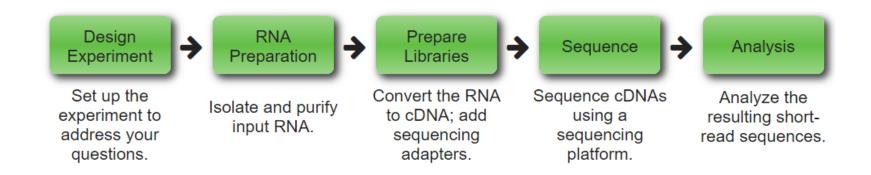
# Rat poison and bobcats: Application of gene expression in a natural population

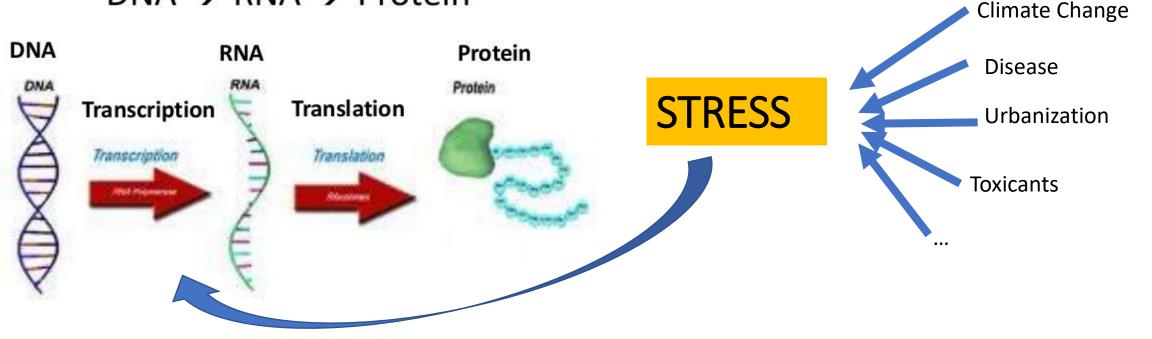


Mouton Alice FNRS Postdoctoral Researcher University of Liege, Belgium






Lecture Series in Ecology and Evolution KU Leuven 12 February 2021


# Outline

- 1. RNA-seq applied to wildlife
- 2. Background on rat poison and study system
- 3. Gene expression analyses in a bobcat population
- 4. Complementary study : methylation and rat poison
- 5. Perspectives

# 1. RNA-seq applied to wildlife



# $DNA \rightarrow RNA \rightarrow Protein$



Gene Expression Modulates Organismal Response to Environmental Change

## 1. RNA-seq applied to wildlife

#### PLOS PATHOGENS

RESEARCH ARTICLE

The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis

Kenneth A. Field<sup>1</sup>\*, Joseph S. Johnson<sup>1</sup>, Thomas M. Lilley<sup>1</sup>, Sophia M. Reeder<sup>1</sup>, Elizabeth J. Rogers<sup>1</sup>, Melissa J. Behr<sup>2</sup>, DeeAnn M. Reeder<sup>1</sup>

## **MOLECULAR ECOLOGY**

Molecular Ecology (2012) 21, 3110-3120

doi: 10.1111/j.1365-294X.2012.05481.x

#### FROM THE COVER Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species

ERICA BREE ROSENBLUM,\*†\$ THOMAS J. POORTEN,\*† MATTHEW SETTLES† and GORDON K. MURDOCH†‡



Barakat et al. BMC Plant Biology 2012, 12:38 http://www.biomedcentral.com/1471-2229/12/38



#### **RESEARCH ARTICLE**

**Open Access** 

Chestnut resistance to the blight disease: insights from transcriptome analysis

# Behavior

# Social environment is associated with gene regulatory variation in the rhesus macaque immune system

Jenny Tung<sup>a, 1,2</sup>, Luis B. Barreiro<sup>a,3</sup>, Zachary P. Johnson<sup>b</sup>, Kasper D. Hansen<sup>c</sup>, Vasiliki Michopoulos<sup>b</sup>, Donna Toufexis<sup>b,d</sup>, Katelyn Michelini<sup>a</sup>, Mark E. Wilson<sup>b</sup>, and Yoav Gilad<sup>a,1</sup>

<sup>a</sup>Department of Human Genetics, University of Chicago, Chicago, IL 60637; <sup>b</sup>Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; <sup>c</sup>Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21202; and <sup>d</sup>Department of Psychology, University of Vermont, Burlington, VT 05405

