 100th iteration.

For this case study, the improvement over additive penalization methods is also huge: the

minimal error is smaller and even more importantly, at the early stage of the inversion, there

is a gap between both methods. After 40 iterations the error difference nearly reaches 50

% and it is still at 25 % after 80 iterations. Again, this is because regularization through

preconditioning is effective from the beginning of the inversion procedure. Inversion results

for both preconditioned methods are given in Figure 3.22e-3.22f and Figure 3.22g-3.22h.
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Permittivity reconstructions are very similar and actually even slightly better in the direct

vicinity of the crosses with the isotropic variant, as can also be seen in Figure 3.23e-3.23f

and Figure 3.23g-3.23h. Indeed, at the inner corners of the crosses, the gradient is skewed

at 45 degrees w.r.t. both the x-axis and the y -axis. In between two branches of a cross, near

these inner corners, the diffusion tensor therefore favors diamond shapes and it results in a

smoothing of the inner corners. This effect is particularly visible on the bottom cross. To

avoid such an effect, the inner product penalization and specifically the diffusion tensor should

be slightly more involved and in particular there should be no smoothing at corners, where

its two principal directions have nearly the same eigenvalues [14, 65, 114, 195]. As far as the

conductivity is concerned however, the bottom cross is better imaged with the edge-enhancing

inner product but the rounding of inner corners still appears. The center of the cross and

the amplitudes are better retrieved, because the structure is inherited from the permittivity

distribution, which is of higher quality. Moreover, the amplitude of the noise artifacts around

the crosses is smaller, because the smoothing in these regions is bigger than the isotropic

inner product. This supplementary information brought through the diffusion tensor in the

inner product allows a faster and more reliable conductivity reconstruction and overall makes

the edge-enhancing inner product preconditioned methods a better approach.

3.4 Conclusion

In this chapter, inner product regularization methods are studied and compared to two other

widely used regularization methods. Firstly, an overview of some sate-of-the-art regularization

methods was given, followed by a reminder of two widely used additive misfit penalization

methods, i.e. Tikhonov and total variation penalties. Then the concept of regularization

through the inner product was introduced and analyzed through some toy problem examples.

Two regularizing inner products were proposed: a smoothness-promoting inner product and

an edge-enhancing inner product. While the former is very straightforward to define, the latter

is slightly more subtle and is discussed in more detail. In order to highlight the advantages

of inner product preconditioning, the three reference numerical case studies are considered,

each of them demonstrating one or more benefits of this new approach, particularly when

using the edge-enhancing variant. The first case study demonstrates that the edge-enhancing

preconditioning is faster and yields more accurate results than the isotropic variant, because it

is specifically designed to image linear structures. Conventional additive misfit regularization

methods also work well on this first case study, because the initial model is close to the

ground-truth; the situation might however be different with a less ideal starting model. The

second case study illustrates the benefits of enforcing regularization from the beginning of

the iterative process, as it is typically the case with preconditioning methods. Indeed, the

local inversion process struggled to converge in the model space when regularization only
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Figure 3.22: Inversion results using either a data misfit penalization: Tikhonov (a,b), total
variation (c,d) or inner product preconditioning: isotropic (e,f), anisotropic (g,h). Regulariza-
tion parameters for the penalization methods are chosen as the best in the sense of the mean
relative error while characteristic lengths for the isotropic and anisotropic inner products are
chosen a priori : lc = 2:25 [m] and lc = 3:75 [m] respectively. Left and right columns are
respectively permittivity and conductivity reconstructions
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Figure 3.23: Relative error densities using either a data misfit penalization: Tikhonov (a,b),
total variation (c,d) or inner product preconditioning: isotropic (e,f), anisotropic (g,h). Reg-
ularization parameters for the penalization methods are chosen as the best in the sense of the
mean relative error while characteristic lengths for the isotropic and anisotropic inner products
are chosen a priori : lc = 2:25 [m] and lc = 3:75 [m] respectively. Left and right columns are
respectively related to permittivity and conductivity.
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appears at the end of the inversion. Moreover, the edge-enhancing method was again slightly

better, as it was able to reconstruct sharper variations in the model parameter. Finally, the

third case study showed again the advantage of including some prior knowledge from the

beginning, as preconditioned methods converged faster in the model space, i.e. the model

error decreased faster, than additive penalization methods. Moreover, this double-parameter

inversion gave some insights on the new possibilities offered by inner product preconditioning,

such as softly coupling the geometrical structure both model parameters classes. Injecting

information from a highly constrained parameter to an another less constrained parameter

actually allowed to obtained better reconstructions. Importantly, during the discussion of these

three case studies, it was shown how the inner product hyper-parameters are easy to select,

in particular compared to conventional Tikhonov and total variation methods. In summary,

regularization through edge-enhancing inner product is interesting for three main reasons.

Firstly, its hyper-parameters are related to physical quantities, thus easier to choose. Moreover,

the inversion results do not demonstrate a high sensitivity to these choices. Secondly, enforcing

a regularization effect from the early stage of the inversion can allow or accelerate model error

convergence. Thirdly, the edge-enhancing diffusion tensor is particularly suited to reconstruct

linear structures: it gives a more accurate reconstruction of model parameter jumps, that

are common in many natural media. Moreover this tensor can include, without effort, a

soft geometrical coupling between several parameter classes. This inner product is however

probably not the best one that could be defined: over-fitting the data is still observed in

every case study. One straightforward improvement is to provide a specific treatment for

corners, but much more substantial modifications, for example that do not take root in the

diffusion filtering community, could also be considered to further enforce piece-wise linear

reconstruction, or any other relevant model properties.
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Full waveform inversion is a high-resolution imaging technique aiming to extract physical pa-

rameters of a medium, sampled by propagating waves, and which is based on matching the

entire recorded data set with a numerically simulated data set, obtained through a mathe-

matical model of the underlying wave propagation physics. The leading idea of full waveform

inversion is a brute force approach to the imaging problem. For a given image, a synthetic

data set can be generated numerically and the fundamental question of full waveform in-

version then arises: What image reproduces the recorded data set with the highest fidelity?

The numerical procedure generating these synthetic data sets, which specifically takes into

account the full propagation physics, is the distinguishing feature that provides an unprece-

dented theoretical high-resolution to the method. This resolution increase has also been

observed in practice, in several application fields such as marine and land seismic exploration,

ground-penetrating radar, ultrasound medical imaging and non-destructive testing, where full

waveform inversion is slowly becoming the industry standard. The interest in full waveform

inversion is growing, because its major drawback, its numerical cost, is decreasing together

with the ever-increasing available computational power. Research in full waveform inversion

is therefore a pivotal stake in imaging science, as solving its challenges will spread its indus-

trial integration and push its performance even further. These challenges are manifold. The

greatest one remains the numerical cost, even though computational capabilities are growing.

Constructing efficient algorithms, typically for solving the wave propagation problems and the

minimization algorithms, remains a key issue. Then, with the great resolution power comes

a great sensitivity to perturbations: noisy data, wave modeling errors or a very wrong initial

image guess can lead to the failure of the procedure. Much effort must still be done to make

full waveform inversion more robust and to automate the reconstruction process as much as

possible, such that no human intervention or expertise is required during the imaging process.

Finally, in the case a relevant image can be obtained successfully, the confidence that can be

placed in that particular image naturally arise as the next concern to tackle: it is well-known

that the image solution is not unique, but some features might be shared by all the possible

solutions.

As mentioned in the introduction, the full waveform inversion workflow can be split into three

parts or three spaces: the data space, the wave field space and the model space. In summary,

149
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data space developments mainly focus on what is meant by high fidelity match between two

data sets, i.e. the distance between two data sets; wave field space contributions aim to

accelerate the construction of wave propagation problem solutions, i.e. the data generation

for a given image; while model space improvements build new image update strategies, which

incorporate prior knowledge on the surveyed sample and physical constraints, while maintaining

a fast convergence to the optimal solution. This thesis was part of this last perspective. In a

single sentence, it can be summarized as the study of the positive effects of appropriate metric

modifications for the minimization problem arising in full waveform inversion. Throughout this

thesis, the proposed ideas have systematically been tested on three numerical case studies,

which were chosen to be representative of some typical challenges encountered in full waveform

inversion: incomplete illumination, strong contrasts, sharp interfaces, multiple reflections and

cross-talk among others.

Summary of main contributions

In Chapter 1, a general framework for the calculation of derivatives w.r.t. topological model

parameters was introduced. This formalism included full waveform inversion, where the per-

formance functional aims to minimize the discrepancy between observed data and simulated

data, but was not limited to it. In particular, light was shed on the role of boundaries because

in numerous applications, the wave propagation problem contains model parameters appearing

in a boundary condition. Specifically, a unified derivation of the adjoint state method was

presented, for performance functionals composed of both a volume and a boundary part and

with model parameters living in the bulk and/or on the boundary. The central role of the

inner product choice was also discussed. An exhaustive list of formulas was derived for the

three most widely used wave propagation models, i.e. the Helmholtz equation, the Maxwell’s

equations and the Navier equation. Testing problems have been conducted systematically to

demonstrate the validity of the formulas and their numerical implementations. At the end of

that first chapter, an in-depth knowledge of gradients and the Hessian operators computation

had been acquired, paving the way for their use in local optimization algorithm in the following

chapter.

