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Résumé
La programmation par démonstration est une approche intuitive permettant de transmettre

une tâche à un robot à partir d’une ou plusieurs démonstrations faites par un enseignant humain.
L’acquisition des démonstrations nécessite cependant la résolution d’un problème de correspon-
dance quand les systèmes sensitifs et moteurs de l’enseignant et de l’apprenant diffèrent. De
nombreux travaux utilisent des démonstrations faites par kinesthésie, i.e., l’enseignant manipule
directement le robot pour lui faire faire la tâche. Ce dernier enregistre ses mouvements grâce à
ses propres encodeurs. De cette façon, le problème de correspondance est trivial. Lors de telles
démonstrations, la dextérité de l’enseignant peut être altérée et impacter tout le processus de pro-
grammation par démonstration. Les méthodes d’acquisition de démonstration moins invalidantes
pour l’enseignant nécessitent souvent des procédures spécifiques pour résoudre le problème de
correspondance. Ainsi l’acquisition des démonstrations se base sur un compromis entre com-
plexité de ces procédures, le niveau de précision des éléments enregistrés et la commodité pour
l’enseignant. Cette thèse propose ainsi une méthode de mesure du mouvement humain par cap-
teurs inertiels pour la programmation par démonstration de tâches de “pick-and-place”. Les
capteurs inertiels sont en effet pratiques et faciles à utiliser, mais sont d’une précision limitée.
Nous étudions leur potentiel pour la programmation par démonstration.

Pour estimer la trajectoire de la main de l’enseignant, des capteurs inertiels sont placés sur
son bras, son avant-bras et sa main afin d’estimer leurs orientations. Une méthode est proposée
afin de compenser partiellement la dérive de l’estimation de l’orientation des capteurs autour de
la direction de la gravité. Cette méthode, appelée “heading reset”, est basée sur l’hypothèse que
le capteur passe plusieurs fois par son azimut initial avec des phases stationnaires lors d’une dé-
monstration. Cette méthode est implémentée dans un algorithme d’intégration et d’observation
de vecteur. Des expériences illustrent les avantages du “heading reset”.

Cette thèse développe ensuite une méthode complète de mesure des mouvements de la main
humaine par capteurs inertiels (IHMT). Elle comprend une première procédure d’initialisation
pour estimer l’orientation des capteurs par rapport aux segments du bras humain ainsi que
l’orientation initiale des capteurs par rapport au repère de référence de l’humain. Cette procédure,
consistant en une rotation et une position statique du bras tendu, est robuste au positionnement
des capteurs. Une seconde procédure est proposée pour estimer la position de l’humain par rap-
port au robot et pour calibrer les paramètres de la méthode. Finalement, l’erreur moyenne sur la
trajectoire de la main humaine est mesurée expérimentalement entre 28.5 mm et 61.8 mm, ce qui
n’est cependant pas suffisant pour la programmation par démonstration.

Afin d’atteindre le niveau de précision nécessaire, une nouvelle méthode est développée afin
de corriger la trajectoire de la main par IHMT à partir de données issues d’un système de vision,
complémentaire des capteurs inertiels. Pour maintenir une certaine simplicité et robustesse, le
système de vision ne suit que les objets et pas l’enseignant. La méthode de correction, basée sur
des “Positions Of Interest (POIs)”, est constituée de 3 étapes: l’identification des POIs dans les
données issues des capteurs inertiels et du système de vision, puis l’association de POIs liées à
la main et de POIs liées aux objets correspondant à la même action, et enfin, la correction de
la trajectoire de la main à partir des paires de POIs. Finalement, la méthode IHMT corrigée
est expérimentalement évaluée dans un processus complet de programmation par démonstration.
Cette expérience montre l’avantage de la méthode proposée sur la kinesthésie dans le contexte
de ce travail.
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Abstract
Programming by demonstration (PbD) is an intuitive approach to impart a task to a robot

from one or several demonstrations by the human teacher. The acquisition of the demonstrations
involves the solution of the correspondence problem when the teacher and the learner differ in
sensing and actuation. Kinesthetic guidance is widely used to perform demonstrations. With
such a method, the robot is manipulated by the teacher and the demonstrations are recorded by
the robot’s encoders. In this way, the correspondence problem is trivial but the teacher dexterity
is afflicted which may impact the PbD process. Methods that are more practical for the teacher
usually require the identification of some mappings to solve the correspondence problem. The
demonstration acquisition method is based on a compromise between the difficulty of identifying
these mappings, the level of accuracy of the recorded elements and the user-friendliness and con-
venience for the teacher. This thesis proposes an inertial human motion tracking method based
on inertial measurement units (IMUs) for PbD for pick-and-place tasks. Compared to kinesthetic
guidance, IMUs are convenient and easy to use but can present a limited accuracy. Their poten-
tial for PbD applications is investigated.

To estimate the trajectory of the teacher’s hand, 3 IMUs are placed on her/his arm segments
(arm, forearm and hand) to estimate their orientations. A specific method is proposed to par-
tially compensate the well-known drift of the sensor orientation estimation around the gravity
direction by exploiting the particular configuration of the demonstration. This method, called
heading reset, is based on the assumption that the sensor passes through its original heading with
stationary phases several times during the demonstration. The heading reset is implemented in
an integration and vector observation algorithm. Several experiments illustrate the advantages of
this heading reset.

A comprehensive inertial human hand motion tracking (IHMT) method for PbD is then de-
veloped. It includes an initialization procedure to estimate the orientation of each sensor with
respect to the human arm segment and the initial orientation of the sensor with respect to the
teacher attached frame. The procedure involves a rotation and a static position of the extended
arm. The measurement system is thus robust with respect to the positioning of the sensors on
the segments. A procedure for estimating the position of the human teacher relative to the robot
and a calibration procedure for the parameters of the method are also proposed. At the end, the
error of the human hand trajectory is measured experimentally and is found in an interval be-
tween 28.5 mm and 61.8 mm. The mappings to solve the correspondence problem are identified.
Unfortunately, the observed level of accuracy of this IHMT method is not sufficient for a PbD
process.

In order to reach the necessary level of accuracy, a method is proposed to correct the hand tra-
jectory obtained by IHMT using vision data. A vision system presents a certain complementarity
with inertial sensors. For the sake of simplicity and robustness, the vision system only tracks
the objects but not the teacher. The correction is based on so-called Positions Of Interest (POIs)
and involves 3 steps: the identification of the POIs in the inertial and vision data, the pairing
of the hand POIs to objects POIs that correspond to the same action in the task, and finally, the
correction of the hand trajectory based on the pairs of POIs. The complete method for demon-
stration acquisition is experimentally evaluated in a full PbD process. This experiment reveals
the advantages of the proposed method over kinesthesy in the context of this work.
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1.1 Context and objective
Robots are increasingly present in our world in many aspects. In industry, of course, the

quantity of robots is increasing. At the hospital, robots help surgeons. On the road, cars are au-
tonomous. In the farm, cows are milked by machines. At home, some machines clean the house
or mow the lawn autonomously and children play with robotic toys. This growing presence of
robots in our lives comes from the increasing skills of robots. The superiority of robots over
human for specific tasks is not in dispute. Robots count faster, work harder and more accurately
without getting tired. But one cannot ignore a complementarity between human and robots. For
Kyrarini et al. [78] “some tasks that are difficult for a robot may be easy for a human (for exam-
ple cognitive reasoning, recognition of objects newly appeared in the scene, and manipulation of
very small objects). Similarly, some tasks that are difficult or tedious for a human are easy for
a robot (for example, performing mathematical computations and performing precise repeated
movements with a short cycle time)”. In order to take advantage of this complementarity (but
not limited to this aspect), research efforts about human-robot interactions (HRI) have been con-
ducted.

Human-robot interactions are studied from different perspectives addressing different prob-
lems. Let us give three examples of possible interactions modes. Firstly, facial expressions
(from both humans and robots) are studied to improve the communication between robots and
humans [110]. Challenges appear when recognizing different human facial expressions or when
automatically creating facial expressions on the robot. Secondly, some robots, designated as col-
laborative, are specially designed to share their workspace with humans. In such context, the
problem of safe human-robot interactions appears [139]. Thirdly, human-robot interactions are
also present during the programming of robot tasks. An important challenge for that purpose is
to build intuitive interfaces between the human and the robot [127].

Among others, interactions between a human and a robot should be considered when a hu-
man needs to transfer skills or tasks to a robot. The development for the last decades of new robot
programming tools shows the will to improve human-robot interactions at this level. Program-
ming languages become more intuitive with, for instance, programming by blocks or the use of
virtual environments. Teach-pendants and other joystick-based interfaces become less relevant
for collaborative robots that can be directly manipulated by the human. On this topic, Tsarouchi
et al. [123] state that “intuitive robot programming and the promising idea of its simplification is
an important aspect”.

This thesis is about programming by demonstration (PbD) methods also known as learning
from demonstration (LfD) or imitation learning methods, which intend to offer more intuitive
robot programming paradigms. The present project took place in the context of the Robotix
Academy which addresses applications of robotics for industrial production purposes. Therefore,
this thesis focuses on PbD methods for industrial applications. Application fields of PbD will be
reviewed in the next section.

1.1.1 Programming by Demonstration
In the Encyclopaedia of Robotics [28], Calinon defined programming by demonstration as

“the process used to transfer new skills to a machine by relying on demonstrations from a user”.
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FIGURE 1.1: Illustration of robot programming by demonstration. The human teacher demon-
strates a single-armed collaborative robot the task of picking up the cube and dropping it into
the jar. The demonstration is captured by inertial sensors on the teacher’s arm and a fixed

camera tracking objects positions.

In this work, the user is called the teacher or the human and is also the agent who performs
the demonstrations. The machine is called the learner, the robot, or the robotic system (i.e., a
robot including external sensors). This agent learns and executes the taught task. A demonstra-
tion is defined as the teacher-initiated performance of the task – in a specific configuration – to
be learned by the learner. The configuration of the task could be, for instance, a specific position
of an object to be manipulated. PbD is directly inspired by the way human interact and makes
robot programming easier and more accessible. This technology would enhance the application
of robots in an industrial context as well as in daily life [41]. According to Vakanski et al. [125],
“the intuitive programming style of PbD has the potential to facilitate robotic applications in
both the manufacturing industry and the service sector (e.g., office or household environments)”.
Although PbD currently remains in the academic domain, the diversity of potential applications
is quite large. In [43], a robot is taught how to clean different surfaces from demonstrations. In
[73], a method to teach task requiring positions and forces is applied to an ironing and a door
opening tasks. The task of rolling out a pizza dough is taught to a robotic system in [48]. In [1],
helicopter aerobatics maneuvers are taught to a robotic system that only a few human experts are
capable of performing. In [141], virtual reality is used to transmit to a robot a task consisting in
the complex manipulation of rigid and soft bodies (like textiles).

Several reviews have been proposed in the literature to formalize this paradigm [8, 20, 34,
109]. From these reviews, a PbD process is decomposed into two main steps, as illustrated in
Figure 1.2. The first step is to gather the dataset from the demonstrations. The second step con-
sists in generalizing or “understanding” the task from the dataset in order to enable the proper
execution of the task by the robot in an unknown configuration, for instance, with object posi-
tions never encountered in the demonstrations. This second step is called learning the task in
this work.
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FIGURE 1.2: Programming by demonstration process

FIGURE 1.3: Programming by demonstration refining a task process

It is sometimes possible to repeat these two steps in an iterative manner as illustrated in Figure
1.3. These approaches are denoted as refining a learned task in [34] or as active and interactive
demonstrations in [109]. Following this approach, the learner interacts with the teacher during
the process of learning the task and can ask for more information or demonstrations. Chernova
et al. [34] define it as “the learner, in turn, helps the instructor by making their learning pro-
cess transparent through communicative acts, and by demonstrating their current knowledge and
mastery of the task”.

This work focus on the first step of a PbD process: gathering the dataset. A review of existing
methods regarding this particular problem is given in the following section. However, the two
steps influence each other and more information about the second part will be given in the last
chapter 8 of this work in which a complete PbD process will be implemented.

1.1.2 Gathering the dataset
In order to investigate this step of a PbD process we propose, following Argal et al. [8], to

model the task in terms of states Z and actions A. Let us illustrate these concepts for the task of
picking up a pen from the table to place it into a jar. In this example, “picking up” or “place”
are the actions and “pen on the table” or “position of the jar” are the states. In this way, a task is
considered as one or more actions associated with a desired final state, for instance, the task can
be reduced to “place the pen into the jar”. The execution of the task is a succession of states and
actions such that the actions modify the current state into a new state until the desired task state
is reached. The task can be executed in multiple ways. One way is called a behaviour and noted
π . For instance, “picking up the pen on the table with the hand and dropping it into the jar” is one
behaviour, “grabbing the jar and slide the pen in it with the hand” is another one. Following this
model, the learning the task part is to estimate, through demonstrations, a learner’s behaviour πl
to execute the task. Such execution involves a succession of states and actions Zl and Al specific
to the learner.

A demonstration is performed under the teacher initiative with a certain behaviour πt involv-
ing the sets of states and actions At and Zt . These states and actions Zt and At are usually not
accessible and only a partial representation of them is recorded in a dataset dt . According to
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FIGURE 1.4: Illustration of the step of gathering the dataset.

Argal et al. [8], “for [PbD] to be successful, the states and actions in the learning dataset must
be usable by the [learner]”. In other words, the learner should be able to reproduce the demon-
stration performed by the teacher (in the same task configuration) thanks to this learning dataset.
However, the teacher and the learner usually differ in sensing and actuation. In such cases, the
sets of states and actions Zt and At of the execution πt are irrelevant for the learner. For instance,
the behaviour “grabbing the jar and slide the pen in it with the hand” which requires both hands
of the teacher cannot be achieved by a single robotic arm. In other words, the dataset dt that
encodes the states and actions Zt and At is useless for the learner to reproduce the demonstrated
task. This problem is referred to as the correspondence issue. To solve the correspondence issue,
an embodiment mapping is necessary. The embodiment mapping transforms the dataset dt into
a new dataset dl . This dataset dl encodes the states and actions Zl and Al that correspond to the
demonstation (πt , Zt and At) in a relevant way for the learner. For instance, if the human motion
is described with joint angles and if the human and the robot have different kinematics, an em-
bodiment mapping is necessary to adapt the recorded set of joint angles to the robot’s kinematics.

Furthermore, the demonstration is recorded with a specific sensing system. From this sens-
ing system, the recorded dataset ds is created and does not necessarily correctly encode the states
Zt and actions At . In this case, from the recorded dataset ds, the record mapping creates a new
dataset dt that better encodes the behaviour πt and the states Zt and actions At of the demonstra-
tion. For instance, while the teacher picks up the pen and drops it into the jar, he/she is filmed.
The set of recorded images is ds. It is used to extract the human motion as well as the object
positions. The extraction method is the recorded mapping and the human motion and the object
positions are the dataset dt . The human motion described in dt can be used to describe the actions
At . For the same behaviour, the teacher’s motion can be recorded through inertial sensors. This
way, the dataset ds directly represents the human motion and encodes the actions At . A record
mapping may not be necessary but can still be useful to better encode states and actions, e.g. to
obtain the hand trajectory instead of the sensor acceleration and angular velocity which can facil-
itate the identification of the embodiment mapping. Figure 1.4 illustrates the process of gathering
the dataset and the two mappings.

The correspondence issue can be more or less difficult to solve depending on the demonstra-
tion acquisition method. As explained in [7] “correspondence issues are minimized when the
learner records directly from its own sensors while under the control of the teacher”. In other
words, some methods lower the difficulty of solving the correspondence issue by making the
learner perform the demonstration under the teacher’s initiative. One largely used approach is
kinesthesy. Acquiring a demonstration by kinesthesy consists for the teacher to directly manipu-
late the robot to make it perform the task. During the demonstration the robot motion is recorded
from its own encoders. In this way, the recorded data directly encodes the relevant states Zl and



6 Chapter 1. Introduction

actions Al for the learner. In other words: ds = dl . On the other hand, some methods allow the
teacher to perform the demonstration more freely with her/his own body while being “observed”
by a sensory system. The correspondence issue needs to be solved (dt 6= dl) and the recorded
dataset ds may need to be adapted. Thus, some record and/or embodiment mappings, depending
on the demonstration acquisition method, need to be identified.

The above described dichotomy is present in several taxonomies of the demonstration acqui-
sition methods. Chernova et al. [34] classify the demonstration acquisition methods into learning
by doing for those that tend to circumvent or limit the correspondence issue and learning from
observation for those allowing the teacher to move freely. Similarly, Calinon [28] proposes the
two following categories: observational learning and kinesthetic teaching. In a recent survey
[109], three categories are proposed. The kinesthetic teaching category is still present as well as
the observational learning under the label passive observation. The third category is teleopera-
tion which gathers the demonstration acquisition methods using a remote controller of the robot.
Teleoperation-based demonstrations can be applied to a wider range of applications and robotics
systems (underwater robots, virtual reality ...) than kinesthetic teaching.

Ravichandar et al. [109] confirm that kinesthetic teaching – and teleoperation – circumvent
the correspondence issue but they also present some limitations: “the quality of the demon-
strations depends on the dexterity and smoothness of the human user, and even with experts,
data obtained through this method often require smoothing or other post-processing techniques”.
Methods from kinesthetic teaching and teleoperation are easy to implement but prevent natu-
ral human motion which reduces the range of applications. For instance, a painting task [125],
requiring dexterity, would be difficult to achieve in that way. On the other hand, demonstra-
tions from “observation” may present difficulties in implementation and mappings identification.
In [30], a human operator demonstrates basket referee gestures with his own body wearing iner-
tial sensors to a humanoid robot. Due to correspondence issues, the demonstration motion cannot
be used directly and is refined by kinesthesy. Demonstration acquisition methods usually require
a compromise between the difficulty of identifying mappings and convenience for the teacher to
perform the demonstrations. Demonstration acquisition methods should also meet the goal of
PbD of facilitating robot programming and must be easy to implement. The development of an
observational demonstration acquisition method is the objective of this thesis as will be detailed
later. The proposed method should overcome the limitations of kinesthesy and should also limit
the difficulty of identifying the required correspondence mappings.

It has been seen that the process of gathering the dataset starts with sensor measurements.
The selected sensors influence the complete process since some mappings may or may not be
necessary. Therefore, the technology to measure human motion has to be selected while taking
into account the constraints of the PbD process.

1.1.3 Human motion tracking technology
It has been stated that the process of gathering the dataset should limit as little as possible

human motion for the teacher convenience, for intuitive interactions and, for a larger application
range. The technology used to measure the human motion should be compatible with these
objectives. Field et al. [47] expose a survey of human motion capture methods in robotics and
present 4 main categories.
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• Cameras and optoelectronic systems have the advantage of giving the position in a well-
known reference frame. Such devices usually present a high accuracy. But they face
concealment problems due to the environment (light, dust, smokes) or to the movements
of the operator. In [46], such a system is used to track a special luminous tool for an
industrial painting application. In [63], the human forearm motion is tracked with fiducial
markers and the concealment issue is managed using additional inertial sensors.

• Mechanical devices such as exoskeletons measure the relative motion of human joints
directly which can be easily mapped to a human body model but do not directly give the
absolute trajectory with respect to a fixed reference frame. Exoskeletons and other systems
may also be heavy, intrusive and uncomfortable for the operator and could also limit the
operator motions by the mechanical constraints of the structure. An example is given in
[37].

• Devices based on the measurement of an artificially generated magnetic field are men-
tioned but are not appropriate in an industrial environment due to their high sensitivity to
magnetic disturbances.

• Inertial Measurement Units (IMUs) are small, light and cheap (for the MEMs version)
making them suitable for wearable devices with possible integration in clothes [133], and
do not require the use of external apparatus such as cameras, which facilitates the im-
plementation. However, IMU data require complex treatment and signal filtering for the
trajectory reconstruction process and the accuracy is affected by drift phenomenon.

Each technology has its own advantages and drawbacks making it more or less suitable
depending on the context of the application. Regarding the practicality of the system, opto-
electronic and mechanical devices are more cumbersome than IMUs. IMUs can thus better meet
the expected intuitiveness and easiness of use in PbD. Furthermore, the applicability of inertial
sensors as human motion sensors has already been demonstrated for robotic applications. Fil-
ippeschi et al. [49] declared that inertial systems are “a candidate alternative to optical ones for
online human motion capture”. Miller et al. [96] claim that “the functionality of [their inertial
motion suit] was demonstrated through experiments in teleoperating the NASA Robonaut”. Re-
cently, Wilson et al. [132] address the validation of IMU sensors for HRI in a context of robotic
manipulator teleoperation. As inertial sensors present features that fulfil the requirement of a
PbD process, this technology is chosen in the context of this thesis.

1.1.4 Objective of the thesis
In the context of industrial robotics, this work proposes an observational method for acquiring

human demonstrations in a PbD process based on inertial sensors. The method should be easy
to implement and to use for the teacher and should allow him/her to perform natural motions.
More specifically, the study focuses on pick-and-place tasks, which are frequently encountered
in industrial applications. In the demonstration of a pick-and-place task, the main variable of
interest to be recorded is the human hand trajectory and state which should then be replicated by
the end-effector of the robot. Object positions should also be recorded during the demonstrations.
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1.2 State-of-the-art and contributions of the thesis
To meet the objective of this work, a method for tracking human motion based on inertial

sensors is proposed. Several elements are involved in this method and this work proposes contri-
butions at different levels. The following paragraphs present the state-of-the-art on the relevant
elements and introduce the contributions of the thesis.

1.2.1 Inertial human motion tracking
Inertial human motion tracking (IHMT) has been investigated for a wide range of applica-

tions including robotics [49, 130]. In this work, we focus on the tracking of the human arm.
Several problems which have been addressed by the robotics community are discussed here.

First, a kinematic model of the human arm is needed to reconstruct the motion. The human
arm behaves as a complex kinematic chain. For instance, the shoulder center of rotation depends
on the position of the arm [3]. Several human arm models have been proposed in the literature.
For instance, Klopcar et al. [69] propose to model the shoulder as a complex joint composed of a
universal and a spherical joint for the shoulder and to model the elbow as a revolute joint. In [82],
the elbow and the wrist are modeled in a way to mimic the human skeleton with high fidelity.
Such models can capture the complexity of the human arm but require detailed information such
as inner shoulder length, which can be difficult to access. In a simpler way, the human arm can be
modeled as a 7-degrees-of-freedom (DoF) system. In [64] and [106], the model is composed of a
spherical joint for the shoulder and the wrist and a 1-DoF joint for the elbow. In [79], the elbow
is modeled as a 2-DoF joint. Another model consists of 3 spherical joints for the shoulder, the
elbow and the wrist [59, 140]. These papers show that such model can be useful even if a human
arm is close to a 7-DoF kinematic chain. In our context, the simplicity requirement drives us to
use this last model so that the complexity of identifying the record and embodiment mappings is
also reduced. The model is explained in Chapter 4.

Secondly, a method is needed to evaluate the hand position from the segment attached sen-
sors. As explained in [95], two approaches have been identified to estimate it: the kinematic
chain and the free segment approach. The kinematic chain approach consists in estimating joint
angles from measurements of sensors placed before and after the joint in the kinematic chain
[33, 55]. The free segment approach consists in estimating the orientation of each segment with
respect to an inertial reference frame using the sensor attached to the segment [42, 86, 137]. The
kinematic chain technique is well suited if the joint angle is the variable of interest like in neu-
romuscular disorders assessment [87] or if the motion should be mapped to a human-like model
[71, 96]. In this work, it is only necessary to evaluate the hand trajectory and both approach can
be considered. The free segment approach has been chosen for that purpose.

Third, one challenge in IHMT is to identify the orientation of the sensors with respect to
the human segments as illustrated in Figure 1.5. It is referred in literature as the inertial-to-
segment (I2S) calibration problem. Some methods assume that the sensors are aligned with the
segment; in this case, these parameters do not need to be evaluated [136, 143]. The implemen-
tation of such method only requires a precise alignment procedure of the sensor with respect to
the segment frame. Other calibration methods rely on measurements during pre-defined static
positions. The orientation of the human segments is assumed to be known in such positions. A
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FIGURE 1.5: Illustration of the orientation between the inertial sensor and the human arm
segment frame: the inertial-to-segment (I2S) orientation.

commonly used pose is the N-pose (neutral pose) as in [22, 106, 142] where the human stands
up with his/her arms straight along his/her body. Another method relies on the T-pose where
the operator stands with arms straight horizontal in the coronal plane [111]. Other methods rely
on different static positions such as in [104, 120, 138]. Another calibration approach exploits
measurements in complex functional motions. In [128], joint axes of rotation in the human arm
are estimated thanks to 13 standardized motions in order to estimate the I2S orientation. This
method seems rather complex for applications in a PbD process. A similar approach is proposed
in [87] for ambulatory measurements. A hybrid solution with one functional motion and a static
pose is proposed in this work to fulfil PbD requirements. In summary, various IHMT methods
have been proposed in literature. A method which provides anatomically interpretable data in an
ambulatory application will not be relevant in another context such as virtual characters anima-
tion. The choice of the IHMT method depends on the application, the data of interest and the
constraints.

Contribution

In this work, an IHMT method is developed to fulfill the requirements of a PbD process.
Within this method, a specific I2S calibration method is proposed, which is based on a static
position and a functional motion. This procedure, which is explained in Chapter 4, is a part of
the record mapping.

The estimation of the segment orientation is obtained from the estimation of the IMU orien-
tation using the IMU signals. The next part presents the state-of-the-art regarding this problem.

1.2.2 Sensor orientation estimation
An IMU sensor is composed of a gyroscope measuring the angular velocity and an accelerom-

eter measuring the acceleration of the sensor. Many methods have been proposed to estimate the
orientation of a rigid body using inertial sensors. Different methods are compared in a context of
pedestrian navigation in [94], some non-linear methods are reviewed in [91] and methods related
to human motion tracking are exposed in [49, 72, 85, 130]. An important problem when working
with IMU sensors is to deal with the drift. The drift is the continuously increasing error in the
orientation due to the integration of the gyroscope data that measures the angular velocity but
contains a bias and a noise. The gravity direction estimated from accelerometer data partially
compensate the drift. The problem is to manage the remaining drift.
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In order to manage the remaining drift, inertial sensors are often coupled with a magnetometer
which measures the local magnetic field. Such coupled sensors can be called MIMU (or mIMU
or IMMU) (Magnetic and Inertial Measurement Unit), MARG (Magnetic, Angular Rate, Grav-
ity) or AHRS (Attitude and Heading Reference System). Magnetic sensors measure the Earth
magnetic north and give a partial information on the orientation of the sensor. But the amplitude
of the Earth magnetic field being low, its measurement is sensitive to disturbances. Managing
these magnetic disturbances is a main challenge when working with such devices. According to
Ligorio et al. [83], there are two approaches to deal with magnetic disturbances: the threshold-
based approach and the model-based approach. De Vries et al. in [129] study the disturbances
of the Earth magnetic field in a laboratory. The impact of the disturbances in the estimation of
the orientation can be high. The authors recommend evaluating the magnetic distortion in the
volume of the laboratory for a better estimation. This solution does not fulfill the easiness-of-
use targeted in the present work. In a PbD context, the presence of the robot and its electrical
actuators in the neighborhood of the IMUs represents an additional source of disturbances. It
is expected that an orientation estimation partly based on the magnetometer data would not be
reliable for that reason. At the beginning of this project, an experiment has been conducted to
verify the effect of the magnetometer on the orientation estimation error in a robotics context
(see Appendix B). Three algorithms which can be used with MARG or IMU devices have been
implemented (see Appendix A). Sensors were mounted on a robot arm end-effector. The sensor
orientation estimated from the different algorithms with and without using magnetometers was
compared to the orientation of the end-effector measured by robot encoders. This experiment has
shown that magnetometer data are not reliable in a robotic environment and can even deteriorate
the estimation of the sensor orientation. Therefore, it has been decided not to use magnetometers
in our context.

In order to manage the drift without any magnetometer, IMUs can be coupled with other
sensors, for instance, with an ultra-wideband device [145]. However, adding extra sensors may
decrease the easiness of implementation targeted in this work. Therefore, the challenge addressed
in this work is to estimate the orientation of the sensor only from IMU data, i.e., from gyroscope
and accelerometer measurement.

IMU orientation estimation algorithms have been proposed in literature and a number of
review papers can be listed [49, 72, 85, 130]. Four main methods can be identified:

• Complementary filters [10, 44, 51, 89]. The complementary filter is based on 2 com-
plementary transfer functions: one to filter the gyroscope data and the other to filter the
accelerometer data.

• Kalman filters [35, 91]. The Kalman filter, the Extended Kalman Filter [67, 92] and the
Unscented Kalman filter [75] can be used for data fusion of gyroscope and accelerometer
data. The design of the Kalman filter is based on a model of the measurement process
which accounts for the noise and the bias of the gyroscope and the accelerometer see, e.g.,
[137].

• Gradient descent filters [88]. This method is based on the optimization of the orientation
estimation at each time step.

• Integration and vector observation [26, 60]. This approach consists in a strapdown inte-
gration of the gyroscope data. The orientation resulting from this process is corrected with
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gravity estimation from accelerometer data. A key point in this method is to manage the
disturbances of the linear acceleration on the gravity estimation.