Edited by Gene E. Robinson, University of Illinois at Urbana-Champaign, Urbana, IL, and approved March 6, 2012 (received for review February 15, 2012)

# Gene expression shifts in yellow-bellied marmots prior to natal dispersal 🚥

Tiffany C Armenta ➡, Steve W Cole, Daniel H Geschwind, Daniel T Blumstein, Robert K Wayne Author Notes

*Behavioral Ecology*, Volume 30, Issue 2, March/April 2019, Pages 267–277, https://doi.org/10.1093/beheco/ary175

# **MOLECULAR ECOLOGY**

Molecular Ecology (2016) 25, 5680-5691

doi: 10.1111/mec.13879

## Seasonal gene expression in a migratory songbird

RACHEL A. JOHNSTON,\* KRISTINA L. PAXTON,† ‡ FRANK R. MOORE,† ROBERT K. WAYNE\* and THOMAS B. SMITH\*§ PLOS ONE

# Climate Change

#### ORIGINAL ARTICLE

# Seedling response to water stress in valley oak (*Quercus lobata*) is shaped by different gene networks across populations

Alayna Mead, Juan Peñaloza Ramirez, Megan K. Bartlett, Jessica W. Wright, Lawren Sack, Victoria L. Sork

First published: 25 October 2019 | https://doi.org/10.1111/mec.15289

RESEARCH ARTICLE

Transcriptomic Characterization of Tambaqui (*Colossoma macropomum*, Cuvier, 1818) Exposed to Three Climate Change Scenarios

Marcos Prado-Lima<sup>1,2</sup>\*, Adalberto Luis Val<sup>1</sup>

# SCIENTIFIC REPORTS

### OPEN Mediterranean versus Red sea corals facing climate change, a transcriptome analysis

 Received: 04 August 2016
 Keren Maor-Landaw<sup>1</sup>, Hiba Waldman Ben-Asher<sup>1</sup>, Sarit Karako-Lamper<sup>1</sup>, Mali Salmon-Divon<sup>2</sup>,

 Accepted: 09 January 2017
 Fiorella Prada<sup>3</sup>, Erik Caroselli<sup>3</sup>, Stefano Goffredo<sup>3</sup>, Giuseppe Falini<sup>4</sup>, Zvy Dubinsky<sup>1</sup> &

 Published: 09 February 2017
 Oren Levy<sup>1</sup>

#### ARTICLE

DOI: 10.1038/s41467-018-03384-9

Strong phenotypic plasticity limits potential for evolutionary responses to climate change

Vicencio Oostra <sup>1,2</sup>, Marjo Saastamoinen <sup>3</sup>, Bas J. Zwaan <sup>2</sup> & Christopher W. Wheat<sup>4</sup>

OPEN

1. RNA-seq applied to wildlife



OPEN Transcriptome analysis of a wild bird reveals physiological responses to the urban environment Urbanization

Received: 12 October 2016 Accepted: 06 February 2017

Hannah Watson, Elin Videvall, Martin N. Andersson & Caroline Isaksson

OPEN CACCESS Freely available online



Signatures of Rapid Evolution in Urban and Rural Transcriptomes of White-Footed Mice (*Peromyscus leucopus*) in the New York Metropolitan Area

Stephen E. Harris<sup>1</sup>, Jason Munshi-South<sup>2\*</sup>, Craig Obergfell<sup>3</sup>, Rachel O'Neill<sup>3</sup>

# Evo-devo

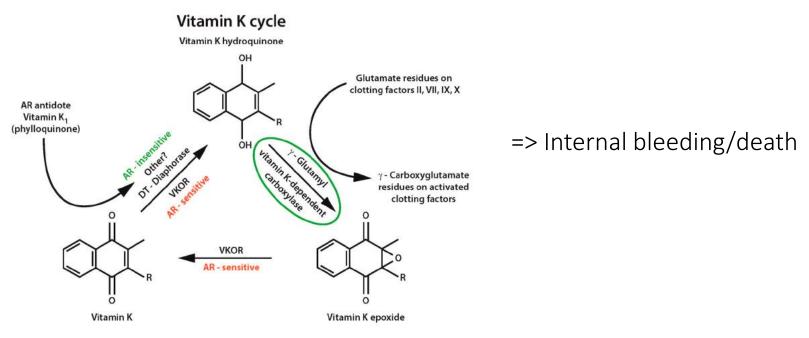
# Transcriptomic and epigenomic characterization of the developing bat wing