In Chapter 2, a large ensemble of local optimization algorithms were implemented and com-

pared using the derivatives developed in the first chapter. Local optimization algorithms

were introduced as the combination of three fundamental building blocks: the descent direc-

tion, the inner product and the globalization strategy. The three most widely used descent

directions were investigated: the steepest direction, the l-BFGS direction and the (Gauss-

)Newton direction; preconditioned through different metric choices, either to compensate for

partial illumination, to smooth the updates, or to restore balance between the parameter

classes in multi-parameter inversions; and lengthened with either a line search or a trust-
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region procedure. Preconditioning can be presented from different viewpoints. In this thesis,

the preconditioner wes seen as a consequence of metric modifications. This specific link was

detailed and illustrated in this chapter. This choice of viewpoint is not innocuous: the metric

also appears in the trust region constraint. Modifying this metric thus has a double effect,

which are consistent with each other thanks to these definitions. In addition, viewing the

preconditioner from the inner product aspect gave an alternative perspective, which helped

in their design. Any of these ingredients taken separately is state-of-the-art, even though

trust-region methods for full waveform inversion have hardly ever been explored before and

similarly for Newton methods, which are often believed to be too computationally expensive.

The novelties of this chapter were rather the unified presentation of the concepts around

the inner product modification, the fair methodology of comparison and the extensive ap-

plications to full waveform inversion. The comparison of all the different combinations was

a major original contributions of this thesis manuscript. Based on the three representative

case studies, appropriate preconditioning was shown to dramatically increase the convergence

speed, independently of any other choices. Moreover, it was shown that the (Gauss)-Newton

should better be combined with a trust-region algorithm. With a trust-region globalization,

the Newton methods surpassed its Gauss-Newton variants in many situations, because some

of its drawbacks were removed. In the case of a double parameter inversion, (Gauss-)Newton

methods nearly had the same convergence speed than the l-BFGS method, which overall was

still the fastest descent direction.

In Chapter 3, a more subtle inner product was proposed, because the second chapter high-

lighted the pivotal role of preconditioning. The design of this new metric was inspired from an

edge-enhancing operator frequently used in image processing. The focus of this third chapter

was the robustness to noise in the observed data, i.e. the intrinsic regularization properties of

the proposed optimization strategies. This study began with a comparison with conventional

regularization techniques, namely the Tikhonov gradient penalization and the total variation

penalization. During the presentation, the effect of inner product modifications is again re-

viewed, but this time under the angle of a metric penalization, because it enabled a direct

comparison with conventional regularization methods: the penalization is in the metric rather

than in the misfit. Inversions results related to the three reference case studies demonstrated

that the image quality is similar or superior to the conventional methods when using the

newly proposed filtering inner product, in addition to having multiple side advantages: firstly,

preconditioning increased the size of the basin of attraction of the local minimum of interest,

because the regularization effect appears from the beginning of the inversion; secondly, the

regularization hyper-parameters were easier and more natural to choose; and thirdly it opened

new possibilities such as a weak coupling between parameter classes, which allowed to share

information between weakly constraint model parameters.

All the computational results contained in this thesis have been made possible through the
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development of a flexible numerical framework, specific to the resolution of inversion problems

based on wave propagation problems. This code constituted the main practical contribution

of this thesis.

Proposal for further developments

While multiple aspects have been tackled throughout this thesis, there will always remain

unexplored paths. The typical full waveform inversion procedure involves three quantities:

data sets, wave fields and model parameters. In this thesis manuscript, the focus was on

the model space, but there is also a lot of open problems in both the other spaces. A non-

exhaustive list of potential improvements and research directions is given here below, from

the most straightforward improvements of this thesis work to the most conceptual ones, for

each part of full waveform inversion.

Model parameters space In Chapter 1, bulk sensitivities w.r.t. the model parameters

of the most widely used wave equations were given. For any other equation, for example

anisotropic wave equations [7, 24, 42, 56, 143], the formulas need to be updated and similarly

for the boundary sensitivity formulas, which were given explicitly for some specific conditions

only. Nevertheless, such extensions are straightforward because the procedure can be applied

systematically. While volume topological derivatives were extensively used throughout the

thesis, boundary derivatives have rather been left out. Applications taking profit of these

boundary derivatives could be investigated, for example to determine the optimal equivalent

impedance of a surface, in combination with an inverse homogeneization problem to create a

micro-material with the appropriate equivalent macro-impedance [131, 151, 156].

In Chapter 2, truncated Newton methods were improved thanks to their combination with

trust-region methods, but they were still slower than the l-BFGS method. A potential further

improvement would thus to use the l-BFGS direction as the first guess of the inner iteration

loop, instead of the gradient [118]. Moreover, it would be interesting to compare both

methods on a case study gathering all the difficulties: multiple reflections, partial illumination

and parameter cross-talk, as reducing the illumination contributes to enhance the ambiguity

between parameter classes [72]. Alternatively, other approximate methods could be used to

solve the Newton system. For example, instead of probing the Hessian operator in a series of

directions generated by the conjugate gradient algorithm, an approximate Hessian operator

could be built from a series of parameterized elementary operators, that are determined from

the application of the Hessian in a small number of random directions [38]. Another possibility

is to explore other quasi-Newton methods, i.e. methods from the same family than l-BFGS,

which approaches the inverse Hessian in a low-rank form [105, 106]. The advantages of

both these methods is not limited to potentially accelerate the converge speed: they also
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allow for a model resolution analysis through the sampling of the posterior model distribution,

which is nothing else that the inverse Hessian [21, 54]. Resolution analysis and uncertainty

quantification are the natural concerns that arise once a particular solution is found. Future

researches should ideally include the computational cost of such an analysis when comparing

different reconstruction methods. Around a given minimum, this information can be extracted

from the inverse Hessian through a randomized singular value decomposition [21], but its

computational requirements are high. Instead, it could thus be interesting to construct a

Hessian approximation during the inversion process which is easily probable [105], or to reduce

the computational burden of the randomized singular value decomposition thanks to point-

spread functions approximations [53, 208]. Another very recent approach, which does not

require to probe the inverse Hessian, is to compute statistical estimates on a large ensemble

of complete inversion results obtained from randomly generated initial guesses [179]. All the

inversion runs are thus embarrassingly parallel, which constitutes a huge advantage on modern

computer clusters.

In Chapter 3, the robustness of the regularization through preconditioning could be analyzed

further, by repeating the analysis for different noise levels. In addition, it would be interesting

to implement a diffusion tensor which behaves appropriately on corners and to compare line

search and trust-region methods in the context of noisy data. Due to its good performance,

the adaptative and anisotropic inner product could also be introduce in the misfit, as a

conventional additive penalization method [14]. A probabilistic view of the metric modification

would also be interesting to consider, as it can be linked to the a priori model co-variance

operator [177]. Moreover, the proposed preconditioners could be improved, as the discrepancy

limit is still crossed before the model error minimum is reached. Preconditioner based on the

seislet transform could be considered when the model properties are known to be sparse in

that basis [199]. If such a basis is unknown, then the preconditioner can be learned from

available or synthetic reconstruction examples [91, 123, 183].

Data space Data sets used throughout this thesis are synthetic and an assessment of the

proposed concepts on real data sets, contaminated with errors more complex than a white

Gaussian noise, would be very instructive. For example, when inverting seismic data within

the acoustic approximation, some elastic imprints on the data are inevitable and a heavy

pre-processing must then be done, e.g. thanks to an elastic-to-acoustic converter, previously

trained on acoustic-elastic couples of data sets [100, 190, 204]. The distance functional

between the observed and simulated data sets has not been studied neither in this thesis,

although its pivotal role in preventing cycle-skipping and thus in increasing full waveform

inversion robustness. In the time domain, two approaches have demonstrated to be particularly

efficient: the first is based on matching filters [192] and the second is based on optimal

transport [115]. Transposing both these functionals in the frequency domain is doubtlessly
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an interesting perspective. Nevertheless, cycle-skipping only appears when the low-frequency

data content is missing: a straightforward idea is thus to extrapolate this low frequency

content from the available frequency band [101, 175].

Wave field space For the last two chapters, only the simplest wave propagation physics,

i.e. the Helmholtz equation, has been considered. The extension of inversions to more com-

plex physics might also be needed when considered real data sets. Moreover, depending on

the surveyed area, three dimensional images will also be required. For small two dimensional

imaged regions, direct solvers, relying on a upper-lower factorization of the forward system,

are affordable and are actually particularly useful in a context of multiple shots, because each

excitation only require two triangular solves. For larger domains however, typically in three

dimensions, this factorization, whose memory requirements are proportional to the fourth

power of the matrix size, becomes prohibitively expensive. The usual alternative is then it-

erative methods. Unfortunately, systems arising form the discretization of wave scattering

equations in the frequency domain are ill-conditioned and alternative methods must be em-

ployed [48]. Considering the particular structure of the full waveform inversion workflow,

i.e. slowly evolving scattering problems solved for each outer optimization iteration, particular

methods, that take benefits from this redundancy, should be investigated. Among these is

the controllability method. In this approach, a time-periodic solution, which thus takes ad-

vantage of the good scalability properties of the time-domain solvers, is computed through an

optimization algorithm. Successive wave propagation problems that appear during the outer

optimizations, related to model inversion, are then progressively solved faster as the initial

guesses for the wave field appearing in the inner optimization can be chosen based on the

wave field history [176]. On the other hand, large scale wave scattering propagation problem

in the frequency domain are often solved through domain decomposition methods: a hybrid

direct-iterative family of methods which are parallel by design. These methods propose to

split the resolution domain in several parts; then to solve on each subdomains the wave propa-

gation problem by direct factorization; and finally to iterate between the different subdomains

through a reduced system defined on the interfaces [81, 172]. When included in a full wave-

form inversion loop, these methods become computationally expensive, as a supplementary

inner iterative process needs to be performed at every outer iteration. A promising idea are

then multi-step one-shot methods, which iterate on the forward problem solution and on the

inverse problem for model parameters in one same loop [15]. In particular, their combination

with a waveform reconstruction formulation of full waveform inversion could be interesting.