• Hybrid methods can be mentioned such as in [86] where the integration and vector ob-
servation method is completed with an estimation of the gyroscope bias using a Kalman
filter.

• Other approaches can be mentioned such as in [81] where the human motion is estimated
using accelerometer data only. This method is based on gravity measurement and is appli-
cable only when the sensor is not accelerated. To overcome this limitation, two sensors are
used on each segment and the distance and orientation between the two sensors has to be
precisely known. Similarly, two accelerometers at the opposite corners of a cube are used
in [122]. These two sensors cannot be too close to each other. These approaches do not
present a high precision and imply many constraints. They are not considered in this work.

According to the surveys [49, 72, 85, 130], none of the methods clearly outperforms the
others. The integration and vector observation approach has been selected for its easiness of use
and another approach, specific to our PbD problem, is proposed to overcome the drift issue.

Contribution

In the context of human motion tracking, we propose a novel approach to catch up the drift
from gyroscope data with only data from an IMU sensor: the heading reset. The heading reset is
applied on an IMU orientation estimation algorithm based on angular rate integration and gravity
observation. The heading reset relies on the hypothesis that the teacher, wearing the sensors, is
expected to do motions that bring the sensors in their original heading with stationary phases
during the demonstration. At this moment, a reset of the heading of the sensor is applied. This
method is explained in Chapter 2.

1.2.3 Trajectory Correction
In the context of PbD, the demonstration is based on human motion measurements which

should be performed with a certain level of accuracy. The required accuracy depends on the
tasks to be taught. Considering a pick-and-place task, the required level of accuracy can be re-
lated to the size of the manipulated object, the gripper and the objective of the task. It can be
mentioned that in such a context, the same level of accuracy is not required during the whole
demonstration. The picking and placing positions require a higher accuracy than the rest of
the trajectory. On the other hand, actual industrial robots usually have accuracy about 0.1 mm.
However, it does not seem possible to reach such level of accuracy with IHMT. In their survey,
Filippeschi et al. [49] evaluate the accuracy of 5 different IHMT methods between 23.6 mm and
89.2 mm. These values seem insufficient for a PbD process. This point is further discussed in
Chapter 5 based on experimental data. The problem addressed here is to reach a sufficient level
of accuracy of the position of the human hand for PbD while keeping the easiness-of-use offered
by inertial sensors. Some approaches are discussed in the following.

The elbow kinematic constraint is explored in some approaches. For instance, in [80], the
elbow joint axis with respect to the forearm and arm sensors is estimated. During the trajectory,
the sensors are considered motionless with respect to their respective segment frames. There-
fore, the elbow joint axis with respect to the sensor frames is invariant. The elbow joint axis with
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respect to the inertial reference frame can be estimated from both forearm and arm sensor orien-
tation estimations. The two estimations of the elbow axis should be equal, so the difference is
used to correct the two sensors orientation. This method can indeed improve the accuracy of the
hand trajectory. However, the consequences for the implementation can be high, for instance by
imposing a procedure to identify elbow axis with respect to the sensor frame. Furthermore, even
if the accuracy is improved, there is no guarantee that the complete method reaches a sufficient
level of accuracy.

Other methods exploit the double integration of the linear acceleration estimated from the ac-
celerometer data to estimate the displacement of the sensor. With a sensor attached to the hand,
the trajectory of the hand can be estimated. It seems, however, that this approach is only suit-
able for gait analysis [51, 58, 101]. Indeed, human gait naturally alternates short motions with
motionless moments. Therefore, the acceleration is only integrated on a short period of time and
motionless moments are exploited to reset errors from double integration. Such approaches do
not seem suitable in an upper limb motion tracking context, and will thus not be considered in
our context.

An important trend in the literature is to merge vision-based measurements with inertial-
based measurements. This approach is motivated by the complementarity between these tech-
nologies. According to [47], vision-based systems have the accuracy required for human demon-
stration acquisition. Vision-based systems can give accurate and absolute position estimation but
are light-sensitive and suffer from concealment. On the other hand, inertial sensors can transmit
a continuous flow of data, they are light, cheap, wearable and easy-to-use, but suffer from inaccu-
racy. The complementarity of vision and inertial technologies has already been investigated for
human motion measurement. In [107], an accurate system to track the tool trajectory for indus-
trial painting is propounded. In a similar approach, the human forearm is robustly and accurately
tracked in [5] using several cameras to track a set of markers on the human arm. Several cameras
are needed to avoid occlusion problems. In [63], a single kinect camera is used to track human
arm motions but a hand position error up to 10 cm occurs during occlusion phases. In [70], a
similar method is used to teleoperate a robot. Vision and inertial systems are merged with ultra-
wideband device for an accurate indoor positioning in [100]. The previously cited works reach
a suitable level of accuracy for a PbD process, however, they require the use of fiducial markers
and special cameras or extra sensors to overcome occlusion issues. Such setups are complex and
do not fulfill the requirement of simplicity targeted in this work.

In the previous section 1.1.3, vision-based systems were not selected for human motion mea-
surement due to their limitations. However, these systems may still be considered for environ-
ment observations. Measuring the environment does not imply the same constraint as measuring
human motion. Furthermore, observing elements in the environment is needed during the demon-
stration as mentioned in the section 1.1.4. Merging vision-based and inertial-based measurement
of different elements appears as an attractive strategy for the targeted application of this work.
In [99, 114], the position of a mobile robot is estimated accurately using an embedded camera.
In these works, the environment observations enable the robot to estimate its position which is
then used to correct the inertial-based estimation of the robot position. In [97], inertial sensors
set on the human arm measure a motion that is then used as command to teleoperate a robot.
Vision-based tracking of objects and robot gripper is used in a feedback loop to better control the
teleoperation of the robot. This method presents good features for our purpose but would suffer
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from similar limitations as kinesthetic demonstrations exposed before, i.e., it may hinder natural
human motion. The proposed solutions do not seem adapted to the objective of this work which
motivates the development of a specific method to solve to this problem.

Contribution

A novel method is presented in this work to correct the IHMT hand trajectory using vision-
based environment observations to acquire accurate human demonstrations in a PbD process.
This approach is developed in the context of pick-and-place tasks. In such a context, the en-
vironment observations consist in tracking the manipulated objects. As shown in [2] and [57],
numerous tools for object detection in robotics are available and do not require heavy equipment,
which fulfils the simplicity of use and the robustness required by a PbD process. The correction
method is presented in chapter 6. It is based on the identification and matching of position of
interest (POIs).

1.3 Manuscript Structure
The objective of the thesis is to propose a demonstration acquisition method for programming

by demonstration (PbD) for pick-and-place tasks. The method relies on the human hand trajec-
tory estimation from inertial sensors. A method to limit the drift of inertial sensor orientation
estimation in this context is proposed. In addition, an inertial human motion tracking (IHMT)
method adapted to the context of PbD is developed. Finally, based on vision, a method to correct
the IHMT hand trajectory is proposed to reach a sufficient level of accuracy.

This manuscript is organized as follows:

• Chapter 2 : The method used for IMU orientation estimation is presented as well as the
heading reset method to manage the drift.

• Chapter 3 : The experimental evaluations of the heading reset method and the assessment
of the complete IMU orientation estimation method are described.

• Chapter 4 : The complete IHMT method developed for this context is presented. The
I2S method and other elements required to adapt the dataset to be usable by the robot are
presented.

• Chapter 5 : Several experiments are conducted to validate the different elements of the
IHMT method. The experiments enable to identify the different factors influencing the
accuracy of the method.

• Chapter 6 : The vision-based method to correct the IHMT measurements is presented.

• Chapter 7 : The experimental validation of the corrected IHMT method described in Chap-
ter 6 is presented.

• Chapter 8 : Finally, the complete demonstration method is tested in a real PbD process.

• Chapter 9 : This last chapter concludes this work.
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In this chapter, the method to estimate the orientation of the IMU sensor is presented. The
method is based on angular rate integration and gravity measurement. For this algorithm, iden-
tifying moments when the sensor is stationary is a key point for relevant gravity measurement.
Our contribution on this point is presented. Furthermore, an original procedure called heading
reset is presented. The heading reset is introduced to limit the drift around the gravity direction.

2.1 Formalism

2.1.1 Frames
A sensor frame is used to describe the sensor motion.

• Frame 0 denotes the sensor frame at time step 0. It defines the inertial reference frame for
the orientation of the sensor. The sensor is considered motionless at this time step.

• Frames n and n−1 are the sensor frames at time step n and n−1 respectively.

It can be mentioned that the Earth frame defined by the gravity direction and the magnetic
north is not considered here since no magnetometer is used.

2.1.2 Quaternion formulation
The unit quaternion 0q̂n denotes the rotation from frame n to frame 0 and nq̂0 = (0q̂n)−1. A

three-dimensional vector u can be expressed as a quaternion û with no real part but only a vector
part u:

û =

[
0
u

]
=


0
ux
uy
uz

 . (2.1)

2.1.3 Sensor data
An IMU sensor measures the angular velocity nωωωgyro(t) and the acceleration na(t) of the

sensor in frame n. In this work, the model of the gyroscope data is

n
ωωω

gyro(t) = n
ωωω

true(t)+ n
βββ (t)+ n

γγγ(t) (2.2)

with nωωω true(t) the true angular velocity of the sensor, nβββ (t) a bias and nγγγ(t) a noise. The model
of the accelerometer data consists of a gravity component ng(t), a linear acceleration component
nl(t) and a noise nn(t):

na(t) = nl(t)+ ng(t)+ nn(t). (2.3)

IMU data needs to be filtered to manage noise and calibrated to determine bias, misalignment
and gain/sensitivity [17, 121]. However, this question is not the purpose of this work and it is
assumed that the sensor data have been pre-filtered and calibrated.
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2.2 Angular velocity integration
Let us represent the quaternion product by ⊗. The kinematic equation of a rigid body de-

scribes the variation of its orientation as:

˙̂q =
1
2

q̂⊗ n
ω̂(t) (2.4)

with nω̂(t) the quaternion representation of the angular velocity at time t in frame n. The above
equation is solved using the explicit Euler method on the Lie group of unit quaternions [6]

0q̂n =
0q̂n−1⊗ exp(

1
2

∆t n
ωωωn) (2.5)

with ∆t the time step value and nωωωn the estimated angular velocity at time step n in the frame n
and the exponential map

exp(u) =


cos(‖u‖)

sin(‖u‖) ux
‖u‖

sin(‖u‖) uy
‖u‖

sin(‖u‖) uz
‖u‖

 . (2.6)

‖.‖ denotes the Euclidean norm. The inverse of the exponential map is the logarithm map log(q̂)
which satisfies

log(q̂) =
2 acos(q̂1)√
q̂2

2 + q̂2
3 + q̂2

4

 q̂2
q̂3
q̂4

 . (2.7)

The integration of the gyroscope measurement nωωω
gyro
n using Eq. (2.5) introduces a drift in

the orientation due to the gyroscope bias nβββ and noise nγγγ . To limit this drift, a modified angular
velocity nωωωmod

n is introduced in the next section.

2.3 Vector observation in stationary moments
The gravity vector estimation from accelerometer measurement enables to partly compen-

sate the drift in phases when the sensor is almost stationary. In such stationary phases, the
accelerometer measurement na is an estimate of the orientation of ng, which can be exploited
to compensate some drift components. Let us introduce the geometric vector d, a unit vector
which follows the motion of the sensor during the interval [tn−1, tn] (see Figure 2.1). This vector
is defined as aligned with the gravity vector at time step n− 1, i.e., in the frame n− 1, we have
n−1dn−1 = n−1g. Also the same vector d at time step n−1 but projected in the frame n satisfies
ndn−1 = ng. The vector d being constant with respect to the sensor frame, the projection of d at
time step n− 1 in the sensor frame n− 1 is equal to the projection of d at time step n in sensor
frame n,

ndn =
n−1dn−1 =

n−1g. (2.8)

The rotation n−1q̂n can be decomposed as

n−1q̂n =
n−1q̂∗⊗ ∗q̂n. (2.9)
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FIGURE 2.1: Definition of the vector d which follows the sensor motion during the interval
[tn−1, tn] and which satisfies n−1dn−1 = n−1g.

The rotation ∗q̂n is defined as the rotation around a horizontal axis perpendicular to the plane
containing the vectors ndn and ndn−1 which rotates the vector ndn−1 to ndn. The rotation angle of
∗q̂n being small when the sensor is almost stationary, its rotation vector is estimated as ndn−1×
ndn, which is equal to ng× n−1g with × the cross product. The rotation n−1q̂∗ is a heading
rotation about an axis aligned with ndn−1 = ng and it can be estimated by the integration of the
projection of the gyroscope measurement on ng. Thereby, during stationary phases, a modified
angular velocity nωωωmod

n is defined as

n
ωωω

mod
n =

1
∆t

(ng× n−1g)+ (I3 +
ng̃ng̃) n

ωωω
gyro
n (2.10)

with I3 is the identity matrix of dimension 3 and ũ represents the skew-symmetric matrix defined
from the vector u as  0 −uz uy

uz 0 −ux
−uy ux 0

 . (2.11)

Figure 2.2 illustrates the different components of nωωωmod
n . The first term in Eq. (2.10) represents

a rotation about a horizontal axis and the second term represents a heading rotation about the
vertical axis.

A key point of the proposed algorithm is to evaluate n−1g in Eq. (2.10) using the estimated
rotation at time n−1 according to

n−1ĝ = n−1q̂0⊗ 0ĝ⊗ 0q̂n−1, (2.12)

where 0g is the gravity measured in the initial configuration of the sensor. Indeed, the sensor
being motionless at time step 0, the linear acceleration is negligible 0l ≈ 0 and 0g ≈

0a0
‖0a0‖

. This

evaluation of n−1g is thus affected by the global drift of the estimated rotation. In contrast, ng is
evaluated by direct estimation from the accelerometer signal as nl ≈ 0 and ng ≈

nan
‖nan‖ , which is

valid when the sensor is stationary. The evaluation of ng is thus free from any drift. In this way,
the algorithm will compensate the accumulated rotation drift captured by the operation ng×n−1 g.
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FIGURE 2.2: Illustration of the terms of the estimated angular velocity nωωωmod
n during stationary

moments: the term 1
∆t (

ng× n−1g) is evaluated based on accelerometer measurement and the
term (I3 + ng̃ng̃) nωωω

gyro
n is evaluated based on gyroscope measurement.

The component of nωωωmod
n along the gravity direction (I3 + ng̃ng̃) nωωω

gyro
n is still obtained from

the gyroscope measurement and the drift along this direction is not compensated.
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2.4 Stationary moment detection
We make a distinction between stationary moments and static moments. On the one hand, a

static moment corresponds to inactivity [102]. Being able to identify static moments is useful for
different cases. In pedestrian inertial navigation, static phases are observed and their detection
allows one to apply a double integration of the linear acceleration only during motion phases [54,
74]. In motion recognition, the identification of static moments enables one to segment the flow
of data [126]. For IMU orientation estimation, an estimation of the gyroscope bias can be done
during the static phase to limit the drift. On the other hand, a stationary moment corresponds to
a moment when the sensor is not undergoing any linear acceleration. This means that the sensor
is considered stationary when it is completely static or under a non-accelerated motion. During
such moments the accelerometer gives a reliable measurement of the gravity vector. In other
words, in such moments, the linear acceleration is negligible, meaning ng≈

nan
‖nan‖ . The proposed

algorithm requires a criterion to detect stationary moments at which Eq. (2.10) is applicable.

2.4.1 Accelerometer norm criterion
A common method to detect stationary moments is to compare the norm of the accelerometer

measurement to the value of the gravity acceleration g as |‖nan‖−g|< ka with the threshold ka
tuned to ka = 0.1g, where g is the gravity acceleration, see, for instance, [51]. We propose
to analyze the validity of this criterion experimentally. An IMU sensor is mounted on a robot
end-effector (see Figure 2.3). The robot imposes a rotation to its end-effector while keeping the
same end-effector position. A lever effect due to the length L, which is approximately 60 mm,
introduces a linear acceleration. Figure 2.4 represents the norm of the accelerometer data and the
error on the gravity vector. The reference gravity vector EEngrobot is computed from the robot
end-effector orientation measured through its encoders. It is considered that the axis z of the
robot base frame R is along the gravity direction so that Rgrobot = [0 0 − g]T . So the reference
gravity vector EEngrobot is computed as :

EEnĝrobot =
Rq̂−1

EEn⊗
Rĝrobot⊗ Rq̂EEn (2.13)

The sensor is mounted in a way that the frames EEn and n are aligned, so EEnĝrobot =
nĝrobot .

The estimated gravity vector ng from sensor data is computed as ng =
nan
‖nan‖ . The error εn on the

estimated gravity vector is computed as

εn = atan(‖ngrobot× ng‖ , ngrobot · ng) (2.14)

with the scalar product noted ·. As can be seen in Figure 2.4, the robot is in motion between
12.5 s and 13.1 s. At the beginning and at the end of the motion, the error on the gravity vector
estimation is pretty high and the norm of the accelerometer data is out of the threshold ka. During
the motion, the norm of the accelerometer is within the threshold, however, the accelerometer
measurement is affected by the linear acceleration nl(t), leading to an important error on the
gravity vector orientation. This means that the accelerometer norm criterion is not sufficiently
sensitive to isolate stationary phases.
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FIGURE 2.3: Experimental setup error measurement of sensor orientation estimation from
Algorithm 1. Three IMUs are attached to the robot end-effector. L is the distance between the
robot end-effector frame EEn and the sensor frame Sin. The robot motion is planned such that

the origin of the frame EEn is fixed.

FIGURE 2.4: Experimental comparison between the norm of the accelerometer data and the
error on the gravity vector during a motion.
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2.4.2 Criterion on the norm of the derivative of the accelerometer
The previous experiment shows that, when the end-effector undergoes a rotational motion,

the accelerometer signals do not provide a reliable estimation of the gravity vector even if the
criterion |‖na‖−g|< ka is satisfied. Such rotational motion implies a time evolution of ng, which
itself induces a time evolution of na, according to Eq. (2.3). Therefore, we propose an additional
criterion on the time derivative dna

dt to refine the detection of stationary phases. Then, if ‖dna
dt ‖

is higher than a certain threshold, it is considered that the motion is not stationary and that Eq.
(2.10) cannot be used.

2.5 Heading reset

2.5.1 Analysis of the heading error
The measure of the gravity vector thanks to the accelerometer can be exploited to catch up the

drift due to gyroscope data integration along horizontal axes. This can be easily seen in simulated
data. Let us consider a trajectory of a body frame n consisting of 3 successive rotations around
each axis of π

2 with respect to a reference inertial frame 0 as shown in Figure 2.5. Frame 0 has
its z-axis aligned with the gravity direction and pointing upward. From this reference trajectory,
the angular velocity and the gravity vector with respect to the body frame n can be computed.
The body frame position does not change during the trajectory, the linear acceleration is then
null all along the trajectory. The simulated accelerometer data is then equal to gravity vector. In
order to simulate gyroscope data, an offset o of o = [0.01 0.01 0.01]T rad is added to the angular
velocity. Simulated sensors data are shown in Figure 2.6. The orientation of the body frame is
then computed from the simulated data first only with gyroscope data integration, then using in
addition the correction from accelerometer data. The orientations are represented in Figure 2.7.
The error is represented in Figure 2.8. In Figure 2.8 b), the components of the error along x and
y axes is null when the accumulated error along this direction is still present in Figure 2.8 a).
On the other side, the z-axis component of the error remains the same in Figures 2.8 a) and b)
which reveals that the drift along this direction is not caught up. Therefore a solution to catch the
remaining drift is desirable.

FIGURE 2.5: Simulated trajectory composed of 3 rotations.
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FIGURE 2.6: Simulated a) gyroscope and b) accelerometer data.

FIGURE 2.7: Orientation of the body frame with respect to the reference frame from a) gyro-
scope data integration and b) with correction from accelerometer data in addition.
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FIGURE 2.8: Body frame orientation error from a) gyroscope data integration and b) with
correction from accelerometer data in addition.

2.5.2 Heading reset algorithm
Definition and hypothesis

The heading of a sensor is defined as the part of its orientation around the gravity direction.
As seen in the previous section, the heading is still affected by the drift even after the compensa-
tion method based on the observation of the gravity vector.

The proposed approach to limit the drift around the gravity direction, called heading reset,
relies on a hypothesis on the human behaviour in a context of teaching task. In this specific
context, it is assumed that the initial heading orientation of the arm segments will be frequently
visited with stationary phases during the task. Some elements in the literature tend to support this
assumption. In a first-person vision study, a camera is set on the head of the human who has to
perform a task in front of him. In [12], Bandini, et al. state that “hands and manipulated objects
tend to appear at the center of the image”. Furthermore, this position is also centrally located in
the workspace of the human arm as discussed in [36, 113]. This indicates that the position of the
human hand in front of the subject is a privileged position which is frequently visited during a
manipulation task. In this work, we assume that a privileged heading orientation exists for each
segment of the arm. It can be mentioned that such privileged heading may be encountered during
the task independently of the hand position.

When the arm segment heading passes by its privileged initial heading, we propose to apply
a reset of the heading of the sensor.

Formulation

The heading reset is applied through a correction nωωω reset
n at the angular velocity level. The

total rotation 0q̂n−1 can be decomposed into an inclination 0q̂∗ and a heading part ∗q̂n−1 as

0q̂n−1 =
0q̂∗⊗ ∗q̂n−1. (2.15)
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FIGURE 2.9: Definition of the vector b attached to the sensor frame and aligned with the
gravity vector at the initial time step.

The rotation axis of the heading part ∗q̂n−1 is the gravity vector, so n−1g = ∗g. Similarly to the
vector d previously defined, a vector b is defined as a vector constant for an observer following
the sensor frame and aligned with the gravity vector at time step 0: 0b0 = 0g = n−1bn−1 (see
Figure 2.9). The rotation ∗q̂0 is the inclination part and its rotation axis ∗θθθ 0 is computed as

∗
θθθ 0 =

0g× n−1g
‖0g× n−1g‖

asin(‖0g× n−1g‖). (2.16)

Therefore ∗q̂0 is computed as
∗q̂0 = exp(∗θθθ 0). (2.17)

Then nωωω reset
n is computed as

∗q̂n−1 =
∗q̂0⊗ 0q̂n−1 (2.18)

n
ωωω

reset
n =

1
∆t

log(∗q̂n−1) (2.19)

and is subtracted to the angular velocity.

The sensor is considered close to its initial heading when ‖∆t nωωω reset
n ‖< kr. A too low value

of the tolerance kr will not catch the drift and a too high value will annihilate any rotation around
the gravity direction. The value of this tolerance is tuned at 0.1 rad meaning that the sensor is
considered close to its original heading when the estimated heading is under 0.1 rad. In order
to limit overly heading reset, the corrective term is applied only when the sensor is stationary.
This extra condition to apply the reset is necessary since, by definition a sensor starts from its
original heading. Without any restriction, the reset could be applied to each iteration annihilating
any rotation around the gravity direction. Applying the reset only when the sensor is stationary
enables to catch up the accumulated error from gyroscope data integration but not the heading
component of the sensor orientation.
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2.6 Summary
In this chapter, the complete algorithm used in this work for IMU orientation estimation is

presented. This algorithm is based on the integration of the gyroscope data and the gravity esti-
mation from accelerometer data. It is summarized in Algorithm 1.

The drift from the integration of gyroscope data can be partially caught up thanks to the grav-
ity estimation in stationary moments (see Algorithm 1 line 5). The moments where the sensor is
stationary, i.e., not undergoing any linear acceleration, are defined by a criterion involving both
the norm of the accelerometer signal and the norm of its derivative (see Algorithm 1 line 1).

In order to limit the drift of the sensor orientation around the gravity direction, an original
heading reset method is proposed. This method is based on the hypothesis that, during a demon-
stration, the teacher is expected to execute motion where sensors pass by their original heading
several times with stationary phases. When the sensor is both stationary and close to its original
heading, a reset is applied at the angular velocity level (see Algorithm 1 line 6-10).

The following chapter presents the experiments conducted to analyze the different elements
of the method presented in this chapter: the extra criteria for stationary moment detection and
the heading reset.

Algorithm 1 : Complete IMU orientation algorithm

1: if |‖nan‖−g|< ka and ‖
nan−n−1an−1

∆t ‖< kd then
2: 0g =

0a0
‖0a0‖

3: ng =
nan
‖nan‖

4: n−1ĝ = n−1q̂0⊗ 0ĝ⊗ 0qn−1

5: nωωωmod
n = 1

∆t (
ng× n−1g)+ (I3 + ng̃ng̃) nωωω

gyro
n

6: ∗θθθ 0 =
0g×n−1g
‖0g×n−1g‖ asin(‖0g× n−1g‖)

7: ∗q̂n−1 = exp(∗θθθ 0)⊗ 0q̂n−1

8: nωωω reset
n = 1

∆t log(∗q̂n−1)

9: if ‖∆t nωωω reset
n ‖< kr then

10: nωωωn = nωωωmod
n − nωωω reset

n
11: else
12: nωωωn = nωωωmod

n
13: end if
14: else
15: nωωωn = nωωω

gyro
n

16: end if
17: 0q̂n = 0q̂n−1⊗ exp(1

2 ∆t nωωωn)

(Stationary condition - Section 2.4)

(Eq. (2.10))

(Eq. (2.16))

(Eq. (2.17) and Eq. (2.18))

(Eq. (2.19))

(Heading reset condition - Section 2.5)

(Eq. (2.5))
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In this chapter, the method for IMU orientation estimation is implemented, tested and com-
pared with other algorithms. The objective is to experimentally evaluate the method in the context
of the acquisition of demonstrations for robot PbD. More precisely, the experimental study has
two goals:

• evaluate the efficiency of the new elements in the IMU estimation algorithm: the stationary
moment detection and the heading reset in a context of human motion tracking for PbD,

• evaluate the accuracy of the complete algorithm described in Algorithm 1.

3.1 IMU orientation estimation algorithms for comparison
Some comparisons of IMU orientation estimation algorithms can be found in the literature.

Michel et al. compared seven MARG algorithms in [94] for pedestrian navigation with smart-
phones under different specific situations (texting, phoning, swinging and back pocket static).
The mean error on orientation is found in an interval between 4.7◦ and 9.5◦ for a measurement
that lasts 180 seconds. In [26], different fusion methods are evaluated in the context of a grasp-
ing task. The average orientation error is found in an interval between 5.9◦ and 20.4◦ for all the
tested algorithms.

According to these studies each method has its own advantages and drawbacks and the op-
timal choice depends on the targeted application. This motivates the development of our own
evaluation in a manner that reflects the condition of the targeted application. The targeted appli-
cation being human motion tracking for robot programming by demonstration, the experiment
should include the following constraints:

• the motion imposed to the sensor during the experiment should be humanly realistic,

• the experiment should be conducted in a robotic environment.

We propose to compare our method to the following algorithms:

• Xsens (XKF3-hm) algorithm [15] developed by the company Xsens, based on a Kalman
filter and specially designed for human motion tracking.

• Madgwick’s algorithm [88] based on a gradient descent.

• Mahony’s algorithm [89] based on a complementary filter.

• Fourati’s algorithm [52] based on an integration and vector observation approach.

The last three algorithms are known and a description is given in Appendix A. These algorithms
have been chosen because they are based on the main approaches found in the literature and can
work without magnetometers. The Xsens algorithm being embedded in a commercial system,
the exact algorithm is unknown. However, according to [15], this algorithm uses magnetometer
data to estimate the Earth magnetic north for an absolute orientation estimation but only when it
is reliable. It can therefore be assumed that, in the environment of our robotics laboratory, this
algorithm discards the magnetometer data most of the time.
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FIGURE 3.1: Experimental setup for IMU orientation estimation method assessment.

3.2 Experimental protocol
In this experiment, the robot’s end-effector orientation is estimated using IMUs and the pre-

cise measurement of the end-effector orientation using robot’s encoders is used as reference.
The equipment involved in this experiment is described in the first subsection and the second
subsection describes how the human realistic motion imposed to the robot is built.

3.2.1 Experimental setup
The proposed orientation estimation algorithm has been applied to the filtered accelerometer

and gyroscope data from Xsens MTw Awinda sensors [15]. It is considered that the filtered data
from commercial sensors present limited noise. The sensors communicate wirelessly by radio
frequency at a sample rate of 100 Hz. Three sensors are mounted on the end-effector of an ABB
IRB 120 industrial robotic arm (see Figure 3.1). The bracket that links the sensors to the robot
is 3D printed and ensures that the sensors frames are aligned with the robot end-effector frame.
The initial sensor frame Si0 is aligned with the robot base frame R as well as the body-attached
frame Sin and the end-effector frame EEn. The robot end-effector orientation Rq̂EEn, evaluated
from encoder measurements, is used as reference. The orientation error ε is computed as

R
θθθ = log(Si0q̂Sin⊗ Rq̂−1

EEn)

ε = ‖R
θθθ‖

(3.1)

(3.2)
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FIGURE 3.2: Human arm segment orientation acquisition as rotation vector.