Walter L Eckalbar, Stephen A Schlebusch, Mandy K Mason, Zoe Gill, Ash V Parker, Betty M Booker, Sierra Nishizaki, Christiane Muswamba-Nday, Elizabeth Terhune, Kimberly A Nevonen, Nadja Makki, Tara Friedrich, Julia E VanderMeer, Katherine S Pollard, Lucia Carbone, Jeff D Wall <sup>M</sup>, Nicola Illing <sup>M</sup> & Nadav Ahituv

Nature Genetics 48, 528–536 (2016) | Download Citation ↓

## ORIGINAL ARTICLE Di Full Access

# Transcriptomic analysis of skin pigmentation variation in the Virginia opossum (*Didelphis virginiana*)

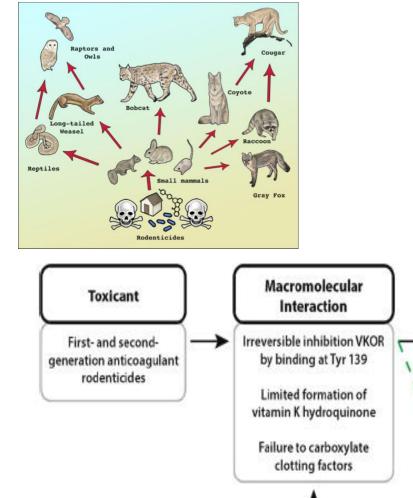

Sergio F. Nigenda-Morales , Yibo Hu, James C. Beasley, Hugo A. Ruiz-Piña, David Valenzuela-Galván, Robert K. Wayne

First published: 09 May 2018 | https://doi.org/10.1111/mec.14712 | Citations: 2

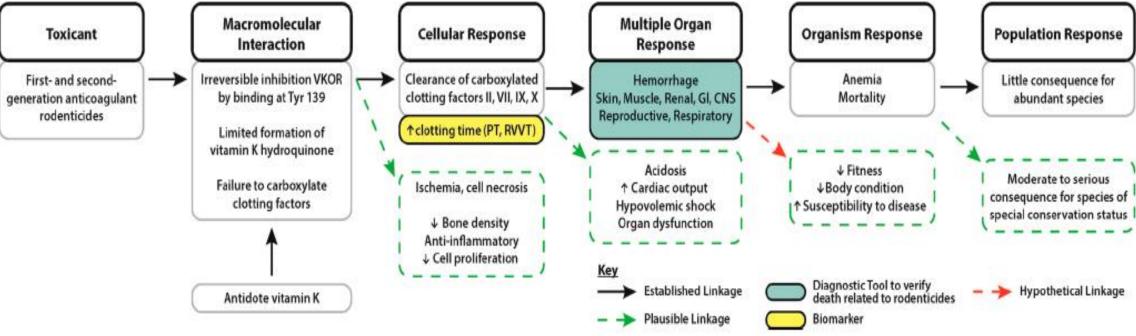
# 2. Background on rat poison

• Anticoagulant rodenticides (ARs) are used worldwide for vertebrate pest control in urban, suburban and agricultural settings.

• How do they work?




• Two generations of AR


- First Generation: Warfarin, chlorophacinone and diphacinone => several days of feeding (problem of rat resistant)

- Second Generation : bromadiolone, difenacoum, brodifacoum, flocoumafen, and difethialon => one single feed (highly toxic) and in some states/countries limited to professional pest companies

#### 2. Background on rat poison : Secondary exposure



# **Adverse Outcome Pathway**



Env.Sci.Technol 2014,48,8433-8445

=> Anticoagulant rodenticides were detected in more than 90% of stoats and weasels in Denmark (Elmeros et 2011).

- => 62.8% of studied bird of prey with AR in Mediterranean region of Spain (Perea et al 2015)
- $\Rightarrow$  Anticoagulants were detected in six of seven predatory species in Cape Town, South Africa (Serieys et al 2019).
- $\Rightarrow$  AR residue in four mustelid species in France (Fournier-Chambrillon et al 2004)
- $\Rightarrow$  Increasing parasite and pathogens in great bustards with AR (Lemus et al 2011 )
- $\Rightarrow$  Many more studies...