According to waveform reconstruction inversion, the forward wave propgation problem is not

enforced exactly, but rather through a penalty in the misfit [98].
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Adjoint operators

This appendix provides the derivation detail of the adjoint operators introduced in Chapter 1.

A.1 State space

A.1.1 Helmholtz I

The adjoint of the Gâteaux derivative w.r.t. u of the Helmholtz I’s operator is

@†uF = div (grad ()) + !2s2 = @uF (A.1)

while the boundary term is
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A.1.2 Helmholtz II

The adjoint of the Gâteaux derivative w.r.t. u of the Helmholtz II’s operator is

@†uF = div (� grad ()) + !2K = @uF (A.6)

while the boundary term is
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where @
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:= n̂ · grad () denotes the normal derivative. Indeed
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A.1.3 Maxwell

The adjoint of the Gâteaux derivative w.r.t. u of the Maxwell operator is

@†uF =

0@ i!› curl ()

curl () −i!—
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while the boundary term is
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where ‚T () := −n̂ × (n̂×) denotes the tangential component and ‚t() := n̂× denotes the

orthogonal tangential component. Indeed

D
u†; {@uF}(u)

E
L3

2(Ω)×L3
2(Ω)



Adjoint operators 157

=
Z

Ω

h
e† · (curl (h)− i!›e)

i
dΩ +

Z
Ω

h
h
† · (curl (e) + i!—h)

i
dΩ (A.14)

=
Z

Ω

h
−div

“
e† × h

”
+ curl

“
e†
”
· h − i!›e† · e

i
dΩ

+
Z

Ω

h
−div

“
h
† × e

”
+ curl

“
h
†” · e + i!—h

† · h
i
dΩ (A.15)

=
Z

Ω

“
curl (e†)− i!—h†

”
· h dΩ +

Z
Ω

“
curl

“
h†
”

+ i!›e†
”
· e dΩ

−
Z
@Ω

“
e† × h

”
· n̂ d@Ω−

Z
@Ω

“
h
† × e

”
· n̂ d@Ω (A.16)

and

h
u†; u

i
@uF

= −
Z
@Ω

“
e† × h

”
· n̂ d@Ω−

Z
@Ω

“
h
† × e

”
· n̂ d@Ω (A.17)

=
Z
@Ω
e† · ‚t(h) d@Ω−

Z
@Ω
‚t(h

†
) · e d@Ω (A.18)

=
Z
@Ω
‚T (e†) · ‚t(h) d@Ω−

Z
@Ω
‚t(h

†
) · ‚T (e) d@Ω (A.19)

=
Z
@Ω

“
‚t(h

†
) ‚T (e†)

”0@0 −1

1 0

1A0@‚t(h)

‚T (e)

1A d@Ω (A.20)

or by symmetry

=
Z
@Ω

“
‚t(e

†) ‚T (h
†
)
”0@0 −1

1 0

1A0@‚t(e)

‚T (h)

1A d@Ω: (A.21)

A.1.4 Navier

The adjoint of the Gâteaux derivative w.r.t. u of the Navier operator is

@†uF = div (ff()) + !2 = @uF : (A.22)

while the boundary term is
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where ‚n() := n̂ (n̂·) denotes the normal component and ‚T () := −n̂ × (n̂×) denotes the

tangential component. Indeed
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Z
@Ω
n̂ ·

“
ff(u) · u† − ff(u†) · u

”
d@Ω (A.29)

because the following identity holds

grad
“
u†
”

: ff(u) = grad
“
u†
”

:
“
–div (u) I + —(grad (u) + gradT (u))

”
(A.30)

= –div
“
u†
”

div (u) + —grad
“
u†
”

: (grad (u) + gradT (u)) (A.31)

= –div (u) div
“
u†
”

+ —grad (u) : (grad
“
u†
”

+ gradT
“
u†
”

) (A.32)

= grad (u) : ff(u†): (A.33)

The boundary term can also be expressed as

h
u†; u

i
@uF

=
Z
@Ω
u† · ff(u) · n̂ − u · ff(u†) · n̂ d@Ω (A.34)

=
Z
@Ω

“
‚n(u†) + ‚T (u†)

”
· ff(u) · n̂ − (‚n(u) + ‚T (u)) · ff(u†) · n̂ d@Ω (A.35)

=
Z
@Ω

“
ff(u†) · n̂ ‚n(u†)

”0@0 −1

1 0

1A0@ff(u) · n̂
‚n(u)

1A d@Ω (A.36)

+
Z
@Ω

“
ff(u†) · n̂ ‚T (u†)

”0@0 −1

1 0

1A0@ff(u) · n̂
‚T (u)

1A d@Ω: (A.37)

A.2 Model space

A.2.1 Helmholtz I

The Gâteaux derivative of the Helmholtz I operator w.r.t. s2, their adjoints and the corre-

sponding boundary terms are respectively

{@s2F} (‹s2) = u!2‹s2;
n
@†s2F

o
(u†) = !2uu†; and

h
u†; ‹s2

i
@s2F

= 0: (A.38)

Indeed D
u†; {@s2F} (‹s2)

E
L2(Ω)

=
D
u†; u!2‹s2

E
L2(Ω)

=
D
!2uu†; ‹s2

E
L2(Ω)

: (A.39)
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A.2.2 Helmholtz II

The Gâteaux derivative of the Helmholtz II operator w.r.t. � and K, their adjoints and the

corresponding boundary terms are respectively

{@�F} (‹�) = div (‹� grad (p)) ; (A.40)n
@†�F

o
(p†) = −grad (p) · grad

“
p†
”
; (A.41)h

p†; ‹�
i
@›F

=
Z
@Ω
p† ‹�

@p

@n
d@Ω (A.42)

and

{@KF} (‹K) = p!2‹K; (A.43)n
@†KF

o
(p†) = !2pp†; (A.44)h

p†; ‹K
i
@KF

= 0: (A.45)

Indeed

D
p†; {@�F} (‹�)

E
L2(Ω)

(A.46)

=
D
p†; div (‹� grad (p))

E
(A.47)

=
Z

Ω
p†div (‹� grad (p)) dΩ (A.48)

= −
Z

Ω
grad

“
p†
”
· ‹� grad (p) dΩ +

Z
Ω

div
“
p†‹� grad (p)

”
dΩ (A.49)

=
D
−grad

“
p†
”
· grad (p) ; ‹�

E
L2(Ω)

+
Z
@Ω
p† ‹�

@p

@n
d@Ω (A.50)

and

D
p†; {@KF} (‹K)

E
L2(Ω)

=
D
p†; p!2‹K

E
L2(Ω)

=
D
!2pp†; ‹K

E
L2(Ω)

: (A.51)

A.2.3 Maxwell

The Gâteaux derivative of the Maxwell operator w.r.t. › and — and their adjoints are respec-

tively

{@›F} (‹›) = −ie!‹›;
n
@†›F

o
(u†) = i!e · e†;

h
u†; ‹›

i
@›F

= 0 (A.52)

and

{@—F} (‹—) = ih!‹—;
n
@†—F

o
(u†) = −i!h · h†;

h
u†; ‹—

i
@—F

= 0: (A.53)



160 Appendix A

Indeed

D
u†; {@›F} (‹›)

E
L3

2(Ω)×L3
2(Ω)

=
D
e†;−ie!‹›

E
L3

2(Ω)
=
D
i!e† · e; ‹›

E
L2(Ω)

(A.54)

and

D
u†; {@—F} (‹—)

E
L3

2(Ω)×L3
2(Ω)

=
D
h†; i!h‹—

E
L3

2(Ω)
=
D
−i!h† · h; ‹—

E
L2(Ω)

: (A.55)

A.2.4 Navier

The Gâteaux derivative of the Navier operator w.r.t. , – and —, their adjoints and the

corresponding boundary terms are

{@F} (‹) = u!2‹; (A.56)n
@†F

o
(u†) = !2u · u†; (A.57)h

u†; ‹
i
@F

= 0 (A.58)

and

{@–F} (‹–) = div ({@–ff} (‹–)) ; (A.59)n
@†–F

o
(u†) = −div (u) div

“
u†
”
; (A.60)h

u†; ‹–
i
@–F

=
Z
n̂ · {@–ff} (‹–) · u† d@Ω (A.61)

and

{@—F} (‹—) = div ({@—ff} (‹—)) ; (A.62)n
@†—F

o
(u†) = −2›(u) : ›(u†); (A.63)h

u†; ‹—
i
@—F

=
Z
n̂ · {@—ff} (‹—) · u† d@Ω: (A.64)

Indeed

D
u†; {@F} (‹)

E
L3

2(Ω)
=
D
u†; !2‹u

E
L3

2(Ω)
=
D
!2u† · u; ‹

E
L2(Ω)

(A.65)D
u†; {@–F} (‹–)

E
L3

2(Ω)
=
D
u†; div ({@–ff} (‹–))

E
(A.66)

=
Z

Ω
u† · div ({@–ff} (‹–)) dΩ (A.67)

=
Z

Ω
div

“
{@–ff} (‹–) · u†

”
dΩ−

Z
Ω

grad
“
u†
”