3.2.2 Robot motion
In order to impose some orientations to the robot that reflect a realistic human arm motion, a

set of orientation values is created from measurements of the motion of the arm of two subjects.
The two subjects wear one Xsens MTw Awinda IMU sensor on each segment (hand, forearm
and arm) and they are asked to move their arm freely during some time (68 seconds for sub-
jects 1 and 37 seconds for subject 2) with the only instruction to cover as much as possible the
range of human arm motion. During that time, the orientations of each sensor, estimated by the
Xsens algorithm, are recorded at a sample rate of 100 Hz to constitute a set of human realistic
orientations (see Figure 3.2). This recording has been conducted indoor but far from any obvious
source of magnetic disturbances for consistent orientation estimation. During the recording, the
gyroscope measured angular velocity takes its value between 0.9◦/s and 505.8◦/s. The measured
motion is comparable to the values presented in [27] for tasks of everyday life and are thus hu-
manly realistic in the targeted context of this work. This motion is played by the robot in two
different ways: continuously, then with a 1 second break between each orientation. Furthermore,
this motion is repeated 5 times at different maximum robot end-effector velocities: 200mm/s and
200◦/s, 100mm/s and 100◦/s, 50mm/s and 50◦/s, 100mm/s and 100◦/s and then 200mm/s and
200◦/s. This sequence is illustrated in Figure 3.3. Some orientations from the initial dataset are
discarded because the robot is not able to reach them. This set of repeated trajectories constitutes
a motion that lasts 3707 seconds so that the gyroscope bias has a significant impact on the mo-
tion estimation. The described motion is executed 3 times by the robot and each time, 3 sensors
measure the end-effector orientation.

No reference values regarding accelerations of the human arm segment have been found in
the literature to verify the human realism of the robot trajectory. In the proposed trajectory, the
TCP of the robot, corresponding to the center of the EEn frame, is fixed during the complete
measurement. The distance between the center of EEn and the sensors is approximately 60 mm.
This distance, combined with the robot angular velocity, induces a linear acceleration within a
similar range than human motion observed during our acquisitions with the two subjects. The
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FIGURE 3.3: Sequence of imposed robot motion for the experimental evaluation of the sensor
orientation method.
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norm of the acceleration measured during our recordings of the human motion is between 0.5
m/s2 and 41.4 m/s2 with a mean value of 10.0 m/s2. It encompasses the interval of the norm of
the linear acceleration measured by the sensors during the robot experiment which is between 0.9
m/s2 and 22.0 m/s2 with a mean value of 9.8 m/s2. The motion of the robot during the experiment
can be considered humanly realistic regarding the acceleration.

3.3 Results: focus on the stationary moment detection
This section aims at studying the influence of the criterion based on the norm of the ac-

celerometer signals and their derivative for stationary moment detection. For this purpose, two
versions of the complete algorithm (see Algorithm 1) are implemented :

• a basic version: no heading reset is implemented and the stationary moment detection is
only based on the norm of the accelerometer,

• an intermediate version: no heading reset is implemented and the stationary moment detec-
tion is based on the norm of the accelerometer signals and on the norm of their derivative.

Table 3.3 presents the error on the sensor orientation for the two versions of the proposed
algorithm. The orientation error from the Xsens commercial algorithm is presented as indicative
information. The color cases highlight the best (green) and the worst (red) error values between
the basic and the intermediate version of Algorithm 1. The discrepancies of the results over the
three measurements despite the same robot motion can be explained from the sensor noise that
has a non-deterministic influence.

Measurement Sensors
Xsens basic intermediate

algorithm version version
ε (in◦) std (in◦) ε (in◦) std (in◦) ε (in◦) std (in◦)

1 34.8 15.9 6.8 5.2 26.3 12.0
1 2 25.4 13.9 16.3 12.4 14.4 12.5

3 12.5 6.3 6.8 4.8 35.0 19.2
1 19.9 13.1 6.9 5.0 29.7 15.7

2 2 10.2 5.2 8.6 5.6 5.1 2.4
3 37.7 11.9 23.0 12.3 14.3 5.2
1 26.6 14.6 31.0 12.8 7.2 3.7

3 2 16.4 11.7 53.4 17.5 6.5 3.1
3 8.4 3.0 8.3 5.6 5.6 3.8

TABLE 3.1: Mean error of the sensor orientation estimated from the basic and the intermediate
versions of Algorithm 1.

First, both the basic version and the intermediate version are better than the Xsens algorithm
for 7 out of 9 measurements. The Xsens algorithm is designed for human motion tracking but not
specially designed to work in the environment of a robotics laboratory. These results show that
the proposed angular velocity and vector observation algorithm is appropriate for the targeted
application.
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Secondly, concerning the impact of the extra criterion on the derivative of the accelerometer
signals for stationary moment detection, 6 cases on 9 present an improvement in the estimation
of the orientation. In the other 3 cases, a deterioration can be observed. Even if the experimental
results are not fully positives, they tend to confirm the positive impact of the extra criterion to
detect stationary moments. In the following analysis, the intervals of stationary moments are
compared for a better understanding of the differences between the basic and the intermediate
versions of the algorithm.

A reference criterion for stationary moments detection based on the robot orientation is pro-
posed for validation purpose. As the z-axis of the robot base frame is aligned with the gravity
direction: Rg = [0 0 −1] g-unit. So, the gravity vector with respect to the end-effector frame can
be reliably computed as

EEnĝ = EEnq̂R⊗ Rĝ⊗ EEnq̂−1
R . (3.3)

Then, if the angle between EEng and an is under a certain threshold k = 3◦, it is considered that
the moment is stationary. The percentages of stationary moments according to each criterion
is estimated and presented in Table 3.2. According to the reference criterion, over all sensors
and measurements, the percentage of stationary moments is around 90 %. The percentage of
stationary moments detected with the criterion only based on the accelerometer norm is around
98 %. The comparison of the first and the last but one column shows that almost all the reference
stationary moments are detected with this criterion. So, the criterion based on the accelerometer
norm generates about 8 % of false positive in the detection of stationary moments. On the other
side, only 66 % of stationary moments are detected with the complete criterion and almost all
of these correspond to the reference stationary moments. Even if the optimal criterion is case-
dependent (see Table 3.2) it seems safer to detect a lower number of stationary moments than to
consider as stationary some moments that are not. Therefore, the criterion based on both ‖na‖
and ‖dna

dt ‖ is kept in this work.
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|‖nan‖−g|< ka

|‖nan‖−g|< ka Reference Reference

Reference and criterion criterion and

criterion ‖
nan−n−1an−1

∆t ‖< kd and |‖nan‖−g|< ka and

|‖nan‖−g|< ka ‖
nan−n−1an−1

∆t ‖< kd

1 90.9 98.8 66.3 90.8 66.2

1 2 90.4 98.6 65.8 90.3 65.7

3 90.8 98.7 66.0 90.7 65.9

1 92.9 98.8 65.9 92.8 65.9

1 2 92.1 98.6 65.5 92.0 65.5

3 92.8 98.7 65.9 92.7 65.9

1 92.5 98.7 66.3 92.4 66.3

3 2 92.0 98.8 66.1 91.9 66.0

3 92.1 98.6 65.8 92.0 65.8

TABLE 3.2: Percentages of stationary moments according to different criteria.
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3.4 Results: focus on the heading reset

3.4.1 Results
Let us recall that the robot trajectory is constructed such that the end-effector orientations are

humanly realistic. No specific instruction was given to the two subjects and no adaptation of the
robot trajectory to ensure the heading reset would be applicable.

In order to study the impact of the heading reset, the complete algorithm (see Algorithm 1)
is compared to the intermediate version without the heading reset as well as the 4 algorithms
presented in Section 3.1. The results of the comparative study are presented in Table 3.3. The
influence of the different elements of the algorithm is illustrated in Figure 3.4. This figure repre-
sents the orientation error of the sensor 3 during the measurement 3 for different versions of the
complete algorithm. Figure 3.4 a is the orientation estimated only from gyroscope integration.
The drift is highly visible on each component. Figure 3.4 b shows the error for the intermediate
version. The drift is compensated on the 2 components along the x and y-axes which are perpen-
dicular to the gravity direction. The last component, corresponding to the z-axis (aligned with
the gravity direction), is still subject to the drift. Finally, Figure 3.4 c shows the impact of the
heading reset. The drift on the 3rd component is caught up.

According to Table 3.3, the intermediate version presents quite good results compared to the
4 other algorithms (Xsens, Mahony’s, Madgwick’s and Fourati’s). In 6 cases, it gives the best
results over the 4 algorithms. Furthermore, the maximum error is 35.0 ◦ (similar to the Xsens
algorithm) when the maximum error for the other algorithms are 118.4 ◦, 154.9 ◦ and 87.4 ◦.
In this context, the intermediate version appears more robust than Mahony’s, Madgwick’s and
Fourati’s algorithms and can be considered as a reliable base for inertial human motion tracking
in a context of PbD.

Regarding the complete algorithm, the results are even better since, it gives the best results
in all cases. Furthermore, most of all the error values are below 5 ◦ when none of the other
algorithms reach this level of accuracy. These encouraging results tend to validate the hypothesis
made on human motion in the context of manipulation task. However, the behaviour of the
heading reset during the trajectory depends on the value of kr. For the results presented in this
section, kr is tuned to 0.1 rad. The next section studies the influence of this parameter on the
orientation estimation error.
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FIGURE 3.4: Mean error for the sensor 3 during measurement 3: a) gyroscope integration
only, b) intermediate version, c) complete algorithm.
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FIGURE 3.5: Mean error on orientation estimation for different values of kr for measurement 1
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Xsens Mahony’s Madgwick’s Fourati’s Intermediate Complete

algorithm algorithm algorithm algorithm version algorithm

(without ωωω reset) (with ωωω reset)

ε std ε std ε std ε std ε std ε std

1 34.8 15.9 23.3 9.2 24.8 10.0 24.8 10.0 26.3 12.1 2.3 1.5

1 2 25.4 13.9 118.4 45.7 139.1 42.1 65.3 36.8 14.4 12.5 13.6 12.7

3 12.5 6.3 38.4 15.3 154.9 4.5 33.3 16.3 35.0 19.2 2.0 1.5

1 19.9 13.1 21.9 7.7 30.3 13.1 30.4 13.2 29.7 15.7 2.3 1.1

2 2 10.2 5.2 74.2 29.2 5.5 2.8 5.5 2.8 5.1 2.4 2.6 1.1

3 37.7 11.9 116.3 44.7 110.5 45.8 87.4 46.6 14.3 5.2 4.0 2.1

1 26.6 14.6 107.5 46.2 97.0 46.4 81.4 46.2 7.2 3.7 2.1 1.7

3 2 16.4 11.7 27.0 10.0 7.8 2.9 7.9 2.9 6.5 3.0 1.8 1.2

3 8.4 3.0 50.9 22.7 47.8 21.0 6.2 5.3 5.6 3.8 1.6 1.3

TABLE 3.3: Error on the orientation of the proposed algorithm with and without heading reset,
the Xsens algorithm and three other IMU algorithms.

3.4.2 Influence of kr

This section studies the influence of the threshold kr. The orientation of the sensor is esti-
mated from the same data as presented in the previous section and using the complete algorithm
but with different values of kr. The errors are presented in Figures 3.5, 3.6 and 3.7. The error
values for the intermediate algorithm, i.e., without heading reset, are represented on these figures
by doted lines.

In most cases, the error according to the value of kr presents a minimum around kr = 0.1
rad. As explained in the previous section 2.5.2, the presence of a minimum is expected for the
following reason. When kr is too low, the drift is not caught up but when kr is too high, the
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FIGURE 3.6: Mean error on orientation estimation for different values of kr for measurement 2

FIGURE 3.7: Mean error on orientation estimation for different values of kr for measurement 3
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FIGURE 3.8: Error on the sensor orientation estimation and visualization of the heading reset
applications for different values of kr for sensor 3 at measurement 1.

rotation around the vertical axis can be annihilated. However, in some cases, an extra peak in the
error can be observed:

• when kr = 0.2 rad for sensor 3 in measurement 1, sensors 1 and 3 in measurement 2 and
sensor 2 in measurement 3;

• when kr = 0.075 rad for sensor 3 in measurement 3 ;

• when kr = 0.1 rad for sensor 2 in measurement 1.

This peak can be higher than the error without the heading reset which can be seen as a lack
of robustness. In the following, we give some explanation about this phenomenon based on the
peak at kr = 0.2 rad for sensor 3 at measurement 1 (Figure 3.8).

The heading reset can have a positive or a negative impact on the orientation error each time
it is applied. If the difference between the estimated orientation without heading reset and the
true orientation is higher than between the true orientation and 0, then the impact of the heading
reset is positive, and the estimated orientation error decreases (see Figure 3.9). But, if the dif-
ference between the estimated orientation without heading reset and the true orientation is lower
than the difference between the true orientation and 0, the heading reset has a negative impact
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FIGURE 3.9: 3rd component of the orientation estimation for kr = 0.1 rad to illustrate the
positive impact of the heading reset. Before “A”, the sensor is stationary, but its heading esti-
mation is too high to apply the heading reset. At “B”, the sensor is stationary again and close
to its original heading, the heading reset is applied with a positive impact on the estimation of

the orientation.

and increases the error (see Figure 3.10). In the case of kr = 0.2 rad for sensor 3 at measurement
1, the heading reset presents too much negative impact at the beginning making it difficult to be
caught up later. The error being too high, the estimated sensor orientation rarely comes back to
the original heading, so that the heading reset cannot be applied properly. However, it is some-
times possible to catch up the drift after such situation. The evolution of the error for kr = 0.3 rad
around 2500 sec shows that the heading reset can catch up the drift even if the error is important
(approximately 40 degrees).

The low level of errors obtained for kr = 0.1 rad is encouraging, even though the above
analysis shows that the results are sensitive to the value of kr. The criterion to apply the heading
reset remains a critical step of the procedure.
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FIGURE 3.10: Error on the 3rd component of the orientation estimation for kr = 0.1 rad which
illustrates the negative impact of the heading reset in “A”.

3.5 Summary
The method for IMU orientation estimation is implemented based on measurement signals

of a commercial IMU (MTw Awinda XSens). The proposed method is compared to 4 other algo-
rithms for robot motions which mimic human arm motions. The orientation measured through
robot encoders is used as reference.

Firstly, experimental results show the added value of the criterion on the derivative of the
accelerometer data to detect stationary moments. Within this criterion, the algorithm detects less
stationary moments and is thus more conservative.

Secondly, the experimental results show that the heading reset can be used to catch up the
drift on the gravity direction. The complete algorithm including the heading reset gives encour-
aging results in the context of human hand motion tracking for task demonstrations. The analysis
shows that for the threshold kr = 0.1 rad the heading reset improves the accuracy in the presented
experiment.

It has been observed that the heading reset can sometimes have a negative influence for other
values of kr. This problem has been analyzed in detail. The criterion based on the threshold kr
might be reconsidered for a more robust application of the heading reset.

The complete IMU orientation estimation algorithm is experimentally evaluated and it will
be used in the next chapters with kr = 0.1 rad. The next chapter addresses the estimation of the
human hand position from the sensors orientation.
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This chapter presents the complete IHMT method developed for PbD applications. The ob-
jective is to express the human hand trajectory with respect to the robot base frame. The method
gathers the record and embodiment mappings required to build a dataset from demonstrations in
a PbD process. The method presented in Chapter 2 (see Algorithm 1) is also part of the record
mapping.

4.1 Human hand trajectory
As explained in the introduction, the estimation of the human hand trajectory relies on the

free segment approach. The free segment approach requires to estimate the absolute orientation
of each segment of the human arm: the arm, the forearm and the hand. To do so, one sensor is
fastened on each arm segment with an arbitrary position and orientation. The hand is considered
as a single rigid segment, i.e., no finger motion is measured. The torso, as well as the rest of the
human body, is considered motionless. Being aware that the human arm presents complex joints,
the kinematic model of the human arm used in this work is composed of 3 spherical joints for
the shoulder, elbow and wrist as described in Figure 4.1. Each arm segment is labeled with the
numbers 1, 2 and 3 respectively for the arm, forearm and hand.

The human reference frame noted H is centered on the shoulder joint, its z-axis is along the
gravity and pointing upwards and its x-axis, parallel to the sagittal plane, is defined later. Frames
1n, 2n and 3n respectively denote the frames attached to the segments 1, 2 and 3 at time step n
and centered at the joint. Their x-axes are aligned with the direction of the segment and pointing
towards the next joint center in the chain. L1, L2 and L3 are the segment lengths. The values for
these parameters are directly measured on the operator. L3 is defined as the distance from the
finger tip D to the middle point between the radial styloid and the ulnar styloid. L2 is defined as
the distance from the middle point between the radial styloid and the ulnar styloid to the middle
point between the lateral and the medial epicondyle. L1 is defined as the distance from the middle
point between the lateral and the medial epicondyle to the tip of the acromion bone.

The vector HADn represents the position of the hand with respect to the frame H at time step
n and can be evaluated from the orientations H q̂1n, H q̂2n and H q̂3n of the segments 1, 2 and 3 as

H ÂDn =
H q̂1n⊗ 1nÂBn⊗ 1nq̂H +H q̂2n⊗ 2nB̂Cn⊗ 2nq̂H +H q̂3n⊗ 3nĈDn⊗ 3nq̂H (4.1)

with 1nABn = [L1 0 0]T , 2nBCn = [L2 0 0]T , 3nCDn = [L3 0 0]T ∀n.

The frames attached to the sensors, at time step n, are noted S1n, S2n and S3n, respectively
for the segments 1, 2 and 3 (see Figure 4.1). The initial sensor frames are therefore respectively
noted S10, S20, S30.

The rotation H q̂in of the segment i (i = 1,2,3) can be decomposed as

H q̂in =
H q̂Si0⊗ Si0q̂Sin⊗ Sinq̂in (4.2)

Algorithm 1 described in Chapter 3 gives an estimation of the sensor orientation Si0q̂Sin based
on IMU measurements. The other two orientations H q̂Si0 and Sinq̂in are estimated through the
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FIGURE 4.1: The human arm model and definition of the frames. H is the human attached
frame centered on the shoulder. Frames 1, 2 and 3 are the human arm segments (arm, forearm,

hand) attached frames. Frames S1n, S2n et S3n are the sensor frames.
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initialization procedure described in the next section.

The human arm model relies on the assumptions listed below:

• the shoulder, elbow and wrist motions are pure rotation with respect to a fixed joint center,

• the sensors are rigidly attached to the segment, i.e., soft tissue displacements are neglected,

• the shoulder center remains in a fixed position during the trajectory (no torso displace-
ment).

• the hand is considered as a rigid segment (no finger motion).

The model presents some deviations compared to the real human arm that could lead to dis-
turbances on the hand trajectory estimation. Firstly, the human shoulder joint center depends on
the arm position as explained, for instance, in [3]. The humerus rotates into the scapula when the
arm is low, then the scapula itself observes a displacement for the higher position of the arm. The
deviations are less important for the elbow and the wrist. Secondly, the sensors are not rigidly
attached to the arm segments. The muscles and the skin as well as the clothes of the human can
deform and induce a displacement of the sensor with respect to the arm segment. It might be pos-
sible to limit this effect by positioning the sensors on the arm where soft tissue displacements are
reduced or to attach the sensors directly on the skin and not over the cloths. But the application
of technical solutions limiting such soft tissue displacements has to be put in perspective with the
targeted simplicity of PbD process. Thirdly, the teacher is asked to keep is torso motionless and
his/her hand rigid. The non-respect of this instruction might introduce an error on the estimation
of the hand position. These model deviations and parasitic motions are denoted modelling errors
and contribute to the error on the hand trajectory.

4.2 Initialization procedure: the record mapping
The procedure described in this section estimates the two orientations H q̂Si0 and Sinq̂in. Sinq̂in

is the I2S (inertial-to-segment) orientation, i.e., the orientation of the sensor with respect to the
segment attached frame. The second orientation H q̂Si0 is the initial sensor orientation with re-
spect to the human reference frame.

The two orientations H q̂Si0 and Sinq̂in as well as the sensor orientation from Algorithm 1
applied to the human model are necessary to transform the sensors data to a Cartesian position of
the human hand. They constitute the record mapping which adapts the original dataset (angular
rate and acceleration of the sensors) to encode a new information (hand trajectory). As the goal
is to command the robot gripper trajectory, the task actions At encoded with the human hand
trajectory should then be mapped to the robot actions Al . The initialization procedure explained
in this section is the method to identify the part of the record mapping: H q̂Si0 and Sinq̂in (see
Figure 4.2).
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FIGURE 4.2: The elements of the record mapping.

4.2.1 Estimation of the I2S orientation
As said earlier, it is assumed that the motion of the skin and soft tissues can be neglected.

The I2S (Inertial-to-Segment) orientation Sinq̂in is therefore constant, i.e.,

Sinq̂in =
Si0q̂i0 ∀n. (4.3)

Furthermore, it is asked to the operator to start the trajectory with the arm horizontal, out-
stretched and in the sagittal plane as illustrated in Figure 4.3 a. This initial arm configuration is
such that each segment is oriented ahead of the teacher. This orientation will serve as reference
for the activation of the heading reset (see chapter 2). It is recalled that the application of the
heading reset is based on the heading of each sensor independently. Therefore, it is not applied
only when the operator arm returns to the initial configuration, but also in a diversity of other
configurations. In this initial arm configuration, the segment frame i0 is defined as aligned with
the inertial human reference frame H, i.e.,

Si0q̂i0 =
Si0q̂H . (4.4)

Therefore, the I2S orientation and the initial sensor orientation are equal:

Sinq̂in =
Si0q̂H ∀n. (4.5)

The problem is then reduced to identifying only one orientation for each sensor: Si0q̂H . Estimat-
ing it boils down to measuring two axes of the human frame H with respect to the sensor frames.
The next section describes the procedure.

4.2.2 Estimating the initial sensor orientation
The z-axis of the reference frame H being along the gravity direction, its orientation with

respect to the sensor frame is estimated through accelerometer measurement when the operator
is in the initial position (see Figure 4.3 a):

Si0zH = − a
‖a‖

(4.6)

Previously, the operator receives the instruction to perform a shoulder flexion in the sagittal
plane (see Figure 4.3 b), and the y-axis of the reference frame H is then defined as the normalized
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FIGURE 4.3: Initialization procedure: a) initial position ; b) rotation around shoulder-shoulder
axis.

projection of the angular velocity in the plane perpendicular to the z-axis of H. In this way, the
rotation Si0q̂H is obtained for each sensor i and consequently, the I2S orientation is obtained too.
Table 4.1 details the initialization procedure for segment i.

1
Rotation around the shoulder-shoulder

N recording of ωωωkaxis with a straight arm
2 Computation of yω yω = 1

N ∑
N
k=1

ωωωk
‖ωωωk‖

3 Arm locked in initial configuration N recording of ak
4 Computation of Si0zH

Si0zH = − 1
N ∑

N
k=1

ak
‖ak‖

5 Projection of yω y′ω = −(yω − (yω · Si0zH)Si0zH)

6 Computation of Si0yH
Si0yH = y′ω

‖y′ω‖
7 Computation of Si0xH

Si0xH = Si0yH× Si0zH
8 Computation of rotation matrix Si0RH =

[Si0xH
Si0yH

Si0zH
]

9 Conversion to quaternion Si0RH → Si0q̂H
10 Computation of H q̂Si0 and Sinq̂in

H q̂Si0 = (Si0q̂H)−1 ; Sinq̂in = Si0q̂H

TABLE 4.1: Steps of the initialization of the human arm measurement process.

4.3 Human-robot transformation: the embodiment mapping
For the actions encoded in the human hand trajectory to be mapped to the robotic system, the

hand trajectory has to be expressed with respect to the robot reference frame R. An embodiment
mapping is then required and it consists in the transformation from H to R (see Figure 4.4).
Identifying the embodiment mapping is estimating the transformation from the human inertial
reference frame H with origin A to the robot based frame R with origin O, composed of a rotation
part Rq̂H and a translation part RAO.

Once the initialization procedure, described in the previous section, is finished, the human
hand position with respect to H is tracked. The operator is asked to put her/his fingertip in contact



50 Chapter 4. Inertial human hand motion tracking method

FIGURE 4.4: The record and embodiment mappings.

FIGURE 4.5: Illustration of the human-robot transformation procedure: the teacher follows a
trajectory imposed by the robot.

with the robot end-effector and follows an arbitrary trajectory imposed by the robot as illustrated
in Figure 4.5. During the trajectory, N human fingertip positions HADk and robot end-effector
positions ROPk are recorded. The rotation Rq̂H is estimated using a least square method [9]. The
first step is to compute the centroid of each data set HAD and ROP as

HAD =
1
N

N

∑
k=1

HADk

ROP =
1
N

N

∑
k=1

ROPk.

(4.7)

(4.8)

The rotational matrix Q corresponding to Rq̂H is estimated using a singular value decomposition
of the matrix M

M =

N

∑
k=1

(HADk−HAD)(ROPk− ROP)T =USV T

Q = VUT .

(4.9)

(4.10)

The matrix Q is then converted into the unit quaternion Rq̂H . The translational part RAO is
obtained as

RAO =
1
N

N

∑
k=1

(ROPk−Q HADk) . (4.11)
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4.4 Optimization of the parameters
The initialization procedure can suffer from parasitic motions as disturbances in rotation of

the arm or the arm not completely outstretched as well as the human-robot transformation proce-
dure if, for instance, the contact point between the human and the robot is not permanent. Such
parasitic motions are denoted calibration errors. The calibration errors, with the modelling er-
rors (see Section 4.1), lead to uncertainties in the parameters H q̂Si0 and Siq̂i with i ∈ [1,2,3] as
well as in the parameters Rq̂H and RAO. Furthermore, imperfect measurements of the segment
length which induces some uncertainties in L1, L2 and L3, also contributes to the error on the
hand trajectory.

In order to partially reduce the error on the above-mentioned parameters and consequently on
the hand trajectory, an optimization step is conducted. The optimization process takes advantage
of the PbD context by using data recorded during the human-robot transformation estimation
procedure. No extra step is introduced which maintains a sufficient easiness-of-use required by
the context of PbD. The robot end-effector positions ROPk measured through robot encoders are
used as reference. The human hand position with respect to the robot frame is computed from the
estimation of the sensors orientation S10q̂S1k, S20q̂S2k and S30q̂S3k recorded simultaneously with
the robot end-effector positions. The optimization is made by minimizing the following error
function f :

f (1nAB, 2nBC, 3nCD, S1q̂1, S2q̂2, S3q̂3, H q̂S10, H q̂S20, H q̂S30, H q̂R, RAO)

=

N

∑
k=1

‖RÔPk− (Rq̂H⊗H ÂD∗k⊗H q̂R− RÂO)‖2
(4.12)

with

H ÂD∗k =
H q̂∗1k⊗ 1kÂB⊗ 1kq̂∗H +H q̂∗2k⊗ 2kB̂C⊗ 2kq̂∗H +H q̂∗3k⊗ 3kĈD⊗ 3kq̂∗H

H q̂∗1k =
H q̂S10⊗ S10q̂S1k⊗ S1q̂1

H q̂∗2k =
H q̂S20⊗ S20q̂S2k⊗ S2q̂2

H q̂∗3k =
H q̂S30⊗ S30q̂S3k⊗ S3q̂3.

(4.13)

(4.14)

(4.15)

(4.16)

The optimization problem is solved using the optimize.minimize function from the SciPy library
with the BFGS algorithm and a tolerance set to 10. The initial guesses for the segment lengths
L1, L2, L3 involved in 1nAB, 2nBC and 3nCD are from a direct measurement on the operator arm.
The initial values of the I2S orientation S1q̂1, S2q̂2 and S3q̂3 come from the initialization as well as
the orientations S10q̂S1k, S20q̂S2k and S30q̂S3k. Finally, H q̂R and RAO initial guesses are the values
from the human-robot transformation estimation process described in the previous section.

4.5 Summary
This chapter exposes the record (partially) and the embodiment mappings required to track

the human hand with respect to the robot base frame, as well as the method to estimate them.
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The record mapping includes the sensor orientation from Algorithm 1 (Chapter 2) and two
constant orientations: the orientation from the sensor initial frame to the human reference frame
and the orientation from the sensor frame to the human segment frame. These orientations are
identified based on the initialization procedure.

The embodiment mapping is the transformation between the human reference frame and the
robot base frame. During the procedure to estimate this mapping, the robot imposes a trajectory
to the human and both agents trajectories are recorded simultaneously. A least square method is
applied on the two trajectories to estimate the transformation from the human frame to the robot
frame.

The IHMT method is affected by different sources of errors. Firstly, the sensor orientation
errors evaluated in Chapter 3 have a direct influence on the estimation of the hand position. In
addition, some modelling errors and calibration errors have been identified. They introduce
uncertainties in some model parameters and degrade the hand trajectory. To limit the impact
of these uncertainties, a parameters optimization is performed. This extra step is based on data
from the human-robot transformation estimation procedure, thus, the method keeps its simplicity.

The identification of the mappings requires a protocol that the teacher should observe be-
fore performing the task. This protocol can be summarized as follows. The teacher stands in
front of the task workspace. He/she then performs a rotation of his/her arm straight while the
gyroscope data are recorded and complete his/her motion in the initial arm configuration (see
Figure 4.3). The teacher remains in that position a short moment while the accelerometer data
is recorded. The tracking of the human hand with respect to the human reference frame H starts
and the teacher enters in contact with the robot and follows the imposed trajectories (both hand
and gripper trajectories are recorded). Once the robot has completed this trajectory, the model
parameters are optimized, the human hand is tracked with respect to the robot frame R and the
teacher can begin the demonstration.