## **Problems**

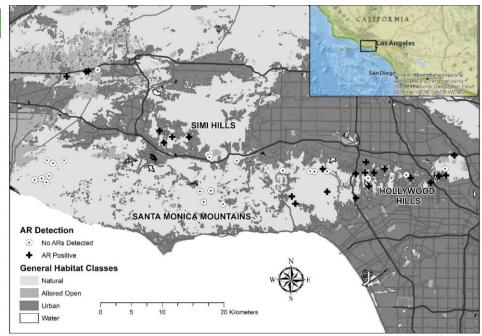
Many animals do not exhibit any outward signs of poisoning (sensitivity of AR varies among species), Toxicants go undetected without specific testing

How to understand the effect on long-term exposure? Long-term monitoring How to measure exposure? What markers? Need to sample exposed and unexposed alive animals! Need to know other variables (sex, age, sample conditions) for confounding

## 2. Background on rat poison and study system



✓ Carnivores in the Santa Monica Mountains (and elsewhere) are chronically and pervasively exposed to ARs => in 2000, National Park Service started a carnivore monitoring (coyotes).


- ✓ In 2002-2005, rapid population decline due to notoedric mange in the bobcat population (50% of radiocollared animals died of mange in 2003) (Serieys et al. 2014).
- ✓ 90% bobcats detected positive to ARs
- ✓ Strong association between notoedric mange and exposure to AR (Riley et al. 2007)
- Primary cause of death from exposure (hemorrhaging) is not observed in bobcats as in other species=> but clotting time is the most frequent methods to assess AR exposure

## Serieys et al 2013/ Serieys et al 2018 => Immunotoxic effects of AR

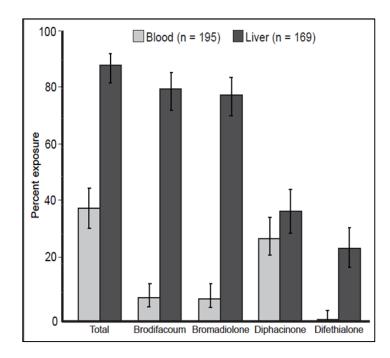


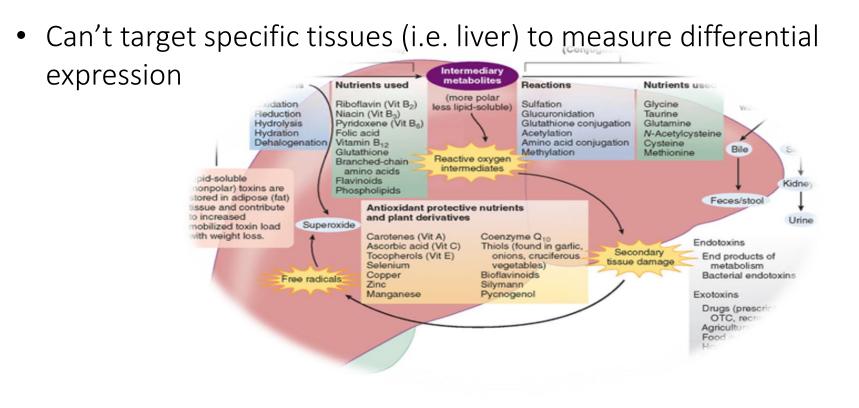
Measures of 65 biochemical markers of immune and organ function in 124 bobcats in the SMMNRP

| data parameter                 | test (sample type)                                                      |
|--------------------------------|-------------------------------------------------------------------------|
| anticoagulants                 | residue analysis for exposure (whole blood and serum)                   |
|                                | PIVKA clotting time (plasma)                                            |
|                                | prothrombin clotting time (whole blood)                                 |
| health parameters              | general (whole blood and serum)                                         |
|                                | immunophenotype (lymphocytes in whole blood profiled by flow cytometry) |
|                                | cytokine concentrations (serum)                                         |
|                                | complete blood counts (whole blood)                                     |
|                                | blood chemistries (serum)                                               |
| B cell clonality               | immunofixation (serum)                                                  |
|                                | PARR (whole blood)                                                      |
| pathogen infection or exposure | exposure/infection (whole blood and serum)                              |
| land use                       | percentage urban area (buffer zones)                                    |