: {@–ff} (‹–) dΩ

(A.68)
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= −
Z

Ω
div

“
u†
”

div (u) ‹– dΩ +
Z
@Ω
n̂ · {@–ff} (‹–) · u† d@Ω

(A.69)

=
D
−div (u) div

“
u†
”
; ‹–

E
L2(Ω)

+
Z
@Ω
n̂ · {@–ff} (‹–) · u† d@Ω

(A.70)

and similarly

D
u†; {@—F} (‹—)

E
L3

2(Ω)
=
D
u†; div ({@—ff} (‹—))

E
(A.71)

=
Z

Ω
u† · div ({@—ff} (‹—)) dΩ (A.72)

=
Z

Ω
div

“
{@—ff} (‹—) · u†

”
dΩ−

Z
Ω

grad
“
u†
”

: {@—ff} (‹—) dΩ

(A.73)

= −
Z

Ω
2›(u) : ›(u†)‹— dΩ +

Z
@Ω
n̂ · {@—ff} (‹—) · u† d@Ω (A.74)

=
D
−2›(u) : ›(u†); ‹—

E
L2(Ω)

+
Z
@Ω
n̂ · {@—ff} (‹—) · u† d@Ω:

(A.75)

A.3 Data space

A.3.1 Gradient kernel of the least squared distance

Consider the least squares distance

H(u) =
1

2

X
r

|u(x r )− dr |2 : (A.76)

Its Gâteaux directional derivative writes

{DuH(u)} (‹u) =
1

2

X
r

(u(x r )− dr ) ‹u(x r ) + (u(x r )− dr ) ‹u(x r ) (A.77)

= Re
X
r

(u(x r )− dr ) ‹u(x r ): (A.78)

Then using the identity

‹u(x r ) =
Z

Ω
‹u(x)‹(x − x r ) dx ; (A.79)

the gradient kernel is found as

{DuH(u)} (‹u) = Re
X
r

(u(x r )− dr )‹u(x r ) (A.80)

= Re
X
r

(u(x r )− dr )
Z

Ω
‹u(x)‹(x − x r ) dx (A.81)
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= Re
Z

Ω

X
r

(u(x r )− dr )‹(x − x r ) ‹u(x) dx (A.82)

= Re

*X
r

(u(x r )− dr )‹(x − x r ); ‹u
+

(A.83)

:= Re 〈h′; ‹u〉 : (A.84)



Appendix B

Extended numerical illustration

This appendix aims to reproduce the results from Section 1.6 in Chapter 1 for the Helmholtz

II equation, the Maxwell’s equations and the Navier equation. For conciseness, only the highly

penetrable case, where the cylinder is modeled explicitly, is considered and only a single scale

is used for the Sobolev gradient. For all the numerical illustrations, the pulsation ! is again

set to 2ı.

B.1 Helmholtz II

The systematic steps of the adjoint state method are as follows, in terms of two bulk model

parameters � and K and a boundary model parameter ˛:

1. Find the direct states pe obeying the direct problem8>><>>:
div (� grad (pe)) + !2Kpe = ‹(x − xe) in Ω

�
@pe
@n

+ ˛pe = 0 on @Ω:
(B.1)

2. Find the adjoint states p†e obeying the adjoint problem

8>>><>>>:
div

“
� grad

“
p†e
””

+ !2Kp†e =
X
r

(pe(x r )− d e;r)‹(x − x r ) in Ω

�
@p†e
@n

+ ˛p†e = 0 on @Ω:

(B.2)

3. Once the direct and adjoint states are known, the gradient kernels with respect to the

different model parameters can be evaluated:

• bulk sensitivity w.r.t. �

j
′
Ω =

X
e

grad
“
p†e
”
· grad (pe) (B.3)
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• bulk sensitivity w.r.t. K

j
′
Ω = −!2

X
e

p†epe (B.4)

• boundary sensitivity w.r.t. ˛

j
′
@Ω =

X
e

p†epe : (B.5)

4. Find the perturbed direct states ‹pe obeying the perturbed direct problem8>><>>:
div (� grad (‹pe)) + !2K‹pe = −div (‹� grad (pe))− !2‹Kpe in Ω

�
@‹pe
@n

+ ˛‹pe = −‹� @pe
@n
− ‹˛pe on @Ω:

(B.6)

5. Find the perturbed adjoint states ‹u†e obeying the perturbed adjoint problem

8>>>>>>>><>>>>>>>>:

div
“
� grad

“
‹p†e

””
+ !2K‹p†e =

X
r

‹pe(x r )‹(x − x r )

− div
“
‹� grad

“
p†e
””
− !2‹Kp†e in Ω

�
@‹p†e
@n

+ ˛‹p†e = −‹� @p
†
e

@n
− ‹˛p†e on @Ω:

(B.7)

6. Once the perturbed direct and adjoint states are known, the application of the Hessian

operator in a particular direction can be evaluated:

• perturbed bulk sensitivity in the direction ‹�

‹j
′
Ω =

X
e

grad
“
‹p†e

”
· grad (pe) + grad

“
p†e
”
· grad (‹pe) (B.8)

• perturbed bulk sensitivity in the direction ‹K

‹j
′
Ω = −!2

X
e

‹p†epe + p†e‹pe (B.9)

• perturbed boundary sensitivity in the direction ‹˛

‹j
′
@Ω =

X
e

‹p†epe + p†e‹pe : (B.10)

The unbounded propagation domain is again modeled by means of an absorbing boundary

condition

�
@pe
@n

+ ˛0(�;K)pe = 0: (B.11)



Extended numerical illustration 165

For simplicity, a zeroth order absorbing condition has been chosen, for which the relation-

ship ˛0(�;K) := i!
√
�K holds. Derivatives w.r.t. � or K can easily be obtained from the

derivatives w.r.t. ˛ through the chain rule.

max

0:0

-max

(a) Re (p)

max

0:0

-max

(b) Im (p)

Figure B.1: Ground-truth direct field p for a highly penetrable cylinder and for a single source.
The background and cylinder specific volume and compressibility are respectively �̃c = 0:9,
K̃c = 1:1 and �̃0 = 1:0, K̃0 = 1:0.
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Figure B.2: Performance functional (•) and its derivatives for a highly penetrable cylinder
whose specific volume �c varies around the ground-truth value �̃c = 0:9 while the compress-
ibility is kept at the ground-truth value K̃c = 1:1. The derivatives are computed by the adjoint
state method (•) and by an approximation of the definition (1.3) (with › = 10−5) (×).
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Figure B.3: Performance functional (•) and its derivatives for a highly penetrable cylinder
whose compressibility Kc varies around the ground-truth value K̃c = 1:1 while the specific
volume is kept at the ground-truth value �̃c = 0:9. The derivatives are computed by the adjoint
state method (•) and by an approximation of the definition (1.3) (with › = 10−5) (×).
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Figure B.4: Performance functional (•) and its derivatives for a highly penetrable cylinder
(�̃c = 0:9, K̃c = 1:1) embedded in a background medium whose specific volume �0 varies
around the ground-truth value �̃0 = 1:0 while the compressibility is kept at the ground-truth
value K̃0 = 1:0. The derivatives are computed by the adjoint state method (•, ◦) and by an
approximation of the definition (1.3) (with › = 10−5) (×). The bulk (•) and boundary (◦)
contributions of the adjoint state method are plotted separately.



Extended numerical illustration 169

0:90 0:95 1:00 1:05 1:10
K0

0:0

0:2

0:4

0:6

0:8

1:0

J
(K

0
)

×10−1

0:90 0:95 1:00 1:05 1:10
K0

−2

−1

0

1

2

D
K

0
J
(K

0
)

0:90 0:95 1:00 1:05 1:10
K0

−1:0

−0:5

0:0

0:5

1:0

D
2 K

0
J
(K

0
)

×102

Figure B.5: Performance functional (•) and its derivatives for a highly penetrable cylinder
(�̃c = 0:9, K̃c = 1:1) embedded in a background medium whose compressibility K0 varies
around the ground-truth value K̃0 = 1:0 while the specific volume is kept at the ground-truth
value �̃0 = 1:0. The derivatives are computed by the adjoint state method (•, ◦) and by an
approximation of the definition (1.3) (with › = 10−5) (×). The bulk (•) and boundary (◦)
contributions of the adjoint state method are plotted separately.
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Figure B.6: Difference between the approximation of (1.3) and the adjoint state method
with the boundary contribution for a highly penetrable cylinder (�̃c = 0:9, K̃c = 1:1) when
the unknown background specific volume and compressibility are respectively �0 = 1:04 and
K0 = 0:96 while the ground-truth value are respectively �̃0 = 1:0 and K̃0 = 1:0. Top row is
related to specific volume derivatives, bottom row to compressibility derivatives. Left column
is related to first order derivatives, right column to second order derivatives. The dashed blue
line (−−) is the amplitude of the boundary contribution in the adjoint state method.
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max
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Figure B.7: Bulk (left column) and boundary (right column) parts of the H1-Sobolev gradient
(lc := 2ı

√
¸1; lc = 1). The data used for this gradient is obtained with a highly penetrable

cylinder (�̃c = 0:9, �̃0 = 1:0 and K̃c = 1:1, K̃0 = 1:0). Top row is specific volume gradients.
Bottom row is compressibility gradients. From top to bottom, the maximal value for the
bulk and boundary contributions are respectively 6× 10−5, 2:3× 10−5 (bulk) and 1:5× 10−5,
1:8× 10−6 (boundary).
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B.2 Maxwell

Maxwell’s equations are unchanged when e and › are substituted by h and −— respectively.