In the next chapter, several experiments are conducted in order to evaluate each step of the
mappings identification, to assess the validity of the assumptions and to quantify the accuracy of
the human hand trajectory estimated with the proposed IHMT method.
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The experiments presented in this chapter are intended to evaluate the influence of the sensor
orientation errors, the modelling errors (torso and shoulder displacements, soft tissues displace-
ments, etc.) and the calibration errors (the deviation between the actual and the recommended
motions in the initialization phases) of the IHMT method proposed in the previous chapter.

In order to evaluate the initialization procedure, the experiment is first conducted on a robot
arm which is considered performing exactly the recommended motions. In this case, the initial-
ization procedure and the trajectory are not affected by the modelling errors nor the calibration
errors. The ability of the initialization procedure to manage unknown sensors positioning is eval-
uated.

Secondly, an experiment is conducted with a human operator. The objective is to quantify the
error on the human hand trajectory with respect to the human reference frame when estimated
by the proposed IHMT method. Compared to the error measured in the previous experiment, the
contribution to the hand trajectory error of the calibration errors, as well as the modelling errors
can be identified. This experiment allows us to assess the validity of the assumptions made for
the initialization (see Section 4.1).

Finally, the hand trajectory accuracy with respect to the robot base frame is evaluated. Com-
pared to the previous experiment, one can evaluate the error due to the human-robot transforma-
tion estimation process as well as the impact of the optimization of the parameters.

5.1 Initialization procedure assessment
This section presents the experiment conducted to evaluate the robustness of the initialization

procedure which was proposed to estimate the positioning of the sensors on each segment. This
experiment consists in tracking the motion of a robotic arm as in [42].

5.1.1 Experimental setup
Three Xsens MTw sensors have been mounted on an ABB IRB 120 robotic arm as shown in

Figure 5.1. The support (right side of Figure 5.1) allows the sensors to be set in different configu-
rations (heading angle and inclination angle) with respect to the segment frame. The robot has an
anthropomorphic kinematics with one degree of freedom less than the human arm. Axes 1 and 2
of the robot mimic the human shoulder with the center of the joint at the intersection of the two
axes. The human elbow is materialized by axis 3. Axes 4, 5 and 6 mimic the human wrist. So,
the rotation of the human arm segment around the axis of the segment itself (3rd degree of free-
dom of the shoulder) has no equivalent in the robot kinematics. However, the human arm model
used in this work, composed of 3 spherical joints, is also applicable to reconstruct the robot mo-
tions, so that our method can be applied to the robot directly. The lengths of the robot segments
are taken from the robot data sheet: 1nABn = [270 0 0]T mm, 2nBCn = [310.0065 0 0]T mm and
3nCDn = [72 0 0]mm ∀n.

The trajectory programmed on the robot has been arbitrarily defined with the intention to
cover as much as possible the human hand reachable space which can be described, e.g., in [69].
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FIGURE 5.1: Experimental setup for the measurement of the error on the hand trajectory for
the proposed IHMT method. The left figure shows the correspondence between the 6 robot axis
and the human arm model and the location of the three IMUs sensors on the robot’s segments.

Besides the human reachable space, no extra care was taken to make the trajectory humanly re-
alistic. The evaluation of the method for human motion is made in the next experiment. The
trajectory executed by the robot is shown in Figure 5.2. To build the trajectory, some positions
have been set to make a lower and an upper “infinite symbol” shape trajectory. It is played first
continuously and then with breaks of 1, 2 or 3 seconds at each position. In this second phase,
the trajectory shows angular points at these positions. Furthermore, at some moments, the robot
returns to its initial position to ensure that the heading reset is applied. The heading reset can
also be applied at different positions along the trajectory if the configuration of the robot allows
it. The complete described movement is executed twice, first at a maximum end-effector lin-
ear velocity of 400 mm/s and a maximum joint angular velocity at 400 ◦/s and secondly at a
maximum velocity of 50 mm/s and 50 ◦/s. The trajectory lasts 6 minutes and 7 seconds. This
trajectory is measured 19 times with different configurations of the sensors on the robot. The 19
configurations do not cover all possible ways to set up the sensors on the arm, but they represent
a reasonable sampling for our purpose.

The trajectory of the end-effector ROPk measured by the robot through its encoders is used
as reference. The absolute error on the hand position is computed as

εt =
1
N

N

∑
k=1
‖HADk− ROPk‖ (5.1)

with N the number of points and HAD the trajectory measured from inertial sensors and ROP is
the same trajectory recorded through robot encoders. The robot reference frame R is simply the
base frame shifted of 290 mm along its z-axis (direction of axis 1 according to the robot data
sheet). The frame H is the reference frame for the inertial-based trajectory and is defined such
that it coincides with R, which implies that the points O and A are at the same position.

The IHMT method exposed in the previous chapter (Chapter 4) is not applied in its entirety.
Since only one agent is involved in this experiment, no human-robot transformation estimation
procedure is conducted. The consequence is that the parameters optimization step (see Section
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FIGURE 5.2: The 3D trajectory imposed to the robot and measured using robot encoders for
reference.

4.4) cannot be performed. It can be recalled that the optimization step aims at catching uncer-
tainties in some model parameters. However, by design, the robot joint motions are accurately
captured by the model. Furthermore, the sensors are rigidly attached to the robot; the base of the
robot (which mimics the human torso) does not move and the robot “hand” is rigid (no finger
motion). The motions executed by the robot in the initialization procedure are considered undis-
turbed. Therefore, the parameters optimization is not relevant in the context of this experiment.

5.1.2 Results and discussion
The results are presented in Table 5.1. For each configuration, the mean error ε and the stan-

dard deviation σ are given. The mean error on the hand position is comprised between 27.7 mm
and 47.7 mm. The 15th measurement seems aberrant and is discarded. Figure 5.3 shows the
measured trajectory for the best (N◦ 7) and the worse (N◦ 13) sensor configurations. Let us show
that this error is mainly caused by the sensor orientation errors.

An expected error on the hand position is estimated for that purpose. It is defined as the
mean error on the hand position that is expected if the only source of error is the error on sensor
orientation. The sensor orientation error has been previously measured (see Section 3.4.1).

Three measurements m = [1,2,3] of the same trajectory have been performed. For a given
sensor i and a given measurement m, at time step k, the reference orientation obtained from
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FIGURE 5.3: The trajectory reference from robot encoders and the estimated trajectory from
the IHMT method for configuration 13 a) and for configuration 7 b).
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Sensors ε σ

configuration N◦ (mm) (mm)
1 42.2 30.1
2 41.7 31.3
3 40.2 30.8
4 41.4 30.9
5 41.8 32.5
6 38.2 30.7
7 27.7 31.0
8 32.0 35.9
9 29.3 33.3

10 44.1 32.8
11 40.8 29.9
12 42.2 29.3
13 47.7 33.3
14 44.5 30.8
15 157.1 61.2
16 44.5 33.8
17 43.9 32.3
18 42.3 31.8
19 40.0 30.1

TABLE 5.1: Mean error and standard deviation of the error on the end-effector position es-
timated from the proposed IHMT method for different configurations of the sensors on the

robotic arm.

the robot encoders is q̂robot
i,m,k , the estimated orientation based on Algorithm 1 is qIMU

i,m,k and the
quaternion representation q̂err

i,m,k of the error on the sensor orientation estimation is

q̂err
i,m,k = q̂IMU

i,m,k ⊗ (q̂robot
i,m,k )

−1 (5.2)

with k ∈ [1;N] and N the number of time steps in a measurement. The error q̂err
i,m,k can be ex-

pressed as a rotation vector as

θθθ
err
i,m,k = log(q̂err

i,m,k) (5.3)

with the logarithm map log defined in Section 2.2. The mean error rotation vector θ̄θθ
err
i,m is com-

puted as

θ̄θθ
err
i,m =

1
N

N

∑
k=1

θθθ
err
i,m,k (5.4)

The values of θ̄θθ
err
i,m are presented in Table 5.2. Finally, for a sensor i, the mean error rotation

vector is computed as

θ̄θθ
err
i =

1
3

3

∑
m=1

θ̄θθ
err
i,m (5.5)
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Measurement Sensors θ̄θθ
err
i,m (deg)

m i x y z
1 0.77 0.70 1.67

1 2 0.77 0.75 13.33
3 0.75 0.66 1.35
1 0.56 1.44 1.41

2 2 1.30 1.57 1.25
3 2.00 1.49 2.50
1 0.58 0.47 1.60

3 2 0.68 0.54 1.29
3 0.61 0.48 1.09

TABLE 5.2: Mean error on the sensor orientation from Algorithm 1.

For the three sensors, the errors θ̄θθ
err
1 , θ̄θθ

err
2 and θ̄θθ

err
3 are propagated in the model (see Equation

4.1, Chapter 4). Let us consider the arm model in a given configuration corresponding to the true
segment orientation q̂1, q̂2, q̂3. Each segment orientation q̂i can be affected by their respected
sensor mean error θ̄θθ

err
i as q̂i⊗ exp(θ̄θθ err

i ). In the initial configuration q̂1 = q̂2 = q̂3 = [1 0 0 0]T ,
the expected error on the hand position is computed using Eq. 4.1 and is 39.4 mm.

The reliability of the initialization procedure to the sensor positioning can be evaluated by
comparing this expected error to the error values exposed in Table 5.1. The error estimated exper-
imentally is between 27.7 mm and 47.7 mm and the mean error over all measurements is 40.25
mm. It can be concluded that the observed errors in Table 5.1 are mostly attributed to the errors
on the sensor orientation in this experiment. This confirms our assumptions that the modelling
errors and the calibration errors have a limited impact. This also shows that the proposed IHMT
method is robust to the unknown positioning of the sensors thanks to the initialization procedure.

5.2 IHMT method assessment on human motion
In this section, the method is implemented to track the human hand. The trajectory of the

human hand is compared to the trajectory measured by an opto-electronic motion capture system
with active markers (Codamotion, Charnwood Dynamics Ltd). The Codamotion system presents
an error under 5 mm on the 3D positioning of a marker according to Schwartz et al. [115].
Compared to the previous results, the results of this experiment emphasize the influence of the
modelling errors and the calibration errors.

5.2.1 Experimental setup
The markers of the Codamotion system emit infrared light illustrated in Figure 5.4. This light

is perceived by four units. A unit is composed of three linear optical sensors. The geometric
relation between these three sensors is known, so each unit can, by triangulation, estimate the
3D position of a marker. Four units are used to avoid occlusion and the transformation between
each unit and the Codamotion reference frame C is known by a calibration procedure. The
Codamotion reference frame C is built from three active markers set on the floor during the
calibration phase. One marker is the origin O and the two others point the x-axis and the y-axis.
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FIGURE 5.4: The Codamotion setup.

The z-axis of C is built from the x-axis and the y-axis and is therefore perpendicular to the ground
and considered aligned with the gravity.

In order to limit fingers disturbing motions and to have a precise point to track, the subject
holds a gun-shape tool (see Figure 5.5). The IMU related to the hand is fixed in this tool. The
tip of the gun-shape tool is the point of interest to track. Two Codamotion markers are set on the
gun-shape tool tip to limit occlusion issues during motion. The point of interest is the mid-point
between the two markers when both markers are visible or just the visible one otherwise. Two
other markers are set on the top of the gun-shape tool. Four markers are set on the bony landmarks
of the wrist and elbow (the radial styloid, the ulnar styloid, the lateral and the medial epicondyle).
Finally, markers are set on the end of the acromion, the incisura jugularis (IJ) and the seventh
vertebra (C7), see Figure 5.5. The segment lengths for the IHMT method are measured directly
on the subject: 1nABn = [330 0 0]T mm, 2nBCn = [280 0 0]T mm and 3nCDn = [270 −20 100]
mm ∀n.

In order to compare the estimation of the hand trajectory from the IHMT method with
the measurements from the Codamotion system, the transformation between the two reference
frames H and C has to be known. The z-axis of the human frame being, by definition, aligned
with the gravity direction, it is aligned with the z-axis of the Codamotion frame C. To identify the
y-axis of H with respect to C, the trajectories of the hand, the wrist and the elbow markers during
the rotation movement of the initialization procedure are studied. A circle is fitted on each of
them. The mean of the normal to the circles projected onto the plane perpendicular to the z-axis,
constitutes the y-axis of the human reference frame H with respect to C. The x-axis is computed
from the cross product of the y and z-axes. It is not possible to directly measure the origin of
the human reference frame H with respect to the Codamotion system. In a similar experience,
Filippeschi et. al [49], estimate the center of the shoulder using markers on bony landmarks: “the
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FIGURE 5.5: Markers of the Codamotion on the human arm.

marker on the acromion served to capture the shoulder joint center, which is assumed to be 4.5
cm under the acromion in the Zv direction”. However, Amabile et al. show in [3] that the center
of rotation of the shoulder is not isolated. Therefore, we propose to define the origin of H as the
mean point of all the centers of the circles fitting the rotation motion of the markers on the arm
during the rotation part of the initialization procedure. The transformation between H and C can
then be estimated. It is composed of a rotation part HRC and a translation part HAO. Figure 5.6
shows the markers trajectory, the fitting circles and the frames H and C. This transformation is
estimated before each measurement.

Several trajectories are executed by a unique operator with different velocities and occasional
breaks during each trajectory. Inspired from [96], the operator has the instruction to perform
circular trajectories, 3D cross-shaped trajectories, cube edges or hexagonal trajectories. These
trajectories imply rotations and translations in all directions of space. The error is evaluated as
the distance between the estimated position HADk of the gun tip by the proposed method and the
reference one COPk measured by the Codamotion system as

HAPk =
HRC

COPk +
HAO

εt =
1
N

N

∑
k=1
‖HADk−HAPk‖

(5.6)

(5.7)

with N the number of points.

5.2.2 Results
Some examples of the trajectories followed during this experiment are shown in Figure 5.7.

The results of the experiments are presented in Tables 5.3 and 5.4.
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FIGURE 5.6: 3D representation of the human attached frame H and the reference Codamotion
frame C. The Figure shows the positions of the Codamotion markers attached to the human
arm when performing the initialization procedure and the fitting circles used to build the human

reference H frame with respect to the Codamotion frame C.
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FIGURE 5.7: Examples of the different trajectories performed by the human operator: a)
Circular shape trajectory; b) cross-shape trajectory; c) cube edges trajectory; d) hexagonal

trajectory.
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The errors for all trajectories are shown in Table 5.3. In this table, three indicators, defined
in the list below, are used to quantify some contributions of the modelling errors. One indicator
is used to evaluate the impact of the calibration errors. They are defined in the following list and
their values are presented in Table 5.4. Moreover, some indicators are presented to quantify the
quality of the transformation between the human frame H and the Codamotion frame C which is
a sensitive point of this experiment.

• The torso parasitic motion is quantified as displacement and orientation. The position
of the torso is calculated as the mid-point between C7 and IJ. The partial orientation of
the torso is given by the direction (C7 IJ). It is then possible to estimate the variation of
position and partially the orientation of the torso. Table 5.3 presents the torso displacement
using 2 indicators: the maximum distance between any torso position and the mean torso
position (“Torso disp max”); and the standard deviation of the torso position (“Torso disp
std”). Similarly, the orientation of the torso is estimated using 2 indicators: the maximum
angle (“Torso ori max”) between the torso orientation vector and the mean torso orientation
vector and its standard deviation (“Torso ori std”).

• The shoulder displacement is represented by the marker set on the acromion. It is well
known that the shoulder is a complex joint with a non-unique center of rotation which de-
pends on the position of the arm [3, 32, 135]. The human arm model used in this work does
not reflect this complexity. It is not possible to directly track the human shoulder center
of rotation, but the acromion is usually exploited for the estimation of its position as in
[49]. So, the acromion marker is used to quantify the contribution of the shoulder parasitic
motion to the trajectory error. Two indicators are given, the maximum displacement of the
acromion marker relatively to its mean position (“Acromion disp max”); and the standard
deviation (“Acromion disp std”) of the acromion marker position (see Table 5.3).

• The misalignment of the arm during the static pose of the initialization can be esti-
mated. Let us recall that, according to the model, the segment frames are aligned with
the human reference frame during this static pose. The misalignment (“Misalignment”) in
Table 5.4) is defined as the distance between the tip of the gun and the theoretical position
of the gun according to the model. The theoretical position of the gun tip, corresponding
to the initial arm configuration, is computed as HABn +HBCn +HCDn with n = 0.

• The error on the position of the origin of H with respect to the codamotion frame C can
be estimated. The origin of H is the mean point of the circle center that fit the trajectory
of the markers on the gun-shape tool, the wrist and the elbow. The standard deviation
(“Center std”) and the maximum distance with mean position (“Center dist max”) are used
to quantify the quality of the estimation of the origin of H with respect to C.

• The error on the estimation of the y-axis of H with respect to C is quantified by the angle
between the y-axis of H and the normals of the circles that fit the trajectory of the markers
during the rotating part of the initialization. The maximum angle (“y-axis angle max”) and
its standard deviation (“y-axis angle std”) are presented in Table 5.4.

5.2.3 Discussion
The mean error shown in Table 5.3 is comprised between 54.8 mm and 181.8 mm. It can

be recalled that the error in the previous experiment with the robot was comprised between 27.7
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Time Error Error Error Torso Torso Torso Torso Acromion Acromion

Measurement max mean std disp disp ori ori disp disp

max std max std max std

(s) (mm) (mm) (mm) (mm ) (mm ) (deg) (deg) (mm ) (mm )

Circle 1 8.8 183.3 112.2 27.4 10.0 2.6 3.6 0.6 178.8 15.7

Circle 2 5.9 215.3 128.9 32.0 23.0 5.1 9.8 2.2 85.7 14.2

Circle 3 9.5 139.5 54.8 23.9 27.0 2.6 14.4 0.7 116.6 13.2

Cross 1 21.8 373.1 154.9 39.2 23.7 4.2 11.9 1.9 73.1 21.0

Cross 2 27.4 272.6 123.4 40.6 23.2 3.8 11.1 2.9 147.6 10.9

Cross 3 26.8 204.7 127.7 29.1 20.1 4.8 13.2 2.0 129.5 11.2

Cube 1 14.8 259.8 145.3 38.5 26.9 4.6 12.1 4.2 59.0 28.8

Cube 2 19.5 213.2 111.9 52.2 19.1 3.3 8.3 2.2 81.1 14.3

Cube 3 25.4 456.8 181.8 84.6 39.8 4.5 26.4 3.7 67.9 9.1

Hexagon 1 11.2 222.1 123.2 57.5 15.4 2.5 6.9 2.3 94.6 17.4

Hexagon 2 14.1 228.4 137.3 54.0 29.1 5.1 7.8 1.8 98.7 18.3

Hexagon 3 13.0 229.0 92.2 59.0 20.3 4.2 6.5 1.8 122.9 37.5

TABLE 5.3: Human arm trajectory error, modelling error indicators and parasitic motions
indicators.

Misalignment Center Center y-axis y-axis

Measurement dist std angle angle

max max std

(mm) (mm ) (mm ) (deg) (deg)

Circle 1 149.3 95.9 19.5 3.1 0.6

Circle 2 104.1 42.1 12.2 4.7 1.2

Circle 3 100.4 118.1 29.1 3.4 0.8

Cross 1 101.2 73.2 22.8 11.6 2.9

Cross 2 115.0 147.5 39.0 11.6 3.2

Cross 3 152.0 90.1 20.7 7.9 1.7

Cube 1 132.4 75.7 17.6 5.6 1.3

Cube 2 84.9 66.1 16.8 13.5 3.9

Cube 3 81.8 35.4 6.1 21.5 5.1

Hexagon 1 157.7 78.4 15.5 4.3 1.1

Hexagon 2 144.4 42.7 11.4 4.3 1.2

Hexagon 3 142.4 87.2 26.1 3.7 0.7

TABLE 5.4: Initialization parasitic motion indicators.

mm and 47.7 mm and was mostly attributed to sensors orientation errors since the initialization
is not prone to significant uncertainties in this case. Therefore, in the present experiment it can
be considered that between 54.8−27.7

54.8 = 49.4% and 181.8−47.7
181.8 = 73.8% of the error do not come

from the sensors orientation errors but from the modelling errors and the calibration errors. This
is discussed in the following.
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First, the parasitic torso and shoulder motions during the trajectory contribute to the hand
position error:

• The standard deviation of the torso displacement is between 2.6 mm and 5.1 mm (“Torso
disp std”). This indicates that the torso is fairly steady during the trajectory. However,
the maximum displacement observed is 39.8 mm (“Torso disp max”), which means that a
torso displacement can significantly contribute to the error sporadically.

• The standard deviation of the torso orientation is comprised between 0.6◦ and 4.2◦ (“Torso
ori std”). Considering the arm in the initial configuration (straight and horizontal), the
distance from the human reference frame origin and the fingertip is L = ‖HABn+HBCn+
HCDn‖ with n = 0, such rotating torso parasitic motions could involve a displacement
between 0.6πL

180 = 9.3 mm and 4.2πL
180 = 63.4 mm.

• The shoulder displacement (“Acromion disp std”) is between 9.1 mm and 37.5 mm. This
displacement is partly induced by the torso parasitic motion.

The torso and the shoulder parasitic motions contribute in a non-negligible proportion to
the error on the trajectory of the hand. In addition, some other parasitic motions related to the
initialization procedure can be quantified from the values in Table 5.4.

• The column “Misalignment” of Table 5.4 clearly shows a misalignment of the arm during
the z-axis identification. According to the values presented in the column “Misalignment”,
a potential error approximately between 5◦ and 10◦ could be induced in the parameters Siqi
and HqSi.

• The last two columns of Table 5.4 quantify the quality of the rotating motion of the ini-
tialization. The “y-axis angle” is the angle between the y-axis of H and the normal of the
circle that fits the trajectory of a marker during this rotation of the arm. A low value of
the maximum and the standard deviation of this parameter means that the different points
of the arm follow a trajectory in parallel planes which implies a good execution of this
step. A high value of this parameter reveals disturbances in the execution of this motion.
The disturbances can come from the shoulder complex kinematics. But it can also reflect
a bad execution of the recommended motion from the human during this step. If the op-
erator does not maintain his/her arm straight during the motion, the axis of rotation of the
trajectory is disturbed. The recommended motion is well executed in most cases since the
“y-axis angle std” is often below 2◦. But for 4 trajectories this parameter value is higher,
which indicates this motion is not systematically executed well.

This analysis shows that the operator is not always able to perform the recommended motion
with sufficient accuracy during the calibration phase which induces some uncertainties on the
estimated model parameters. These uncertainties can be later compensated in the optimization
of the parameters step. The main parasitic motion during the initialization procedure is the dis-
turbed static pose which induces a misalignment of the human arm segment frames with respect
to the human reference frame.

An additional part of the error is due to the Codamotion since it is difficult to identify the
transformation between human reference frame and the Codamotion reference frame: HRC and
HAO. The error mainly comes from the identification of the origin of the frame H. The “Center
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std” column shows that the centers of the circles that fit the trajectories of the different markers
on the arm are scattered (from 6.1 mm to 39.0 mm). It can be estimated that this contribution
could be responsible of 3.3 % to 71.3 % of the error in the worse case.

Finally, other sources of error may affect the hand positioning accuracy but their contributions
have not been quantified:

• the length of the segments are measured from distances between anatomical landmarks
which might present inaccuracies;

• even limited by the use of a gun-shape tool, finger motion could contribute to the error by
introducing a displacement of the sensor with respect to the hand segment;

• the inertial sensors of the arm and forearm are in contact with soft tissues that might induce
the displacement of the sensors with respect to the segment frame during the trajectory.

The results of this experiment show important sources of errors in the estimation of the tra-
jectory of the human hand. Regarding the inaccurate execution of the initialization procedure,
this leads to an error in the estimation of Siqi and HqSi0. The optimization step, presented in
chapter 4, was proposed to overcome this issue. The impact of this step is addressed in the next
experiment.

5.3 IHMT method with respect to the robot base frame as-
sessment

The aim of this section is to evaluate the accuracy of the complete method which evaluates
the human hand trajectory with respect to the robot frame. This section studies the application
of the proposed IHMT method with a human operator and a 7-DoF Sawyer collaborative robot
from Rethink Robotics. The robot is programmed from its SDK interface based on ROS [112].

In the procedure to estimate the human-robot transformation, the robot imposes a trajectory
to the operator. The trajectory measured by the robot encoders is used as the reference to esti-
mate the accuracy of the IHMT estimation of the hand trajectory. Furthermore, comparing the
accuracy of the complete method to the previous results enables to quantify the impact of the
human-robot transformation estimation as well as the optimization of the parameters.

5.3.1 Experimental setup
Two IMUs are set up on the arm and forearm with reflective metallic strips (see Figure 5.8).

The IMU for the hand is set in a gun-shape tool. The gun-shape tool is used to limit the impact
of potential disturbing finger motions. Also, this tool includes a trigger button to communicate
with the robotic system. The spherical tip of the gun fits in a receiver mounted at the robot end-
effector to enforce the contact during the human-robot transformation estimation procedure and
the recording of the human trajectory. The trajectory recorded through the robot encoders is used
as reference. The measured segment dimensions of the subject are, in millimetres, 1nABn =
[330 0 0]T , 2nBCn = [280 0 0]T , 3nCDn = [270 − 20 100]T ∀n. The minimization process is
conducted by the optimize.minimize function from the SciPy library with the BFGS algorithm.
Different trajectories are executed by a unique operator. The trajectories are similar than those
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FIGURE 5.8: Experimental setup: a) IMUs set on the arm and forearm, b) gun-shaped tool
with the trigger button, c) end-effector hole to receive the tip of the tool, d) global view of the

setup.

from the previous experiment (see Figure 5.9). The mean error ε is computed from the distance
between the hand position RODk with respect to the robot base frame R estimated from the
proposed IHMT method and the measured robot end-effector position ROPk with O the origin of
the robot base:

ε =
1
N

N

∑
k=1
‖ROPk− RODk‖ (5.8)

with N the number of points.

5.3.2 Results and discussion
The results are exposed in Table 5.6. The table shows the mean ε of the error as well as the

standard deviation σ . The mean error ε with non-optimized parameters is comprised between
47.2 mm and 96.2 mm and is lower than the values from the previous experiment (between 54.8
mm and 181.8 mm). This difference can be explained by the difficulty to identify the transfor-
mation between the human reference frame and the Codamotion frame. It seems that the errors
on the human-robot transformation is negligible compared to the errors caused by the parasitic
motions exposed in the previous section.

With optimized parameters, the error on the hand trajectory with respect to the robot frame
falls down between 28.5 mm and 61.8 mm. The benefit of the optimization step is clear. In the
survey [49], Filippeschi et al. evaluated the accuracy of 5 different IHMT methods between 23.6
mm and 89.2 mm. Our method has a similar level of accuracy but it offers the advantage that
it does not rely on magnetometer measurements. Let us mention that our method takes advan-
tages of the PbD context, e.g., for the heading reset and the optimization of the parameters. In
addition, the effect of the sensor orientation errors measured in the first experiment conducted
on a robotics arm (see Section 5.1) is between 27.7 mm and 47.7 mm. The level of accuracy of
the complete method is close to this error interval. Therefore, the optimization step catches up a
large part of the calibration errors. The modelling errors (the parasitic motions of the torso and
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FIGURE 5.9: Trajectory imposed by the robot: a) “Circle” trajectory, b) “Cross” trajectory, c)
“Cube” trajectory, d) “Hexagon” trajectory.
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the shoulder, soft tissue displacement, finger motions, etc., see Section 4.4) still affect the hand
trajectory accuracy.

The difference between non-optimized and optimized values of each parameter is computed
for all trials. Table 5.5 gives the maximum and the minimum of these differences. The differences
are low, which indicates that the parameters conserve a physically plausible value. It can also be
observed that the optimization step mainly corrects the orientation parameters and in particular
the I2S segment orientation.

Parameters Maximum difference Minimum difference
1nAB 0.53 mm 0.012 mm
2nBC 0.44 mm 0.012 mm
3nCD 0.29 mm 0.003 mm
S1q̂1 21.8 ◦ 13.0 ◦
S2q̂2 32.7 ◦ 20.0 ◦
S3q̂3 32.9 ◦ 20.3 ◦

H q̂S10 27.1 ◦ 8.6 ◦
H q̂S20 23.4 ◦ 7.8 ◦
H q̂S30 33.3 ◦ 6.2 ◦
H q̂R 23.6 ◦ 3.2 ◦
RAO 1.2 mm 0.015 mm

TABLE 5.5: Different of values before and after optimization.