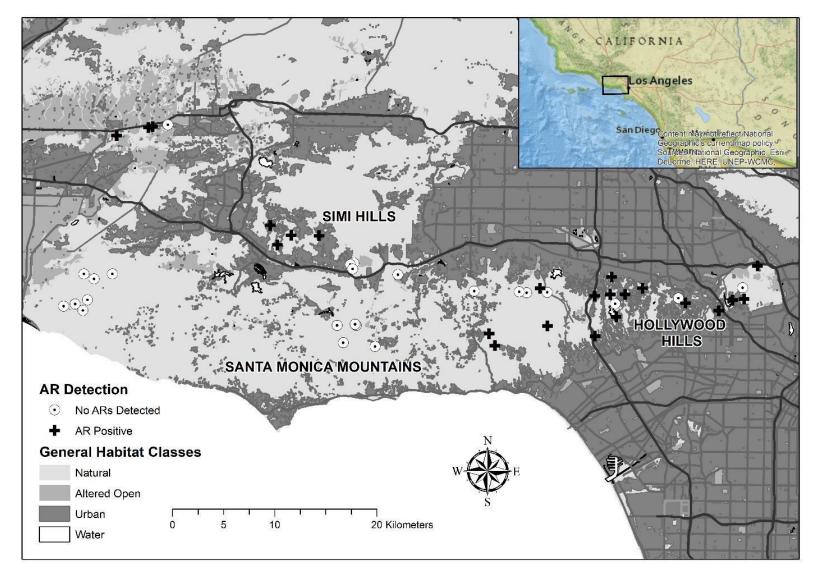


- Simultaneous immunostimulation and immunosuppression effects
- Evidence for immune dysregulation in animals exposed to ARs
- The broad spectrum of immune activation that we observe may compromise ability to mount a specific immune response.




- 1. Do we have genes differentially expressed between bobcats exposed to ARs and not exposed?
- 2. What biological processes are they involved in?
- 3. Potential causal links between mange susceptibility and AR exposure in bobcats?

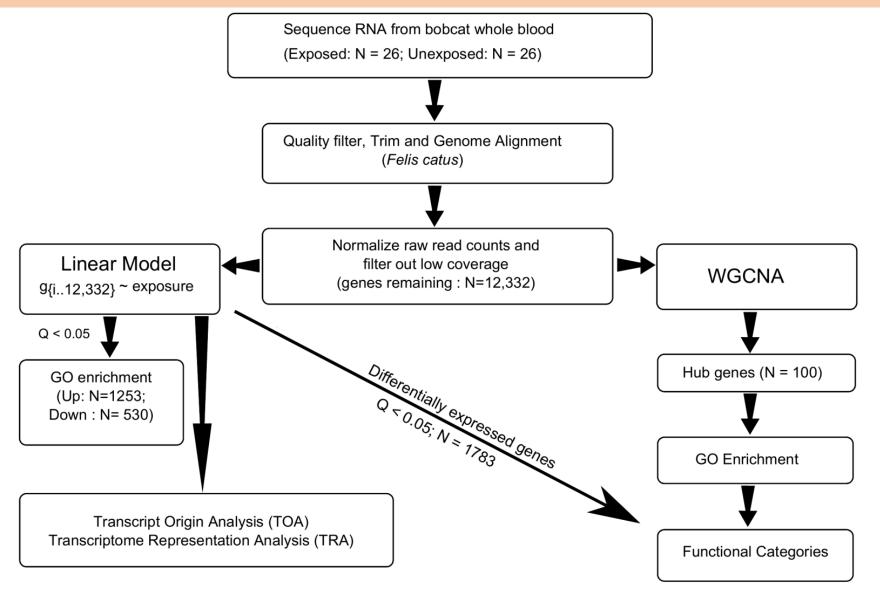

# Challenges of RNA-Seq on natural populations

- Sampling is opportunistic- no knowledge of an animals experience of the environment prior to or after sampling (infection history, toxins not explicitly tested, etc.)
- AR detection in blood only indicates recent exposure, not lifetime exposure





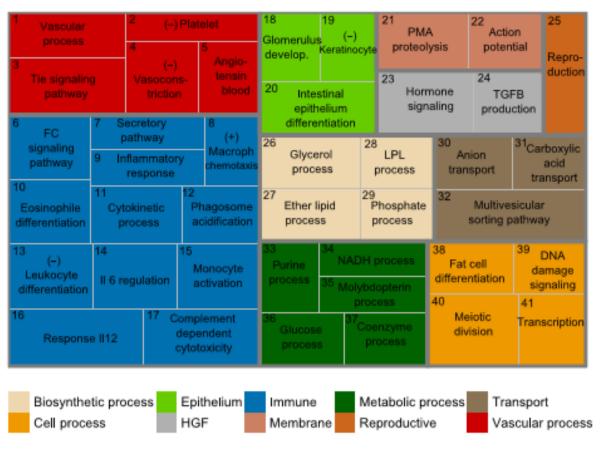
### 3. Gene expression analyses in a bobcat population