For that reason, only permittivity perturbations and electric field measurements are considered

as the derivations for permeability perturbations and magnetic field measurements are very

similar. However, a conductivity parameter ff is added › → › − i ff
!

. Mathematically, all the

derivatives w.r.t. ff can be obtained by the chain rule but the formulas are nevertheless given

here explicitly because they are often used in practice. The absorbing boundary condition is

also formulated from the point of view of the electric field e, i.e.

‚t(h) + ˛‚T (e) = 0: (B.12)

Note that because only permittivity pertubations and electric field measurements are consid-

ered, the problem could be expressed without the magnetic field appearing explicitly, i.e. as a

single second order equation instead of two first order equations.

The systematic steps of the adjoint state method are as follows, in terms of two bulk model

parameters › and ff and a boundary model parameter ˛:

1. Find the direct states (ee ;he) obeying the direct problem

8>>>><>>>>:
curl (he)− i!›ee = f̂ e‹(x − xe) in Ω

curl (ee) + i!—he = f̂ h‹(x − xe) in Ω

‚t(he) + ˛‚T (ee) = 0 on @Ω:

(B.13)

2. Find the adjoint states
“
e†e ;h

†
e

”
obeying the adjoint problem

8>>>>><>>>>>:
curl

“
h
†
e

”
− i!›e†e =

X
r

(ee(x r )− d e;r )‹(x − x r ) in Ω

curl
“
e†e
”

+ i!—h
†
e = 0 in Ω

‚t(h
†
e) + ˛‚T (e†e) = 0 on @Ω:

(B.14)

3. Once the direct and adjoint states are known, the gradient kernels with respect to the

different model parameters can be evaluated:

• bulk sensitivity w.r.t. ›

j
′
Ω = −i!

X
e

e†e · ee (B.15)

• bulk sensitivity w.r.t. ff

j
′
Ω = −

X
e

e†e · ee (B.16)
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• boundary sensitivity w.r.t. ˛

j
′
@Ω =

X
e

‚T (e†e) · ‚T (ee): (B.17)

4. Find the perturbed direct states (‹ee ; ‹he) obeying the perturbed direct problem

8>>>><>>>>:
curl (‹he)− i!›‹ee = i!‹›ee in Ω

curl (‹ee) + i!—‹he = 0 in Ω

‚t(‹he) + ˛‚T (‹ee) = −‹˛‚T (ee) on @Ω:

(B.18)

5. Find the perturbed adjoint states
“
‹e†e ; ‹h

†
e

”
obeying the adjoint problem

8>>>>><>>>>>:
curl

“
‹h
†
e

”
− i!›‹e†e =

X
r

‹ee(x r )‹(x − x r ) + i!‹›e†e in Ω

curl
“
‹e†e

”
+ i!—‹h

†
e = 0 in Ω

‚t(‹h
†
e) + ˛‚T (‹e†e) = −‹˛‚T (e†e) on @Ω:

(B.19)

6. Once the perturbed direct and adjoint states are known, the application of the Hessian

operator in a particular direction can be evaluated:

• second order bulk sensitivity w.r.t. ›

‹j
′
Ω = −i!

X
e

‹e†e · ee + e†e · ‹ee (B.20)

• second order bulk sensitivity w.r.t. ff

‹j
′
Ω = −

X
e

‹e†e · ee + e†e · ‹ee (B.21)

• second order boundary sensitivity w.r.t. ˛

‹j
′
@Ω =

X
e

‚T (‹e†e) · ‚T (ee) + ‚T (e†e) · ‚T (‹ee): (B.22)

For simplicity, the unbounded propagation domain is again modeled by means of a zeroth order

absorbing condition, for which the relationship ˛0(›; ff; —) := −
r
›−iff=!
—

holds. Derivatives

w.r.t. › and ff can easily be obtained from the derivatives w.r.t. ˛ through the chain rule.

For the numerical illustrations, the magnetic field is not excited, i.e. f̂ h = 0. Electric field

excitation is polarized along the y -axis, i.e. f̂ e = ŷ , and only the y -component of the electric

field is measured.
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(b) Im (e)

Figure B.8: Ground-truth direct field e for a highly penetrable cylinder and for a single
source. The background and cylinder permittivity and conductivity are respectively ›̃c = 1:,
ff̃c = ı × 10−1 and ›̃0 = 1:2, ff̃0 = 2ı × 10−2.
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Figure B.9: Performance functional (•) and its derivatives for a highly penetrable cylinder,
embedded in a background medium (›̃0 = 1:2, ff̃0 = 2ı× 10−2), whose permittivity ›c varies
around the ground-truth value ›̃c = 1:2 while the conductivity is kept at the ground-truth
value ff̃c = 2ı× 10−2. The derivatives are computed by the adjoint state method (•) and by
an approximation of the definition (1.3) (with › = 10−5) (×).
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Figure B.10: Performance functional (•) and its derivatives for a highly penetrable cylinder,
embedded in a background medium (›̃0 = 1:2, ff̃0 = 2ı × 10−2), whose conductivity ffc
varies around the ground-truth value ff̃c = ı × 10−1 while the permittivity is kept at the
ground-truth value ›̃c = 1:2. The derivatives are computed by the adjoint state method (•)
and by an approximation of the definition (1.3) (with › = 10−5) (×).
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Figure B.11: Performance functional (•) and its derivatives for a highly penetrable cylinder
(›̃c = 1:2, ›̃c = ı × 10−1) embedded in a background medium whose permittivity ›0 varies
around the ground-truth value ›̃0 = 1:2 while the conductivity is kept at the ground-truth
value ff̃0 = 2ı × 10−2. The derivatives are computed by the adjoint state method (•, ◦)
and by an approximation of the definition (1.3) (with › = 10−5) (×). The bulk (•) and
boundary (◦) contributions of the adjoint state method are plotted separately.
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Figure B.12: Performance functional (•) and its derivatives for a highly penetrable cylinder
(›̃c = 1:2, ff̃c = ı × 10−1) embedded in a background medium whose conductivity ff0 varies
around the ground-truth value ff̃0 = 2ı × 10−2 while the permittivity is kept at the ground-
truth value ›̃0 = 1:2. The derivatives are computed by the adjoint state method (•, ◦) and
by an approximation of the definition (1.3) (with › = 10−5) (×). The bulk (•) and boundary
(◦) contributions of the adjoint state method are plotted separately.
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Figure B.13: Difference between the approximation of (1.3) and the adjoint state method
with the boundary contribution for a highly penetrable cylinder (›̃c = 1:2, ff̃c = ı × 10−1)
when the unknown background permittivity and conductivity are respectively ›0 = 1:1 and
ff0 = 6ı × 10−2 while the ground-truth value are respectively ›̃0 = 1:0 and ff̃0 = 2ı × 10−2.
Top row is related to permittivity derivatives, bottom row to conductivity derivatives. Left
column is related to first order derivatives, right column to second order derivatives. The
dashed blue line (−−) is the amplitude of the boundary contribution in the adjoint state
method.
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Figure B.14: Bulk (left column) and boundary (right column) parts of the H1-Sobolev gradient
(lc := 2ı

√
¸1; lc = 1). The data used for this gradient is obtained with a highly penetrable

cylinder (›̃c = 1:2, ›̃0 = 1:0 and ff̃c = ı × 10−1, ˜� sigma0 = 2ı × 10−2). Top row
is permittivity gradients. Bottom row is conductivity gradients. From top to bottom, the
maximal value for the bulk and boundary contribution are respectively 15× 10−3, 15× 10−3

(bulk) and 3× 10−3, 3× 10−3 (boundary).
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B.3 Navier

There are two types of elastic waves: shear waves and pressure waves. Consequently, two

impedance parameters ˛s and ˛p must be used in the absorbing boundary condition to absorb

both type of waves

ff(u) · n̂ + ˛s;0(–; —; )‚T (u) + ˛p;0(–; —; )‚n(u) = 0: (B.23)

The systematic steps of the adjoint state method are as follows, in terms of three bulk model

parameters , – and — and two boundary model parameter ˛s and ˛p:

1. Find the direct states ue obeying the direct problem

8<:div (ff(ue)) + !2ue = f̂ ‹(x − xe) in Ω

ff(ue) · n̂ + ˛s‚T (ue) + ˛p‚n(ue) = 0 on @Ω:
(B.24)

2. Find the adjoint states u†e obeying the adjoint problem

8><>:
div

“
ff(u†e)

”
+ !2u†e =

X
r

(ue(x r )− d e;r)‹(x − x r ) in Ω

ff(u†e) · n̂ + ˛s‚T (u†e) + ˛p‚n(u†e) = 0 on @Ω:

(B.25)

3. Once the direct and adjoint states are known, the gradient kernels with respect to the

different model parameters can be evaluated:

• bulk sensitivity w.r.t. 

j
′
Ω =

X
e

div
“
u†e
”

div (ue) (B.26)

• bulk sensitivity w.r.t. –

j
′
Ω = 2

X
e

›(u†e) : ›(ue) (B.27)

• bulk sensitivity w.r.t. —

j
′
Ω = −!2

X
e

u†e · ue (B.28)

• boundary sensitivity w.r.t. ˛s

j
′
@Ω =

X
e

‚T (u†e) · ‚T (ue) (B.29)
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• boundary sensitivity w.r.t. ˛p

j
′
@Ω =

X
e

‚n(u†e) · ‚n(ue): (B.30)

4. Find the perturbed direct states ‹ue obeying the direct problem8>>>><>>>>:
div (ff(‹ue)) + !2‹ue = −div (‹ff(ue)) + !2‹ue in Ω

ff(‹ue) · n̂ + ˛s‚T (‹ue) + ˛p‚n(‹ue) = −‹ff(ue) · n̂
+ ‹˛s‚T (ue) + ‹˛p‚n(ue) on @Ω:

(B.31)

5. Find the perturbed adjoint states ‹u†e obeying the adjoint problem

8>>>>>>>>><>>>>>>>>>:

div
“
ff(‹u†e)

”
+ !2‹u†e =

X
r

‹ue(x r )‹(x − x r )

− div
“
‹ff(u†e)

”
+ !2‹u†e in Ω

ff(u†e) · n̂ + ˛s‚T (u†e) + ˛p‚n(u†e) = −‹ff(u†e) · n̂
+ ‹˛s‚T (u†e) + ‹˛p‚n(u†e) on @Ω:

(B.32)

6. Once the perturbed direct and adjoint states are known, the application of the Hessian

operator in a particular direction can be evaluated:

• bulk second order sensitivity w.r.t. 