Measurement Time (s)
non-optimized parameters optimized parameters

ε (mm) σ (mm ) ε (mm) σ (mm )

Circle 1 8.55 52.0 14.7 32.9 20.5

Circle 2 7.91 53.8 12.7 28.8 10.8

Circle 3 8.25 50.1 19.7 29.4 12.8

Cross 1 27.99 55.5 32.7 39.9 26.0

Cross 2 27.71 47.2 28.4 42.8 20.1

Cross 3 27.08 77.0 35.0 61.8 27.4

Cube 1 44.24 85.8 33.5 45.0 13.4

Cube 2 39.19 96.2 53.7 50.4 20.5

Cube 3 39.07 83.8 43.4 39.8 17.7

Hexagon 1 28.47 55.4 16.4 28.5 16.7

Hexagon 2 27.77 68.5 26.5 40.9 20.5

Hexagon 3 27.09 70.7 26.4 52.8 22.1

TABLE 5.6: Human arm trajectory in robot base frame error

Even if the results are encouraging, this level of accuracy is still not sufficient for the acqui-
sition of demonstration in a PbD context. For a pick-and-place task, an error of 28.5 mm when
picking the object is too high. Several approaches could be investigated to improve accuracy. For
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instance, instead of being modelled as a spherical joint, the elbow could be modelled as a hinge
joint. This more restricted kinematics may help to improve the segment orientation estimation.
For example, Seel et. al [80, 117] propose a method to estimate the elbow joint axis with respect
to the arm and the forearm frames in a first step. Then, during the trajectory, the elbow joint axis
can be estimated with respect to the IMUs attached to the arm and forearm. Comparing these
two values enables to partially correct IMUs orientation. Such approach might require an extra
procedure step to estimate the elbow joint axis with respect to the segment frame. Regarding the
torso and shoulder parasitic motions and the complexity of the shoulder joint, some enhancement
could be investigated such as the development of a more detailed arm model or the use of extra
IMU sensors to track parasitic motions. However, our goal is to develop simple robot program-
ming methods. Therefore, one should then evaluate the increased complexity of the procedure
with respect to the potential gain in accuracy. One may also keep in mind that the same level of
accuracy is not always required all along the trajectory in a pick-and-place task.

5.4 Summary
In this chapter, several experiments are conducted in order to evaluate the different elements

of the proposed IHMT method presented in Chapter 4.

Firstly, the method is applied to a robotic arm. The robot is not affected by parasitic motions
during the trajectory or during the initialization phase, i.e., the modelling and calibration errors
are negligible in this case. The results show that the method is robust to sensors positioning on
the arm.

Secondly, the method is applied to a real human arm. The reference motion is measured
using an optoelectronic device. The error is significantly higher than in the previous experiment
due to parasitic motions, i.e., modelling and calibration errors have a significant influence in this
case. Some sources of error are identified and their contribution quantified. This experiment
reveals a certain difficulty to perform the recommended motions of the initialization procedure
and therefore justifies the optimization step of the parameters of the proposed IHMT method.

Thirdly, the complete method is applied with a Sawyer robot. This experiment shows the
positive effect of the parameter optimization step. The level of accuracy of the complete IHMT
method is then evaluated between 28.5 mm to 61.8 mm. The IHMT method gives reliable results.
The impact of the calibration errors is limited by the optimization step. However, the sensor
orientation errors and the modelling errors still degrade the IHMT estimation of the hand position
making the level of accuracy still too low for an application in a PbD process. The following
chapter proposes a solution to reach a sufficient level of accuracy.
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As discussed in the introduction (see Section 1.2.3), and considering the amplitude of the
sensors orientation errors and the modelling errors discussed in the last chapter (see Section
5.2.2), the IHMT method may hardly reach a sufficient level of accuracy for PbD. The method
proposed in this chapter aims at improving the accuracy of the human hand trajectory estima-
tion without increasing the complexity and the user difficulty in the context of the programming
by demonstration of a pick-and-place task. It consists in correcting the hand trajectory using
additional information. Vision-based technologies appear as a good candidate for that purpose.
As presented in the introduction, the development of a combined approach is motivated by the
complementarity between vision and inertial technologies. Vision-based technologies are often
more accurate than inertial sensors, but inertial-based technologies are easier to implement and
use. For the sake of simplicity, it is proposed to track by vision the environment instead of the
teacher. In this way, we avoid many difficulties encountered with the use of vision systems for
human motion tracking (see Section 1.1.3). In addition, a vision system is often necessary in
PbD applications to track some elements in the task workspace. Hence, such approach does not
necessarily require additional hardware. Pick-and-place applications being the targeted context
in this work, tracking the environment consists at least in tracking the objects to be manipulated
in the environment. These objects can be the manipulated objects or the tools used by the teacher
like pliers or screwdrivers.

Vision-based methods for objects tracking have been recently reviewed in [24]. This subject
is not the main focus of this work and we shall simply assume that a vision system gives the
reliable positions of the objects but with a lower acquisition frequency than inertial data and with
occasional concealment. We also assume that the positions of the objects can be expressed with
respect to the same frame as the hand trajectory.

The method proposed in this chapter relies on positions of interest (POIs). A POI corresponds
to a static position linked to an action during the task. In the context of the demonstration of a
pick-and-place task, the action of picking an object is expected to generate two POIs: one POI
corresponding to the static hand position when picking the object and another POI corresponding
to the object position before the grasp. The correction of the hand POI – based on inertial
sensors – with the object POI – based on vision sensors – is expected to increase the accuracy
of the human hand trajectory when picking up the object. Thus, the human hand trajectory can
be corrected in this way to ensure a sufficient accuracy for specific actions. The rest of the
trajectory (which could include avoidance motion) may have a lower accuracy. The proposed
method, which shall be described in the second section of this chapter, relies on the 3 following
steps:

• Identification of positions of interest (POIs) in the hand trajectory and the object positions.
Since POIs correspond to static positions, they form a dense group of data points with
close spatiotemporal coordinates. They can be identified by searching clusters in their
spatiotemporal representations using a clustering method.

• Pairing hand POIs from inertial data to objects POIs from vision data corresponding to the
same action.

• Correcting the hand trajectory with the matched object POIs.

The first two steps can be solved using stat-of-the-art methods as explained in the section 6.1.
The third step involves more personal developments which will be presented in Section 6.4.
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6.1 State-of-the-art and selection of algorithms
The first two steps of the correction method are based on methods found in the literature and

adapted to our purpose. The first step, consisting in extracting the POIs from both hand and
object dataset, is based on clustering.

6.1.1 Clustering
The objective of a clustering method is to identify elements in a dataset that should belong to

the same group. Various solutions have been proposed in the literature and can be classified into
two categories: the hierarchical clustering and the partitional clustering [45, 103].

In hierarchical clustering methods, the data are “partitioned into levels in a hierarchical for-
mat” [45]. Two main approaches can be distinguished. The first one divides the complete set of
data into smaller clusters [66, 68]. The second one agglomerates data into clusters [119]. Ac-
cording to Ezugwu et al. [45], hierarchical clustering algorithms can be applied to any data type
but they present a lack of robustness to noise and outliers.

In partitional clustering methods the data are “organized into a nested sequence of groups
without any hierarchical structure”. This category includes methods such as EM-algorithms [77]
or the K-means algorithm [40] and its derivatives [18, 23]. The number of clusters to be detected
should be specified in advance. These methods are less sensitive to the initial conditions and they
are robust to noise but they are generally computationally expensive.

The IHMT hand trajectory is considered noisy due to the non-negligible level of errors mea-
sured in Section 5.3. It also present outliers since some points of the trajectory correspond to
non-static phases (like avoidance motions) and should not be involved in any POI and thus in
any cluster. Moreover, the demonstrations are supposed to last a few seconds or minutes, leading
to a moderate amount of data so that the computational cost of partitional clustering algorithms
will remain small. Therefore, partitional clustering algorithms appear more suitable for our ap-
plication.

Among the partitional clustering category, so-called density-based algorithms isolate the
dense areas that are separated by sparse areas as defined in [4, 19]. According to [45], “gen-
eration of the cluster this way enables the building of clusters with arbitrary shapes. Outliers
or noisy data points are naturally eliminated”. In particular, “the DBSCAN has a well-defined
cluster model with fairly low complexity”, still according to [45]. A number of interesting prop-
erties are confirmed by [14]. For this reason, the DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm [38] is selected in this work. This algorithm creates a cluster
from one or several core points (see Figure 6.1). A core point p1 is a point with at least MinPts
points within distance ε . The two parameters of the algorithm are then ε and MinPts. In our case,
the Euclidean distance is chosen to compute the distance between points. A point p2 within the
distance ε to p1 is called directly reachable from p1. A point p is considered reachable from p1
if a path [p1 , ... , pi , pi+1 , ... , p] exists in which pi+1 is directly reachable of pi. All core points,
directly reachable points and reachable points form a cluster. The points that are not reachable
from any core point are outliers and are not part of any cluster.
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FIGURE 6.1: Illustration of the principle of the clustering DBSCAN algorithm.

6.1.2 Pairing
Once the POIs are extracted thanks to the clustering algorithm, the second step consists in

associating some objects POIs to some hand POIs. During the demonstration, some objects can
be present in the scene but not manipulated, which could lead to POIs unrelated to any actions.
The teacher may observe stops during the demonstration that could also lead to POIs unrelated to
any relevant actions. Such POIs should not be associated with another POI. The pairing method
should be able to distinguish such cases.

The problem of pairing or matching points among two sets is largely documented in com-
puter vision with applications involving 2D points, 3D points, or spatiotemporal points. In [61],
the matching is solved by using the Haussdorff distance to quantify the similarity between two
different sets of points. In [105], the matching problem is solved by reordering a sequence of key
points thanks to a genetic algorithm. This method relies on the condition that the relative position
of any two points in adjacent area from two images is almost unchanged. It is therefore not appli-
cable in our context. In [131], for video treatment, each space-time key point is described based
on its surroundings. Thanks to this description, a putative set of pairs is created and the challenge
consists in eliminating the non-desired pairs. This approach can also be seen in [118] which com-
pares different algorithms to eliminate false pairs (RANSAC, K-nearest-neighbour graph, Graph
Transformation Matching); or in [108], where a convolutional neural network is used to charac-
terize 3D points. These methods are specific to image treatment (describing key points thanks
to their neighbourhood in the image for instance) and are difficult to transpose to the problem of
matching POIs. In [16], for shape recognition, the exact sets of points to pair are known so that
the problem boils down to an assignment problem solved by the shortest-augmenting-path-based
algorithm [65]. In our context, the exact number of pairs is not known, so that this method is not
applicable.

A variety of matching methods exist and the choice is generally guided by the application
and the final goal (geometry transformation in stereo vision, pattern recognition ...). Therefore,
we propose here a specific method for our application, which is inspired by elements seen in the
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other works. A distance function is used to estimate the similarities between POIs as in [61].
The matching problem is reduced to an assignment problem as in [16] by eliminating POIs that
should not be involved in any pairs.

The approach proposed in this work is based on an iterative process. At each step a hand or
an object POI is eliminated. The criterion to eliminate a POI is based on a specific time-space
distance function. The distance is computed from the modified spatial part of the hand POIs.
The spatial part of the hand POIs is modified by a geometric transformation. This geometric
transformation aims at bringing the subsets of hand POIs to pair closer to the object POIs to pair.
It is detailed later in Section 6.3. Identifying this transformation is a point-set registration (PSR)
problem widely documented, see Zhu et al. [144] and Maiseli et al. [90]. Since both sets of
hand and object POIs contain outliers (POIs that should not be involved in any pairs) and noise
(error on the IHMT hand trajectory), the kernel correlation based method [124] is selected for
our application.

The following three sections present the three steps of the method to correct the IHMT hand
trajectory with object positions measurements from the vision system.

6.2 POIs identification
A POI P is defined as a stationary position during the task. It is represented by a 3D position

P and two temporal components indicating the beginning s and the end e of the POI: P =
[s , P , e]. A POI is supposed to correspond to an action. It is considered that 2 actions cannot
occur simultaneously. Thus, the time interval of two POIs from the same trajectory (hand or
object trajectory) cannot overlap.

6.2.1 Time-space scaling
For POIs identification (as well as POIs matching), it is necessary to compare data spatially

and temporally. Two different actions during the task, which are represented by two different
POIs, could be at the same 3D position on the scene, but they should differ in time. Spatial and
temporal data having different physical units, their scaling should be carefully selected.

Considering a dataset Γ of N points Vi with i ∈ [1,N], where each point Vi is a vector of n
temporal and spatial components. For example, if a point Vi = (ti,Pi) has one temporal and 3
spatial components, n = 4. The gravity center G and the scale vector S are computed component-
wise as:

G =
1
N

N

∑
i=1

Vi (6.1)

S = [max
i
|Vi(1)−G(1)| , ... , max

i
|Vi(n)−G(n)|] (6.2)

Then, the scaled dataset γ = [v1 , ... , vN ] is composed of scaled points vi computed as

vi = [
Vi(1)−G(1)

S(1)
, ... ,

Vi(n)−G(n)
S(n)

] . (6.3)
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The object data recorded from the camera and the hand data recorded from IMUs present
different features. IMU sensors transmit a continuous flow of data but suffer from noise and
errors. On the other hand, the camera could be occluded during the execution of the task, result-
ing in an irregular data stream. In addition, objects being more static than human hand during
the demonstration, the recorded data is less noisy. Therefore, the DBSCAN algorithm to extract
POIs is applied differently to each dataset.

6.2.2 The object POIs
It is considered that the object detection and positioning have been obtained using a suitable

method. The 3D object positions with respect to the robot base frame are therefore known. It
can be recalled that the hand trajectory is also expressed with respect to the robot base frame.

Let us consider that Nob j objects are identified. For each object j ( j ∈ [1,Nob j]), its trajectory
Γ j is recorded. The trajectory Γ j, represented by N j 3D positions Pi and times ti with i ∈ [1,N j],
is noted:

Γ j = [ (t1 P1) , ... , (ti Pi) , ... , (tN j PN j) ]. (6.4)

Each trajectory Γ j is scaled and noted γ j. For each γ j, the DBSCAN algorithm is applied on the
scaled data and returns Nc clusters. The results of the DBSCAN being a list of indexes attached
to γ j, it can be directly transposed to the non-scaled data Γ j. So a cluster Ck (k ∈ [1,Nc] is made
of Nk points of Γ j:

Ck = [ (tu Pu) , ... , (tv Pv) ] (6.5)

An object POI Ok, associated to the cluster Ck, is computed as

Ok = [min([tu , ... , tv]) ,
1

Nk

v

∑
j=u

P j , max([tu , ... , tv])]. (6.6)

The set of extracted POIs depends on the value of the DBSCAN algorithm parameters (see
Section 6.1). A too high value of ε might miss some POIs and a too low value might create unnec-
essary POIs. For a better robustness, a low value of ε is preferred and a post-treatment to merge
close POIs is added. Let us consider two consecutive POIs Oj = [s j,P j,e j] and Ok = [sk,Pk,ek]
such as s j < sk. These consecutive POIs are temporarily close if sk < e j + tlimit , and spatially
close if ‖P j−Pk‖ < dlimit . So, two consecutive POIs Oj = [s j,P j,e j] and Ok = [sk,Pk,ek] spa-
tially or temporally close are merged as

Oj = [min([sk,s j]) ,
Pk +P j

2
, max([ek,e j])]. (6.7)

The motivation to merge the POIs when they are only spatially close comes from limitations of
the vision-based positioning method. Indeed, two POIs might be spatially close but not tempo-
rally close due to concealment issues. An object, manipulated later in the task, might be occluded
during the early actions. Thus, two POIs with the same 3D position but with distant temporal
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boundaries may correspond to the same action and should be merged. Finally, in the case of an
object manipulated twice, one POI is created corresponding to two actions: the first placing and
the second picking. In that case the POI is split.

6.2.3 The hand POIs
The clustering of the hand trajectory with the method described in Section 6.2.2 would be too

sensitive to the parameters ε and MinPts and would then detect unwanted POIs or miss others.
In order to make the POIs detection more robust, the DBSCAN algorithm is applied twice in a
different way.

First, the DSBCAN algorithm is applied on the scaled human hand trajectory Nε times with
different values of ε ∈ E with E = [ε1 , ... , εNε ], while MinPts is fixed. To each value εi (i ∈
[1,Nε ]), a set of potential POIs Pi is formed from the output of the DBSCAN algorithm in the
same way as for the object POIs as described in the previous section 6.2.2. The only difference
is that no post-treatment is applied. Then, the complete set P of all potential POIs is constructed
as

P= [P1, ... ,PNε

]. (6.8)

Secondly, P is scaled and noted p. The DBSCAN algorithm is applied again on p where a
point is then a 5-components vector. The clustering results are less sensitive to the parameters
values of the DBSCAN algorithm. A final hand POI Hk, corresponding to the kth cluster, is
computed from the Nk POIs [Pu , ... , Pv] belonging to this cluster. Hk is computed as

Hk = [min([su , ... , sv]) ,
1

Nk

v

∑
k=u

Pk , max([eu , ... , ev])]. (6.9)

Finally, a post-treatment is applied. First, the POIs from the set H are reordered consec-
utively, i.e., they are sorted chronologically according to their start time. Then, the POIs are
merged or separated according to their spatiotemporal distance. Considering two consecutive
POIs Hi and Hi+1 temporally close, i.e., si+1 < ei + tlimit :

• If Hi and Hi+1 are also spatially close, i.e., ‖Hi−Hi+1‖< dlimit , the POIs are considered
representing the same action. Both POIs are merged as

Hi = [min(si,si+1) ,
Hi +Hi+1

2
, max(ei,ei+1)]. (6.10)

• If Hi and Hi+1 are distant, i.e., ‖Hi−Hi+1‖> dlimit , the POIs represent different actions.
Since two actions cannot occur at the same moment, the POIs are differentiated. To differ-
entiate two POIs, two cases appear:

• If Hi+1 is temporally included in Hi, only ei is modified as ei = si+1− tlimit to elim-
inate the temporal overlap and prevent the suppression of the included POI Hi+1 as
illustrated in Figure 6.2 a.
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FIGURE 6.2: Illustration of the differentiation of the hand POIs.

• If the time intervals of Hi and Hi+1 are overlapping, i.e., si+1 < ei < ei+1, POIs are
modified proportionally to their duration (see Figure 6.2 b) as

T = ei− si+1

α =
ei− si

(ei− si)+ (ei+1− si+1)

Hi = [si , Hi , ei−αT − tlimit

2
]

Hi+1 = [si+1 +(1−α)T +
tlimit

2
, Hi+1 , ei+1]

(6.11)

(6.12)

(6.13)

(6.14)

This procedure is applied iteratively to the complete set Huntil the number of hand POIs can no
longer be modified. This post-treatment is detailed in Algorithm 2. Finally, as for object POIs,
POIs whose time interval e j− s j is lower than tlimit are discarded.
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Algorithm 2 : Post treatment of hand POIs
H is sorted
NH :=Number of POIs in H

Nh := 0
while Nh 6= NH do

i := 1
NH :=Number of POIs in H

while i < NH−1 do
if ei > si+1− tlimit and ‖Hi−Hi+1‖< dlimit then

Hi := [min([si,si+1]) , Hi+Hi+1
2 , max([ei,ei+1])]

Hi+1 is discarded
i := i+ 1

else if ei > si+1− tlimit and ei > ei+1 then
Hi := [si , Hi , ei+1− tlimit ]

else if ei > si+1− tlimit and ei < ei+1 then
T = ei− si+1
α = ei−si

(ei−si)+(ei+1−si+1)

Hi := [si , Hi , ei−αT − tlimit
2 ]

Hi+1 := [si+1 +(1−α)T + tlimit
2 , Hi+1 , ei+1]

end if
i := i+ 1

end while
Nh :=Number of POIs in H

end while

6.2.4 The parameters
The presented method requires the setting of several parameters values:

• DBSCAN algorithm parameters for objects POIs detection : εo and MinPtso,

• DBSCAN algorithm parameters for the first step of hand POIs detection : E and MinPtsh1,

• DBSCAN algorithm parameters for the second step of hand POIs detection: εh and MinPtsh2,

• the two thresholds for post treatment: tlimit and dlimit .

The selected values are presented in the next chapter (Chapter 7) describing the experimental
implementation of the method. Several considerations regarding the values of the parameters
are exposed in this section. The DBSCAN algorithm is applied on scaled data so that the same
values for the ε parameters can be used:

εo = εh = ε (6.15)

For the same reason, E is a list of value centered on ε . The number of values in E depends on
the quality of the hand trajectory. For a hand trajectory with low noise, the range of values of εi
in E can be small.
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The values of the parameters MinPts mainly depend on the data acquisition frequency. It
is assumed that the object detection and positioning method presents a frequency of acquisi-
tion lower than the inertial system due to the possible concealment. So, we require MinPtso <
MinPtsh1. Since the second part of the hand POI detection is not applied on the inertial data but
on a set of scattered POIs that presents similarities with vision data, the value of MinPtso can be
used for MinPtsh2:

MinPtsh2 = MinPtso. (6.16)

The value of the parameter dlimit can be adjusted based on the quality of the data. The noisier
the data, the higher dlimit should be. The parameter tlimit can be interpreted as the human reaction
time. It is commonly admitted that the mean human reaction time is approximately 250 ms. It is
considered that the minimum time interval between two actions is twice the mean human reac-
tion time, so tlimit is tuned to 0.5 s.

The pairing process, described in the next section, aims at pairing the POIs corresponding to
the same significant action of the task from each dataset Hand O respectively from the hand and
objects trajectories.

6.3 Pairing hand and object POIs
Let us consider two sets H (for the hand) and O (for the objects) containing respectively NH

and NO POIs. These two sets contain the POIs corresponding to the significant actions of the
demonstrated task: picking, placing, dropping, etc. They can also include POIs corresponding
to less relevant actions: initial or final hand positions, pauses observed by the teacher during the
demonstration in Hor non-manipulated objects in O. The method described in this section aims
at identifying the set P of NP pairs of POIs corresponding to the significant actions of the task
(see Figure 6.3). A pair Pi with i ∈ [1,NP] contains a hand and an object POIs: Pi = [Hj , Ok]
with j ∈ [1,NH ] and k ∈ [1,NO]. Since a POI may at most be involved in only one action, it
can belong to maximum one pair. The first step of this procedure consists in identifying the two
subsets of hand POIs and object POIs that are to be involved in the pairs. The second step creates
the pairs by assignment.

6.3.1 Identification of POIs to pair
The two sets of hand POIs H and object POIs O contain the subsets H∗ and O∗ and some

outliers Hout and Oout . H∗ and O∗ correspond to the significant actions and must be involved
in the pairs. The outliers Hout and Oout should not be in any pair. Recall that the associated
set of the 3D positions of the hand POIs and the objects POIs are denoted respectively H and
O. Similarly H∗, O∗, Hout and Oout are the sets of 3D positions of H∗, O∗, Hout and Oout . The
objective of this step is then to identify H∗ and O∗. The process is iterative, at each step, either a
hand POI or an object POI is removed from H and O until a certain condition is met.

The criterion to eliminate a POI is based on a specific space-time distance function d de-
scribed later. To facilitate the identification of the POIs to be discarded, d is applied on the
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FIGURE 6.3: Illustration of the pairing of POIs.

modified POIs H′. The modification concerns the 3D positions of the POIs to partially com-
pensate the error on the IHMT measurement. H is modified into H ′ with a global geometric
transformation THO. THO is the estimated transformation between H∗ and O∗. H∗ and O∗ corre-
spond to the same actions and are expected to have similar but noisy shapes. THO is estimated
from the sets H and O which contain some outliers Hout and Oout . Thus, the estimation of THO is
a point-set registration problem with noisy datasets that contain outliers. As presented in Section
6.1.2, the kernel correlation based method [124] is used to estimate THO. Once H ′ is computed
from H with THO, it is expected that the hand POIs H∗ are now spatially closer to their corre-
sponding object POIs O∗. Therefore, the space-time distance d between POIs is more relevant to
determine which POI should be discarded.

In the case of a task involving only one pick and place, a small amount of POIs is extracted.
With such a low amount of POIs, two subsets of POIs might have a more similar shape than H∗

and O∗. In this case, the kernel correlation based PSR method returns an irrelevant transforma-
tion as illustrated in Figure 6.4. To avoid this problem, some a priori information about the error
can be exploited. As explained in Chapter 2 and seen in Table 5.2, the sensor orientation errors
are mainly around the gravity direction which is the z-axis of the reference frame. Thus, the
transformation THO is limited to a 3D translation T = [Tx Ty Tz]T and a 1-DoF rotation Rz(θ ) of
angle θ around the z-axis.

One iteration of the process of identifying the POIs to pair then involves two steps: the
estimation of THO and the elimination of a POI based on the specific distance function d. These
two steps are detailed in the following.

Estimating THO

Let us introduce the kernel correlation function KC, based on a Gaussian kernel. Considering
the spatial component Oi and H j of two POIs Oi and Hj, the Gaussian kernel correlation function
KC(Oi , H j) is

KC(Oi , H j) = (2πσ
2)−N/2 exp(

−‖Oi−H j‖2

2σ2 ) (6.17)
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FIGURE 6.4: Irrelevant vs relevant estimation of THO with a low number of POIs.

with ‖.‖ the Euclidean norm and σ2 the variance. The transformation THO is estimated through
the minimization of the following cost function as in [124]

COST (O,H,THO) =

NO

∑
i=1

NH

∑
j=1

−KC(Oi,THO(H j)) (6.18)

with
THO(H j) = Rz(θ )H j +T. (6.19)

Then, the transformed hand POIs set H′ is computed by modifying the spatial component parts
of each POI as

H′j = THO(H j). (6.20)

Discarding a POI

The set of transformed hand POIs H′ and the set of object POIs O are scaled to h′ and o.
Let us introduce the distance function d(oi,h′j) between two POIs, illustrated in Figure 6.5 and
computed as

D1 = ‖[si , oi]− [s j , h′j]‖
D2 = ‖[ei , oi]− [s j , h′j]‖
D3 = ‖[ei , oi]− [e j , h′j]‖
D4 = ‖[si , oi]− [e j , h′j]‖

d(oi,h′j) = min([D1,D2,D3,D4])

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

An appropriate distance function is needed because of the intrinsic differences between the time
intervals of the hand and object POIs (see Figure 6.5). For example, the hand POI associated
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FIGURE 6.5: Illustration of the distance function d between the scaled POIs h′1 and o1. The
POIs are represented with only one spatial component.

to a pick action will have a time interval approximately as long as the action and centered on it.
However, the object POI could have a time interval greater than the action. If an object has been
stationary since the beginning of the demonstration, the POI time interval starts at the beginning
of the task and ends with the pick action. In this case, the object POI start time is irrelevant for
POI matching. Using the distance d and considering a scaled hand POI h′j, the value dmean(h′j)
is computed as

dmean(h
′
j) =

1
NO

NO

∑
i=1

d(oi,h′j) (6.26)

A hand POI whose dmean value is higher than kd is a candidate for elimination. Among all can-
didates, only the POI with the highest dmean value is discarded in the current step of the iterative
process. When no more hand POIs are candidates to elimination and if the two remaining sub-
sets of hand and object POIs have the same size, the iterative process stops. Otherwise, the POIs
elimination process continues. If NH > NO, the hand POI with the highest dmean value is dis-
carded (even if it is lower than kd). If NO > NH , for each remaining object POI oi, the dmean
value is computed similarly:

dmean(oi) =
1

NH

NH

∑
j=1

d(oi,h′j). (6.27)

The object POI with the highest dmean value is discarded. Once the two subsets of POIs have
the same dimension, the process stops. The complete process of discarding POIs is detailed in
Algorithm 3.
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Algorithm 3 : Discarding outliers POIs
NH :=Number of POIs in H

NO :=Number of POIs in O

while NH 6= NO or Dh > kd do
THO = [Rz(θ = 0),T = 1

N0 ∑
NO
i=1Oi− 1

NH ∑
NH

i=1Hi]
Optimization of THO by minimizing the function COST
for j← 1 to NH do

H′j = THO(H j)
end for
Scaling O to o

Scaling H′ to h′

[Dh, Ih] = max([dmean(h′1) , ... , dmean(h′NH )])
[Do, Io] = max([dmean(o1) , ... , dmean(oNO)])
if Dh > kd then

HIh is discarded from the set of hand POIs H
else

if NH > NO then
HIh is discarded from the set of hand POIs H

else if NO > NH then
OIo is discarded from the set of object POIs O

end if
end if
NH :=Number of POIs in H

NO :=Number of POIs in O

end while

Only 1 parameter, the threshold kd , intervene in the identification of the subsets to pair. It can
be tuned depending on the quality of the hand trajectory. If the hand trajectory presents a low
accuracy, kd has to be high enough to avoid rejecting some desired POIs. Conversely, the more
accurate the hand trajectory, the closer the hand POIs are to the object POIs and the lower kd can
be.

6.3.2 Assignment of hand and objects POIs
The previous step identifies the two subsets of hand and object POIs which has to be paired.

These subsets are noted H and O and contain the same number of POIs: NH = NO. The next
problem is an assignment problem. In this work, the Hungarian method [76] is used to solve it.
The method requires a cost matrix. The cost matrix M of size NH ×NO (or NP×NP where N p

is the number of pairs) represents the temporal distance between POIs and is computed as

Mi, j = dt(Hi,Oj). (6.28)
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with dt the temporal distance function between 2 POIs

D1 = ‖si− s j‖
D2 = ‖ei− s j‖
D3 = ‖ei− e j‖
D4 = ‖si− e j‖

dt(Hi,Oj) = min(D1,D2,D3,D4).

(6.29)
(6.30)
(6.31)
(6.32)
(6.33)

At the end of this procedure, a set of pairs P has been formed. This set of pairs can then be
used to correct the hand trajectory, as explained in the next section.

6.4 Correcting trajectory
The correction of the hand trajectory has two steps: a global correction of the trajectory to

partially catch up the error on the position of the human with respect to the robot, and a local
correction to catch up the errors due to the modelling errors and the calibration errors. The
global correction is applied on the whole trajectory. The local correction is applied at the specific
moments of the trajectory corresponding to the actions as picking or placing.