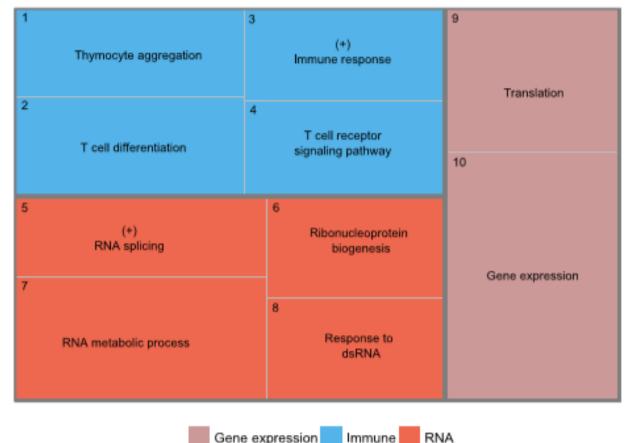



- ✓ 52 RNA samples from blood (26 exposed/ 26 non exposed)
- $\checkmark$  Balancing with age and sex
- Metadata (disease, RIN, sequencer, season, location...)

Fraser et al. (2018) Molecular Ecology

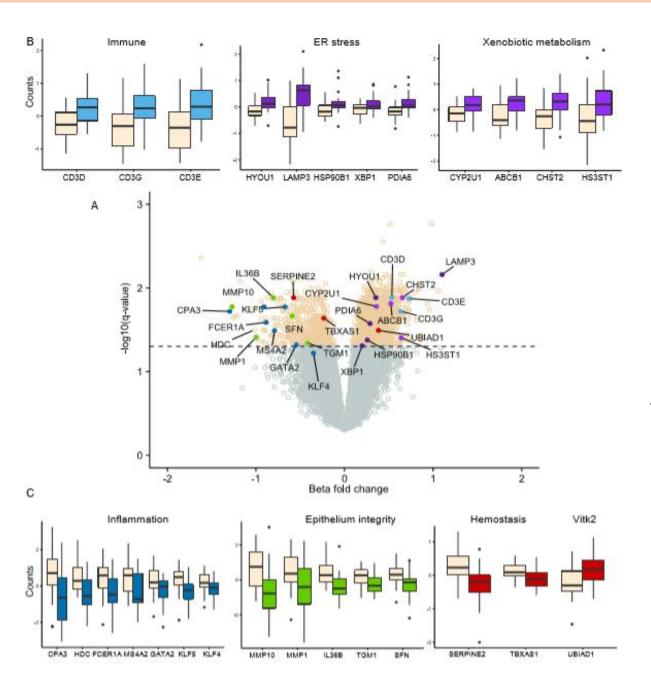

3. Gene expression analyses in a bobcat population

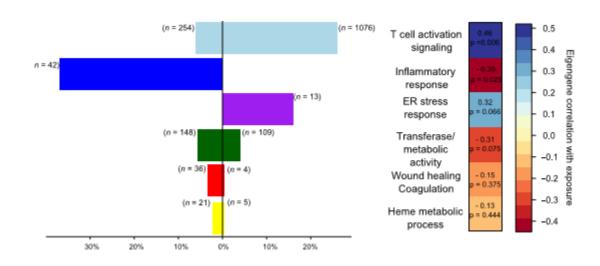



Fraser & Mouton et al. (2018) Molecular Ecology

# 3. Gene expression analyses in a bobcat population

## Down regulated Genes





## Up regulated Genes

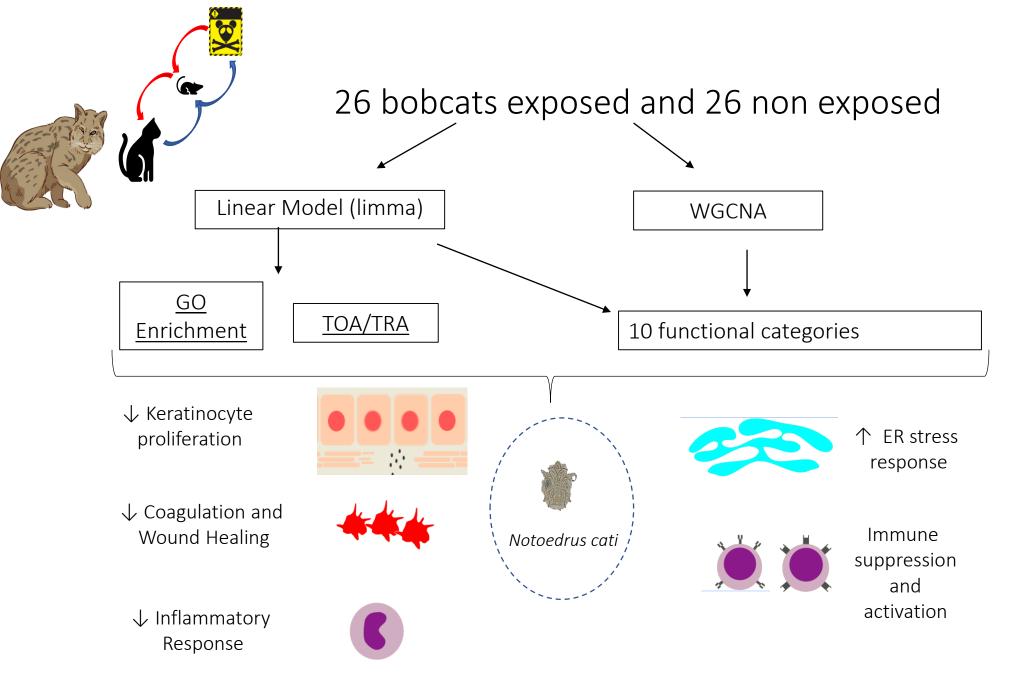


Similarities with the immuno-assay study!

#### 3. Gene expression analyses in a bobcat population



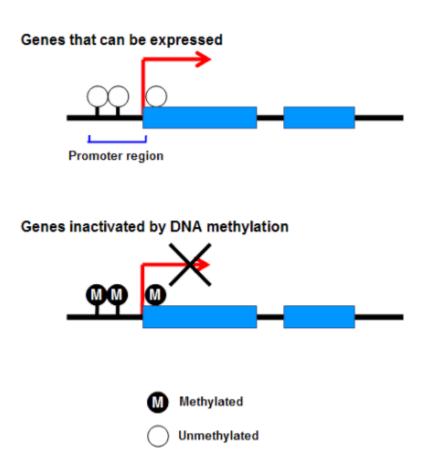



AR effect on immunity, ER stress, xenobiotic metabolism, epithelium integrity and hemostasis