‹j
′
Ω =

X
e

div
“
‹u†e

”
div (ue) + div

“
u†e
”

div (‹ue) (B.33)

• bulk second order sensitivity w.r.t. –

‹j
′
Ω = 2

X
e

›(‹u†e) : ›(ue) + ›(u†e) : ›(‹ue) (B.34)

• bulk second order sensitivity w.r.t. —

‹j
′
Ω = −!2

X
e

‹u†e · ue + u†e · ‹ue (B.35)

• boundary second order sensitivity w.r.t. ˛s

j
′
@Ω =

X
e

‚T (‹u†e) · ‚T (ue) + ‚T (u†e) · ‚T (‹ue) (B.36)
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• boundary second order sensitivity w.r.t. ˛p

j
′
@Ω =

X
e

‚n(‹u†e) · ‚n(ue) + ‚n(u†e) · ‚n(‹ue): (B.37)

For simplicity, the unbounded propagation domain is again modeled by means of a zeroth

order absorbing condition, for which the relationships ˛s;0(–; —; ) := i!
√
— and ˛p;0 :=

i!
q
(–+ 2—) hold. Derivatives w.r.t. , – or — can easily be obtained from the derivatives

w.r.t. ˛s and ˛p through the chain rule. For the numerical illustrations, the excitation is

polarized along the y -axis, i.e. f̂ = ŷ , and only the y -component of the displacement field is

measured.
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(b) Im (u)

Figure B.15: Ground-truth direct field u for a highly penetrable cylinder and for a single
source. The background and cylinder permittivity and conductivity are respectively ̃c = 1:2,
–̃c = 0:8, —̃c = 0:8 and ̃0 = 1:, –̃0 = 1:, —̃0 = 1:.
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Figure B.16: Performance functional (•) and its derivatives for a highly penetrable cylinder,
embedded in a background medium (̃0 = 1:, –̃0 = 1:, —̃0 = 1:), whose density c varies
around the ground-truth value ̃c = 1:2 while Lamé parameters are kept at the ground-truth
value –̃c = 0:8 and —̃c = 0:8. The derivatives are computed by the adjoint state method (•)
and by an approximation of the definition (1.3) (with › = 10−5) (×).
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Figure B.17: Performance functional (•) and its derivatives for a highly penetrable cylinder,
embedded in a background medium (̃0 = 1:, –̃0 = 1:, —̃0 = 1:), whose first Lamé parameter
–c varies around the ground-truth value –̃c = 0:8 while the density and the second Lamé
parameter are kept at the ground-truth value ̃c = 1:2 and —̃c = 0:8. The derivatives are
computed by the adjoint state method (•) and by an approximation of the definition (1.3)
(with › = 10−5) (×).
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Figure B.18: Performance functional (•) and its derivatives for a highly penetrable cylinder,
embedded in a background medium (̃0 = 1:, –̃0 = 1:, —̃0 = 1:), whose second Lamé
parameter —c varies around the ground-truth value —̃c = 0:8 while the density and the second
Lamé parameter are kept at the ground-truth value ̃c = 1:2 and –̃c = 0:8. The derivatives
are computed by the adjoint state method (•) and by an approximation of the definition (1.3)
(with › = 10−5) (×).
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Figure B.19: Performance functional (•) and its derivatives for a highly penetrable cylinder
(̃c = 1:2, –̃c = 0:8, —̃c = 0:8) embedded in a background medium whose density 0 varies
around the ground-truth value ̃0 = 1:0 while the Lamé parameters are kept at the ground-
truth value –̃0 = 1:0 and —̃0 = 1:0. The derivatives are computed by the adjoint state method
(•, ◦) and by an approximation of the definition (1.3) (with › = 10−5) (×). The bulk (•)
and boundary (◦) contributions of the adjoint state method are plotted separately.
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Figure B.20: Performance functional (•) and its derivatives for a highly penetrable cylinder
(̃c = 1:2, –̃c = 0:8, —̃c = 0:8) embedded in a background medium whose first Lamé
parameters –0 varies around the ground-truth value –̃0 = 1:0 while the density and the
second Lamé parameters are kept at the ground-truth value ̃0 = 1:0 and —̃0 = 1:0. The
derivatives are computed by the adjoint state method (•, ◦) and by an approximation of the
definition (1.3) (with › = 10−5) (×). The bulk (•) and boundary (◦) contributions of the
adjoint state method are plotted separately.
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Figure B.21: Performance functional (•) and its derivatives for a highly penetrable cylinder
(̃c = 1:2, –̃c = 0:8, —̃c = 0:8) embedded in a background medium whose second Lamé
parameters —0 varies around the ground-truth value —̃0 = 1:0 while the density and the first
Lamé parameters are kept at the ground-truth value ̃0 = 1:0 and –̃0 = 1:0. The derivatives
are computed by the adjoint state method (•, ◦) and by an approximation of the definition
(1.3) (with › = 10−5) (×). The bulk (•) and boundary (◦) contributions of the adjoint state
method are plotted separately.
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Figure B.22: Difference between the approximation of (1.3) and the adjoint state method with the
boundary contribution for a highly penetrable cylinder (̃c = 1:2, –̃c = 0:8, —̃c = 0:8) when the
unknown background density and Lamé parameters are respectively 0 = 1:1, –0 = 0:9 and —0 = 0:9
while the ground-truth value are respectively ̃0 = 1:0, –̃0 = 1:0 and —̃0 = 1:0. Top row is related
to density derivatives, middle and bottom rows respectively to first and second Lamé parameters
derivatives: first derivatives are the left column, second derivatives are the right column. The dashed
blue line (−−) is the amplitude of the boundary contribution in the adjoint state method.
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Figure B.23: Bulk (left column) and boundary (right column) parts of the H1-Sobolev gradient
(lc := 2ı

√
¸1; lc = 1). The data used for this gradient is obtained with a highly penetrable

cylinder (̃0 = 1:0, –̃0 = 1:0, —̃0 = 1:0 and ̃c = 1:2, –̃c = 0:8, —̃c = 0:8). Top row is
density gradients. Middle row is Lamé first parameter gradients. Bottom row is Lamé second
parameter gradients. From top to bottom, the maximal value for the bulk and boundary
contribution are respectively 8× 10−3, 15× 10−5, 7× 10−3 (bulk) and 16× 10−4, 23× 10−5,
15× 10−4 (boundary).
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Appendix C

Gauss-Newton Hessian operator

The Gauss-Newton Hessian operator is a positive definite approximation of the full Hessian

operator which can be defined when the misfit functional consists in a sum of some squared

residuals Qq(m), i.e.

J(m) :=
1

2

X
q

|Qq(m)|2 ; (C.1)

as for example the least squares distance

Qq(m) = uq(m)− dq: (C.2)

In that specific case, the second order directional derivatives, from which the Hessian operator

originates, is composed of two terms

{D2
mmJ(m)}(‹m1; ‹m2) = Re

X
q

{DmQq(m)}(‹m1){DmQq(m)}(‹m2)

+ Re
X
q

Qq(m){D2
mmQq(m)}(‹m1; ‹m2): (C.3)

The first term is clearly positive semi-definite: it is positive or null for ‹m1 = ‹m2, but the

second term is indefinite. The idea behind the Gauss-Newton approximation in order to obtain

a positive semi-definite operator is therefore to neglect this second term. This approximation

is thus valid if the residuals are small or linear w.r.t. the model parameters m. In the vicinity

of the global minimum, these residuals are indeed nearly vanishing but this is not necessarily

true elsewhere. When the residuals are not small, the validity of the approximation then relies

on the (non-)linearity of the residuals. In the context of the least squared distance (or actually

any residuals that depends on m through a linear term in uq(m)), this second order residuals

derivative equals (or is proportional to)

{D2
mmQq(m)}(‹m1; ‹m2) = ‹1;2u: (C.4)
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In other words, it is proportional to a second order perturbed wavefield. Intuitively, the

first order perturbed wavefield ‹1u is related to the single scattering provoked by a small

perturbation ‹m1 of the model parameter and the second order perturbed wavefield ‹1;2u

is therefore related to perturbation of this single scattering response due to a second small

perturbation ‹m2. Hence it is related to doubly scattered wavefield.

In summary, in the context of full waveform inversion optimization algorithm, this approxima-

tion is valid close to the global minimum or in the absence of strong multiple scattering.

As far as practical computation are concerned, the same procedure as for the full Newton

Hessian can be followed. The only difference is that, after the computation of the gradient,

the residuals should be set to zero for the remainder of the procedure, i.e. for steps 5 and 6.