6.4.1 The global correction
The global correction consists in applying a transformation to the hand trajectory (see Figure

6.6). The transformation is represented by a 3D rotation R and a 3D translation T and is estimated
through the minimization of the following function e

e(R,T) =
NP

∑
k=1

‖Ok− (R Hk +T)‖2 (6.34)

with NP the number of pairs (let us recall that, at this step, NP =NO =NH). Then the transforma-
tion is applied to the complete human hand trajectory. Then, a local correction of the trajectory
is applied.

6.4.2 The local correction
This step consists in the local modification of the hand trajectory at and around the paired

POIs. The aim is to make the hand trajectory fit the object positions measured using the vision-
based system (see Figure 6.7).

The IHMT hand trajectory Γ is modified according to the pairs of POIs P. For each pair
Pi = [Hj,Ok], the 3D positions of the trajectory Γ between the temporal components s j and e j
of the hand POI Hj is replaced by the spatial part Ok of the object POI Ok.

In a second step, the hand trajectory is smoothed around each POIs. Let us consider that Γk
is the part of the trajectory from the object POI Oa belonging to the pair Pc = [Hb,Oa] and which
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FIGURE 6.6: Illustration of the global correction of the hand trajectory based on pairs of POIs.

finishes at the next object POI Ou from the pair Pw = [Hv,Ou]. Γk contains N 3D points between
Oa and Ou:

Γk = [(eb Oa) , (t1 P1) , (t2 P2) , ... , (tN−1 PN−1) , (tNPN) , (sv Ou)]
T . (6.35)

To avoid abrupt motions between Oa and P1, and between Pn and Ou, f and g points are discarded
in Γk:

Γ∗k = [(eb Oa) , (t f+1 P f+1) , (t f+2 P f+2) , ... , (tn−g−1 Pn−g−1) , (tn−g Pn−g) , (sv Ou)]
T .

(6.36)
The values for f and g are proportional to N and computed as

f = bk f ×Nc
g = bkg×Nc

(6.37)
(6.38)

where k f and kg are two coefficients lower than one. The two coefficients k f and kg are selected
based on the expected local corrections, e.g., for a high difference between the spatial parts
of the hand POIs and the object POIs, a high value for these parameters would be selected.
Finally, an interpolation is made on the motion part Γ∗k to create a smooth trajectory Γsmooth

k .
The locally corrected trajectory ΓCor is then the sequence of the interpolated motion part ΓCor =
[Γsmooth

1 , ... , Γsmooth
k , ... , Γsmooth

K ].
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FIGURE 6.7: Illustration of the local correction of the hand trajectory.

6.5 Summary
In the context of pick-and-place tasks, this chapter proposes a method to correct the estima-

tion of the hand trajectory from the proposed IHMT method thanks to vision-based measure-
ments of the manipulated objects. The process relies on positions of interest (POIs). A POI is a
5-component vector: 3 spatial components for a 3D position and 2 temporal components for the
beginning and end of the POI. The method presents 3 steps: extracting POIs, pairing POIs and
correcting the hand trajectory.

Extracting POIs in both inertial and vision datasets is performed using the density-based
clustering algorithm DBSCAN. Since the vision and inertial sensor data have different charac-
teristics, the application of the DBSCAN algorithm is different for each dataset. The pairing step
starts with an iterative process to discard POIs in both sets of object and hand POIs that should
not be involved in any pair. The second step is then an assignment problem solved by the Hun-
garian method. Finally, the hand trajectory is corrected, first globally, then locally. The global
correction aims at catching up the error in the positioning of the human with respect to the robot.
A transformation is computed from the pairs and applied to the hand trajectory. Then the hand
trajectory is locally corrected to fit to the position of the objects measured by the vision system.

The next chapter aims at evaluating the correction method presented here. It can be recalled
(see Section 1.1.2) that a demonstration is valid if it can be reproduced by the learner. Therefore,
one criterion to validate the correction method is the success rate of the robotic system to re-
execute the demonstration.
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This chapter presents the implementation and the assessment of the correction method pre-
sented in the previous chapter. The method corrects the IHMT estimation of the hand trajectory
with object positions measured from vision sensors.

7.1 Experiment on robot imposed trajectories
In this experiment, the method is applied on data already recorded for the experiment de-

scribed in Section 5.3.2. The human hand is guided by a robot undergoing imposed trajectories
(circular, 3D cross-shape, cube edges or hexagonal shape). The end-effector position estimated
from robot encoders measurement is considered as the environment observation and thus replaces
the vision-based estimation of the object positions. In this way, the measurement uncertainties
of a vision system are avoided. This experiment aims at a first quantification of the benefits of
the method by comparison with the previous results from Chapter 5.

7.1.1 Experimental setup
The reader is referred to Section 5.3 for a description of the experimental protocol. Some

pauses are present during the imposed trajectories which should be detected as POIs in both the
IHMT trajectory and the reference trajectory, making the application of the correction method
possible. Any object detection and positioning system has a certain level of inaccuracy that
would contribute to the error on the corrected trajectory. Using the robot’s trajectory as a ref-
erence and as an “objects observation” avoids the potential measurement errors of the vision
system. The accuracy of the corrected hand trajectory can be quantified and the benefit of the
correction method can be evaluated. It is recalled that the mean error values of the uncorrected
hand trajectory with respect to the robot base frame range from 28.5 mm to 61.8 mm.

Compared to Section 5.3, the sampling rate of the reference trajectory is reduced by a factor
of 10 for the present study. In this way, the resulting “objects observation” better match the char-
acteristics of a vision-based system.

The parameters of the correction method are defined as ε = 0.02 and E =[0.010, 0.012,
0.014, 0.016, 0.018, 0.020, 0.022, 0.024, 0.026, 0.028, 0.030]; MinPtsh1 = 10 and MinPtsh2 =
MinPtso = 2. The parameter tlimit is tuned to 0.5 s according to the method. The parameter
dlimit is chosen equal to 50 mm which is in the error range of the hand trajectory estimation. The
optimization problem is solved using the scipy.optimize library. The parameter kd is equal to 1,
and k f and kg are both equal to 0.1.

7.1.2 Results and discussion
The mean error on the corrected trajectory is computed as

ε =
1
N

N

∑
k=1
‖ROPcor

k −
ROProbot

k ‖ (7.1)

with R the robot base frame, ROPcor
k the 3D positions of the corrected IHMT hand trajectory and

ROProbot
k the reference 3D positions recorded by the robot’s encoders. The results are presented
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in Table 7.1 and Figure 7.1 shows the corrected trajectory for the “Cube 3” trajectory.

The circular trajectory should not be taken into account because no pairs of POIs were ex-
tracted (see the last 3 columns of Table 7.1). This is because no pauses are observed during these
trajectories unlike the other trajectories.

If the circular trajectory is thus excluded, Table 7.1 shows that the corrected trajectory has a
mean error between 11.9 mm and 20.8 mm which corresponds to an improvement between 58
% and 66 % with respect to the IHMT trajectory. Furthermore, the minimum level of error is
brought to 0.0 mm, which means that at some places of the trajectory, the corrected trajectory
perfectly matches the reference, as expected at the POIs. For 7 cases over 9, the maximum error is
smaller after the correction meaning that the global correction has improved the whole trajectory.

It can be mentioned that the mean error here is lower than the mean error estimated when
tracking the motion of a robot arm (see Section 5.1.2). During this experiment, the robot was
considered to be performing an undisturbed motion and the error on the trajectory was measured
between 27.7 mm and 47.7 mm and was attributed to the sensor orientation error. This shows
that the correction method is able to catch up not only the modelling errors and the calibration
errors but also the sensor orientation errors.

Trajectories

IHMT hand

trajectory error (mm)

Corrected

trajectory error (mm)

POIs

in the

reference

POIs

in the

hand

trajectory

Pairs

of

POIs
max mean min max mean min

Circle 1 82.6 46.5 9.3 82.6 46.5 9.3 1 0 0

Circle 2 110.6 41.1 12.9 80.0 41.1 12.9 0 0 0

Circle 3 106.4 49.0 10.8 106.4 49.0 10.9 0 0 0

Cross 1 99.8 53.1 3.0 86.5 19.8 0.0 9 9 9

Cross 2 96.7 83.9 8.0 101.4 20.5 0.0 9 9 9

Cross 3 95.9 44.5 12.2 74.4 19.0 0.0 9 9 9

Cube 1 148.9 76.1 5.1 124.1 20.0 0.0 8 8 8

Cube 2 140.2 60.8 11.2 114.3 17.7 0.0 8 8 8

Cube 3 128.5 51.4 5.0 186.7 20.8 0.0 8 8 8

Hexagone 1 139.0 52.8 15.0 132.6 11.9 0.0 7 7 7

Hexagone 2 137.5 61.9 23.4 112.15 14.5 0.0 7 7 7

Hexagone 3 124.0 48.3 14.2 118.6 14.3 0.0 7 7 7

TABLE 7.1: Mean errors on the IHMT hand trajectory before and after correction.

In the following sections, the proposed method is no longer evaluated in terms of accuracy
but in terms of success in the robot’s execution of the demonstrated task, which is a more relevant
criterion when evaluating a demonstration method for PbD.
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FIGURE 7.1: 3D representation of the hand trajectory before and after the application of the
proposed correcting method for the trajectory “Cube 3”.

7.2 Experiment on pick and place tasks
This experiment is conducted to evaluate the correction method in the context of pick-and-

place tasks targeted in this work. The correction method is now applied with real vision data. The
objects are equipped with ArUco markers to facilitate the estimation of their position. After the
execution of the task by the human, the manipulated objects are returned to their original position.
If the robot successfully reproduces the demonstrated task, the measured human trajectory is
considered sufficiently accurate.

7.2.1 Experimental setup
The equipment

The method is applied to a Sawyer robot from Rethink Robotic. A gun-shape tool is used
to reduce potentially disturbing fingers motion (see Figure 7.2 a). This tool includes an IMU
for hand orientation tracking and a button, activated by a trigger, to communicate with the robot
during the initialization procedure for inertial human motion tracking. The trigger also controls
a pinch at the tip of the tool to manipulate the objects during the demonstration. With the trig-
ger pressing the integrated button, the pinch states corresponding to the human hand states are
recorded. The robot end-effector is a 2-fingers gripper (see Figure 7.2 b) with an opening going
from 26 mm to 70 mm. The IMUs used in this work are the Xsens MTw Awinda sensors [15].
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FIGURE 7.2: Experimental setup: a) gun-shape tool, b) robot end-effector

The objects are 30 mm side cubes with an ArUco marker on the top side. The position of
the object is tracked based on the camera images using the library openCV [56]. The camera
used in this experiment is the black and white camera embedded in the wrist of the Sawyer robot.
Its resolution is 752 x 480 pixels. The camera inner parameters are directly given by the robot
software as well as the position of the camera with respect to the robot base frame. The positions
of the objects are first evaluated with respect to the camera frame and then easily transformed
with respect to the robot base frame.

The vision system accuracy

The manipulated objects being 30 mm wide and the open gripper being 70 mm wide. Such
configuration may tolerate up to a 20 mm inaccuracy on the positioning of the object. The
accuracy of the object positions estimation has been estimated. Two objects (A and B) placed on
the table are observed by the camera during approximately 60 seconds. The two sets pA and pB

of N measured positions, for objects A and B respectively, are recorded. The reference distance
dre f

AB between the objects is measured with a ruler. The distance between the objects estimated
from the vision system is computed as

dAB =
1
N∑

N

i=1
‖pA

i −pB
i ‖ (7.2)

and the standard deviation of each object position dataset is also computed:

σA =

√
1
N∑

N

i=1
‖pA

i − p̄A‖2

σB =

√
1
N∑

N

i=1
‖pB

i − p̄B‖2

(7.3)

(7.4)

with p̄A and p̄B the mean of the sets pA and pB. The error εAB of the distance between the 2
objects is computed as

εAB =
|dAB−dre f

AB |
dre f

AB

. (7.5)
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FIGURE 7.3: Illustration of the ArUco pose ambiguity with perspective projection [39].

The objects are arranged on the table in 22 different configurations with distances ranging
from 50 mm to 230 mm and covering as much of the observable area as possible (approximately
a 800 mm side square). Table 7.2 shows the error and the standard deviation. The maximum
value of the error εAB is 18.8 mm. As the columns σA and σB reveal, the estimation of the object
positions is noisy. A standard deviation between 3.6 mm and 23.1 mm is observed. This is mainly
due to a pose ambiguity with perspective projection of the ArUco markers [116] as illustrated
in Figure 7.3. This analysis shows that the object positioning algorithms are also expected to
introduce some errors, which are nevertheless reasonably small for the targeted application.

dre f
AB (mm) σA (mm) σB (mm) dAB εAB (mm) εAB (%)

200.0 5.2 3.6 206.0 6.0 3.0

200.0 10.1 10.1 205.5 5.5 2.7

200.0 4.8 4.5 204.4 4.4 2.2

230.0 9.8 9.0 241.4 11.4 5.0

230.0 12.1 13.8 241.6 11.6 5.0

150.0 15.9 13.7 144.6 5.4 3.6

150.0 18.8 16.8 140.1 9.9 6.6

150.0 21.1 19.6 137.7 12.3 8.2

150.0 19.3 19.3 135.1 14.9 9.9

100.0 15.7 17.4 106.4 6.4 6.4

100.0 16.5 16.5 107.0 7.0 7.0

50.0 19.0 18.4 49.6 0.4 0.7

50.0 10.9 9.9 49.9 0.1 0.2

50.0 10.8 10.3 44.8 5.2 10.4

50.0 6.8 5.8 44.4 5.6 11.2

50.0 16.3 16.6 44.9 5.1 10.2

50.0 21.2 19.3 45.7 4.3 8.7

230.0 16.8 17.2 234.2 4.2 1.8

230.0 19.2 19.7 234.4 4.4 1.9

230.0 19.5 20.0 234.6 4.6 2.0

140.0 19.2 23.4 158.8 18.8 13.4

140.0 23.1 22.3 142.6 2.6 1.9

TABLE 7.2: Error on the object positions estimation method.
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FIGURE 7.4: Criterion for the success of the task: a) targeted position, b) success, c) success,
d) fail.

The tasks

The tasks executed by the operator consists in moving one or more objects one or more times
in the observable area of the camera. After the demonstration of the task by the operator, the
objects are returned to their original positions marked on the table. Then the robot executes the
demonstrated task. The task is considered successful if the footprint of the objects (30 mm side
square) covers a part of their targeted final position, as illustrated in Figure 7.4. Such a tolerance
is reasonable considering to the level of accuracy of the vision-based estimation of the object
positions (see Table 7.2). The different tasks are listed in Table 7.3. The last column gives the
expected number of pairs or, in other words, the number of POIs corresponding to the relevant
actions. These values are deduced from the actions performed during the demonstration. For
instance, the first task consists in moving one object from a place to another. Thus, the task
contains one “pick” and one “place” which is expected to lead to 2 pairs.

Tasks properties Expected
Task objects objects objects number

number on moved moved of
table once twice pairs

1 1 1 0 2
2 2 1 0 2
3 2 2 0 4
4 3 0 1 4
5 3 2 0 4
6 3 2 1 8
7 4 2 0 4
8 4 4 0 8
9 4 3 1 10

10 4 2 2 12

TABLE 7.3: Tasks properties.

The parameter values are similar to those presented in the previous Section 7.1.1: ε = 0.02;
E =[0.010, 0.012, 0.014, 0.016, 0.018, 0.020, 0.022, 0.024, 0.026, 0.028, 0.030]; MinPtsh1 = 10;
MinPtsh2 = MinPtso = 2; tlimit = 0.5 s. Only the parameter dlimit is increased to 55 mm in order
to absorb the error from object positioning, and the two gains k f and kg are both chosen equal to
0.30.
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FIGURE 7.5: Hand and object trajectories for task 1.

7.2.2 Results and discussion
The results are presented in Table 7.4. The amount of extracted hand and object POIs is given

as well as the number of pairs. A “1” in the column “H” and “O” means that no necessary POI
is missing. A necessary POI corresponds to a relevant action for the task (picking, placing, etc.)
that should be corrected. The column “P” represents the success or failure of the pairing. If a
failure was observed in the columns “H” or “O” for a given task, the pairing is necessarily wrong.
The column “IHMT trajectory” represents the successes or failures of the robot to execute the
task from the human trajectory obtained only from inertial sensors, thus uncorrected. The last
column “Corrected trajectory” represents the same thing but using the corrected trajectory. Fig-
ure 7.5 shows the modified trajectory for the task number 1.

All executions of the task based on the non-corrected IHMT hand trajectory failed when al-
most all executions with the corrected trajectory succeeded. The correction is required to obtain
an exploitable estimation of the human motion.

With the corrected trajectory, all tasks have been successfully reproduced by the robot, with
the exception of task 8. For this task, a hand POI corresponding to the second picking action
was not extracted. Figure 7.6 illustrates this issue. It shows the 2D representation of the hand
trajectory on the first part a). The second part b) presents the POIs initially extracted by the
DBSCAN algorithm. The lower part c) shows the remaining POIs after the post-treatment. The
z-component of the hand trajectory between 17 and 18 seconds is low which indicates a picking
action (motion towards the table). However, no POIs has been created as can be seen in part b)
and c). The non-creation of the POIs at this moment may come from a perturbation in the trajec-
tory: the z-component and the y-component are not steady (see ellipses in Figure 7.6 a)). This
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FIGURE 7.6: a) 2D representation of the hand trajectory for the task 8, b) the extracted POIs
before post-treatment and c) after post-treatment. Focus on the second picking action (ellipses

in a)) and the corresponding missing POI (in b) and c)).

parasitic motion may come from a displacement of the human hand or may be artificially intro-
duced by the IHMT method. By decreasing the parameter of the DBSCAN algorithm MinPtsh1
to 8 (instead of 10), fewer data points are required to consider a cluster, and then a POI for this
picking action is created, leading to a successful execution of the task. This phenomenon reveals
a potential lack of robustness to parasitic motions during the demonstration.
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Task
number

NH NO NP H O P
IHMT Corrected

trajectory trajectory
1 4 2 2 1 1 1 0 1
2 7 4 4 1 1 1 0 1
3 7 4 4 1 1 1 0 1
4 7 6 4 1 1 1 0 1
5 7 5 4 1 1 1 0 1
6 14 8 8 1 1 1 0 1
7 8 6 4 1 1 1 0 1
8 12 8 8 0 1 0 0 0
9 17 10 10 1 1 1 0 1
10 18 12 12 1 1 1 0 1

TABLE 7.4: Successes and failures of the execution of the demonstration by the robot.

7.3 Experiment with tool tracking
Pick-and-place tasks cover a wide range of applications and many of them involve a tool

whose trajectory may be tracked by the vision system. Sometimes, the task requires to drop an
object. In this case, the object tracked by a vision device is attached to the hand at the drop
position. This drop position must be accurately estimated. It is therefore relevant to track the
tool or object attached to the hand using the vision system. We propose an experiment where
the tracked object is the gun-shape tool. In such applications, the data from the vision system
represent the same motion as the data from the inertial sensors: the position of the tip of the
gun-shape tool. The position of the tool from the vision system is more accurate but suffers
from concealment and presents a lower frequency of acquisition. In such cases, the problem is
to merge the inertial-based and the vision-based estimation of the same element. Some method
has been proposed for this specific problem and their suitability for PbD could be investigated.

7.3.1 Experimental setup
The position of the tip of the gun-shape tool is estimated from the detection of 4 ArUco

markers added on the tool (see Figure 7.7). Both the ArUco markers and the IHMT method are
used to localize the ball tip of the gun. The hand segment 3nCD of the human arm model takes
into account the geometry of the human hand holding the gun-shape tool. In case different tools
are used for different demonstrations – for instance if one switches from a drill to a screwdriver
between tasks – a discrepancy would occur between the tracked point by the IHMT method and
the tracked point by the vision system. In this case, the hand segment geometry 3nCD can be
automatically adapted by the optimization of the model parameters if the human-robot transfor-
mation estimation procedure is executed by the teacher holding the new tool. Furthermore, the
correcting method has also the potential to catch up this discrepancy.

A ZED camera from Stereolabs is used to track the tool (see Figure 7.8). The resolution is
set to its maximum: 2K, and the acquisition rate is 15 Hz. In order to estimate the position of
the tool with respect to the robot base frame, the positioning of the ZED camera with respect
to the robot base frame is necessary. In order to estimate it, before starting the recording of a
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FIGURE 7.7: Gun-shape tool with ArUco marker for tracking.

task, both the ZED camera and the robot via its wrist camera observe a large (200 x 200 mm)
ArUco marker placed on the table. Therefore, the transformation between the ZED camera and
the large ArUco marker as well as the transformation between the robot base frame and the large
ArUco marker are estimated. The transformation from the ZED camera to the robot base frame is
computed from these transformations. The tool being tracked by ArUco markers, the error on its
position is expected to be similar to the position of the cube evaluated in the previous experiment
(see Section 7.2.1 Table 7.2). The manipulated objects are the 30 mm side cubes described in the
previous section but without ArUco markers to avoid disturbing the tracking of the tool.

The parameter values of the method are the same as in the previous experiment: ε = 0.02;
E =[0.010, 0.012, 0.014, 0.016, 0.018, 0.020, 0.022, 0.024, 0.026, 0.028, 0.030]; MinPtsh1 = 10;
MinPtsh2 = MinPtso = 2; tlimit = 0.5 and dlimit = 55 mm and the two gains k f = kg = 0.30.

The features of the demonstrated tasks are detailed in Table 7.5. As in the previous experi-
ment, some objects are moved once or twice. The criterion for a successful task execution by the
robot is similar to that of the previous experiment (see Figure 7.4). In the previous experiment,
the non-manipulated cubes are detected by the vision system which can induce outliers POIs. In
this experiment, the non-manipulated cubes are replaced by larger objects (cans, drill) as obsta-
cles. Obstacle avoidance is then a new constraint to be fulfilled during the execution of the task
by the robot. If an obstacle is moved, the execution of the task is failed. The different tasks are
executed 3 times.

7.3.2 Results and discussion
The results are gathered in Table 7.6. The number of successes is again large in this context

(tracking tool and obstacle avoidance) which further demonstrates the efficiency of the proposed
method. Only, 3 executions failed, which are discussed below.

The 3rd attempt of task 4 failed due to a wrong set of object POIs. Figure 7.9 shows the
POIs for the hand and the objects before and after the post-treatment. The POIs are represented
as 3 horizontal lines. Each line represents one spatial component and the extremities of the lines
are the temporal components. The element “Px” (“x” being a number) is noted at the location
of a hand POI and an object POI to represent the xth pair. As it can be seen on this figure,
two temporally distinct object POIs are close spatially and merged as they should not be. The
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FIGURE 7.8: Setup for tool tracking experiment.
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Tasks properties Expected
Task objects objects objects number

number as moved moved of
obstacles once twice pairs

1 0 1 0 2
2 1 1 0 2
3 0 2 0 4
4 2 0 1 4
5 1 2 0 4
6 0 2 1 6
7 2 2 0 4
8 0 4 0 8
9 0 3 1 10

10 0 2 2 12

TABLE 7.5: Tasks properties for pick-and-place tasks with tool tracking.

sequence of actions consists in placing an object (20-23 seconds), move the tool to an avoidance
position above the table and hold that position (25-35 seconds), and pick up the same object
at the same position (35-38 seconds). In this case, the avoidance position is such that the tool
is not seen by the camera. As expected, one hand POI is created at the avoidance position but
no object POI. Consequently, two consecutive object POIs present a very close spatial position
(their distance is less than dlimit since the position is the same). These POIs are merged by the
object post-treatment leading to the failure of the pairing.

The 2nd attempt of the task 7 failed because no object POI is formed. This comes from
the failure of the DBSCAN algorithm to create clusters with the chosen parameters values. It
can be seen in Figure 7.10 as the distance with the next point on the scaled data is never under
0.02 (no-unit), the value of the parameter εo. By modifying the value of εo to 0.024 (no-unit) the
clustering method extracts 5 objects POIs, the pairing is successful as well as the execution of
the task. An explanation could come from the noise on the measurement from the vision system.
A high noise could create artificial distance between two positions of the gun tip which is higher
than the parameter ε of the DBSCAN algorithm. However, it reveals a sensitivity of the method
to this parameter.

The 2nd attempt of task 9 failed because of a missing hand POI as seen in Figure 7.11.
The 10th pair associates the wrong POIs. The 9th hand and object POIs correspond to a placing
action. Then a clearing movement with a pause in the middle is observed before picking up
another object (pair P11). However, a disturbing motion during the placing action results in an
unwanted hand POI at approximately 53 seconds. The pause during the clearing motion results
in an object POI and no hand POI. The pairing method creates the 10th pair by associating the
hand POI corresponding to the disturbing motion with the object POI corresponding to the clear-
ance position. If the 10th pair is manually discarded, the robot executes the task successfully. The
method fails to create a hand POI associated to the clearance position yet visible in the hand POIs
before post-treatment (see first and second draw of Figure 7.11). It can also be considered that
the method fails to discard the short unwanted POI resulting from the disturbed motion during
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FIGURE 7.9: Representation of the POIs (before and after post-treatment) for the hand and
the objects trajectories for attempt 3 of task 4. “Px” represent the pairs of POIs. In the bottom

figures, the post-treatment merges 2 POIs mistakenly.
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FIGURE 7.10: Distance to the nearest neighbour between data points of the scaled object
trajectory for the 2nd attempt of task 7. The green line represents the threshold parameter εo

of the DBSCAN algorithm.
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FIGURE 7.11: Representation of the POIs before and after post-treatment for the hand and the
object POIs for attempt 2 of task 9. “Px” represent the pairs of POIs. The second figure shows

the missing POI due to a post-treatment issue.
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Task
Attempt NH NO NP

success “1” or failure “0”
number H O P task

1 4 4 4 1 1 1 1

1 2 4 5 4 1 1 1 1

3 4 4 4 1 1 1 1

1 4 4 4 1 1 1 1

2 2 4 4 4 1 1 1 1

3 4 3 3 1 1 1 1

1 6 6 6 1 1 1 1

3 2 6 5 5 1 1 1 1

3 6 6 6 1 1 1 1

1 8 8 8 1 1 1 1

4 2 8 6 6 1 1 1 1

3 9 7 7 1 0 0 0

1 6 5 5 1 1 1 1

5 2 10 8 8 1 1 1 1

3 6 6 6 1 1 1 1

1 11 11 11 1 1 1 1

6 2 11 11 11 1 1 1 1

3 11 11 11 1 1 1 1

1 6 6 6 1 1 1 1

7 2 5 0 0 0 0 0 0

3 8 8 8 1 1 1 1

1 10 10 10 1 1 1 1

8 2 10 10 10 1 1 1 1

3 14 11 11 1 1 1 1

1 15 13 13 1 1 1 1

9 2 12 12 12 0 1 0 0

3 14 11 11 1 1 1 1

1 17 17 17 1 1 1 1

10 2 19 19 19 1 1 1 1

3 16 16 16 1 1 1 1

TABLE 7.6: Successes and failures of the execution of the demonstrated tasks by the robot

the pairing step. The disturbing motion can be observed in Figure 7.12. This motion may come
from an IMU sensor issue and not from a human disturbing motion since it is not present in the
data from the vision device.

The analysis of the failures in this experiment reveals a lack of robustness in some special
cases: two POIs can be merged by mistake, the method can be sensitive to the parameters values,
and some POIs can be mistakenly eliminated. However, the success rate is significant enough to
confirm the usefulness of the method in the context of tool tracking.
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FIGURE 7.12: a) The IHMT trajectory and b) the vision-based tool trajectory at the picking
action. Figure a) shows the disturbing motion (only present in the IHMT trajectory) in the

IHMT trajectory that lead to the creation of an extra hand POI.

7.4 The correcting method and the actions
The correcting method successfully improves the accuracy of the IHMT method and belongs

to the step of gathering the dataset in the PbD process (see the introduction Section 1.1.1).
The correcting method also extracts some information about the actions of the task and thereby
contributes to the second step of PbD called learning the task. This second step consists in
“understanding” the task from the demonstrations. This includes the extraction of information
about the actions from the dataset [11, 20, 21, 31]. Let us develop this idea.

What does it mean to extract the actions for a pick-and-place problem? A picking or placing
action can be described as the specific position of the hand regarding an object state coupled
with a change of the gripper state (closing or opening). A pair of POIs associates an object key
position with a hand key position. It only misses the gripper change of state to fully describe a
picking or placing action. Therefore, a pair of POIs can be considered as a partial representation
of an action Al .

Thus, the proposed correction method has a double impact: it makes the estimation of the
hand trajectory precise enough to be used in the PbD process (as seen in this chapter) and it
emphasizes the actions in the demonstration dataset. The correction of the hand trajectory forces
the hand position to coincide with a specific object position. The quality of the dataset dl is
improved, i.e., the actions Al are better encoded into the dataset dl .

The proposed correction method is presented here as a part of the step of gathering the dataset.
However, it can also be considered that this method extracts task features and can be considered
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as part of the step of learning the task. In the next chapter, the proposed demonstration acquisi-
tion method is evaluated in a complete PbD process. For a greater robustness, the implementation
of the learning the task algorithm will rely on the POIs when it is possible.