T cell activation Inflammation process AR-negative (light color) and AR-positive (dark color) 0 0 Row Z-Score Row Z-Score

Increasing expression T cell activation in AR positive bobcats

Decrease expression of inflammatory processes genes in AR positive bobcats


Fraser et al. (2018) Molecular Ecology



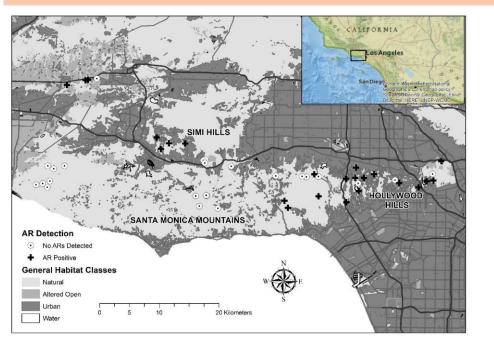
#### Impact on fitness

- Decreased defense against extracellular pathogens and allergens
- 2) Immune activation leading to immune exhaustion
- 3) Increased cell death
- 4) Reduced epithelial integrity, more vulnerable to ectoparasites

# DNA methylation is a major gene regulatory mechanism in mammals

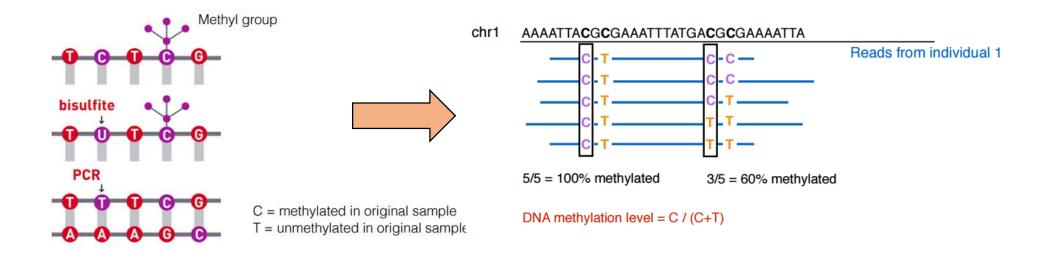


- Environmentally responsive (biotic stress, ..)
- Involved in aging


. . .