As an example, the adjoint procedure of Chapter 1 for Helmholtz (I) equation is adapted here

below with the Gauss-Newton approximation. Boundary terms are omitted for compactness.

1. Find the direct states ue obeying the direct problem

div (grad (ue)) + !2s2ue = ‹(x − xe) in Ω: (C.5)

2. Find the adjoint states u†e obeying the adjoint problem

div
“
grad

“
u†e
””

+ !2s2u†e =
X
r

(ue(x r )− d e;r)‹(x − x r ) in Ω: (C.6)

3. Once the direct and adjoint states are known, the associated gradient kernel can be

identified:

j
′

= −!2
X
e

ueu
†
e : (C.7)

4. Find the perturbed direct states ‹ue obeying the perturbed direct problem

n
div (grad (‹ue)) + !2s2‹ue = −!2‹s2ue in Ω: (C.8)

5. Find the perturbed adjoint states ‹u†e obeying the perturbed adjoint problem

div
“
grad

“
‹u†e

””
+ !2s2‹u†e =

X
r

‹ue(x r )‹(x − x r )−�����!2‹s2u†e in Ω: (C.9)

The adjoint wavefield u† is neglected from here because it is linearly proportional to the

residuals. Interestingly, the remaining source term as a very localized support, i.e. the

point receivers. It is thus very quick to assemble.

6. Once the perturbed direct and adjoint states are known, the application of the Gauss-
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Newton Hessian operator in a particular direction can be evaluated:

‹j ′ = −!2
X
e

��
��

‹ueu
†
e + ue‹u

†
e : (C.10)

C.1 Diagonal approximation

In the context of the Helmholtz I equation, the forward, adjoint, perturbed forward and per-

turbed adjoint wave fields appearing in the adjoint state method can be expressed analytically

in terms of Green functions g(x ; y) using the superposition principle. From (C.5), (C.6),

(C.8) and (C.9) respectively, it comes

ue(x) = g(x ; xe); u†e(x) =
X
r

(ue(x r )− d e;r)g(x r ; x);

‹u†e =
X
r

‹ue(x r )g(x r ; x); ‹ue(x) = −!2
Z

Ω
g(x ; y)ue(y)‹s2(y) dy :

(C.11)

Using the above wavefields expressions, the conventional Gauss-Newton Hessian operator in

the direction ‹s2 is successively given by

HGN‹s
2 = −!2

X
e

ue‹u
†
e = −!2

X
e

g(x ; xe)
X
r

‹ue(x r )g(x r ; x) (C.12)

= !4
X
e;r

g(x ; xe)g(x r ; x)
Z

Ω
g(x r ; y)ue(y)‹s2(y) dy (C.13)

:=
Z

Ω
hGN(x; y)‹s2(y) dy (C.14)

with the Gauss-Newton Hessian kernel

hGN(x ; y) = !4
X
e;r

g(y ; xe)g(x ; xe) g(x r ; y)g(x r ; x): (C.15)

The diagonal part of the Gauss-Newton Hessian operator is then finally identified as

diag (HGN) = hGN(x ; x)A = !4
X
e;r

|g(x ; xe)|2 |g(x r ; x)|2 A: (C.16)

The area A is related to the support of integral (C.14). It is thus of the order of the wavelength

squared [144]. With these conventions, the application of the diagonal operator in the direction

‹s2 is then diag (HGN) ‹s2 = diag (HGN) (x) ‹s2(x). Detail about the Gauss-Newton Hessian

can be found in [54, 55, 117, 118, 135].
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Figure D.1: Intermediate inversion results (permittivity) for the line search l-BFGS algorithm
with two different scaling for the inner product: ˛ = 2 (left) and ˛ = 5 (right). From top to
bottom, these reconstruction corresponds to the 15th, 40th, 70th and 110th iteration (left) or
the 15th, 40th, 90th, 160th iteration (right). These selected iterations correspond to a relative
misfit decrease of approximately 30%, 10%, 3% and 1% respectively.
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Figure D.2: Intermediate inversion results (conductivity) for the line search l-BFGS algorithm
with two different scaling for the inner product: ˛ = 2 (left) and ˛ = 5 (right). From top to
bottom, these reconstruction corresponds to the 15th, 40th, 70th and 110th iteration (left) or
the 15th, 40th, 90th, 160th iteration (right). These selected iterations correspond to a relative
misfit decrease of approximately 30%, 10%, 3% and 1% respectively.
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Total variation penalization

The total variation penalization term1 is given by

Jm(m) ,
Z

Ω
|∇m| dΩ: (E.1)

Its series development in the perturbed direction ‹m is therefore successively given by

Jm(m + ‹m) =
Z

Ω
|∇ (m + ‹m)| dΩ (E.2)

=
Z

Ω

q
(∇ (m + ‹m)) (∇ (m + ‹m)) dΩ (E.3)

≈
Z

Ω

q
∇m∇mdΩ (E.4)

+
Z

Ω

1

2

1√
∇m∇m

“
∇m∇‹m +∇‹m∇m +∇‹m∇‹m

”
dΩ (E.5)

≈ Jm(m) +
1

2

Z
Ω

1

|∇m|2Re
“
∇m∇‹m

”
dΩ (E.6)

≈ Jm(m) + Re
Z

Ω

∇m
|∇m|∇‹m dΩ (E.7)

such that its first order directional derivatives is given by

{DmJm(m)}(‹m) = Re
Z

Ω

∇m
|∇m|∇‹m dΩ: (E.8)

Similarly, a series development of the directional derivative in the direction ‹m1, perturbed in

a second direction ‹m2 successively gives

{DmJm(m + ‹m2)}(‹m1) (E.9)

= Re
Z

Ω

∇ (m + ‹m2)

|∇ (m + ‹m2)|∇‹m1 dΩ (E.10)

1For compactness, the spatial gradient grad (·) is denoted ∇ throughout this appendix.
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≈ Re
Z

Ω
∇ (m + ‹m2)∇‹m1

"
1

|∇m| −
1

2

1

|∇m|3
2Re

“
∇‹m2∇m

”#
dΩ (E.11)

≈ Re
Z

Ω

"
∇ (m + ‹m2)

|∇m| ∇‹m1 −∇m∇‹m1
1

|∇m|3
Re
“
∇‹m2∇m

”#
dΩ (E.12)

≈ Re
Z

Ω

"
∇m
|∇m|∇‹m1 +

∇‹m2

|∇m| ∇‹m1 −
∇m∇‹m1

|∇m|3
Re
“
∇‹m2∇m

”#
dΩ (E.13)

≈ {DmJm(m)}(‹m1) (E.14)

+ Re
Z

Ω

1

|∇m|

"
∇‹m2∇‹m1 − Re

 
∇‹m1

∇m
|∇m|

!
Re

 
∇m
|∇m| ∇‹m2

!#
dΩ

(E.15)

such that the second order directional derivative is given by

{D2
mmJm(m)}(‹m1)(‹m2) =

Re
Z

Ω

1

|∇m|

"
∇‹m2∇‹m1 − Re

 
∇‹m2

∇m
|∇m|

!
Re

 
∇m
|∇m| ∇‹m1

!#
dΩ: (E.16)

For real-valued model parameters, it further simplifies as

{D2
mmJm(m)}(‹m1)(‹m2) =

Z
Ω

1

|∇m|

"
∇‹m2∇‹m1 −∇‹m2

∇m∇m
|∇m|2

∇‹m1

#
dΩ: (E.17)

which can be written compactly as

{D2
mmJm(m)}(‹m1)(‹m2) =

Z
Ω
g⊥(|∇m|2) ∇‹m2D⊥∇‹m1 dΩ (E.18)

with

g⊥(r 2) =
1

r
; D⊥ = I −D‖ and D‖ :=

∇m∇m
|∇m|2

: (E.19)
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[158] A. Royer, E. Béchet, and C. Geuzaine. “GMSH-FEM : AN EFFICIENT FINITE EL-

EMENT LIBRARY BASED ON GMSH”. In: 14th World Congr. Comput. Mech.

(WCCM), ECCOMAS Congr. 2020. 2020.



Bibliography 215

[159] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based noise removal

algorithms”. In: Phys. D Nonlinear Phenom. 60.1-4 (Nov. 1992), pp. 259–268.

[160] M. Sambridge and G. Drijkoningen. “Genetic algorithms in seismic waveform inver-

sion”. In: Geophys. J. Int. 109.2 (1992), pp. 323–342.

[161] G. Y. Sandhu, C. Li, O. Roy, S. Schmidt, and N. Duric. “Frequency domain ultrasound

waveform tomography: breast imaging using a ring transducer”. In: Phys. Med. Biol.

60.14 (July 2015), pp. 5381–5398.

[162] O. Scherzer and J. Weickert. “Relations between regularization and diffusion filtering”.

In: J. Math. Imaging Vis. 12.1 (2000), pp. 43–63.

[163] S. H. Schot. “Eighty years of Sommerfeld’s radiation condition”. In: Hist. Math. 19.4

(1992), pp. 385–401.

[164] M. K. Sen and P. L. Stoffa. “Nonlinear one-dimensional seismic waveform inversion

using simulated annealing”. In: GEOPHYSICS 56.10 (Oct. 1991), pp. 1624–1638.

[165] C. Shin and Y. H. Cha. “Waveform inversion in the Laplace domain”. In: Geophys. J.

Int. 173.3 (June 2008), pp. 922–931.