7.5 Summary
The approach for correcting the IHMT hand trajectory with vision-based object positioning

consists in 3 steps : extracting POIs (positions of interest), pairing POIs and modifying the hu-
man trajectory. The POIs correspond to the stationary moment during the demonstration due to
actions such as picking up and placing objects. This chapter presents the experimental evaluation
of the proposed correction method.

First, the correction method is applied without any vision device. The objective is to evaluate
the gain in accuracy of the corrected trajectory of the human hand. The robot imposes different
trajectories to the human based on the contact interface between its end-effector and the gun-
shape tool held by the human. The estimation of the robot trajectory through its encoders is used
as reference and also as input data for the correction. This experiment shows that the correction
method has a beneficial impact on the accuracy of the human hand trajectory estimation. The er-
ror is between 28.5 mm and 61.8 mm without any correction and between 11.9 mm and 20.8 mm
after correction. It can be mentioned that the IHMT method applied on a robot arm performing
undisturbed motions presents an error level between 27.7 mm and 47.7 mm (see Chapter 5). It
can be concluded that the correction method catches up some part of the error on the hand tra-
jectory not only due to the modelling errors and the calibration errors but also due to the sensor
orientation errors.

Then, the method is tested with several pick-and-place tasks. The objects used are 30 mm
side cubes. An ArUco marker is placed on each cube to facilitate their tracking. The camera
used is a black and white camera integrated in the robot. The method has been tested with dif-
ferent pick-and-place tasks where one or several objects are manipulated once or several times.
The robot was able to execute all but one of the demonstrated tasks, which demonstrates that the
method is suitable in the context targeted in this work.

Finally, the method is exploited to track the gun-shape tool carried by the human. Indeed,
some pick-and-place tasks may involve tools or dropping positions where the object to track is
held by the human. For 27 demonstrations over 30, the robot was able to successfully reproduce
the task. The 3 failures reveal that the method might be sensitive to some parameters values, and
can mistakenly manage POIs and pairs in some cases.

The potential of this approach based on the complementarity of vision and inertial data was
demonstrated. Furthermore, it was shown that the robot is able to reproduce the demonstrated
task making the complete method suitable for PbD.

The correction method can be seen as a way to extract partial representation of actions in the
demonstrations. It is then a step towards the second part of a PbD process: learning the task. The
different steps of a PbD process (gathering the dataset and learning the task) can influence each
other. The next chapter aims then at evaluating the proposed method in a complete PbD process.
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The objective of this chapter is to implement and evaluate the proposed corrected IHMT
method in a complete PbD process, i.e., from the acquisition of demonstrations to the robot
execution of the task in new configurations. Several methods have been proposed to solve the
learning the task part and could have been considered here [8, 29, 34, 109]. The probabilistic
approach developed by Calinon et al. [29] is selected and detailed in this chapter. Then the setup
and the taught task are described. The same task is also taught using kinesthetic demonstra-
tions. The results of the experiment are discussed and the proposed corrected IHMT method is
compared to kinesthesy.

8.1 Learning the task: the probabilistic approach
The probabilistic approach developed by Calinon et al. [29] is selected. The authors test their

method on tasks for the manipulation of objects that present similarities with the applications
targeted in this work. This approach relies on several demonstrations encoded using a Gaussian
Mixture Model (GMM). From the GMM, the task is then generalized using a Gaussian Mixture
Regression (GMR). Then, a metric of imitation is determined to measure the performance of a
behaviour to reproduce the task. It is based on the results of the GMR and the initial conditions
of the new task configuration. From the optimization of the metric of imitation, a command is
computed and sent to the robotic system in order to perform the task. The process is summarized
in Figure 8.1. The implementation in this work of the probabilistic approach contains several dif-
ferences from the original work. They are explained throughout the presentation of the method in
this section. For a detailed explanation of the probabilistic approach, the reader may refer to [29].

The task studied in this chapter is to pick up a cube from the table and drop it into a jar. This
task features a dropping position that has not yet been encountered in the previous experiments
in this work.

8.1.1 Adapting the dataset
The first step of the probabilistic approach is to adapt the dataset used in the Gaussian process.

Consider that Nd demonstrations d have been performed by the teacher. The kth demonstration is
denoted dk with k ∈ [1,Nd]. Each demonstration dk consists of Ntk time steps tk

i with i∈ [1,Ntk],
with k ∈ [1,Nd]. Ntk may vary with k since each demonstration does not last the same amount
of time. During the demonstrations, for each time step ti, Nv variables V j with j ∈ [1,Nv] are
recorded. Each variable contains one or more components. For instance, if V j is a position,
it contains 3 components noted V jx, V jy and V jz. In the following, the matrix V j designates

FIGURE 8.1: Graphical summary of the probabilistic approach [29] for the step of learning
the task in a PbD process.



114 Chapter 8. Implementation of the corrected IHMT method in a PbD process

FIGURE 8.2: Structure of the dataset for several demonstrations used for the probabilistic
approach [29].

the variable values for all the time steps. The values of the components of a variable V j for a
given time step is noted by the vector V j(ti). Let us consider that No objects are involved in the
task. The initial object positions Ol with l ∈ [1,No] are recorded. In addition, some variables
are computed from the recorded variables and the initial positions of the objects. Figure 8.2
represents the demonstrations and the variables. In their work, Calinon et al. [29] typically
perform the demonstrations by kinesthesy, therefore, one of the recorded variables is the position
of the robot in the form of joint angles. For the targeted pick-and-drop task, each demonstration
dk has the following variables:

• T : the time which is a Ntk×1 vector. Each time step is noted ti with i ∈ [1,Ntk].

• H : the IHMT estimation of the position of the human hand with respect to the robot frame
and corrected by the object observations using the correction method. The variable Hk

having 3 components, it is a Ntk×3 matrix.

• HC : the distance between the hand position during the trajectory and the initial position
of the cube C0k. HCk is computed as HCk(ti) = Hk(ti)−C0k ∀ti ∈ T k. HC is a Ntk× 3
matrix.
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FIGURE 8.3: Illustration of the temporal alignment of 2 demonstrations with 1 variable of 1
dimension.

• HJ : similarly, the distance of the hand to the initial position J0 of the jar. HJk is a Ntk×3
matrix.

• G : The hand state which is a 1-component variable of Ntk time steps. Gk(ti) is either 0 or
1 corresponding respectively to the gripper open or close.

The dimensionality of the dataset can be high and difficult to manage. For instance, the
configuration of a dual-armed robot in the form of joint angles may contain up to 15 components.
Moreover, some components of a variable can be less relevant. For instance, the torso of a
humanoid robot can be barely used if the objects are close enough to the robot. Calinon et al.
[29] then propose to project the dataset into a latent space. The authors recommend applying
a principal component analysis (PCA). Applying a PCA to the variables V j with j ∈ [1,Nv]
transforms them into the variables Vj ( j ∈ [1,Nv]) of a lower dimension. The relation between
V j and Vj is written as

V j−V̄ j = A j Vj (8.1)

with V̄ j the means of V j and A j represents the transformation matrix. In [29], the Gaussian pro-
cess is applied on the projected variables Vj. The computed robotic command is transformed
back into the interpretable variables thanks to A j. However, in our context, the 4 variables H,
HJ, HC and G contain together 10 components which is an acceptable dimensionality. The pro-
jection into the latent space is then not necessary and simply skipped. The Gaussian process is
applied on the regular variables V j.

Finally, the dataset is temporally aligned as illustrated in Figure 8.3. Since the demonstra-
tions are performed without any temporal constraints, the same action among the demonstrations
does not necessarily correspond to the same time steps. In order for the Gaussian process to be
relevant, the demonstrations must be temporally aligned. To do so, a Dynamic Time Warping
(DTW) is performed. During this step, only the temporal variable T k with k ∈ [1,Nd] of the
demonstrations is modified and become all identical. It is proposed here to take advantage of the
POIs for the temporal alignment. All the extracted hand POIs are considered and not only the
POIs involved in the pairs. It is considered that all the demonstrations have the same amount of
hand POIs NPOI . For each demonstration dk, the temporal components of the POIs are gathered
into the time actions vector Tk

actions as

Tk
actions = [s1,e1, ...,sNPOI ,eNPOI ]. (8.2)
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FIGURE 8.4: Illustration of the temporal alignment method based on the POIs.

The time steps in Tactions with the same index correspond to the same moment in all demon-
strations. For instance, let us consider the moment when the teacher’s hand arrives at the drop
position. The time step corresponding to this moment is called tdrop. It is present in all the
demonstrations but has a different value: t1

drop 6= t2
drop... 6= tk

drop... 6= tNd
drop. The time tdrop is the

first temporal boundary of the POI created at the drop position. It can be found in all the Tk
actions

vectors at the same index u: Tk
actions(u) = tk

drop∀k ∈ [1,Nd]. The temporal variable T 1 and the
time actions vector T1

actions of the first demonstration are used as reference and the other demon-
strations are aligned to it. The temporal alignment of the demonstration dk with k ∈ [2,Nd]
consists in modifying the temporal variables T k as illustrated in Figure 8.4. Let us consider two
consecutive elements of Tk

actions: Tk
actions(u− 1) and Tk

actions(u). The temporal variable T k is
“stretched” or “compressed” between the time step tk

i = Tk
actions(u− 1) and tk

j = Tk
actions(u) in

order for tk
i and tk

j to fit with the time steps t1
m = T1

actions(u−1) and t1
n = T1

actions(u). Algorithm
4 describes this process.

Algorithm 4 : POIs based temporal alignment of demonstrations
for k← 2 to Nd do

for u← 2 to 2×NPOI do
gap = Tk

actions(u)−T1
actions(u)

I = indexes of T k such as Tk
actions(u−1) ≤ T k(I) ≤ Tk

actions(u)
for i← 1 to Card(I) do

T k(I(i)) = T k(I(i))+ i× gap
Card(I)

end for
end for

end for

After the temporal alignment, each demonstration dk has its temporal variable T k starting
and ending with the same values and the actions (picking, dropping ...) start and end at the same
time. However, the number of time steps Ntk in each demonstration remains unchanged. For the
next step, the demonstrations and variables are collected in a M×N matrix D. D is constructed
by concatenating all the aligned demonstrations as described in Figure 8.5. M is the number of
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FIGURE 8.5: Structure of the dataset D after temporal alignment of the demonstrations.

components of the variables, including time. The 3 variables H, HJ and HC have 3 components
and the time and G are both one-dimensional vectors, so M = 11. N is the amount of data points
in all the demonstrations: N = ∑

Nd
k=1 Ntk.

8.1.2 Modeling and generalizing the task
First, a model of the task, composed of a mixture of Gaussians, is computed from the tem-

porally aligned demonstrations. This Gaussian Mixture Model (GMM) consists in several
multivariate Gaussians representing the dataset D and thus reflecting the task constraints. It is
illustrated in the upper part of Figure 8.6. Ng Gaussians are considered in the GMM. The number
Ng of Gaussians can be optimized by trial and error. In their work, Calinon et al. [29] conducted
experiments where the values of Ng are comprised between 4 and 7. The means of the Gaussians
µµµ = [µ1 , ... , µu , ... , µNg] and their covariances σ = [σ1 , ... , σu , ... , σNg] are estimated. A
first guess of µµµ and σ is given by clustering the dataset D. The authors advise using a k-means
algorithm. Then, the values of µµµ and σ are optimized using the Expectation-Maximization algo-
rithm. It is proposed here to take advantage of the POIs again to estimate the GMM parameters.
The temporal action vector T1

actions already segments all the demonstrations in a relevant way. It
is recalled that T1

actions is consistent with all the demonstrations after temporal alignment. Since
T1

actions is built from POIs and POIs are key positions related to actions in the task, the part of
the demonstrations between two elements of T1

actions is considered as an action (motion toward a
position, picking up, dropping, avoidance motion...). Let us consider the uth action between the
moments T1

actions(u) and T1
actions(u+ 1) (see Figure 8.6). The list I gathers the Nu indices of D

corresponding to this action in all the demonstrations. The mean µµµu is a M-component vector. It
corresponds to the uth Gaussian and it is computed from the dataset D as

µµµu =
1

Nu ∑
i∈I

D[:, i] . (8.3)
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FIGURE 8.6: Illustration of the Gaussian Mixture Model.



8.1. Learning the task: the probabilistic approach 119

FIGURE 8.7: Illustration of the Gaussian Mixture Regression.

The covariance matrix σu is computed as

σu = cov(D[:, I]) . (8.4)

For each action u, a Gaussian is identified in this way. This set of Gaussians constitutes the GMM.
The number of Gaussians Ng in the GMM is then Ng =Card(T1

actions)−1 = 2×NPOI−1. No
optimization of the parameters µµµ and σ is necessary since the time action vector T1

actions already
segments the task in a relevant way.

Secondly, from the GMM, the task is generalized through a Gaussian Mixture Regression
(GMR). The GMR returns a single generalized time-dependent signal for each variable of the
task as well as the time-dependent covariance matrices representing the relation across the dif-
ferent variables. The results of the GMR encapsulates the essential task features. The results of
the GMR is illustrated in Figure 8.7. In this regression, the query points are the time steps of
the temporal variable T 1. The results of the GMR are the means V̂ (ti) and a set of covariance
matrices σ̂(ti) corresponding to a set of multi-variable Gaussians at each time step ti of T 1. Thus,
the resulting variables V̂ at time step ti in T 1, is V̂ (ti) = [V̂ 1(ti), ... ,V̂ j(ti), ... ,V̂ Nv(ti)]T and
represents the means of the multi-variables Gaussian. In our context the GMR returns Ĥ, ĤC,
ĤJ and Ĝ as well as the covariance matrices σ̂ . For each time step ti from the time vector T 1, a
multi-variable Gaussian is associated for which the means of the multi-variables Gaussian is

V̂ (ti) = [Ĥx(ti) Ĥy(ti) Ĥz(ti) ĤCx(ti) ĤCy(ti) ĤCz(ti) ĤJx(ti) ĤJy(ti) ĤJz(ti) Ĝ(ti)]T . (8.5)

The covariance matrix for these 10 components is given by σ̂(ti).
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Once the task is generalized by the GMR, the command for the execution of the task by the
robotic system under a new configuration can be computed. The command is computed by an
optimization process described in the next section.

8.1.3 Execution of the task
The goal is to compute the command sent to the robot to execute the task in a new config-

uration. It consists of a Cartesian trajectory of the gripper and a command to close or open it.
The command is computed from the minimization of a metric of imitation given the object po-
sitions in the scene. This metric of imitation is a measure that evaluates the task reproduction
performance of a command and should take into account the new task configuration and the task
constraints encapsulated in the GMR results. The metric of imitation takes the form of a cost
function COST .

Let us considered a new task configuration never encountered in the demonstrations. Accord-
ing to the current context, a new configuration corresponds to the new initial positions O∗l with
l ∈ [1,No]. These positions are assumed to be known by the robotic system. The objective is
to compute the desired variables V j∗ with j ∈ [1,Nv] that can be used to command the robotic
system to execute the task in the new configuration. The cost function COST is defined as

V̂ j = [V̂ j(t1) , ... , V̂ j(tNt1)]T

COST =
Nv

∑
j=1

(V j∗−V̂ j)T WV j (V j∗−V̂ j)

(8.6)

(8.7)

It can be recalled that V̂ and σ̂ are the generalized variables resulting from the GMR and which
encapsulate the task constraints. WV j for j ∈ [1,Nv] are the weighting matrices which represent
the time-varying relative importance of the variables during the task. The desired variables V j∗

are computed through the minimization of the cost function COST under some constraints.

In our context, the computed variables to command the robot are the hand/gripper H∗ trajec-
tory and the gripper state G∗. Since the gripper state is a discrete variable, the value for the task
execution is computed directly from Ĝ as

G∗(i) =

{
1 , if Ĝ(i) > kg

0 , if Ĝ(i) ≤ kg
(8.8)

with kg is arbitrarily set at 0.5. The initial object positions C0∗ and J0∗ of the new task con-
figuration intervene in the computation of H∗ developed in the following. To compute H∗, the
goal is to minimize the gap between the generalized (“ ˆ ”) and the desired (“ ∗ ”) variables for
the position of the hand H, the distance HC between the hand and the cube and the distance
HJ between the hand and the jar and taking into account the new initial object positions. In the
context of this work, the cost function COST is

COST = (H∗− Ĥ)TWH(H∗− Ĥ)+ (HJ∗− ĤJ)TWHJ(HJ∗− ĤJ)

+ (HC∗− ĤC)TWHC(HC∗− ĤC)
(8.9)
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As advised in [29], WH , WHJ and WHC are the weights computed from the covariances σ̂ resulting
from the GMR. σ̂(ti) is a M−1×M−1 matrix (the temporal variable is the query points of the
GMR). The weights at time step ti are computed as

WH(ti) =
1

tr(σ̂(ti))

 σ̂(ti)11 0 0
0 σ̂(ti)22 0
0 0 σ̂(ti)33


WHJ(ti) =

1
tr(σ̂(ti))

 σ̂(ti)44 0 0
0 σ̂(ti)55 0
0 0 σ̂(ti)66


WHC(ti) =

1
tr(σ̂(ti))

 σ̂(ti)77 0 0
0 σ̂(ti)88 0
0 0 σ̂(ti)99

 .

(8.10)

(8.11)

(8.12)

The desired variables are computed from the minimization of the metric COST under con-
straints related to the definition of the variables HC and HJ: HJ∗ = H∗ − J0∗ and HC∗ =
H∗−C0∗. As proposed by Calinon et al. [29], the metric COST can be analytically minimized
using the Lagrange multipliers method. So, the Lagrangian L is defined as

L(H∗,HJ∗,HC∗,λ1,λ2) =COST +λ
T
1 (HJ∗−H∗+ J0∗)+λ

T
2 (HC∗−H∗+C0∗) (8.13)

In our context, only the variable H∗ is useful for the execution of the task by the robot. H∗ can
be computed by finding a minimum of L which leads to the system

∂L
∂H∗ = 0

∂L
∂HJ∗ = 0

∂L
∂HC∗ = 0
∂L
∂λ1

= 0
∂L
∂λ2

= 0

. (8.14)

So, 

−2WH(H∗− Ĥ)−λ1−λ2 = 0
−2WHJ(HJ∗− ĤJ)+λ1 = 0
−2WHC(HC∗− ĤC)+λ2 = 0
HJ∗−H∗+ J0∗ = 0
HC∗−H∗+C0∗ = 0

. (8.15)

Thus, the Lagrange multipliers are

λ1 = 2WHJ(HJ∗− ĤJ)

λ2 = 2WHC(HC∗− ĤC)

(8.16)

(8.17)

which leads to,

WH(H∗− Ĥ)+WHJ(HJ∗− ĤJ)+WHC(HC∗− ĤC) = 0 (8.18)
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Furthermore, using HJ∗ = H∗− J0∗ and HC∗ = H∗−C0∗, we obtain

WH(H∗− Ĥ)+WHJ(H∗− J0∗− ĤJ)+WHC(H∗−C0∗− ĤC) = 0 (8.19)

and finally,

H∗ = (WH +WHJ +WHC)
−1(WHĤ +WHJ(J0∗+ ĤJ)+WHC(C0∗+ ĤC)) (8.20)

Consequently, the complete gripper trajectory H∗ taking into account the new task configuration
is computed from Eq. (8.20). The trajectory H∗ and the gripper change of state G∗ are used
to command the Sawyer robot. The complete setup of this experiment is described in the next
section.

8.2 The experiment

8.2.1 The setup
In this study, the task taught by PbD is to pick up a cube from the table and drop it into a jar.

The object dropped in the jar is a 50 mm side cube with an ArUco marker on it. The distance
between the fingers of the gripper is 60 mm when it is open and 40 mm when it is closed. The jar
is an empty 80 mm diameter cylinder with 2 ArUco markers attached to it (see Figure 8.8. The
two markers locate the center of the top face of the cylinder. One marker is in principle sufficient
but a second one is added for a better robustness on the jar position. The vision system used in
this experiment is the same as described in Section 7.3 based on a ZED camera. The setup is
illustrated in Figure 8.9.

This task involves a dropping position, i.e., a position where the cube is held then dropped
from above the jar. At this position, the object must be seen by the camera in order to correct
the IHMT hand position. The gun-shape tool described in the previous chapter limits disturb-
ing finger motion but often hinders the detection of the ArUco marker when the object is held.
Therefore, the gun-shape tool is abandoned and the teacher manipulates the object directly with
his/her own hand. The cube can be held in a way that the ArUco marker is seen at the drop
position. The sensor to estimate the hand orientation is directly attached to the top of the human
hand (see Figure 8.9). The tracked point is the contact point between the thumb and the index

FIGURE 8.8: The objects used in the task: the jar (left) and the cube (right).



8.2. The experiment 123

FIGURE 8.9: Setup of the demonstrations by the proposed corrected IHMT method.

finger. The human arm segment vectors, directly measured on the teacher, are 1nABn = [330 0 0],
2nBCn = [280 0 0], 3nCDn = [100 50 −100].

8.2.2 The demonstrations
Six demonstrations, shown in Figure 8.10, have been recorded with the proposed corrected

IHMT method, as illustrated in Figure 8.9. The different characteristics of the demonstrations are
shown in Table 8.1. All the demonstrations present four hand POIs corresponding to the initial
position, the picking up position, the drop-off position and the final position. Two POIs related
to the cube are extracted and used to correct the IHMT hand position at the picking and the drop-
ping positions. The last column of Table 8.1 presents the duration of the demonstrations without
including the initialization procedure nor the procedure to estimate the human-robot transforma-
tion. All demonstrations are successfully reproduced by the robotic system after their recording
to ensure their adequacy for PbD. The 6 positions (A, B, C, D, E and F) marked on the table (see
Figure 8.11) are used for the purpose of reproducibility and verification. These marks are not
known and are not exploited by the robotic system.

Demonstrations Cube position Jar position NH NO NP time (s)
1 A C 4 2 2 7.99
2 C A 4 2 2 16.23
3 B D 4 2 2 7.41
4 D B 4 2 2 9.67
5 E F 4 2 2 8.90
6 F E 4 2 2 9.07

TABLE 8.1: Features of the demonstrations from the corrected IHMT method.
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FIGURE 8.10: Demonstrations from the corrected IHMT method.
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FIGURE 8.11: Initial positions of the objects for the demonstrations (A, B, C, D, E and F) and
the task executions (I, II, III and IV).

In order to compare the proposed corrected IHMT method with kinesthesy, six additional
demonstrations (see Figure 8.12) were recorded by kinesthesy as illustrated in Figure 8.13. The
characteristics of each demonstration are listed in Table 8.2. For comparison purpose, the learn-
ing the task algorithm needs to be implemented in the same way for both demonstration methods.
Therefore, POIs are extracted from the Cartesian gripper trajectory recorded during the demon-
strations. The gripper trajectory is not corrected, only the first step of the correction method is
applied to extract hand/gripper POIs. For each demonstration, four hand/gripper POIs have been
extracted which allows the implementation of the learning the task algorithm as described in the
previous section. The gripper state (open or close) is also recorded as well as the object initial
positions using the same vision system. The last column of Table 8.2 presents the recording
times.

Demonstrations Cube position Jar position NH Time (s)
1 A C 4 16.87
2 C A 4 19.53
3 B D 4 14.70
4 D B 4 17.05
5 E F 4 18.28
6 F E 4 16.55

TABLE 8.2: Features of the kinesthetic demonstrations.

8.2.3 Execution of the task
The task is taught and executed according to 4 different configurations. The task is considered

successful if the cube is inside the jar at the end. The configurations consist of 4 object positions
(I, II, III and IV) not encountered during the demonstrations (see Figure 8.11). As the vision
system has a non-trivial error, these positions have been measured by robot palpation in order to
avoid any bias in the comparison between the kinesthetic demonstrations and the demonstrations
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FIGURE 8.12: Demonstrations from kinesthesy.
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FIGURE 8.13: Setup of the demonstrations by kinesthesy.

from the proposed method. The results regarding the success of the execution of the task are
presented in Table 8.3. The 3D representations of the executed task are shown in Figure 8.14.
It represents the computed trajectory H∗ used as command to the robot and the object positions.
We assume that the robot precisely follows the trajectory H∗ (according to the manufacturer, its
accuracy is 0.1 mm). For each task configuration, the computed trajectory is run with 2 different
gripper orientations. The gripper orientation is fixed to be vertical (z-axis pointing downwards)
but the heading orientation around the vertical axis has 2 different angles: 90◦ or 0◦. This aspect
is discussed in the next section.

Task orientation 90◦ orientation 0◦

configuration proposed method kinesthesy proposed method kinesthesy
Cube I - Jar II Success Fail Fail Fail
Cube II - Jar I Success Fail Success Fail

Cube III - Jar IV Success Fail Success Fail
Cube IV - Jar III Success Fail Fail Success

TABLE 8.3: Results of the execution of the task for the different configurations.
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FIGURE 8.14: Executed tasks from corrected IHMT and kinesthetic demonstrations.

8.3 Discussion and perspectives
For 6 out of 8 cases (see Table 8.3), the task was successfully taught by demonstrations from

the proposed corrected IHMT method. Considering only the results when the gripper orientation
is 90◦, the success rate is 100 %. The results reveal that the proposed corrected IHMT method
can be used for PbD.

Furthermore, the time required to perform the demonstrations is shorter with the proposed
method than with kinesthesy. The values in Table 8.1 and Table 8.2 only consider the demon-
stration time, not the time of the procedures before the demonstrations. The demonstration times
tend to confirm a better handiness of the proposed corrected IHMT method compared to the
kinesthetic method in a PbD process. However, additional experiments including several sub-
jects could be conducted to further validate this point.

From Table 8.3, the proposed method is more robust (6 out of 8 successes) than the kinesthetic
method (1 out of 8 success) in the experiment. It is shown in Figure 8.14 that all the computed
trajectories – from both demonstrations method – reach the pick and the drop positions and only
differ slightly. The task execution failures from both demonstration methods seem to stem from
a disturbing horizontal motion during the approach of the picking position. The different execu-
tions of the task can be watched by following this link https://youtu.be/KJXpP2PRmkk.
Figure 8.15 shows a more detailed view on this part for a new task configuration. Due to this
disturbing horizontal motion, the robot pushes the cube before reaching the picking position.
Thus, when the robot closes its gripper, there is no object to grasp or the cube is grasped incor-
rectly causing the task to fail. With a different orientation of the gripper, the object is not or less

https://youtu.be/KJXpP2PRmkk
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FIGURE 8.15: 3D representation of the resulting trajectories from IHMT and kinesthesy
demonstrations with a focus on the disturbing horizontal motion during the picking approach.

pushed away and the task may be successful. The disturbing horizontal motion is more or less
important depending on the demonstration method. This motion can be quantified as follows: it
starts when the gripper is low enough to be able to touch the cube and it ends when the gripper
is close to grab the cube. The TCP of the gripper is the point located 1 cm before the extremity
of the gripper fingers (see Figure 8.16). Thus, the gripper is able to touch the cube when the
z-component of its position is 1 cm above the z-component of the position of the cube. During
this time interval, the horizontal displacement dh is estimated as

dh =
Nh

∑
i=2

√
(Hx(ti)−Hx(ti−1))2 +(Hy(ti)−Hy(ti−1))2 (8.21)

with Nh the number of points corresponding to this motion. The different values of dh are shown
in Figure 8.17. The task command computed from kinesthetic demonstrations presents a higher
dh value than from the proposed method. The fact that this element is not present in any of the
demonstrations (see Figures 8.10 and 8.12) suggests that it is introduced by the learning the task
algorithm and/or its implementation. The study of the impact of the learning the task algorithm
is beyond the scope of this work. Nevertheless, some explanations concerning the demonstration
acquisition methods can be given.

As for the differences of values of dh, some differences in the GMR results can be observed
regarding the demonstration acquisition methods. Figure 8.18 shows the ĤC variable (distance
from the hand/gripper to the cube) computed from the set of demonstrations from the corrected
IHMT method and from kinesthesy. The picking action occurs between 2.0 and 2.7 seconds for
the corrected IHMT method and between 5.5 and 7.5 seconds with kinesthesy. At this moment,
the σ̂ values are lower than at other moments of the task. This corresponds to a representation of
an action: the hand has to be at the cube position to pick it up. The values of σ̂ are lower in the
GMR results from the corrected IHMT method than from kinesthesy. This means that this action
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FIGURE 8.16: TCP of the gripper.

FIGURE 8.17: Gripper trajectory for the different task configurations and the dh values.
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FIGURE 8.18: GMR results for the variable ĤC for both demonstration methods with zoom
on the picking action.

is better encoded with the demonstrations from the proposed method than from kinesthesy. It
seems that a better encoding of the action limits the intensity of the disturbing horizontal motion
in the picking approach, which can explain the higher success rate for the proposed method.