- Linked to many disease (e.g., cancer, diabetes, Alzheimer's)

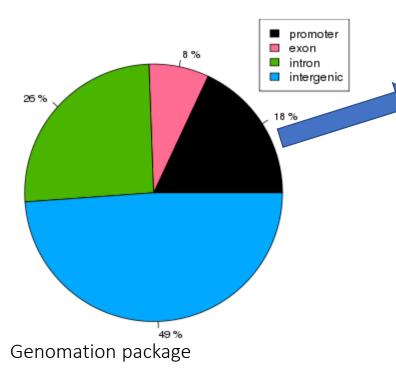
# Link exposure to ARs with gene expression patterns using a RNA-seq approach


# Exposure to ARs and methylation level?

## 4. Complementary ongoing study : methylation and rat poison



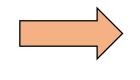
Samples: 10 M « exposed » and 10 M « unexposed » bobcats Whole blood DNA extraction


Methods: RRBS (Reduced Representation Bisulfite Sequencing) (Meissner et al. 2008; Gu et al. 2011; Boyle et al. 2012 ) Macau (Differential methylation)



4. Complementary ongoing study : methylation and rat poison (preliminary results)

## 141 methylation sites differentially expressed (FDR< 0.1)


#### differential methylation annotation



# 33 sites in promoter region=> closest gene => Gene ontology

- Regulation of cytokine (il6,il4,il2)
- Positive regulation of ER stress
- Macrophage differentiation
- T cell activation
- Regulation of platelet
- •....

Same GO than RNAseq analyses!!



15 genes in common with RNAseq => Biomarkers??

# Conservation action

# More studies on the sublethal effects of AR are needed!!

#### Los Angeles Times

CALIFORNIA

Two mountain lions found dead in Santa Monica Mountains had ingested rat poison



P-30 and P-53 were found dead in September and August, respectively. Both had rat poison in their systems. (National Park Service)

California Legislature Passes Bill to Protect Wildlife From Super-toxic Rat Poisons

1 September 2020

Moratorium on Dangerous Rodenticides Heads to Governor's Desk

SACRAMENTO, *Calif.*— The California legislature has passed a <u>bill</u> that would place a moratorium on super-toxic <u>rodenticides</u> until state agencies can develop better safeguards to protect wildlife from the dangerous, long-lasting poisons.

The California Ecosystems Protection Act (A.B. 1788) was passed late Monday just before the end of the session. The bill now goes to Gov. Gavin Newsom.

#### Gov. Newsom Signs Bill Protecting Wild Animals from Super-toxic Rat Poisons

#### California Leads the Nation on Safeguards for Second-generation Anticoagulant Rodenticides

SACRAMENTO, *Calif.*—Gov. Gavin Newsom signed the California Ecosystems Protection Act (<u>AB 1788</u>) into law today, placing greater restrictions — with limited exceptions — on the use of second-generation anticoagulant <u>rodenticides</u> to protect the state's native wildlife.

The bill, introduced by Assemblymember Richard Bloom (D-Santa Monica), requires state regulators to reduce the threats to nontarget wildlife before the restrictions on second-generation anticoagulant rodenticides can<sup>2</sup>b<sup>2</sup> lifted.



# Acknowledgements

• Dr. Devaughn Fraser (US Fish and Wildlife)

UCLA QCBio

UCLA

Collaboratory

- Dr. Laurel Serieys (Cape town Uni.)
- Dr. Steve Cole (UCLA)
- Dr. Seth Riley (NPS)
- Dr. Robert Wayne (UCLA)
- Dr Scott Carver (Tasmania Uni.)
- Dr Sue Vandewoude (Colorado State Uni.)
- Wayne Lab (UCLA)
- Dr Bridgett Vonholdt (Princeton)
- Dr Matteo Pellegrini (UCLA)
- Dr Marco Morselli (UCLA)