[166] C. Shin and W. Ha. “A comparison between the behavior of objective functions for

waveform inversion in the frequency and Laplace domains”. In: 73.5 (2008).

[167] C. Shin, N. H. Koo, Y. H. Cha, and K. P. Park. “Sequentially ordered single-frequency

2-D acoustic waveform inversion in the Laplace-Fourier domain”. In: Geophys. J. Int.

181.2 (2010), pp. 935–950.

[168] C. Shin and D.-J. Min. “Waveform inversion using a logarithmic wavefield”. In: GEO-

PHYSICS 71.3 (May 2006), R31–R42.

[169] C. Sideris, E. Garza, and O. P. Bruno. “Ultrafast Simulation and Optimization of

Nanophotonic Devices with Integral Equation Methods”. In: ACS Photonics 6.12 (Dec.

2019), pp. 3233–3240.

[170] S. Silver. Microwave antenna theory and design. McGraw-Hill, 1949.

[171] L. Sirgue and R. G. Pratt. “Efficient waveform inversion and imaging: A strategy for

selecting temporal frequencies”. In: GEOPHYSICS 69.1 (Jan. 2004), pp. 231–248.

[172] F. Sourbier, A. Haidar, L. Giraud, et al. “Three-dimensional parallel frequency-domain

visco-acoustic wave modelling based on a hybrid direct/iterative solver”. In: Geophys.

Prospect. 59.5 (Sept. 2011), pp. 834–856.

[173] T. Steihaug. “The Conjugate Gradient Method and Trust Regions in Large Scale

Optimization”. In: SIAM J. Numer. Anal. 20.3 (June 1983), pp. 626–637.



216

[174] D. Sun, K. Jiao, X. Cheng, and D. Vigh. “Compensating for source and receiver ghost

effects in full waveform inversion and reverse time migration for marine streamer data”.

In: Geophys. J. Int. 201.3 (2015), pp. 1507–1521.

[175] H. Sun and L. Demanet. “Extrapolated full-waveform inversion with deep learning”.

In: GEOPHYSICS 85.3 (May 2020), R275–R288.

[176] J. H. Tang, R. Brossier, and L. Métivier. “Fully scalable solver for frequency-domain

visco-elastic wave equations in 3D heterogeneous media: A controllability approach”.

In: J. Comput. Phys. 468 (2022), p. 111514.

[177] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation.

Society for Industrial and Applied Mathematics, Jan. 2005, pp. 1–358.

[178] A. Tarantola. “Inversion of seismic reflection data in the acoustic approximation”. In:

GEOPHYSICS 49.8 (Aug. 1984), pp. 1259–1266.

[179] J. Thurin, R. Brossier, and L. Métivier. “Ensemble-based uncertainty estimation in full

waveform inversion”. In: Geophys. J. Int. 219.3 (2019), pp. 1613–1635.

[180] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical

Methods for the Solution of Ill-Posed Problems. Dordrecht: Springer Netherlands, 1995.

[181] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. New York: Wiley,

1977.

[182] A.-M. Toader and C. Barbarosie. “6. Optimization of eigenvalues and eigenmodes by

using the adjoint method”. In: Topol. Optim. Optim. Transp. (2017), pp. 1–18.

[183] K. Torres and M. Sacchi. “Least-squares reverse time migration via deep learning-based

updating operators”. In: GEOPHYSICS 87.6 (Nov. 2022), S315–S333.

[184] D. A. Tortorelli and P. Michaleris. “Design sensitivity analysis: Overview and review”.

In: Inverse Probl. Eng. 1.1 (Oct. 1994), pp. 71–105.

[185] P. H. Tournier, I. Aliferis, M. Bonazzoli, et al. “Microwave tomographic imaging of

cerebrovascular accidents by using high-performance computing”. In: Parallel Comput.

85 (2019), pp. 88–97.

[186] P.-T. Trinh, R. Brossier, L. Métivier, L. Tavard, and J. Virieux. “Efficient time-domain

3D elastic and viscoelastic full-waveform inversion using a spectral-element method on

flexible Cartesian-based mesh”. In: GEOPHYSICS 84.1 (Jan. 2019), R61–R83.

[187] R. Versteeg. “The Marmousi experience: Velocity model determination on a synthetic

complex data set”. In: Lead. Edge 13.9 (Sept. 1994), pp. 927–936.

[188] J. Virieux and S. Operto. “An overview of full-waveform inversion in exploration geo-

physics”. In: GEOPHYSICS 74.6 (2009).



Bibliography 217

[189] J. Virieux and S. Operto. “An overview of full-waveform inversion in exploration geo-

physics”. In: GEOPHYSICS 74.6 (Nov. 2009), WCC1–WCC26.

[190] D. Voytan, A. Gomes, D. Datta, et al. “Mitigating elastic effects of acoustic full-

waveform inversion with deep learning and application to field data”. In: Second Int.

Meet. Appl. Geosci. Energy. Society of Exploration Geophysicists and American Asso-

ciation of Petroleum Geologists, Aug. 2022, pp. 857–861.

[191] M. Warner and L. Guasch. “Adaptive waveform inversion: Theory”. In: GEOPHYSICS

81.6 (Nov. 2016), R429–R445.

[192] M. Warner, A. Ratcliffe, T. Nangoo, et al. “Anisotropic 3D full-waveform inversion”.

In: GEOPHYSICS 78.2 (2013).

[193] J. Weickert. “Theoretical Foundations of Anisotropic Diffusion in Image Processing”.

In: (1996), pp. 221–236.

[194] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner Stuttgart, 1998.

[195] J. Weickert. “Coherence-enhancing diffusion of colour images”. In: Image Vis. Comput.

17.3-4 (1999), pp. 201–212.

[196] P. Wellington, R. Brossier, S. Garambois, et al. “Laplacian based Preconditioning of

FWI: Using prior information from seismic reflection data.” In: SEG Tech. Progr. Ex-

pand. Abstr. 2015. Vol. 34. Society of Exploration Geophysicists, Aug. 2015, pp. 1436–

1440.

[197] J. Wiskin, B. Malik, D. Borup, N. Pirshafiey, and J. Klock. “Full wave 3D inverse

scattering transmission ultrasound tomography in the presence of high contrast”. In:

Sci. Rep. 10.1 (Dec. 2020), p. 20166.
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[206] J. Zhang and M. N. Toksöz. “Nonlinear refraction traveltime tomography”. In: SEG

Tech. Progr. Expand. Abstr. 1996. Vol. 63. 5. Society of Exploration Geophysicists,

Jan. 1996, pp. 2011–2014.

[207] W. Zhang and Y. Li. “Elastic wave full-waveform inversion in the time domain by the

trust region method”. In: J. Appl. Geophys. 197.May 2021 (Feb. 2022), p. 104540.

[208] H. Zhu, S. Li, S. Fomel, G. Stadler, and O. Ghattas. “A Bayesian approach to es-

timate uncertainty for full-waveform inversion using a priori information from depth

migration”. In: GEOPHYSICS 81.5 (Sept. 2016), R307–R323.

[209] L. Zhu, E. Liu, and J. H. McClellan. “Sparse-promoting full-waveform inversion based

on online orthonormal dictionary learning”. In: GEOPHYSICS 82.2 (2017), R87–R107.

[210] M. A. Zuberi and R. G. Pratt. “Mitigating nonlinearity in full waveform inversion using

scaled-Sobolev pre-conditioning”. In: Geophys. J. Int. 213.1 (Apr. 2017), pp. 706–725.


	Introduction
	Context and motivations
	Mathematical problem statement
	Dissertation goals
	Case study 1: Marmousi model
	Case study 2: T-shaped reflectors
	Case study 3: Dissipative crosses

	Dissertation outline
	Original contributions

	Adjoint state method
	Introduction
	Problem statement
	Direct approach
	Adjoint approach
	Without boundary perturbation
	With boundary perturbation
	Gradient kernels
	Hessian kernels

	Time-harmonic wave scattering problems
	Direct and adjoint boundary conditions
	Boundary sensitivity to model parameters
	Sobolev gradient kernel for scalar model parameters

	Numerical illustration
	Highly penetrable cylinder in a known background
	Weakly penetrable cylinder in a known background
	Background medium around a known highly penetrable cylinder
	Unknown geometry

	Reference case studies
	Case study 1: Marmousi model
	Case study 2: T-shaped reflectors
	Case study 3: Dissipative crosses

	Conclusion

	Local optimization algorithms
	Introduction
	Local optimization methods
	Globalization methods
	Inner product
	Steepest descent
	Limited memory BFGS method
	Newton methods

	Reference case studies
	Case study 1: Marmousi model
	Case study 2: T-shaped reflectors
	Case study 3: Dissipative crosses

	Conclusion

	Regularization strategies
	Introduction
	Regularization strategies
	Additive penalization
	Inner product preconditioning
	Link between both approaches

	Reference case studies
	Case study 1: Marmousi model
	Case study 2: T-shaped reflectors
	Case study 3: Dissipative crosses

	Conclusion

	Conclusion
	Summary of main contributions
	Proposal for further developments

	Adjoint operators
	State space
	Helmholtz I
	Helmholtz II
	Maxwell
	Navier

	Model space
	Helmholtz I
	Helmholtz II
	Maxwell
	Navier

	Data space
	Gradient kernel of the least squared distance


	Extended numerical illustration
	Helmholtz II
	Maxwell
	Navier

	Gauss-Newton Hessian operator
	Diagonal approximation

	Permittivity/Conductivity evolution during an inversion
	Total variation penalization