The difference in the encoding of actions between the corrected IHMT method and kines-
thesy is directly linked to the quality of the demonstrations. Some additional elements can be
given to explain the differences between the corrected IHMT method and kinesthesy. Figure
8.19 shows the temporally aligned demonstration variables: the hand/gripper trajectory with re-
spect to the robot base frame, the distance between the hand/gripper and the initial cube position
and the distance between the hand/gripper and the initial jar position. The demonstrations from
kinesthesy show a larger dispersion at the picking position (lower part of Figure 8.19, between 5
and 8 seconds) than those from the corrected IHMT method (upper part of Figure 8.19, between
1.8 and 3 seconds). This can be attributed to the difficulty for the teacher to manipulate the robot.
The teacher was able to easily move the robot close to the cube position, but had difficulties to
accurately place the robot gripper around the cube. Such lack of dexterity may contribute to
deteriorate the quality of the demonstrations and increase the disturbing horizontal motion. In
addition, the initial position of the cube measured by the vision system presents a certain error.
The robot gripper being brought by the teacher to the physical cube position, this error propa-
gates in the HC variable. On the other hand, the correction method modifies the IHMT hand
positions at the picking position (POIs corresponding to the picking action). Therefore, the HC
variable is forced to be 0 during the picking action (see the upper part of Figure 8.19 between 2
and 3 seconds). The correction method improves the encoding of the picking action.

The double impact of the correction method introduced in Section 7.4 is further illustrated
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FIGURE 8.19: Aligned demonstrations per variables.

here. The correction method improves the accuracy of the hand trajectory to makes the demon-
stration suitable for PbD and it improves the encoding of the actions of the task by absorbing
the error on the vision-based measurement of the object positions. It can be mentioned that
the correction method, in the context of this experiment, is hardly applicable on the kinesthetic
demonstrations. The bulkiness of the gripper and the lack of dexterity for the teacher prevent the
cube from being detected at the drop position.

From the best of our knowledge, only a few studies compare different demonstration acqui-
sition methods. In [50], Fischer et al. compares kinesthetic guidance with teleoperation from
data gloves and teleoperation joint by joint from remote controller. Their study shows that kines-
thetic guidance has better usability. However, Fischer et al. compare methods (kinesthesy and
teleoperation) that present similarities as explained in the introduction Section 1.1.2. Kinesthesy
can present advantages over teleoperation but the same is not necessarily true regarding observa-
tional methods. Muxfeldt et al. [98] compare demonstrations by kinesthesy with demonstrations
where the human motion is captured from a vision system for an assembly task. Four tasks are
considered: peg-in-hole, inserting a shaft into a base, mounting a clip socket on a rail, assemble
a bracket to a base. The different methods are not compared in a complete programming by
demonstration process but only on a contact time basis. The contact phases start when the part to
be assembled is in contact with the other element until the assembly is completed. The detection
of these moments is done by force analysis. A short contact time is considered evidence of the
superiority of the demonstration method. Muxfeldt et al. state that kinesthetic guidance can be
used for such tasks. Regarding the experiment described in this chapter, the success rate of each
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method depends on the disturbing horizontal motion during the picking approach introduced by
the learning the task algorithm and emphasized by the demonstration acquisition method. There-
fore, as in this study, the evaluation of a demonstration acquisition method should be considered
in a complete PBD process.

8.4 Summary
This chapter details the implementation of the proposed method in a complete PbD process.

The selected learning the task algorithm is the probabilistic approach from Calinon et al. [29].
The implementation of the probabilistic approach sometimes differs from their original work.
In particular, some elements of the implemented learning the task algorithm exploit the POIs
extracted during the correction of the IHMT hand trajectory.

A pick-and-drop task is taught to a robotic system by the proposed corrected IHMT method
and by kinesthetic demonstrations. The taught task consists of picking up a cube from the table
and dropping it into a jar. The robot was able to successfully perform the task in configurations
non encountered during the demonstrations. The proposed method is suitable for PbD.

The results reveal a higher success rate in the execution of the task from the demonstrations
acquired with the proposed method than from the kinesthetic demonstrations. The failures are at-
tributed to a disturbing horizontal motion when approaching the position of the cube to be picked.
This disturbing motion is introduced by the learning the task algorithm but it is more important
when the demonstrations are performed by kinesthesy. A detailed study of this problem reveals
that a lack of dexterity of the teacher in kinesthetic demonstrations can be a source of failure in
the execution of the task. On the other hand, the correction method applied to the IHMT hand
trajectory limits the impact of the error of the vision-based measurement of object positions and
emphasize the task constraint, thus improving the behaviour of the robot in the picking approach
when executing the task in new configurations.
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9.1 Summary and contributions
Programming by demonstration (PbD), also referred to as learning from demonstrations

(LfD), aims at teaching new skills or tasks to a robotic system through human demonstrations.
This process is typically divided into two main steps: gathering the dataset and learning the task.
The second step is to “understand” the task from the set of demonstrations so that the robot can
execute the task in a configuration not encountered in the demonstrations. The first step consists
in recording some elements during the teacher’s demonstrations. A demonstration is considered
suitable for PbD if it can be reproducible by the learner. The teacher and the learner may differ
in sensing and actuation and the elements recorded during the demonstration may not be us-
able by the learner. In that case, a correspondence problem should be solved. According to the
demonstration acquisition method, up to two mappings may be necessary to adapt the recorded
dataset and overcome this issue: a record mapping and/or an embodiment mapping. One largely
used method to acquire demonstrations is kinesthetic guidance where the robot is manipulated
by the teacher and the robotic system records the demonstrations with its own sensory system.
With such a method, the correspondence issue is circumvented. The recorded elements, such
as robot joints angle states, can be used by the learner to mimic the demonstration. However,
this method presents disadvantages mainly due to limitations of the teacher’s dexterity which can
impact the whole PbD process. Thus, some applications as fine manipulations or painting tasks
cannot be transmitted by kinesthesy. On the other hand, the demonstrations can be encoded using
sensors allowing the teacher to move freely. In this case, the correspondence issue must usually
be solved, i.e., the record mapping and/or the embodiment mapping need to be identified. The
choice of the demonstration acquisition method requires a compromise between constraints on
the teacher’s motion and easy identifiable mappings with appropriate levels of accuracy and ease
of use and implementation. This problem is addressed in this work which aims at developing
a method to acquire demonstrations in a way that is convenient for the teacher. For their easi-
ness of use, inertial sensors have been selected to measure the human hand motion during the
demonstrations. In order to solve the correspondence issue, the teacher hand trajectory should ne
represented in the robot frame. The targeted applications are pick-and-place tasks in an industrial
context.

The inertial human hand motion tracking (IHMT) method proposed in this work first requires
the estimation of each sensor orientation with respect to its original orientation. It is largely
documented that such an estimation suffers from a drift due to the gyroscope bias and noise in-
tegration. The drift is partially compensated using an estimation of the gravity vector when the
sensor is not undergoing linear acceleration. A new criterion based on the derivative of the
accelerometer is proposed in this work (see Chapter 2) to better identify such stationary
moments. To reduce the remaining drift, inertial sensors can be combined with a magnetometer.
However, such a sensor is highly sensitive to disturbances especially in an indoor environment
and near a robot. Instead, a new method, called the heading reset, is proposed to limit the
drift. In a PbD context, the teacher, facing the workspace, is expected to perform movements
where the sensor passes through its original heading several times with stationary phases during
the demonstration. At these moments, a heading reset is applied to catch up the drift. The head-
ing reset is implemented in an integration and vector observation algorithm and evaluated in a
robot experiment (see Chapter 3). Three sensors are mounted on a robot end-effector. The robot
follows a set of human realistic orientations. The recorded orientation by the robot encoders is
used as reference. The results of this experiment reveal a positive impact of the heading reset.
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The orientation error is evaluated between 1.6◦ and 13.6◦ after a one-hour measurement while it
is between 5.1◦ and 35.1◦ without the heading reset.

Another contribution of this work is the development of an inertial human hand motion
tracking (IHMT) method designed for this context that solves the correspondence prob-
lem (see Chapter 4). This means that the hand trajectory is automatically obtained in the robot
frame. In this work, the human arm is modelled with 3 spherical joints for the wrist, the elbow
and the shoulder, and 3 rigid segments (arm, forearm and hand). The estimation of the human
hand trajectory relies on the estimation of the human segments orientations. To estimate these
orientations, an inertial sensor is attached to each segment. The orientation of the sensor with
respect to the segment frame needs to be estimated. A specific procedure is proposed for this
purpose. It consists of a rotational motion of the arm straight followed by a static pose. In ad-
dition, the hand position has to be expressed with respect to the robot base frame in order to be
meaningful for the robotic system. A method to estimate the transformation between the human
and the robot is proposed. It consists in asking the human to follow a trajectory imposed by the
robot. The data recorded during this part is also used to optimize some parameters involved in
the method. Different experiments have been conducted to evaluate the different elements of
the proposed method (see Chapter 5). A first experiment performed on a robot arm such that
the IMUs are used to estimate the robot end-effector position, showed that the initialization pro-
cedure is robust to sensor positioning. The error measured during this experiment is between
27.7 mm and 47.7 mm regardless of the sensor positioning. A second experiment is conducted
on a human arm. The error measured during this experiment is comprised between 54.76 mm
and 181.84 mm. Compared to the previous result, this last result reveals that the human hand
position estimation is disturbed by modelling errors (e.g., the model does not take into account
that the shoulder joint centre of rotation depends on the human arm poses, the finger motion is
not modelled, torso displacement) and calibration errors (e.g., deviation from the recommended
movement of the initialization). A third experiment is conducted to evaluate the human hand
trajectory with respect to the robot base frame. The error has been evaluated between 28.5 mm
61.8 mm. The gain in accuracy compared to the previous result comes from the optimization of
the system parameters. It partially compensates the error due to the calibration errors.

Due to the sensor orientation errors, the modelling errors and the calibration errors, it seems
difficult to achieve a sufficient level of accuracy for PbD only based on IMU signals. A method
is proposed to correct the IHMT estimation of the hand trajectory by a vision-based estima-
tion of objects positions (see Chapter 6). This method exploits the complementarity between
vision and inertial sensors. The proposed correction method is based on 3 main steps. The
first step consists in extracting positions of interest (POIs) from vision and inertial data. POIs
are static positions that correspond, among others, to picking, placing, initial pose or avoidance
pose. More precisely, a POI is a 3D position and two temporal boundaries. The extraction of
POIs is based on the clustering algorithm DBSCAN. The relevant actions such as picking and
placing induct a POI in both vision data and inertial data. The second step is to pair these POIs.
The pairing is a two-step process. The first step iteratively eliminates the POIs that should not
be involved in any pairs. The second step is to assign the remaining POIs using the Hungarian
method with a cost matrix based on temporal distances between POIs. Once the pairs of POIs are
constituted, the inertial hand trajectory is corrected. Firstly, a global correction is applied on the
whole trajectory with a transformation estimated from the pairs of POIs. Secondly, the IHMT
hand trajectory is locally modified to fit the positions of the object POIs and is smoothed around
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these positions. This method has been implemented and evaluated for different pick-and-place
tasks (see Chapter 7). It has also been evaluated in a context where the tracked object is a tool
held by the teacher. The robot succeeds to mimic the demonstrated tasks in the majority of cases,
making the demonstrations appropriate for PbD.

In the last chapter (see Chapter 8), the entire method is evaluated in a complete PbD process.
The task to be taught is a pick-and-drop task. An object is picked on the table and dropped from
above a jar. The method used to learn the task is the probabilistic approach from Calinon et
al. [29]. Our corrected IHMT method creates qualitative demonstrations used by the robotics
system to execute the task in non-encountered task configurations. A comparison is also made
between the proposed method and the kinesthetic method. For this case, the kinesthetic demon-
strations lead to a lower success rate. It seems that the lower dexterity due to kinesthesy disturbs
the resulting trajectory. It is also seen that the vision-based correction method has a combined
impact. By associating a hand POI and an object POI, the task constraints are emphasized which
improves the quality of the demonstrations. Such high quality demonstrations contribute to the
better success rate of the proposed method in the task execution.

9.2 Conclusions
The present doctoral thesis proposes a corrected IHMT method to acquire demonstrations of

pick-and-place tasks for PbD. The method meets the requirement of PbD and is convenient for
the teacher. The method has been developed to teach a pick-and-drop task. In this context, the
proposed method performs better demonstrations than kinesthesy. The proposed corrected IHMT
method is a relevant alternative to kinesthesy for applications that require a certain dexterity.

The heading reset presents a positive impact on the sensor orientation estimation. The head-
ing reset achieves a compensation of the drift in the orientation sensor around the gravity direc-
tion when it is not possible to use a magnetometer. This original approach takes advantage of
some particular properties of the human motion for task demonstrations.

The IHMT method proposed in this work reaches a similar level of accuracy than other pro-
posed methods in the literature [49] and has also been developed to meet specific requirements of
the targeted application. The proposed IHMT method is thus adapted to PbD. It does not require
magnetometer data that are too sensitive to disturbances encountered in industrial environments
and it exploits some interactions with the robot to improve the accuracy.

The experimental tests conducted to evaluate different factors influencing the IHMT method
reveal that the human motion is affected by parasitic motions. Such motions can be torso or
shoulder displacements, a deviation from the recommended motion for the initialization, or
soft tissue artefacts. Such parasitic motions induce important measurement inaccuracies for
the demonstration acquisition method solely based on inertial sensors. However, it is shown
that once corrected using a vision-based object tracking, the corrected IHMT demonstrations are
suitable for PbD. The proposed corrected method consists in merging inertial data and vision
data. The problem that is mostly addressed in the literature is to merge vision measurement and
inertial measurement of the same element, for instance the estimation of the drone position from
inertial data (double integration of the linear acceleration) with the estimation of the same posi-
tion from landmark observations. The approach presented here to merge inertial and vision data



9.3. Perspectives 139

differs by merging measurements of different elements: the hand position from inertial measure-
ments and the objects positions from vision measurements. This approach has been developed
for programming by demonstration of pick-and-place tasks but it may potentially be applied to
other contexts as well.

The impact of the proposed correction method goes beyond improving the level of accuracy
of the hand trajectory from the IHMT method. The correction method improves the encoding of
the actions of the task by associating a hand position with an object position. The use of pairs of
POIs is then an appropriate approach for PbD.

9.3 Perspectives
Programming by demonstration aims at developing intuitive methods to transmit tasks or

skills to a robot in a similar way humans interact, i.e., by demonstrating the desired behaviour.
PbD has the potential to address challenges of industry 4.0 which is faced with the automation
of short series requiring frequent robot programming. With the increasing number of robots in
our daily lives, PbD also has the potential to address challenges in the service sector.

The heading reset appears as a promising approach to reduce the drift around the gravity
direction. The key aspect of this element is the detection of the moments when it should be
applied. The criterion to determine these moments can be further studied as well as its relevance
for different applications. Furthermore, one could wonder if some other natural features in hu-
man behaviour during demonstrations can be exploited to detect and compensate the drift of the
heading angle.

The proposed method has been evaluated on pick-and-place tasks and compared to kines-
thetic guidance. Demonstrations where human motion is measured have the potential to reach
more complex applications where kinesthesy cannot be applied, in particular, applications where
fine manipulation is involved. The proposed method might be adapted to track fingers motions
(with extra sensors on the phalanges) and could be tested for such manipulation tasks. In addi-
tion, it would be interesting to evaluate the proposed method with other classes of objects and
not only cubes. A general object positioning algorithm would then be required.

The torso motion could also be tracked using an additional IMU for a better user-friendliness
for the teacher. This has been tested in an early attempt. The teacher sits and the model is en-
riched to account for the rotation of the torso considered as a rigid segment connected to a fixed
support by a spherical joint. An IMU, set on the chest of the teacher, is used to track the torso
segment orientation. Unfortunately, the results were not conclusive and further investigations
could be conducted to better model and measure the torso motion.

One taxonomy of the learning the task methods opposes low-level and high-level represen-
tations of the task [34]. The high-level representation deals with a set of symbolic elements of
a task such as “pick-up”, “screw” or “move”. The method developed and implemented in this
work belongs to the low-level category. Methods in such categories describe the task with, for
instance, trajectories. On the other hand, inertial sensors seem particularly suitable for human
gestures recognition as in [84, 134]. Without modifying the IHMT equipment, additional high-
level information could be extracted from IMUs signals in order to complement the low-level
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FIGURE 9.1: Robot teleoperation using the proposed IHMT method.

representation of a demonstration. An early work on this problem is presented in [93]. A first
step could be to manage pointing gestures as in [25] during demonstrations to indicate a pick or
a place position non-reachable by the teacher.

The POIs extracted to correct the hand trajectory are also used in the implementation of the
learning the task algorithm. In [62], the demonstrations only include key positions. The rep-
resentation of the demonstrations with specific positions and how they are related to each other
could be investigated for PbD.

Our IHMT method was developed for the purpose of demonstration acquisition. Neverthe-
less, it may also be used in a wider context. For example, some initial tests have been performed
to exploit the method for teleoperation. As can be seen in Figure 9.1, the motions of the opera-
tor are recorded and transmitted to the robot which replicates in real-time these motions. In the
illustration, the operator drives the robot to grasp a ball and insert it in a funnel. More details on
this application are given in Appendix C. Such teleoperation setups can be exploited for various
purposes including demonstration acquisition in a PbD context.
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A.1 Notations
The algorithms presented in the following have two versions: the MARG version when con-

sidering magnetometer data and the IMU version when considering only the gyroscope and the
accelerometer data. Frame 0 denotes the inertial reference frame for the orientation of the sensor.
It follows the ENU convention (y-axis pointing East, x-axis pointing North and z-axis pointing
Up) for the MARG version. In the case of the IMU version of the algorithm, the z-axis of the ref-
erence frame is pointing up and the y-axis and the x-axis are defined by the initial sensor frame.
Frames n and n−1 are the sensor frame at time step n and n−1 respectively.

nωωω
gyro
n , nan and nmmag

n denote respectively the gyroscope, accelerometer and magnetometer
measurement at the time step n with respect to the sensor frame n.

The algorithms presented here use the vector 0g, a unit vector representing the gravity di-
rection with respect to the reference frame. The z-axis of the reference frame being defined as
aligned with the gravity, 0g = [0 0 −1]. ng is a unit vector estimating the gravity direction with
respect to the sensor frame at time step n. g is the gravity constant at the Earth surface. mearth is
the local Earth magnetic vector and δ is the inclination angle of the Earth magnetic field. mearth

and δ are determined by the World Magnetic Model from the National Oceanic and Atmospheric
Administration. It can be mentioned that mearth is only irrelevant for the MARG version of the
algorithms. nm and 0m are unit vectors estimating the direction of the local magnetic vector.

The unit quaternion 0q̂n denotes the rotation from frame n to frame 0 and nq̂0 = (0q̂n)−1.
The cross product is noted ×. The quaternion product is represented by ⊗. The Euclidean norm
is noted ‖.‖. v̂ = [0 vx vy vz]T is the quaternion representation of a vector v = [vx vy vz]T . The
operator ṽ represents the skew symmetric matrix associated to the vector v.

ṽ =

 0 −vz vy
vz 0 −vx
−vy vx 0

 .

A.2 Fourati’s Algorithm
The Fourati’s algorithm is presented in Algorithm 5. The values for the parameters in the

Fourati’s algorithm are defined in Algorithm 6 for the MARG version and in Algorithm 7 for the
IMU version.
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Algorithm 5 : Fourati’s algorithm [53].
ng =

nan
‖nan‖

nm =
nmmag

n
‖nmmag

n ‖
0m = [cos(δ ) 0 − sin(δ )]T
n−1ĝ = 0q̂−1

n−1⊗ 0ĝ⊗ 0q̂n−1
n−1m̂ = 0q̂−1

n−1⊗ 0m̂⊗ 0q̂n−1

X = −2
(n−1g̃ n−1m̃

)T for the MARG version
X = −2

(n−1g̃
)T for the IMU version

W = −2
(
ka

n−1g̃ km
n−1m̃

)T for the MARG version
W = −2

(
ka

n−1g̃
)T for the IMU version

K = (XT X + 10−5I3)−1W T

e =

 1

K
( n−1g− ng

n−1m− nm

)  for the MARG version

e =
(

1
K
(

n−1g− ng
) ) for the IMU version

0q̂n = 0q̂n−1 +
1
2

0q̂n−1⊗ nω̂
gyro
n ⊗ e

0q̂n =
0q̂n
‖0q̂n‖

Algorithm 6 : parameters values for the Fourati’s algorithm (MARG version).

if |‖nan‖−1|> 0.1 and |‖nmmag
n ‖−‖mearth‖|< 5 then

ka = 0.1 , km = 0.9
else if |‖nan‖−g|< 0.1 and |‖nmmag

n ‖−‖mearth‖|> 5 then
ka = 0.9 , km = 0.1

else
ka = 0.5 , km = 0.5

end if

Algorithm 7 : parameter values for the Fourati’s algorithm (IMU version).

if |‖nan‖−1|> 0.1 then
ka = 0.1

else
ka = 0.9

end if
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A.3 Mahony’s algorithm

Algorithm 8 : Mahony’s algorithm [89].
ng =

nan
‖nan‖

nm =
nmmag

n
‖nmmag

n ‖
n−1ĝ = 0q̂−1

n−1⊗ 0ĝ⊗ 0q̂n−1
n−1m̂ = 0q̂−1

n−1⊗ 0m̂⊗ 0q̂n−1

ep = k1(ng× n−1g)+ k2(nm× n−1m)
ei =

∫ n
0 ∆tep

nω = nωgyro
n + kpep + kiei

0q̂n = 0q̂n−1 +
1
2

0q̂n⊗ nω̂

q̂n =
q̂n
‖q̂n‖

The proportional kp and integral ki gains of the Mahony’s algorithm have been respectively set
up to 2 and 0.005 according to author recommendations [89]. In order to consider magnetometer
measurements, the values for k1 and k2 have to be set to 1. But to use this algorithm only with
accelerometers and gyroscope, the values should be k1 = 1 and k2 = 0.

A.4 Madgewick’s algorithm

Algorithm 9 : Madgwick’s algorithm [88].
ng =

nan
‖nan‖

nm =
nmmag

n
‖nmmag

n ‖
n−1ĝ = 0q̂−1

n−1⊗ 0ĝ⊗ 0q̂n−1
n−1m̂ = 0q̂−1

n−1⊗ 0m̂⊗ 0q̂n−1

F =

( n−1g− ng
n−1m− nm

)
for the MARG version

F =
(

n−1g− ng
)

for the IMU version
e = JT F with J the jacobian matrix of F
e = e

‖e‖
q̂n = q̂n−1 +

1
2 q̂n−1⊗ (nωωω

gyro
n −β ê)

q̂n =
q̂n
‖q̂n‖

According to the author recommendation β =
√

3
4 ×ωβ with ωβ the norm of the zero mean

gyroscope measurement error.
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environment

B.1 Experimental Setup
Three Xsens MTw sensors have been mounted on an ABB IRB 120 robotic arm, see Figure

B.1. The three algorithms presented in Appendix A are applied on the calibrated data of the
Xsens sensors. The orientation of the end-effector of the robot measured by encoders is used as
reference. The trajectory applied to the robot is composed of 4 rotations of +100◦, +60◦, -60◦

and -100◦ around the x, y and z axes of the robot base frame, 3 translations along these axes and
a random motion. This trajectory is repeated 5 times at different maximum speeds of the robot
end-effector: 500 mm/s, 500 ◦/s; 300 mm/s, 300 ◦/s; 50 mm/s, 50 ◦/s; 300 mm/s, 300 ◦/s and 500
mm/s, 500 ◦/s. Each measurement lasts 10 minutes and 39 seconds.
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FIGURE B.1: Experimental setup.

B.2 Results
The results are shown in Table B.1. The table presents the results of both IMU and MARG

version of each algorithm. The error ε is the norm of the rotation vector θ describing the rotation
from the estimated orientation from sensor data q̂inertial and the robot’s end-effector orientation
measured from encoders q̂robot :

θ = q̂inertial⊗ (q̂robot)−1

ε = ‖θ‖
(B.1)
(B.2)

The green and the red cells show respectively the best and the worst estimation between the
MARG and the IMU versions of the same algorithm. Regarding the Mahony’s algorithm, it is
clear that the use of the magnetometer has a negative impact on the sensor estimation orientation
close to a robot. Regarding the Madgwick’s and the Fourati’s algorithm, the contribution of
the magnetometer sometimes degrade the sensor orientation estimation. It can be considered
that using a MARG algorithm for sensor orientation estimation close to a robot does not give a
reliable result.
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Measurement Sensors
The Mahony’s The Madgwick’s The Fourati’s

algorithm algorithm algorithm
MARG IMU MARG IMU MARG IMU

1 26.2 5.8 15.8 8.6 7.9 15.9
1 2 21.9 2.5 4.3 3.3 7.3 4.6

3 21.3 12.0 20.8 21.6 28.1 17.4
1 21.8 2.3 4.4 6.9 7.3 6.3

2 2 26.2 3.6 15.9 8.3 8.0 16.8
3 21.4 9.1 17.4 20.1 24.1 14.6
1 21.8 3.9 5.5 12.5 7.0 8.4

3 2 21.4 8.7 18.9 20.7 26.7 15.8
3 26.2 5.5 14.3 8.1 6.0 13.0
1 23.0 3.9 19.1 20.1 20.7 15.8

4 2 27.0 12.9 15.9 9.4 11.0 14.1
3 23.6 7.0 8.3 14.7 4.9 7.2
1 27.0 8.7 15.8 9.0 11.9 16.5

5 2 23.0 3.9 20.6 24.0 20.8 15.9
3 23.6 9.2 8.6 16.2 4.5 6.4
1 27.0 8.4 15.6 9.3 12.8 14.5

6 2 23.6 3.9 11.0 19.7 7.2 6.6
3 23.0 3.7 17.4 19.1 19.7 13.8

TABLE B.1: Comparison between the IMU and the MARG version of three algorithms.
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C.1 Experimental setup
The experimental setup is based on the Sawyer robot from Rethink Robotics (see Figure 9.1).

The three IMU sensors transmit data by radio frequency to a regular desktop computed, which
host the numerical implementation of the method. The desktop computer and the robot’s con-
troller communicate via a local ROS-based network.

The task considered is a simple pick-and-place, which consists in picking a squash ball from
a little container and drop it inside a funnel. After the funnel, a tunnel guide the ball back to its
original container. The task is successfully completed if the ball goes back at its original location
in the container.

Seven subjects are asked to perform this task in two manners, with the keyboard and with
the IHMT teleoperation method. Each subject is asked to do 5 successes with each method. The
number of trials is recorded as well as the time used to complete each individual success. The
subjects are aged from 29 to 36 years old. The group is constituted of 2 women and 5 men with
robotics expertise from “none” to “expert”.

For IHMT teleoperation, the subject faces the robot and stands approximately 0.5 m away
from the table. Once the subject has performed the rotating motion and the static pose of the
initialization procedure, the robot’s gripper is controlled to follow the subject’s hand. If the
subject performs a motion of 10 cm on the left, the robot does the same with a negligible delay.
The orientation of the gripper is also controlled by the orientation of the subject’s hand. Once the
robot is teleoperated, the subject must stand upright, only his/her arm is moving. For keyboard
teleoperation, the subject sits at the right front of the robot. The robot starts in a central position,
gripper facing down. The subject can move freely.

C.2 Results and discussion
Figure C.1 presents the duration of each of the 5 successes for both teleoperation methods.

Globally, the IHMT teleoperation method requires less time to complete the task which tends
to confirm that this method is more convenient for robot teleoperation than the conventional
teleoperation methods. However, the results for keyboard teleoperation reveal a learning effect
as identified in [13, 98]. For almost all subjects, the time to complete task decreases with the
number of trials. It is not the case for the IHMT teleoperation method. So the advantage of such
method could be less marked after some training.

Table C.1 shows the number of trials to reach 5 successes with both methods. The number
of failures is higher for the IHMT teleoperation method for all but 2 subjects for which it is the
same. In addition, the number of trials for the keyboard method is 5 or 6, meaning that almost no
failure occurred when using this method. This tends to reveal a difficulty to handle the proposed
IHMT method. However, as with the time analysis, a learning effect can be identified regarding
the success rate. The success rate is defined as the number of successes divided by the number of
trials. It can be computed after each trial. Figure C.2 presents the evolution of the success rate for
each subject. Subjects 4, 5 and 7 clearly show a learning effect since their success rate increases
with the number of trials. Subjects 1 and 2 also present a learning effect except for their first trial
which is a success. Subject 6 does not present a learning effect but no failure occurs. Subject 3
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FIGURE C.1: Time for each individual success for the keyboard method a) and for the IHMT
method b).
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FIGURE C.2: Success rate for each subject using the IHMT method.

does not present any learning effect. It can be expected that a potential difficulty to handle the
IHMT method could be overcome with some practice.

Subject Methods
Number Success 1 Success 2 Success 3 Success 4 Success 5

of trials time (s) time (s) time (s) time (s) time (s)

1
keyboard 6 71 37 33 31 37

IHMT 8 19 24 41 17 22

2
keyboard 6 113 73 73 65 51

IHMT 6 97 90 46 43 30

3
keyboard 5 76 37 33 30 35

IHMT 7 81 19 23 63 30

4
keyboard 5 145 59 41 37 36

IHMT 9 19 24 13 19 20

5
keyboard 5 36 50 57 50 47

IHMT 6 60 34 25 35 26

6
keyboard 5 76 34 36 32 36

IHMT 5 20 55 31 46 23

7
keyboard 5 45 39 33 38 29

IHMT 8 19 38 22 22 15

TABLE C.1: Results of the execution of the pick-and-place by teleoperation from the IHMT
and from the keyboard method.
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